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Abstract—Emerging mobility-aware content delivery ap-
proaches are being proposed to cope with the increasing usage
of data from vehicular users. The main idea is to forecast the
user locations and associated link capacity, and then proactively
counter service fluctuations in advance. For instance, a user
that is heading towards low coverage can be prioritized and
have video content prebuffered. While the reported gains are
encouraging, the results are primarily based on assumptions of
perfect prediction. Investigating the predictability of mobility and
future signal variations is therefore imperative to evaluate the
practical viability of such predictive content delivery paradigms.
To this end, this paper presents a large-scale measurement
study of 33 repeated trips along a 23.4 km bus route covering
urban and sub-urban areas in Kingston, Canada. We provide a
thorough analysis of the collected traces to investigate the effects
of geographical area, time, forecasting window, and contextual
factors such as signal lights and bus stops. The collected dataset

can also be used in several other ways to further investigate and
drive research in predictive vehicular content delivery.

I. INTRODUCTION

The dramatic increases in mobile network traffic are a con-

stant burden on cellular operators. Striking a balance between

coverage, consistent data rates, and infrastructure costs is a

significant challenge. Meanwhile, the widespread adoption of

Smartphones is increasing the traffic from vehicular users,

particularly buses and trains. An alternative to expansion is

therefore needed to provide mobile services at sustainable

costs. As such, novel content delivery approaches are re-

ceiving increasing interest. In particular, predictive resource

allocation techniques that exploit user mobility have been

recently proposed to improve throughput and fairness [1],

[2], video streaming delivery [3]–[5], and transmission energy

[6]. This is accomplished by leveraging the knowledge of

the future link capacity users are expected to experience, and

then performing long-term Resource Allocation (RA) plans

over several seconds. By doing so, Base Stations (BSs) can

prioritize users headed to poor channel conditions and for

example, proactively prebuffer additional future video content.

The underlying assumption of such anticipatory schemes

is the predictability of the users’ future channel states as

they traverse a road network. While the gains reported in

[1]–[6] are encouraging, the results are primarily based on

assumptions of perfect prediction. However, there are two
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primary sources of uncertainty that can affect the reported

gains significantly: 1) location prediction errors and 2) signal

strength prediction errors. Investigating the predictability of

mobility and future signal variations is therefore imperative

to evaluating the practical viability of the emerging predictive

content delivery paradigms. To this end, this paper presents

a large-scale measurement study of bus trips covering urban

and sub-urban neighborhoods in Kingston, Canada during July

2014. In this paper, we focus on public transportation vehicles,

as they are attractive candidates for predictive content delivery.

This is because: 1) their routes and stops are known, and 2)

they generate large amounts of mobile traffic which can benefit

significantly from long-term optimization. We have measured

the signal strength variations and geographical coordinates

along a popular bus route. The trips are also made at three

different times of the day to investigate the temporal variations

in both location and signal strength predictability.

We summarize the key contributions of this paper in the

following:

• To the best of our knowledge, this is the first large-

scale mobile signal and location study along a public

transportation route. The dataset includes approximately

475, 200 logs collected over 33 hours covering a total

of 759 km. This dataset can be used to 1) analyze pre-

dictability and propose predictive models that capture the

measured dynamics, and 2) practically evaluate the recent

predictive delivery schemes [2]–[6] with real data.

• We provide an analysis of the collected measurements

and investigate the effects of 1) the forecasting window

duration, 2) the geographical context (urban vs. sub-

rural), and 3) time of day, on the predictability of the

location and signal strength. We also show that modeling

prediction uncertainty is paramount due to the high

variability observed in the measurements.

• We investigate the joint effects of location and signal

strength errors on the signal strength predictability. Our

findings indicate that errors in the predicted locations can

undergo sudden increases due to the uncertainties around

stopping at bus stops and traffic lights. These imperfec-

tions significantly impact signal strength predictability.

A. Related Work

There have been a number of recent works investigating

the signal strength and bandwidth predictability of mobile
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networks along roads. A measurement campaign was recently

made in [2] for different car trips. Yao et al. [7] also analyze

bandwidth traces collected from two independent cellular

providers for routes running through different radio conditions

including terrestrial and underwater tunnels. Their findings

confirm the correlation between user rates and location. Han

et al. [8] also conduct an interesting measurement study, and

addresses other contextual factors such as user speed, time

of day, and humidity to predict the available bandwidth more

accurately. Riiser et al. [9] also conduct a small measurement

campaign of throughput along a metro, tram, bus, and ferry to

illustrate how bandwidth varies. However, the traces are not

intended to assess predictability, and signal strength values

were not recorded.

