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Abstract—Cooperative driving is a promising technology in
the future Connected Autonomous Vehicles (CAV) because of its
benefits to safety and fuel efficiency. However, since CAV will
be relying heavily on wireless communication to cooperatively
coordinate road maneuvering, latency and reliability of com-
munication still pose a challenge. In this paper, we propose a
novel scheme based on deep learning prediction to enhance the
uplink resource allocation process in 5G C-V2X. The proposed
scheme enables the base station to predict vehicle maneuvers,
subsequently, assign it the required resource in advance without
the need for scheduling request and granting process. This
scheme improved the ability of 5G NR to support cooperative
driving requirements. Moreover, we compare both traditional
and proposed schemes discussing issues that arise from the
introduction of prediction models and possible approaches for
further enhancements in the future.

I. INTRODUCTION

Deploying autonomous vehicles (AV) in complex traffic is
challenging and has many trade-offs. A major challenge is
achieving more traffic without threatening the safety of human
drivers. The AV must have the ability to make decisions such
as when and how to change the lane, cross an intersection, or
overtake another vehicle. To apply these decisions safely, the
AV needs to communicate and coordinate with surrounding
vehicles. Traditionally, vehicle-to-everything (V2X) commu-
nication has been utilized for information exchange required in
cooperative driving. Two main technologies have been popu-
larized to allow V2X, the cellular-based C-V2X and dedicated
short-range communication (DRSC). DRSC technology is
based on IEEE 802.11p standard which faces many challenges
such as limited mobility support and limited bandwidth, which
result in shortcomings in terms of reliability and latency [1],
[2]. On the other hand, C-V2X is gaining a foothold with
the 5G new radio (NR). NR is promising capabilities that can
finally allow C-V2X based cooperative driving [3] because of
the better support it can provide especially for safety-related
applications [4]. Release 16 of 5G-NR [5] defines the service
requirements for several enhanced C-V2X scenarios, e.g.
cooperative lane change, trajectory alignment, and platooning.
According to Release 16 specifications, to allow cooperative
driving at the lowest degree of automation, the network must
be able to support a success rate over 90% in packet delivery

with a maximum allowed latency of 25 ms for 300-400
bytes of payload. This level of automation, typically includes
transmitting only the intention of maneuvering, however, to
reach a higher level of automation a vehicle is expected to
transmit further information, e.g. estimated future trajectory
and sensory data. To fully support cooperative driving at the
maximum level of automation, service requirements increase
up to 10 ms latency, 12KB payload, and 99% packet delivery
rate. These strict constraints call for innovative techniques
to enhance the efficiency of how resources are allocated in
the next 5G releases. These techniques must aim at reducing
as much overhead as possible while satisfying the latency
and reliability requirements for cooperative driving tasks.
Improving network resource allocation in cellular-based V2X
communications has been extensively studied in the literature.
A comprehensive survey on sharing resource blocks (RB)
based on user clustering was presented in [6]. Hybrid schemes
in which DRSC is used to assist C-V2X were proposed in [7]
[8]. Authors in [9] used machine learning (ML) techniques
in predicting vehicle trajectory. This prediction is then lever-
aged to optimize a handcrafted reward function designed for
resource allocation. Although innovative, their work lacks in
terms of relying on older 4G LTE C-V2X in their analysis.
Moreover, it did not account for classifying the mobility traces
into their corresponding maneuvers. Coordinating different
maneuvers typically depends on the levels of automation
adopted, hence different service requirements and payloads for
the resource allocation task. Maneuver recognition models are
typically classifiers that use past motion states of the vehicles
as features. Random forest classifiers, bayesian methods,
hidden Markov models, and recurrent neural networks(RNNs)
have been used for maneuver recognition [10]–[13]. Many
approaches take into consideration visual cues, such as but
not limited to braking lights, to predict the future motion of
the surrounding vehicles [14]–[17]. Other works, such as [10]
and [18] implicitly learn vehicle interaction from trajectory
data of real traffic, while combined schemes were proposed
in [10], [19], [20]. In this paper, we adopt the latter approach
by relying on vehicle trajectory data solely. A comprehensive
survey of maneuver-based models can be found in [21], [14].
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that relies on maneuver prediction or recognition to make
appropriate decisions.

