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Abstract—We present a novel energy-efficient approach to
wireless real-time sensing. For a sensor node (SN) transmitting
samples of a discrete time series in real-time, its lifetime
depends largely on its battery capacity. With most of the
energy consumed in wireless transmission, we present an energy
efficient scheme that can significantly reduce the number of
transmitted samples, while maintaining a low mean absolute
error between the original and the recovered signals. We
introduce the concept of instantaneous entropy and we derive
a computationally efficient iterative formula for computing
Shannon’s entropy. The SN evaluates the information content
in each sample and decide whether to transmit or omit the
sample. At the sink, we use incremental machine learning to
recover the omitted samples in real-time. Our approach showed
an average of 60% reduction in energy consumption by the SN
with less than 2% mean absolute error in the recovered signal.

Index Terms—Entropy, wireless sensing, sensor node, wire-
less sensor network, industrial internet of things, energy effi-
ciency, time series prediction, incremental machine learning.

I. Introduction

The use of wireless sensor networks (WSNs) to monitor
all kinds of industrial and environmental assets is on the
rise. The ecosystem and the communication standards
needed for the full adoption of WSNs are arguably mature
enough. On the contrary, one crucial component in any
WSN will always be hard to standardize that is the Sensor
Node (SN) which is usually battery powered.

Every application has its own requirements which
springs from a unique set of operating conditions, per-
formance goals, and design constraints. Since application
requirements are the main driver of hardware design
decisions, therefore each application would need its own
custom designed SN. The need for a different SN in each
application is asserted by Healy, Newe, and Lewis in [1]
after a thorough review of the hardware specifications for
over 40 different SNs.

While hardware design requirements/challenges vary
from one application to another, there is one pressing
challenge that sprigs up in almost every design which is the
limited energy budget of wireless sensors. Even with the
recent advances in energy storage/harvesting technology,
it is still one of the highly restricting factors in any wireless
sensing hardware design.
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Energy budgets can be balanced by either increasing
supply or decreasing demand. Increasing energy supply
relates directly to the capacity of the battery or the output
power of a given harvesting technology. Both battery
capacity and harvesting technologies are highly dependant
on the application at hand. Thus, it is relatively harder
to address the energy challenge from the supply side in
a general sense. However, from the demand side, there is
something to be done that can generally reduce power
consumption in potentially any SN. In this paper, we
demonstrate a method to reduce the power consumption
of an SN by reducing the number of data packets an SN
has to transmit in real-time.

An SN is usually composed of four major functional
units: the power supply, the controller, the sensor/trans-
ducer, and the wireless transceiver. According to several
works [2]-[5], the transceiver is by far the most power
demanding unit in the SN. Thus, by reducing the number
of instances of wireless transmissions, we can significantly
decrease the demand for power on an SN.

In the context of monitoring applications where the
WSN is deployed to closely monitor the condition/status
of an industrial asset, the data is transmitted in real-
time. In other words, the SN takes a measurement and
transmits the reading back to the sink instantaneously.
Our general approach is to maximize information transfer
from an SN to its sink while minimizing data transfer.
Each other approach to this problem puts forward its
own assumptions and has its own limitations. We will
briefly discuss two well-known approaches and explain the
approach followed in this work at the end of this section.

Data compression aims to reduce the payload of each
data packet before transmission [6], this can be an effective
method when the data payload is relatively large such as
when an SN is transmitting numerous sensor readings in
a single packet.

On the other hand, the energy savings from reducing
the payload can be limited even with a 67% compression
ratio as claimed in [6] because, the overhead required by
channel coding and network protocols for framing the data
packet depreciates the power savings gained from reducing
the size of the payload. Also, regardless of the payload
size, the very act of activating the transceiver is power
consuming.
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Furthermore, in data compression algorithms, prior
knowledge about the statistical distribution of the signal
is assumed. This assumption is essential for designing the
optimal code for the data (e.g., [6]). Thus, for different
sensors, the SN will have different codes implemented to
compress their readings before transmission. Since most
physical sensory data are non-stationary, prior knowledge
are inconclusive and subject to obsolescence.