While these works reveal the correlation between location

and network capacity, they do not address joint location

and signal strength predictability along public transportation

routes. Further, the scope of the collected data does not facili-

tate developing models that can capture the time dependencies

and geographical dynamics in public transportation routes.

B. Paper Organization

In the following section, we present an overview of the col-

lected data set. Section III discusses the location predictability

of the bus trips. Therein we investigate the effects of time and

the forecasting window on the prediction. In Section IV, we

present the signal strength measurements, and investigate the

effects of geographical context, time, and location awareness

on the predictability of signal strength. Finally, in Section V

we summarize our findings and future directions.

II. THE DATASET

The measurements were conducted along a popular bus

route in Kingston, Canada shown in Fig. 1. The logs include

a timestamp, longitude and latitude coordinates, and average

signal strength in dBm, recorded every second. Each trip has

the same start point, end point and direction. As this is an

express route, there are only six stops along the route and a

major transfer point at the Cataraqui Centre (which includes

the major mall in Kingston) shown in Fig. 1. The route from

the start point to the Cataraqui Centre is primarily urban, while

after that it is primarily sub-urban and low density urban. The

bus typically stops for a few minutes at the Cataraqui Centre,

so we have measurements at a stationary point as well.

The trips were made at three different times of the day:

12 pm, 6 pm, and 7 pm. This was to account for both

road traffic differences and varying interference and mobile

network connectivity levels. In total we have surveyed 33

hours covering a total of 759 km arriving at 475, 200 logged

data points.

Fig. 2 shows the latitude and signal strength variation with

time for a sample log. The data was filtered to account for

any anomalies in the recorded measurements (particularly that

of the GPS coordinates). We can see that signal strength

variations are quite rapid between the starting point and the

Cataraqui Centre, where there are fluctuations even though the

Cataraqui

Center

Point X

Sub-urban 

area
Starting 

point

End point

Point Y
Point Z

Fig. 1. The 23 km trajectory of the bus route in Kingston, Canada.
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Fig. 2. Sample latitude and signal strength measurements of a bus trip.

bus is stationary. After that, the signal strength remains at a

relative low in the sub-urban area. This is followed with clear

gradual increases and decreases in the signal strength due to

line of sight in the fields preceding point Y and the waterfront

road shown in Fig. 1.

III. LOCATION PREDICTABILITY

In this section, we investigate the location predictability of

the bus trips at the different times of the day. Fig. 3 shows the

latitude changes for sample trips at different times of the day.

The variance between the trips is due to traffic lights, stopping

at the bus stops, road traffic, and driver behavior. We can see

the trips at 12 pm exhibit the highest variations as there is more

road traffic and bus passengers, adding to the uncertainty in

the bus location. The second half of the 7 pm trips (after the

Cataraqui Centre transfer point) also show a high variation but

this is partially attributed to the different departure times from

the transfer point as highlighted in Fig. 3(c). The trips made at

6 pm are the most consistent. The longitude recordings show

a similar behavior but are omitted due to limited space.
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Fig. 3. Latitude variation per second for sample bus trips at (a) 12 pm, (b) 6 pm, and (c) 7 pm.
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Fig. 4. Location standard deviation for different times of the day.

A. Location Variability

In order to quantify the bus location predictability we

compute the location standard deviation at each second from

the start of the trip. We need to calculate the distances

between the average latitude and longitude measurements,

and the individual trip measurements. This is accomplished

using the Haversine formula [10] which is known to provide

computationally precise results, as follows:

a = sin2(∆Lat/2) + cos(Lat1) cos(Lat2) sin
2(∆Lon/2), (1)

c = 2 tan−1

√

a

1− a
, (2)

d = R · c, (3)

where ∆Lat and ∆Lon are the latitude and longitude dif-

ferences respectively, Lat1 and Lat2 are the trip latitude and

average trip latitude respectively, and R = 6378.137 m, is the

radius of the Earth.