An important research direction in resource management is
anticipatory scheduling. To the best of the authors’ knowledge,
no previous proposals were made to utilize maneuver predic-
tions in network resource allocation. Therefore, in this paper,
we propose an anticipatory resource allocation for connected
vehicles that relies on maneuver prediction, based on which
the required resources can be decided and assigned to the
subject vehicle ahead of time. which is expected to improve
the future C-V2X to support the safety requirements. More
specifically, we propose a novel uplink resource allocation
scheme relying on a deep learning-based maneuver prediction.
In addition, we perform a sensitivity analysis to investigate
the impacts of varying network loads as well as the classifier
prediction horizon on packet latency and delivery rate under
5G network settings. Our contribution is outlined as follows:

1) Introducing a novel scheme that leverages deep learn-
ing prediction models to allow faster uplink resource
allocation in 5G NR aiming at further support for AV
applications under strict network conditions.

2) Creating a simulation environment to study the perfor-
mance of 5G NR in terms of latency and reliability
for exchanging maneuver information between onboard
UEs installed on vehicular nodes. For this purpose, we
use the requirements specified in Rel. 16 of 5G-NR.

3) Performing a sensitivity analysis to compare the per-
formance of both traditional and proposed schemes and
their ability to support AV safety constraints specified
by the 3GPP standard.

The rest of the paper is organized as follows. We start with
a brief discussion of previous research on resource allocation
schemes and the prediction of maneuver intention in a vehic-
ular environment. In section II the system architecture of the
uplink granting is presented and a high-level description of
our proposed scheme for resource allocation with comparison
to traditional solutions. Then, we go into further details in
the simulation environment and the proposed method for
predicting the maneuver intention. Finally, we discuss the
performance of both traditional and proposed schemes in
terms of packet latency and transmission reliability and the
ability to support the strict requirements of AVs under various
network conditions.

II. SYSTEM ARCHITECTURE

Uplink resource granting in C-V2X could be performed
using either semi-static or dynamic methods. In semi-static
methods, the base station allocates periodic resources to a
UE in advance, e.g., a UE may be asked to transmit in a
given radio resource every X msec. The semi-static scheme is
prone to waste of resources, hence, the use of dynamic grant
schemes is more common in C-V2X. Dynamic schemes rely
on a handshake protocol to allocate resources (see Fig. 1).
First, the UE transmits a scheduling request (SR) to signal

(a)

(b)

Fig. 1: Sequence Diagram For Dynamic Resource Allocation
in a) Traditional Scheme and b) Proposed Scheme

its need for additional resources. After the gNB successfully
decodes the SR, it schedules the UE with an uplink grant.
Using SR alone, the base station cannot know exactly the
amount of data the UE has in the buffer. Thus, typically
the gNB sends a small UL grant which the UE can use to
send buffer-status-report (BSR) that indicates the range of the
amount of data that the UE has in its buffer. Finally, the
base station uses BSR information to grant UE the number
of needed resources. The latency resulting from this process
alone can easily exceed the maximum acceptable delay to
support cooperative driving in AVs [22]. In this paper, we
propose a new scheme for UL scheduling. Our system, shown
in Fig 2, is composed of an AV with an installed onboard UE.
On the other side, a gNB with an installed prediction model
is responsible for providing cellular service to vehicles. In
addition to the coverage, the gNB also preserves state histories
of vehicle, i.e. its location and speed, for a window of time.
Using observed histories of AV states, the gNB can predict
the intention of future maneuvering using the pre-installed
prediction model. Consequently, it can estimate a future need
for UL resources that will be needed by the vehicle’s onboard
UE to share its intention with the surrounding vehicles during
future cooperative path planning. Based on this estimation, the
gNB can proactively schedule UL resources to this UE without
the need for a scheduling request/response process, which
saves the round trip delay consumed in such a traditional
scheduling scheme (see Fig. 1).

III. VEHICLE MANEUVER PREDICTION MODEL

This section describes the prediction model used for vehicle
maneuver prediction and the dataset used for training and
testing the model.
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Fig. 2: Proposed scheme for uplink grants in C-V2X

Fig. 3: Dataset: Layouts of the road sites used for collecting
the NGSIM US-101 [2] and NGSIM I-80 [3] datasets. Both

roads are multi-lane free ways with entry and exit ramps.
The data is collected through 7 top-down cameras capturing

the positions of each vehicles every 100 ms.