Another approach is compressed sensing [7], [8]. Com-
pressed sensing is built on convex optimization which
assumes the availability of data in batches. Contrarily,
in our case the data arrives as individual samples in a
one-dimensional time series. While there has been some
work on dynamic compressed sensing [9]-[11], the sparsity
assumption is still essential in these works. In other
words, the measurements are taken incoherently from a
signal whose representation in a given basis transformation
contains a sparse set of coefficients.

Compressed sensing is not applicable here for two
reasons. First, sensory data in real-time monitoring ap-
plications do not arrive in batches. Second, the sparsity
assumption cannot be made for any signal without prior
knowledge about its structure.

Generally, in a WSN, the sink has significantly more
energy and computing resources than an SN. Thus, our
approach will build upon this difference in levels of energy
supply and computing resources between the sink and an
SN. By efficiently omitting information at the SN we can
reduce wireless traffic and by extension, the SN’s energy
consumption. Then, at the sink we can afford to spend
more energy and utilize more computing resources to
recover the omitted information in real-time.

We aim to reduce the number of samples to be trans-
mitted by the SN without causing too much error in the
recovered data. The question is, how can the SN select
the samples to transmit and the ones to omit? Generally,
samples are not equally valuable in information sense.
Some sample are interesting (contain a lot of information)
while others are boring (contain little information). The
goal is to omit the boring samples which are relatively
easier to be predicted by the sink.

In Section II, a formal description of the problem
is introduced along with our assumptions. In section
III we present the entropic filtering algorithm. Section
IV explains the chosen recovery method. The system
evaluation is presented and discussed in section V. Finally,
we conclude in section VI.

II. Problem Formulation

At every time instant, the SN will have knowledge
of the current sample in addition to some accumulated
statistical quantities of the past samples. Then, the SN
will try to evaluate each sample (as it is captured) and
determine whether it should be transmitted or omitted
based on the sample’s information content compared to
the accumulated information content of the time series.
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Fig. 1. The signal path in the introduced entropic sensing system.

Let us consider an SN monitoring a physical quantity
(e.g., temperature, pressure, liquid flow, proximity) in real-
time by regular sampling (i.e., samples are equally spaced
in time). Samples are transmitted in real-time to a sink
over a half-duplex channel. The sensory data stream forms
a discrete time series X. Each sample is transmitted in
real-time in a single data packet.

The intention is to reduce the energy consumption of
the SN by reducing the number of transmitted samples
while being able to recover the omitted samples at the
sink node with tolerable error. This means the SN will
cease to transmit a subset of X as they are collected in
real-time.

As shown in Fig. 1, X is a discrete time series to be
transmitted from an SN to a sink node. Y is the observed
signal at the receiver which will be used to construct an
estimate of X called X. The solution then is to find the
best estimate X for the current instance of X given the
current and the past instances of Y and X.

The series X has an alphabet A and a probability mass
function (PMF) P(z,) = Pr{X = z,} where z, € A
such that n € {1,2,3,..N} where N #A, as in
the cardinality of the set A. In other words, N is the
number of bins in the histogram of X. Furthermore, X
produces uniform time samples represented by the vector
S = {s1, 82, ... Sty ..., ST}, Where T is the total number of
samples in X.

A. Assumptions

The following assumptions are made to set the frame-
work of simulations and to outline the suitability of ES
for different applications.

1) The probability of error in Y is zero. This assump-
tion is made to simplify simulations. The point of
this work is to demonstrate ES as an approach.
Thus, introducing channel imperfections will not put
the proposed methodology at any advantages/dis-
advantage over the existing methods because all
are subject to the limitations of wireless channels.
One may argue that ES reduces wireless traffic and
therefore may be less prone to channel induced errors
such as packet collisions.

