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Abstract— Robust and prompt emergency response is a crucial 

service that smart cities should provide to citizens, communities, 

and corporations. Emergency management strategies that are 

currently supported by cities yield pre-determined protocols that 

can only handle well-understood incidents. However, there are 

incidents whose nature, shape, scale, and timing are not as 

predictable. The lack of adequate data management platforms to 

harvest emergency-related data from the proliferation of data 

sources scattered around a city is a major shortfall in current 

emergency response and risk assessment processes. We propose an 

improved information infrastructure to assist emergency 

personnel in responding effectively and proportionally to large-

scale, distributed, unstructured natural and man-made hazards 

such as multi-vehicle accidents, outbreaks of human or animal 

diseases, major weather events, large fires, and terrorist attacks. 

The proposed infrastructure will crowdsource the multitude of 

human and physical sensing resources that can generate data 

about incidents (e.g. smartphones, sensors, vehicles, etc.) in order 

to build a comprehensive understanding of emergency situations 

and provide situational awareness and recommendations to 

emergency teams on the scene. Our infrastructure consists of three 

components: (1) large-scale crowdsensing and data quality 

valuation, (2) heterogeneous data integration and analytics, and 

(3) decision making, alternative generation and recommendations. 

Leveraging crowdsensing and heterogeneous data analytics will 

improve the response coordination to critical incidents and real-

time incident management, which will contribute to saving lives 

and reducing injuries, improving the quality of life, and saving 

resources by deploying them more effectively. 
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I. INTRODUCTION 

Urbanization is creating larger cities with larger populations 
and more complex infrastructure. To make cities better equipped 
with the means to provide better living conditions, smart city 
initiatives are being proposed to provide monitoring and 
maintenance of critical infrastructure, as well as planning and 
optimization of resource utilization [1]. Two factors help 
achieve this vision: real-time data collection from physical and 
virtual sensing devices around the city, and the interconnection 
of smart devices across systems using network equipment [2].  

Emergency management and response is a crucial service 
that is provided by cities at different scales. Emergency 
management strategies that are currently supported by cities 
produce protocols that can only handle well-understood 
incidents. However, as cities become more complex and as 
residents’ dynamics evolve, the scale, nature, shape, and timing 
of incidents are becoming harder to predict. Timely production 
and dissemination of information about incidents are crucial for 
coordination efforts, mobilization of response resources, 
situation analysis and evaluation and future prevention and 
preparedness strategies. This timely provisioning creates an 
atmosphere of trust and credibility among city residents in 
highly charged situations, and provides first responders with 
critical information about incidents and their spatial contexts. 

To realize the full potential of real-time data availability and 
internetworked smart devices across a city, this paper presents 
an information infrastructure for emergency management and 
response. The expansion of incident data sources beyond 
traditional emergency management channels will be tackled 
through the discovery and valuation of human and physical 
sensing resources and the integration of crowdsourced, 
heterogeneous data. The efficient delivery of data and 
information will be tackled through mission-critical 
communication networks and hotspots that utilize smartphones, 
mobiles resources (e.g. drones and vehicles), and wearables for 
emergency information delivery. The timely analysis of 
crowdsourced, heterogeneous data with variable levels of 
accuracy and consistency will be tackled through the 
development of a robust computational sensemaking and 
analytics platform. This platform will integrate algorithms to 
mitigate uncertainty, incorporate the temporal and geospatial 
nature of data, and produce actionable insights and strategic 
decision making. The infrastructure enables building a 
comprehensive understanding of a given incident and provides 
timely situational awareness and recommendations to 
emergency teams on the scene. 

The remainder of the paper is organized as follows. Section 
II outlines the smart emergency management infrastructure. In 
section III, we describe the crowdsensed data collection methods 
and. Section IV provides details on the robust delivery of data 
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via dynamic provisioning. Section V highlights the methods and 
techniques involved in sensemaking. In section VI, example 
response services that can be supported by the proposed 
infrastructure are described. Finally, section VII concludes the 
paper. 

II. SMART EMERGENCY MANAGEMENT INFRASTRUCTURE 

A high level view of the proposed information infrastructure 
for emergency management is illustrated in Fig. 1. To address 
the issues around dynamic, real-time, serious incident response, 
four elements are presented: i) crowdsourcing emergency data; 
ii) dynamic provisioning; iii) analytics and sensemaking; and, 
iv) response services.  