A. Dataset

We use the publicly available Next Generation Simulation
(NGSIM) US-101 [23] and NGSIM US-I80 [24] datasets for
our experiments. Each dataset consists of trajectories of real
freeway traffic captured at 10 Hz over a period of 45 minutes.
Each dataset consists of 15 minutes segments of mild, moder-
ate and congested traffic conditions. The dataset provides the
coordinates of vehicles projected to a local coordinate system.
The total number of trajectories after processing the data is
3121 trajectories including 1184 trajectories involving a lane
change. We prepossess the trajectories in the dataset to extract
the features to be fed to the model. The main features that are
extracted from each vehicle trajectory are the vehicle location,
the vehicle speed in each time step, and lane changing events.
Moreover, hand-crafted features were added to the data, i.e. a
feature indicating the angle between the vehicle and the lane
direction. Five features indicate if a lane change is happening
within five different prediction horizons were also added.

To train and test the different models, we split the datasets
into train and test sets with the test set being one-fourth of
the data. We exclude vehicles with less than 6 s of saved

Fig. 4: LSTM model: cross entropy losses under 1-5 s
prediction horizons

trajectories. We also down-sample each trajectory by a factor
of 10 to reduce the prediction model complexity.

B. Performance Of Different Classifiers

As mentioned earlier, maneuver prediction can be consid-
ered as a classification problem based on the mobility trajec-
tory of the vehicle. We performed an extensive analysis for
different predictors to achieve the highest possible accuracy
in predicting the maneuver intention. The performance of
different classifiers, i.e. support vector machine (SVM), Multi-
layer perceptron (MLP), random forest, and Long Short term
memory (LSTM) is summarized in table I. for all these mod-
els, the maneuver information is encoded within the sequence
of events, i.e. relative change in speed and angle compared
to previous states. As shown in table I, the Long Short Term
Memory (LSTM) came on top with the highest accuracy. Fig.
4 shows LSTM cross-entropy losses under prediction horizons
varying from 1-5 seconds. The poor performance of other
predictors is attributed to their inability to capture the temporal
correlation between parameters in the vehicle. On the other
hand, Recurrent Neural Networks (RNNs), implemented in
LSTM, can discover relationships between consequent states
resulting in an outstanding performance.

1s 2s 3s 4s 5s
SVM 82.1% 79.8% 77.4% 74.1% 70.7%
MLP 74.3% 70.9% 66.5% 62.2% 58%

Random Forest 84.3% 81% 78.3% 75.0% 71.6%
LSTM 89.7% 88.3% 87.1% 84.6% 82.0%

TABLE I: Performance of different classifiers for different
prediction horizons

C. LSTM Implementation

Since the LSTM produces the best prediction performance,
in this subsection, we will explain the LSTM implementation.

The input to our model is the tensor of track histories

xt = [st0, s
t
1, ...., s

t
n]

Where τh is the length of track histories, n is the number
of considered surrounding vehicles, s is the state of the
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Fig. 5: LSTM model: state histories are fed to the model at
each time step. The output of the model is the probability of

performing maneuver within prediction horizon

surrounding vehicles, i.e. x,y coordinates, speed and the angle
between the vehicle direction and a vector perpendicular on
the road, at time t.

The output is formulated as a single variable Y expressing
the probability of the vehicle performing lane change within
the prediction horizon. Provided with sufficient data to train
on, this could be easily extended to a one-dimensional vector
representing the probabilities of different maneuvers. Finally,
The model is trained to minimize the sum of cross-entropy
losses of the predicted and ground truth of maneuver classes.
Cross-entropy loss is defined as:

loss = −
∑

p(X)logp(X)

We use 64 units with leaky relu activation function at every
time step t of the LSTM. The training was performed using
Adam optimizer [25] with a learning parameter of 0.05 and
the model was implemented using Keras [26].

IV. SIMULATION ENVIRONMENT

We used 5G-LENA implementation for the 5G-NR [27]
to build an environment in which we test the performance
of packet exchange between vehicular nodes. 5G-LENA is
an open-source 5G-NR simulation designed as a pluggable
module to the NS-3 network simulator [28]. In the developed
environment, vehicles are modelled in NS-3 as mobile nodes,
they communicate through a base station. Each vehicle has
a UDP server, and a UDP client installed. The UDP clients
and servers are used to exchange cooperative driving packets
which contain information intention of maneuver. Each vehi-
cle communicates through an antenna that is installed at 1.5
meters height, with sending power of 40 dBm. The data rate
for each vehicle is 53Mb/s. This rate includes data sharing
for both cooperative maneuvers and cooperative perception
as specified by the 3GPP standard for cooperative driving in
V2X communication in 5G [22].