X is a regularly sampled discrete time series. Mean-
ing, time intervals between X’s samples are equal.
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Also, X’s samples are quantized to a finite predefined
set of bins.

B. Bench-marking time series

In this section we describe the set of discrete time
series (signals) chosen to evaluate the performance of the
proposed ES system. All signals were normalized to their
maximum value before being processed. The normalization
facilitates the comparison of performance between all
signals, however, in a real application, no normalization
is required.

1) A constant signal with a square pulse. This signal
was introduced to make sure that samples represent-
ing significant unpredictable events in the signal will
be picked up by the entropic filtering (EF) algorithm
and transmitted in real-time.

51_{1
0

2) A linear monotonic signal increasing in time with a
constant slope S2 = 1.2¢. This signal evaluates the
predictor’s performance with a predictable input.

3) A simple sinusoidal signal with a single frequency
and no added noise. This and the next three signals
represent a sinusoidal waveform with a staggered
increase in complexity. S3 = Asin (¢), where A = 10
is the amplitude.

4) We add four equal-amplitude harmonics to the
previous signal to get S4 without adding noise.

S4 = Asin G) + Asin (%) (2)

+ Asin (t) + Asin (5t)

0.57 <t <0.6T
Otherwise

(1)

5) To increase the complexity of S5 , we add Addi-
tive White Gaussian Noise (AWGN) to S4. Thus,
S5 =54+ A,N (0,0.8), where A, =5 is the noise
amplitude.

6) We introduce an unpredictable event similar to S1
in order to evaluate the system’s performance in
picking up such events in real-time.

S5 4104 0.57 <t <0.6T
s6=9°°" =i (3)
S5 Otherwise

7) ST is a non-stationary signal from an iterative gen-
erator and AWGN as follows. Since, most physical

signals are non-stationary, it will be interesting to see
the system’s performance in processing such signals.

St = S¢—1 + A,LN (:U‘ = 07 g = 08) (4)
Vit=1{234,..T}
where, s; = random(—1,1) and A, = 20, such

that random(z,y) is a random generator with a
uniformly distributed binary output (z and y).

8) To push our system to its limits, we introduce a
purely random signal. S8 is a random walk produced
with an iterative generator as follows,

st = s¢—1 + random(—1,1) (5)
Vit=1{234,.,T}

where, s; = random(—1,1).

9) To conform with the current literature, we use S9
and S11 two of the most commonly used series in
time series analysis and prediction research. S9 is
the Santa Fe laser time series [12], [13].

10) S10 is called the Hénon map [14], a widely studied
discrete-time dynamic system with chaotic output
[13]. This is used to evaluate the system’s perfor-
mance in chaotic signals which are common in the
physical world. S10 is generated as follows,

St = 1-— CLSt_12 + bst_g (6)
Vt=1{34,.,T}

where s; = s, =0, a=1.1, and b =0.3.
11) S11 is the Leuven time series [12].

III. Entropic Filter

This section introduces the entropic filter (EF) algo-
rithm which is the heart of the ES system.

At the beginning, the SN will attempt to prime the
predictor with basic knowledge about the temporal and
statistical structure of X. This means the SN will transmit
a preset number of priming samples directly to the sink
(bypassing the entropic filter). After the SN transmits all
the priming samples, the EF algorithm is activated for the
rest of the SN’s life time.

As time progresses, samples of X arrive consecutively.
At each time step ¢, the newly added sample will alter the
distribution of X and in turn its Shannon entropy H(X).
In other words, H(X) changes every time a new sample is
added to the series X. The SN will exploit the change in
H(X) to make the transmit/omit verdict for each sample.

Now that we have established that H(X) is constantly
changing with time ¢. We will reserve the notation H(X)
for the total entropy of X and define instantaneous entropy
(IE) of X as follows.

Definition The instantaneous entropy (IE) of X at time
t denoted by H(X); is the entropy of X computed from
the sample set S ={1,2,3,...,t}.