Real-time data collection and validation involves techniques 
to gather heterogeneous data from sources of qualitatively 
different kinds. The proposed techniques address three barriers 
to real-time data access: i) degradation at the site of the incident 
or in transmission; ii) uncertainty due to stress or disinformation; 
and, iii) varying levels of significance based on context and data 
veracity. Provisioning techniques will dynamically configure 
communication capacity between the site(s) of an incident and 
locations where analytics will be done; and to dynamically 
provision the storage and computational resources needed to 
carry out the analytics. Analytics techniques will focus on 
learning the type, scope, severity and dynamic properties of 
incidents from heterogeneous data. The predictive analytics will 
be developed to serve short-term prediction as an incident is 
progressing, as well as long-term prediction to explore incidents 
behavior and distinguishing features that can be used for future 
proactive preparedness measures. Services for response teams 
and survivors will be designed with focus on supporting 
immediate search and rescue efforts, such as efficient and 
accurate navigation and localization in indoor and outdoor crisis 
zones, evacuation routes and plans, and healthcare monitoring 
and alerting services.  

To highlight the potential of our infrastructure, we depict 
what would be the cascading responses to an example disaster; 
the Lac Mégantic fuel explosion in Quebec, in Fig. 2. We 
highlight some initial responses for the system, and the ensuing 
processes, actions and analytics that will unfold to address such 
a complex disaster involving people, structures, and a 
multiplicity of responders. The details of each element will be 
explored in the following sections. 

III. CROWDSOURCING EMERGENCY DATA 

Incident data can come from a wide range of conventional 
sensors in proximity to an incident (CCTV cameras, weather 
stations, radar, emergency room admissions); from information 
known to and disseminated by the media; from data posted to 
social media sites; and from important emerging channels like 
vehicle sensors, vehicular networks and connected Internet of 
Things (IoT) devices. Data from these sources comes in multiple 
formats (text message or voice), varies by size (temperature or 
video) and varies by rate and update interval. This 
heterogeneous data must either be collected in one place, or 
processed in a distributed way. Then, the varying timeframes of 
the data need to be synchronized, and the data itself needs to be 
unified both for syntax and semantics. To address these issues, 
we propose two core components: the first will address resource 
discovery and enlisting, and the second will address the 
assessment of data quality. 

A. Resource Discovery and Enlisting on the Fly 

The lack of resource discovery schemes with standardized 
protocols and resource utility evaluation hinder the adoption of 
diverse and localized data resources (sensors, cameras, 
smartphones, vehicles, drones, wearable devices, etc.) for 
emergency response systems. The most relevant research efforts 
focus on web-based approaches for resource discovery [3], with 
resource descriptions being defined in offline mode and with 
little emphasis on contextual discovery and ranking of resources. 

Fig. 1. Emergency management system overview. 
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The resource discovery and enlisting component will 
identify the availability of resources that are most relevant to the 
characteristic elements of a given crisis situation, eliciting 
factors such as: hardware profile, data integrity, functional 
capabilities, levels of operation, power consumption, 
location(s), availability and region/time of sensing fidelity. This 
information will be used to build standardized XML/RDF 
representations in the form of profiles and service descriptors for 
each resource. Quantifiable measures will be devised to compute 
normalized and comparable metrics of the utility of data sources 
as well as the veracity of the data they produce. These metrics 
will be used to dynamically index and rank resources based on 
their extracted attributes in order to enable effective arbitration 
and resource selection. Dynamic negotiation of functional 
requirements based on the available resources and their 
valuation at any given time will be supported to ensure that 
emergency application running cost is minimized. This 
component will deploy mechanisms that enable hierarchical 
resource discovery initiated by crisis management units as well 
as peer-to-peer resource discovery initiated by peers within an 
incident zone to discover data sources in their vicinity. 

B. Assessment of the Quality and Value of Data 

Existing sensing systems adopt a collect-and-report model, 
whereby collected data is indiscriminately pushed onto the 
networking infrastructure, regardless of the Quality of Data 
(QoD) or its value (VoD). Aside from the scalability issues 

produced by this model, establishing reliable response systems 
is not attainable over inconsistently collected and reported data. 
Thus, the future of ubiquitous sensing is hampered by the sheer 
volume of reported data and its uncalibrated discrepancies [4]. 