In our experiment, we use only one gNB to forward the
maneuver messages between moving vehicles. This gNB is

centred between the moving vehicles and it has 64 an isotropic
antenna installed at a height of 35 meters. Moreover, in
our environment, we use a single band of 20 MHz at a
central frequency of 3.5 GHz. Moreover, we use NS-3 Rural
Macrocell (RMa) as a propagation loss model to simulate
signal propagation in highway environment [29]. To simulate
background load, we create additional nodes, fixed in place
and attached to the gNB, that constantly exchange packets on
both uplink and downlink. The packet inter-arrival interval
for this background traffic is also drawn from a uniform
distribution with a maximum delay of 10 microseconds, and
the packet size is 500 bytes. The number of fixed nodes is
a variable to control the background traffic load on the gNB
during the experiment.

Finally, to compare the performance of the two schemes,
we build a scenario in which the locations of mobile nodes
are updated each 100 ms bases on positions extracted from
the NGSIM dataset. We schedule NS-3 events that perform
maneuver data exchange between a mobile node and its
surrounding. These events are scheduled at the maneuver
times also extracted from the aforementioned dataset. Based
on this setting the mean maneuver packets delay is collected
and used as a metric to evaluate the ability of the traditional
uplink dynamic scheduling scheme to 5G-NR the cooperative
driving application.

To assess the performance of the proposed scheme, we
collect statistics on the latency resulting from uplink grant
scheduling then shift the scheduling times of maneuver packet
exchange back in time based on the collected statistics and
maneuver prediction. The goal is to compensate for the latency
resulting from the scheduling process whenever the maneuver
is predicted correctly in advance. The required statistics could
be collected in NS-3 by logging transmission times of control
messages (SR, PUCCH, and PDCCH) on the mac layer of
the netDevice installed on mobile nodes. Specifically, the
following steps are executed to assess the performance of the
proposed scheme:

1) Conduct the aforementioned experiment using a dy-
namic UL scheduling scheme.

2) For each vehicle: log the times of receiving large UL
grants over PDCCH.

3) Outside NS-3: run the predictor on vehicle trajectories
a) For false negative predictions, i.e. Vehicle pre-

dicted as not intending to perform maneuver while
it intends to perform a maneuver: schedule the
transmission time as t where t is the transmission
time as in step 1 left intact.

b) For false positive predictions, i.e. Vehicles pre-
dicted as intending to perform a maneuver while
it does not intend to perform a maneuver: add new
transmissions to the NS-3 scheduled maneuver
files at time t = tv where tv is the time of the last
saved coordinate for the vehicle extracted from the
mobility dataset.

3547Authorized licensed use limited to: Queen's University. Downloaded on November 22,2022 at 18:56:35 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6: Average delay and the corresponding wasted
resources

4) Repeat the experiment with the modified scheduling
times.

V. SENSITIVITY ANALYSIS

A. Sensitivity to Prediction Threshold

Both average delay and waste of resources in the proposed
scheme could be controlled by manipulating prediction thresh-
olds α where α is defined as the minimum probability required
by the model to predict maneuver intention. Increasing the
prediction threshold α results in being more conservative
in predicting maneuvers, hence, less waste of resources at
the expense of average delay. Fig 6 shows the trade-off
between the wasted resources, defined as the number of times
unneeded resources are granted, and average delay under
different periodicities for different values of α in the proposed
method. Dynamic scheme performs best in terms of waste of
resources, as it doesn’t suffer from waste, however, it exhibits
higher delay when compared to our scheme. Increasing the
prediction threshold results in the LSTM being more conser-
vative in predicting maneuvers, hence, the number of vehicles
benefiting from the proposed scheme decrease leading to less
waste of resources at the expense of average delay.

B. Sensitivity to Network Load

Fig 7 show the end-to-end latency for both traditional and
proposed schemes. Even Under relaxed network conditions,
the traditional scheme for resource allocation is not able
to support the minimum delay required by the standard.
In contrast, our proposed scheme is able to safely support
the standard requirements, however, increased background
traffic on the gNB side results in a gradual degradation of
performance reaching failure at 0.8 GB of data. Moreover,
increased background traffic also results in increased loss of
packets and degradation of reliability. The number of dropped
packets in both schemes is relatively close resulting in almost
identical reliability scores. It is important to note that both
schemes fail to satisfy the standard reliability requirements
under increased network conditions.