As a new sample (s;) arrives, the new value of the
entropy is computed. It is computationally demanding
to use Shannon’s formula in equation 8 which requires
the re-computation of X’s histogram every time step.
Fortunately, there is a more efficient method of computing
the IE H(X); from its own previous value H(X);—; and a
few other easily computed terms. This method is derived
and discussed in section III-A.

Fig. 2 shows the flow chart for the EF algorithm.
It consists of two parallel branches. Both branches are
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Fig. 2. The flow chart for the entropic filter.

Transmit s;

identical except that the right branch operates on the
first difference of X.

Analogous to the difference quotient in single-variable
calculus, let us define the ”difference of the instantaneous
entropy” of X at time t (denoted by dH(X);) as the
change in the IE H(X); due to the addition of the most
recent sample s; to X.

Definition For a discrete time series X with uni-
form time samples represented by the vector S
{51, 82, .y Sty ..., ST}, the 1E difference at time ¢ is the
difference between the IE of X at time ¢ and that at time
t — 1. denoted by dH(X). The IE difference is a vector
with size T — 1.

dH(X)y = H(X); — H(X )1
Vie{23,.T)

(7)

After calculating the IE difference, we get its absolute
value as shown in Fig. 2. This step introduces symmetry
in considering samples that reduce or increases H(X);.

We then compare |dH(X)|; to its previous values and
rank its value in a sorted vector of all the previously stored
values. The rank of |dH(X)| is a number r indicating
the position where |dH(X)|; should be inserted if we
where to keep [dH (X)[1—;—1 sorted. Keep in mind that
r € {1,2,3,...,t} and before passing it to the probability
shaping function (PSF) (denoted by psf) it is divided by
t to normalize it. The normalized rank is denoted by 7
and the psf is discussed in more detail in Section III-B.

Fig. 3 shows S6 at different steps in the EF algorithm.

A. Computing Entropy

We consider the fundamental formulation for entropy
which is Shannon’s entropy [15] in equation 8. In the EF
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Fig. 3. From top to bottom, S6 as it progresses through the Entropic
filtering steps.

algorithm, the SN computes the entropy every time-step
using very little computing resources. Thus, it is essential
that we compute H(X); efficiently at every time step

HX) =~ 3 plea) logy plen)
zn€A

(8)

Traditionally, we would start to compute H(X) by
empirically calculating the PMF of X (i.e., the histogram
hist(X);) from all its previously collected samples. Then,
we use equation 8 to calculate the entropy.

A deeper look into the traditional entropy computing
method reveals considerable redundancies when calculat-
ing histograms and the entropy summation repeatedly at
every time step. Consequently, we constructed an iterative
computing method for H(X); in a more efficient way by
utilizing H(X);—1 and hist(X);—1.

The entropy at ¢ — 1 and at ¢ is shown in equations 9
and 10.

H(X); == > plan)ilogy p(zn)s 9)
zn €A

H(X)y_1=— Z P(y)e—1 logy p(an )1 (10)

T, €A

Note that p(x,) is indexed by t for the same reason
hist(X) is also indexed by ¢ and that is because the
histogram of X changes at every time step by the
addition of s;. This means, we have to update hist(X); as
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time progresses. Fortunately, we do not have to compute
hist(X); every time from the entire series.

s¢ is captured at every time step, and it will be enlisted
to only one of the states in A denoted by z,;. This means
that the probability of the most recent state (i.e., at the
current time) p(x,,); will increase from its previous value
p(zr,)t—1. On the other hand, the probability of all the
other states will decrease by a factor of % To explain the
notation of p(x,,); further, the letter r indicates the most
recent state, z,, is the state of s; where r; € {1,2,3,...N},
and the probability of this particular state x,, at time ¢
is denoted as p(x,,):. Similarly, the state of s;_1 is z,_,
and its probability at time ¢ — 1 and ¢ is p(z,,_,):—1 and
p(zr,_, )t respectively.