The assessment component will deploy a value-attribution 
model that scales with data abundance and adapts to varying 
VoD metrics that are governed by the types of crisis situations. 
The goal is to empower data collection and information fusion 
on the basis of adaptive QoD and VoD metrics. Using this 
component, emergency responders will be able to identify the 
quality and value of data received and data providers will be 
incentivized to provide higher quality data. Low QoD indices 
will be used to reduce requests for unwanted data with lower 
impact to emergency responders and to communicate with local 
data providers in order to throttle traffic from these sources. 
Throttling unwanted data with low quality will save precious 
bandwidth over potentially strained communication networks. A 
core component of computing QoD will be measures for trust-
establishment and adaptation, whereby readings will be cross-
referenced with “trusted” resources deployed by emergency 
responders or designated anchor resources. The assessment 
component will include a uniform protocol for dictating data 
aggregation and QoD-based pruning of low-quality input to 
establish quality attribution to data polled from heterogeneous 
resources. A scalable value-attribution model for crowd-
solicited sensing will be devised to encourage higher-quality 

Fig. 2. Emergency management system interactions and workflow scenario. 
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reporting of critical data in crises situations. The model will 
assign value metrics based on the context, scarcity of data, trust 
profiles of producers and responsiveness to the events and 
emergency responders (i.e. access latency to resources and their 
data). 

IV. DYNAMIC PROVISIONING 

When an unexpected incident occurs, there is typically a 
sharp increase in demand for communications capacity as 
sensors become fully utilized and as users increase cell phone 
and wireless network usage to call family members or to connect 
with social media. Incidents often occur in a confined area, 
overwhelming available capacity. Known techniques for 
addressing unexpected demand include microcell set up and 
carrier capacity-sharing. Unfortunately, neither of these is 
available quickly. An incident also creates the need for 
substantial computational capacity at short notice, preferably at 
the scene. To enable robust communication networks, our 
infrastructure incorporates the contextual enlisting and 
deployment of physical mobile resources as ad hoc 
communication hotspots. We also present a “fog infrastructure” 
that incorporates cloudlet and cloud facilities for data filtering, 
fusion and analysis both at the edge to support emergency teams 
in emergency scenarios and at the backend to support 
preparedness strategies. 

A. Robust Data Delivery 

The communication network infrastructure has grown to 
become a heterogeneous wireless networking environment with 
the Internet as backbone, cellular networks providing large-area 
coverage, and various application-specific networks such as 
vehicular networks and wireless sensor networks. However, 
recent natural disasters demonstrated that this infrastructure 
cannot meet service demands and provide reliable information 
delivery in a disastrous situation where the service demand 
increases beyond the norm [5]. As a result, research initiatives 
on disaster resilient wireless networking were investigated [6] 
[7]. Improving network reliability via fault resilient approaches 
has been mostly limited for wireline backbone networks [8]. The 
wireless communications tools that are provided to first 
responders are designed to reliably deliver voice-only 
communications using narrowband technologies like Terrestrial 
Trunked Radio [9]. This resulted in a segmented spectrum 
allocation where different first responders groups use different 
frequency channels making seamless (voice-only) 
communication between different teams infeasible and severely 
limiting data communication.  

To provide resilient wireless communication during 
disasters, the robust data delivery component will include an 
optimal strategy for deploying movable routers (vehicles, 
drones, smartphones, etc.) to provide necessary emergence 
communication service coverage. Hotspot profiling for mission 
critical communication will be supported via the integration 
with the resource discovery component. Resources with 
communication capabilities that are within the vicinity of first 
responders will be recruited on an as-needed basis, catering for 
resource-rich and resource-poor scenarios (scenarios where 
communication links are available and little recruitment is 
needed versus scenarios where communication links are 
compromised). Hotspots profiles will be built to identify the 

availability, signal quality, security, reliability, and coverage of 
the communications resources available for first responders in a 
crisis zone. Techniques to effectively distribute data traffic load 
over limited network resources will be designed to support 
maximal throughput. Reliable MAC and networking protocols 
will be designed to minimize the transmission collision 
probability and delay, while guaranteeing the throughput for 
mobile hotspots and connected devices on the scene. Network-
assisted information dissemination will be integrated with 
multiple-hop peer-to-peer transmission to guarantee information 
availability even in the absence of a communication 
infrastructure. This integration will be bolstered by the 
development of effective and efficient information diffusion 
schemes that exploit opportunistic relaying, spatial locations of 
end users, as well as user mobility. 