(a)

(b)

Fig. 7: Latency and Reliability of 12KB payload for
traditional and proposed schemes under varying total

network background traffic

Fig. 8: Density vs reliability for 12KB and zero network load

C. Sensitivity to Vehicle’s Density

Our empirical study has shown that the density of connected
vehicles, defined as the number of neighbouring vehicles that
acknowledge receiving maneuver intent, has minimal effect
on average delay. However, the reliability of packet delivery
decreases considerably with increasing the vehicle’s density.
Fig 8 shows the density vs reliability for 12KB and zero
network load.
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VI. CONCLUSION

In this paper, we introduced a simulation environment built
on the 5G-Lena module in the simulator NS3. We studied the
feasibility of relying on the current 5G C-V2X technology to
support cooperative driving for AVs. We proceeded by intro-
ducing a novel scheme to enhance uplink resource allocation
in C-V2X using maneuver prediction. The proposed scheme
leverage the LSTM network installed on the gNB to predict
vehicle maneuver intention allowing the gNB to proactively
schedule uplink grants. Moreover, we performed a sensitivity
analysis on the LSTM network. Finally, we empirically show
that using our scheme, C-V2X can support cooperative driving
applications under moderate network conditions.

Further extension of this work may include predicting
network conditions to further enhance the resource allocation
scheme, combining prediction-based schemes with semi-static
methods, and the inclusion of visual cues in the maneuver
classification model.

VII. ACKNOWLEDGEMENT

This work is supported by the Ontario Centers of Excellence
(OCE) 5G ENCQOR program.

REFERENCES

[1] M. Saifuddin, M. Zaman, B. Toghi, Y. P. Fallah, and J. Rao, “Per-
formance analysis of cellular-v2x with adaptive and selective power
control,” 2020.

[2] S. Kim and M. Bennis, “Spatiotemporal analysis on broadcast perfor-
mance of dsrc with external interference in 5.9 ghz band,” 2019.

[3] M. Nadeem Hangar, Q. Ahmed, F. Khan, and M. Hafeez, “A survey
of autonomous vehicles: Enabling communication technologies and
challenges,” Sensors, vol. 21, p. 706, 01 2021.

[4] A. Elbery, Sameh Sorour, and H. Hassanein, “To DSRC or 5G? a
safety analysis for connected and autonomous vehicles,” Accepted and
to appear in the Globecom 2021 proceedings, 2021 .

[5] 3GPP, “Study on enhancement of 3GPP Support for 5G V2X Services,”
3rd Generation Partnership Project (3GPP), Technical Specification
(TS), 12 2018, v16.2.0.

[6] A. Masmoudi, K. Mnif, and F. Zarai, “A survey on radio resource
allocation for v2x communication,” Wirel. Commun. Mob. Comput., vol.
2019, pp. 2 430 656:1–2 430 656:12, 2019.

[7] F. Abbas and P. Fan, “A hybrid low-latency d2d resource allocation
scheme based on cellular v2x networks,” in 2018 IEEE International
Conference on Communications Workshops (ICC Workshops), 2018, pp.
1–6.

[8] H. Chour, Y. Nasser, H. Artail, A. Kachouh, and A. Al-Dubai, “Vanet
aided d2d discovery: Delay analysis and performance,” IEEE Transac-
tions on Vehicular Technology, vol. 66, no. 9, pp. 8059–8071, 2017.

[9] U. R. Mughal, M. Ahmed Khan, A. Beg, and G. Q. Mughal, “Ai enabled
resource allocation in future mobile networks,” in NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, 2020, pp.
1–6.

[10] J. Schlechtriemen, F. Wirthmueller, A. Wedel, G. Breuel, and K.-D.
Kuhnert, “When will it change the lane? a probabilistic regression
approach for rarely occurring events,” in 2015 IEEE Intelligent Vehicles
Symposium (IV), 2015, pp. 1373–1379.

[11] M. Schreier, V. Willert, and J. Adamy, “Bayesian, maneuver-based,
long-term trajectory prediction and criticality assessment for driver
assistance systems,” 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pp. 334–341, 2014.

[12] N. Deo, A. Rangesh, and M. M. Trivedi, “How would surround
vehicles move? a unified framework for maneuver classification and
motion prediction,” IEEE Transactions on Intelligent Vehicles,
vol. 3, no. 2, p. 129–140, Jun 2018. [Online]. Available:
http://dx.doi.org/10.1109/TIV.2018.2804159

[13] C. Laugier, I. E. Paromtchik, M. Perrollaz, M. Yong, J.-D. Yoder,
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