Now, let us define A’; as the set of all states of X except
the state in which s; is enlisted. Thus,

Ay = A\ {zr, } (11)

Thus, the probabilities in hist(X); can be updated from

hist(X);—1 as follows.
t—1 )
p(zn)e = Tp(mn)t_l where z,, € A (12)
and,
t—1 1
p(th)t = Tp(xT't)t—l + E (13)

The time index t is used for two quantities; the recent
state corresponding to s;, and its probability. It is also
used as a numerical value representing the total number
of samples collected up to the current time t.

Before we proceed, a specific relation needs to be
declared and derived for later use. If we define,

H(CX) = Z Cp(zn)logy (Cp(zy)) (14)

T, €A

where 0 < C < 1. Then, it follows that,

(CX Z Cp zn) 10g2 C+Cp(xn) 10g2 p(xn) (15)
TnEA
H(CX)=~Clog, C Y p(xn)
r,€A
=1 (16)
~C Y plxn)logy plan)
T EA
=H(X)
Therefore,
H(CX)=-Clog,C+ CH(X) (17)

By extracting the term corresponding to the most recent
state x,, from the summation in equation 9 we get

H(X); = —p(ar, )i logy p(xy, )

- Z p(mn)t10g2p(mn)t

€Ay

(18)

By substituting equations 12 and 13 in 18 we get
H(X):

partl

t—1 1 t—1 1
== <Tp(xrt)t—1 + E) log, (Tp(xn)t—l + E)

part2

t—1 t—1
- Z (Tp(mn)tfl) log, (Tp(xn)t—l)
T €AY

(19)

For simplicity let % = C and p(z,,)t—1 = R. Then,

partl becomes

1
partl = — (CR + > log, <C’R+ ;) (20)
and part2 becomes

part2 = — Z Cp(wn)i—1logy (Cp(zn)i—1) (21)

Tn €A’

From equation 18 we get

part2 = Cp(zy,)e—1logy (Co(xr, )i—1)
_ Z Cp(zn)t,1 log, (Cp(mn)tfl) (22)

T, €A

=H(CX) from equation 14

Then, from equation 17 we get

part2 = —Clogy C + CH(X)¢—1 (23)
+ Cp(zy, )1—1logy (Cp(zr,)1—1)

Recalling partl from equation 20, part2 from equation
23, and recombining them in equation 19 we finally get

1
(C’R + ) log, (CR + 7>
Y@
—Clogy, C+ CH(X )1
+ Cp(l'rt)t71 10g2 (Cp(l'rt)tfl)
Let f(z) = zlogyx with following the convention

0log, 0 = 0 based on the argument of continuity as in
[16]. Therefore equation 24 can be rewritten as

H(X): =

1
H(X),=-f (CR-F%) (25)
- f(C)+CH(X)i-1+ f(CR)
As we can see in equation 25, the IE at time ¢ can
be efficiently calculated from its own value at time ¢ — 1.

To compare on the same basis, let us rewrite Shannon’s
formula by using f(z) = xlog, z as follows.
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HX) == S F(plan)) (26)

€A

Thus, using Shannon’s formula entails N computations
for f(x), and N — 1 summations while using the iterative
formula in equation 25 entails only three computations
for f(x), five summations and four multiplications. More
importantly, the iterative formula is not a function of N
which means we can increase the resolution of a sensor’s
output without extra computing cost for the SN.

B. Probability Shaping Function

The PSF is a mapping function that allows for tuning
the EF algorithm to favour samples from given ranges of
7x and 74x. This means we can design the PSF to favour
low entropy samples, high entropy samples, or any other
combination which can further optimise the performance
of our system for a given signal.

The PSF takes the normalized rank # = % of the current
sample and outputs the probability of transmitting it
p = psf(¥). In this work we considered four PSFs to
demonstrate their effect on the system’s performance.