B. Robust Computing Platform 

Timely, accurate and effective use of available information 
is vital to the rapid decision-making required in emergency 
response scenarios [10]. Cloud computing is a natural approach 
to providing the computing resources needed by responders in 
the field to perform real-time analysis of data as an incident 
develops. It is, however, predicated on reliable, high-bandwidth 
end-to-end network connections. Incidents such as natural 
disasters and major accidents are characterized by unpredictable 
or non-existent network connectivity. By creating a robust 
computation platform, real-time analytics and effective 
decision-making in the face of an unpredictable and dynamic 
environment can be supported. 

Fog computing provides a highly virtualized platform that 
provides computing, storage and network resources between end 
devices and traditional cloud data centers [11]. Our fog 
computing platform will have a two-tier structure. The first tier 
will be a permanent backbone of resources hosted on a public or 
private cloud. The second tier will be a set of cloudlets that can 
act as proxies for the first-tier cloud or can function 
independently [12]. The cloudlets can be positioned prior to an 
incident or deployed/recruited by first responders on arrival. 
Once deployed, the cloudlets will support data collection, 
cleaning and analysis in cooperation with the first tier cloud, or 
independently in the case of failed connectivity. Spark is a 
popular framework for in-memory cluster computing. It 
supports rapid processing by retaining the data in main memory 
and avoiding writing to disk [13]. It is suited to the quick 
response times expected in edge analytics for emergency 
response. This framework will be supported by robust 
scheduling, synchronization, and recovery algorithms to 
coordinate processing across cloud-cloudlet tiers in the face of 
failure. 

V. ANALYTICS AND SENSEMAKING 

To develop thresholds that trigger particular emergency 
response actions, it is necessary to understand how incidents 
develop and evolve. This will be done by computationally 
modeling a given emergency situation to understand, at an 
abstract level, what is happening so that the response can be as 
appropriate and effective as possible. Prediction tasks will be 
performed to develop an understanding of the following: what 
kind of incident is happening (determined as early as possible); 
how serious is it; is it getting worse or better? What does this 
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trajectory look like? The computational modeling of incident 
situations will leverage data heterogeneity to enable the 
comprehensive analysis of data from diverse sources. 

A. Heterogeneous Data Integration 

Multisensory-based system can provide data for different 
event detection tasks including sentiment estimation, object 
tracking, location estimation, trajectory observation, person 
detection, person recognition, and activity detection. The 
performance of these tasks is mainly based on physical sensors 
and is measured mostly in terms of accuracy [14]. Hence there 
is a need to fuse crowdsourced data with sensory data and assess 
the quality of the fused information. Existing research hardly 
utilized the multi-sensory evidences obtained on-the-fly in 
modeling data quality attributes. 

The data gathered in emergency situations poses challenges 
on how to efficiently identify events based on 1) fine granular 
hard sensor measurements and 2) coarse sources of unstructured 
text snippets and images in social media. It is not practical to 
fuse and integrate data into rigid schemas before analysis, since 
the different schemas of data sources cannot be predicted until 
an incident has occurred and its collocated data sources have 
been discovered and solicited. Therefore, we propose to perform 
data fusion and integration dynamically by developing 
abstractions for each of the data sources based on their types, 
data generation rates and data formats, without forcing streams 
from those sources to conform to rigid schemas. The 
heterogeneous data integration component will include feature 
identification and alignment mechanisms to dynamically 
identify, measure and model contextual incident features from 
multimodal data. The component will also employ probabilistic 
latent fusion model that unifies sensor data with social media 
messages in order to optimize real-time event processing and 
provide an up-to-date situation map. Our goal encompasses a 
seamless consolidation of sensory data fusion techniques and 
methodologies whilst the network continues its ordinary 
operation. 

B. Incident Modeling and Analysis 

The incident modeling and analysis component will focus on 
producing the most useful possible models to make predictions 
that can be used by incident commanders in the short term, 
downstream medical care and logistics in the medium term and 
recovery in the long term. Sensemaking has two aspects: 
developing models of the evolving incident and deciding which 
results of the models should be disseminated to those who make 
tactical or strategic decisions. Incident modeling has been 
limited mostly to transportation incidents [15]. 