1) psf1 (high entropy): this function transmits (with
probability one) high entropy samples whose 7 is
greater than or equal a predefined threshold (th =
0.7). Samples whose 7 is less than the threshold will
be transmitted with probability equals to 7 itself
as shown in equation 27. The intuition behind this
psf can be derived from the definition of entropy
itself where high entropy samples are those which
introduces new structure to the series and are harder
to predict by the sink thus are more worthy of being
transmitted. This intuition can be also seen in [17].

7 7 <th
- 27
P {1 P> th @7

2) psf2 (low entropy): this the inverse of the high
entropy psf. It is included only to establish the
proper distinction in the performance of the ES
system between favouring low entropy samples vs
high entropy samples. The threshold in this case is
0.3. psf2 is defined as follows

1—7 7 >th
- 28
P {1 P < th 28)

3) psf3 (mirrored sigmoids): this function consists of
two sigmoid functions back to back. The intuition
behind it is to include very low and high entropy
samples in the transmission while omitting ones in
the mid-low range. This psf is defined as follows,

1 1
T 14 e (407-25) T T ¢(307-6)
4) psf4 (high & random): this psf combines the high
entropy function above the predefined threshold th

p (29)

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. The four probability shaping functions (PSFs).

PDF(ix)

PDF (fax)

Fig. 5. Histogram of 7 for X and dX of S5.

with a uniformly distributed random function below
it. It is defined as follows,

= (30)

random(0 — 0.6) 7 <th
1 F>th

To get a better sense of what the PSF does to the
population of samples, we plotted the probability density
function (PDF) of the normalized rankings #x and 74x of
all samples for S5 as shown in Fig. 5. We can clearly notice
the skewed distribution of 7. Most samples have low IE
while few have high TE. It is important to transmit those
high-TE samples and that is why three of our PSFs have a
value of one for 7 > 0.7. The fourth PSF is for comparison.

Note that the histograms are constructed by comparing
each sample to the past samples only. If the comparison
was made among all the samples (past and future), the
resulting histogram will be different and more accurate.
Nevertheless, in real-time we can only access the past.

IV. Recovery

The entropic filter leaves the signal with many omitted
samples. Recovering the omitted samples at the sink is
the responsibility of the predictor in Fig. 1.
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Fig. 6. Flow chart of the predictor’s operation inside the sink.

The flow chart for the predictor’s operation is shown
in Fig. 6. It is repeated at every time step. Thus, it
is important that the choice of the predictor takes into
account the available hardware resources at the sink since
real-time execution is critical.

Every time step, the cycle starts with a condition. If
s¢ is received, it is appended directly to X. Then, the
predictor goes through an iteration of updating its model
by utilizing the recent information in s; plus all previous
samples (received and estimated). On the contrary, if s;
is not received at its designated time, the predictor tries
to recover s; by predicting it based on its model. The
predictor produces its estimate §; and appends it to X.

It is well known that the accuracy of predictions (from
any predictor) decreases significantly as the number of
steps ahead is increased. Fortunately, we do not have to be
concerned about this here because the probabilistic nature
of the EF algorithm limits the number of consecutive
omitted samples to a small value (= 3).

V. Evaluation

The simulation was coded in python with the help of
several open-source libraries such as numpy, Pandas and
tensorflow.

A deep-learning predictor was chosen because it can
adapt to signals on the fly. Better results may be possible if
we optimize the choice of the predictor with an anticipated
signal structure. For example, auto-regressive integrated
moving average (ARIMA) models could be faster and
more accurate for some signals [18] but, when it comes to
seasonal or non-stationary ones, ARIMA models require
manual tuning which is not ideal in real-time applications.

Recurrent Neural Network (RNN) in general, and Long
short-term memory (LSTM) networks specifically are
utilized in many applications including nonlinear system
identification [19], time series prediction [20], [21] , and
speech recognition [22]. Furthermore, RNN nodes form
a directed graph along a temporal sequence which makes
them able to capture temporal and statistical complexities
of time series. Thus, we chose an LSTM network with
the same hyper-parameters in all simulated signals to
demonstrate its versatility.

For evaluating energy savings, we calculate the ratio
between the cardinality (number of transmitted samples)

86

S11

0.014 4
0.012 4
0.010
‘z 0.008
0.006
0.004

0.002 4

0.000 -
High & Random Mirrored Sigmoids ~ High Entropy
PSFs

Low Entropy
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of Y and that of X which is equal to T. We will call it
the Samples Reduction Ratio (SRR) such that
#Y

T

As for evaluating errors in the recovered signal X
when compared to the original signal X, there are several
metrics to use, however, in agreement with the arguments
presented in [23] the metric we chose is the Average Eu-
clidean Error (AEE) (sometimes called the mean absolute
error, though it is not a recommended term according to

[23]) denoted by |e| and calculated as

_ 1 X
le[ = T;\St*cg’t\

In Fig. 7, the performance of the four PSFs is compared
for S11, we can see the difference between the “low en-
tropy” PSF and the other three. While the “low entropy”
result exhibits the lowest |e|, it is not saving energy since
it has the highest SRR. As for the other three PSFs,
their performance is comparable with the “high entropy”
function showing the lowest SRR with only a marginal
increase in @ over the “mirrored sigmoids” and the “high
& random” with |e| below 0.015. Thus, with ES, we were
able to recover X in real-time with 98.5% accuracy while
omitting > 60% of samples from its data stream.

The results in Fig. 7 correspond only to S11. The results
for each of the chosen bench-marking series exhibit similar
outcomes.

We also look at the instantaneous absolute error e; =
|s¢ — 8¢| to get a sense of how errors occur over time. In
Fig. 10 we can see X and X in the top plot and [e] in the
bottom plot. Notice how |e| decreases over time as the
prediction model gets better with incremental learning.
The decreasing trend can be observed in some bench-
marking signals such as S11 while not in others such as
S58. The decreasing trend can be attributed to the non-
increasing complexity of signals over time. The LSTM
model is able to learn such complexity over time and
hence, produce better predictions.

On the other hand, signals with a random component
such as S5 to S8 do not exhibit the decreasing trend

SRR = (31)

(32)
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in E, because the predictor is not able to catch up
with the increasing complexity of the signal over time.
This is noticeable in the instantaneous entropy plots of
such signals where we can see more fluctuations and
no saturation as time passes. Furthermore, an increasing
trend in |e| is demonstrated for S2 as shown in Fig. 8
for the same reason. It is because S2 does not cover its
full dynamic range until the very end. This means new
information is being added constantly to the predictor at
a rate higher than its ability to learn. This can be deduced
from the instantaneous entropy plot of S2 in Fig. 9.
Like other parameterized algorithms trade-offs are made
when we tune the parameters. Varying the threshold th
of psf1 can bias the EF algorithm towards or away from
high entropy samples as desired. This has a direct effect
on SRR and |e|. As shown in Fig. 12, as th increases,
SRR decreases because fewer and fewer samples will lie
in the high entropy side of the histograms of #x and #4x
as shown in Fig. 5. On the contrary, |e| increases with th
because fewer samples mean less available information for
the predictor. However, even with a very high th = 0.95
the mean absolute error |e| is still limited below 0.9% for
510 supporting our claim that most of the self-information
in a time series is contained in a small subset of its samples.
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A. Memory Requirements

At every time step, the SN compares #x with
|dH(X)|1—¢—1 and Fqx with |dH(dX)|1—t—1. This means
the SN will have to store 2(7'— 1) entries by the end of its
life. Also, we need to store the previous and current PMFs
of X which accounts for 2N entries. Further memory needs
are marginal and independent of the size of sensory data.

In our case T' = 1500 and N = 50. Thus, most of our
memory needs can be accounted for by 2(1500 — 1) 4 2 x
50 = 3098 locations. Assuming we store all our entries in a
standard floating-point format (32 b = 4 B), the required
memory size amounts to &~ 3 KB. This is highly reasonable
for most currently available microcontrollers. For example,
the microcontroller used in [5] (TT: MSP432P401R) has up
to 64 KB of SRAM and 16 KB of flash information memory
(even not including 256 KB of flash program memory).