Predictive algorithms that will be designed for incident 
modeling and analysis will use data of unprecedented variety to 
predict unusual properties such as incident severity, casualty 
numbers, collateral impacts and economic effects. Furthermore, 
the production of predictions will need to be made with varying 
deadlines according to the nature and impact of different 
incidents. Incident risk models will be designed to be 
sufficiently concrete that they can be encoded as predictive 
labels, so that predictions can be made from collected data about 
incidents. Algorithms will involve spatio-temporal clustering of 
data about known incidents and create an empirical taxonomy of 
incidents. Existing regression, deep learning, and topological 

data analysis techniques will be extended to predict the 
likelihood and severity of the different types of incidents, based 
on the risk models developed. An improved Kanri distance 
approach can be developed for translating the predictive models 
into action. In order to optimize insight delivery to first 
responders, game theory will be explored as a tool for sharing 
information/insights and participating in strategic decision 
making. 

VI. RESPONSE SERVICES 

The ultimate goal of an emergency response system is to 
provide the necessary services that save lives. Applications that 
can be provided to first responders and survivors will provide 
information for navigation through emergency zones, 
recommendation of safe routes, and real-time health services. 
These information services will be provided across diverse 
platforms, such as smartphones, drones, vehicles, and wearable 
technology. 

A. Crowd Management in Crisis Zones 

First responders and citizens/vehicles will need immediate 
assistance in order to maneuver them out of danger zones to 
safety. Even though navigation and localization services are 
pervasively available in today's smartphones and vehicles, they 
do not provide enough granular accuracy for many crisis 
situations, especially in urban areas and inside buildings. The 
infrastructure providing such services may even be 
compromised in the aftermath of major disasters. 

The crowd management component will focus on 
mechanisms to identify and localize survivors and first 
responders in an incident zone, as well as mechanisms for zone 
characterization to facilitate navigation for individuals as well as 
crowds. Crowdsourced data from sources verified to be in the 
impact zone of an incident will be collected and integrated at 
drones deployed to the scene of the incident. Drone technology, 
which has been used for fleet navigation [16], will be used to 
provide navigation and localization services on the scene. 
Drones will feed this data to multiple modules in order to 
support real-time and continuous navigation and localization of 
people within the zone. Navigation and localization will be 
augmented by methodologies to improve occluded-environment 
tracking as well as zone models that are inferred from zone 
topology information. Localization will be realized by designing 
an individual and crowd activity recognition mechanism that is 
integrated within a generic geo-positioning framework in order 
to provide effective geo-referencing. Activity recognition will 
be performed based on heterogeneous sensory streams from 
other data sources, especially data provided by drones.  

The zone's contextual model can be used to identify safe 
destinations (e.g. exit locations), optimizing the distribution of 
load on destination points according to their current capacities 
as well as the crowd size. The crowd management component 
will also incorporate a pathway recommendation system for 
pedestrians (first responders and survivors), with 
recommendations based on safe destinations and environmental 
tracking. Recommendations will be designed in the form of 
visual and audio cues that are platform-independent (working on 
smartphones and wearable devices). Wearable technology 
promises to change the way that evacuation planning is done 
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[17]. Zone modeling will also be used in evacuation planning 
mechanisms for indoor environments.   

B. Real-time Healthcare 

Wearable devices continuously measure and preprocess the 
physiological signs from human body and transmit the useful 
information to the smartphones [18].  Real-time healthcare will 
support health probing by deploying software services to probe 
a given crisis zone for potential survivors' physical conditions 
from wearable/smart monitoring devices and resources. Using 
wearable technology based health probing will take into 
consideration the efficient utilization of limited energy and the 
enhancement of service quality provisioning for vital 
physiological information transmission. Alert and visualization 
systems for hazards and diseases will push essential information 
to citizens in the form of visual environmental hazard and 
disease spread maps. Insight fusion algorithms from 
environmental modeling and crowdsourced data reports will be 
used to predict environmental hazards and assess their potential 
impact, as well as predict the onset and spread patterns of 
epidemics. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented an ambitious vision of an 
information infrastructure for enhancing emergency response 
systems that incorporates crowdsensing and heterogeneous data 
analytics. This information infrastructure, when realized, will 
transform how the current emergency management systems in 
cities operate and provide life-saving services to citizens. This 
infrastructure can be integrated with existing risk databases 
maintained by a city’s emergency management centers. We 
project that the realization of this information infrastructure will 
improve the response coordination to critical incidents and real-
time incident management, which will contribute to saving lives 
and reducing injuries, improving quality of life, and saving 
resources by deploying them more effectively. 
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