B. Energy Savings

So far, the energy savings of the SN has been expressed
in terms of the sample reduction ratio SRR. In this
section, we will translate the value of the SRR to actual
energy savings based on measurements from [5].

In [5], the energy consumption of the SN through one
reporting cycle was measured to be ~ 62 mJ. With the
aforementioned 9-cell battery at a factor of safety 0.5, the
total capacity of 2.6 x 9 x 0.5 = 11.7 Ah (151,632 J).
This means, the SN can report up to 15})66322 = 2,445,677
samples throughout its lifetime. However, with ES, an
SRR of 0.4, which is typical in the presented results, can
extend the number of samples to be reported by (1 —
0.4) x 2445677 = 1,467,406 bringing the total number
to 3,913,083. This accounts for a 60% increase in either
lifetime or reporting time resolution whichever way we
decide to utilize the energy surplus.

C. Advantages

We can extend the applicability of ES with the following
points. Each point represents a liberating assumption that
puts ES at an advantage when compared with other
approaches which have limiting assumptions in this regard.

1) There is no prior knowledge about X. Unlike what
is assumed in compressed sensing schemes [24] we
assume no prior knowledge about the compressing
basis or the statistical structure of X. Thus, it is
not possible to construct an optimal code for X.
This brings ES closer to practical implementation
and adds to its versatility.

2) The SN does not need a firmware update over the
air during operation. While the option to update
firmware during operations can improve and further
tune our algorithms, most commercially available
chips lack this capability. Assuming no over-the-air
firmware updates during operation brings this work
closer to practical implementation.

3) Communication is unidirectional from the SN to
the sink. So, there is no need for a full-duplex

channel. This widens the scope of applicability of
this approach and adds to its spectral efficiency.
Moreover, it can simplify the Medium Access (MAC)
layer and reduce its required framing overhead.

4) ES can be incorporated in existing SN hardware with
a firmware update along with a software update to
the sink. It does not require any hardware modifica-
tions, special communications protocols, or network
reconfiguration. Which means it is compliant with
existing communication standards by default.

D. Limitations

SNs with multiple sensors onboard where each time
series has its own EF may not have similar energy savings
because the intersection between the sets of omitted sam-
ples from different sensors may not result in a significant
reduction in the number of transmitted data packets.
In other words, when a sample from a sensor xy; is
omitted, it does not necessarily mean that the sample from
another sensor xy; will also be omitted simultaneously.
This means that the SN’s transceiver will have to turn on
and transmit a data packet every time step unless samples
from all sensors onboard are simultaneously omitted by
their respective entropic filters.

On the other hand, it is reasonable to expect different
time series to exhibit similar IE trends if all signals are
related to the same physical quantity (i.e., if they are
correlated). Practically, if an SN is monitoring the internal
temperature and pressure of a fuel tank we can expect to
see no transmit-worthy samples in the temperature series
if the pressure series also has no transmit-worthy samples
at the same time instant. Furthermore, if there is any
information-rich samples in the temperature series at a
given instant, the pressure series will probably exhibit a
similar behaviour simultaneously. The effect of correlations
between multiple signals on the performance of their
combined entropic filtering needs to be investigated in
further work.

VI. Conclusion

Entropic sensing (ES) is an energy-efficient approach
for wireless sensors in real-time monitoring applications.
We defined the instantaneous entropy (IE) and derived an
iterative formula to efficiently compute Shannon’s entropy
for a time series in real-time. We introduced the entropic
filter (EF) which allows the wireless sensor to transmits
information rich samples while omitting other samples.
The EF carries marginal computing overhead, and by
extension marginal energy cost on the SN. The system’s
demonstrated potential shows more than 60% reduction in
energy consumption with no more than 2% mean absolute
error in the recovered signal. The system is flexible and
can be configured in many ways to fit various types of
time series.
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