Fig. 4 shows the resulting location standard deviation for

the different trip times. Referring to Fig. 3, we can see that

the plots match the overall behavior of the trips. There are two

major peaks of deviation, one before the Cataraqui Centre and

one after. Between 1100 s and 1275 s the bus is waiting at the

Cataraqui Centre transfer point, so the location is known at

6 and 7 pm. However, this is not the case at 12 pm, as the

bus may or may not arrive on time due to congestion and

traffic. Note that the large uncertainty at approximately 2500
seconds is due to significant longitude variations as the bus

moves along the waterfront (Front street). Our speculation for

the low deviation at 6 pm is that traffic is more consistent as

it is at the end of rush hour, and before the more random bus

stops and traffic in the evening.

B. Effect of the Forecasting Window

The results in Fig. 4 show a very high uncertainty for

the bus location after the Cataraqui Centre. However, these

results are assuming that no feedback is provided throughout

the trip on the bus location. As the bus traverses the sub-

urban area, it covers large distances in small time durations.

Therefore, even slightly different departure times from centre

will significantly impact the location predictability. To study

the effect of periodic location updating, we include three

points denoted by X, Y, and Z, in Fig. 1 where the bus

makes a location update. The corresponding results of the

location uncertainty after the location update are illustrated in

Fig. 5. Point X corresponds to the departure from the Cataraqui

Centre and we now see a large reduction in the uncertainty

between 1500−2300 s compared to that measured in Fig. 4. A

similar reduction in the location standard deviation is observed

with the location updates at Y and Z in Fig. 5(b) and Fig. 5(c)

respectively. However, there are still sudden increases in the

location uncertainty, which are likely to arise due to bus stops

and traffic lights. The results also indicate that it is possible to

determine the bus location with considerably high accuracy

for approximately 100 s, after which location updates are

needed. Note that the location standard deviation is expected to

decrease with more sophisticated predictors that examine the

actual speed of the bus and can infer acceleration/deceleration

as well as bus stop locations.

IV. SIGNAL STRENGTH PREDICTABILITY

A. Results at a Glance

Fig. 6 shows the signal strength variations over time made

at different times of the day. The different shades of red

2015 IEEE Wireless Communications and Networking Conference (WCNC 2015) - Track 2: MAC and Cross-Layer Design

1197Authorized licensed use limited to: Queen's University. Downloaded on December 13,2021 at 16:10:15 UTC from IEEE Xplore.  Restrictions apply. 



1700 1900 2100 2300 2500 2700 2900
0

200

400

600

800

1000

1200

Time [s]

L
o
c
a
ti
o
n
 S

ta
n
d
a
rd

 D
e
v
ia

ti
o
n
 [
m

]

 

 
12 pm

6 pm

7 pm

(a)

2350 2450 2550 2650 2750 2850
0

100

200

300

400

500

600

Time [s]

L
o
c
a
ti
o
n
 S

ta
n
d
a
rd

 D
e
v
ia

ti
o
n
 [
m

]

 

 
12 pm

6 pm

7 pm

(b)

2700 2750 2800 2850
0

50

100

150

200

250

Time [s]

L
o
c
a
ti
o
n
 S

ta
n
d
a
rd

 D
e
v
ia

ti
o
n
 [
m

]

 

 
12 pm

6 pm

7 pm

(c)

Fig. 5. Location standard deviation after location updates at points (a) X, (b) Y, and (c) Z (denoted in Fig. 1).

indicate different sample trips taken from our database. We

can clearly see the high variability of signal strength at 12 pm,

both within a single trip and between different trips. The

variability is considerably less at 6 pm and even less at 7 pm.

We also plot the signal strength distributions at each time in

Fig. 7. From these plots we can infer that at 12 pm the signal

strength exhibits lower signal strength values with higher

probabilities. This is possibly due to more interference, bus

passengers, network load, and road traffic. On the other hand,

the distribution for 7 pm has both a lower variance and higher

signal strength values. This is confirmed in the cumulative

signal strength density function in Fig. 8.

B. Constructing Geographical Signal Strength Maps

Although the results in Fig. 6 appear to vary significantly

between different trips, a closer look reveals that in many parts

a time translation would reduce the variability significantly.

This is due to the location variations observed in Fig. 3.

Therefore, in order to evaluate the geographic signal strength

variability, we construct signal strength maps along the bus

route. To do so, the map is divided into small rectangular zones

measuring 80m longitude and 110m in latitude (correspond-

ing to 0.001 degrees). The signal strength measurements are

then mapped to the nearest rectangular zone and the average

and variance of the measurements at each zone are computed.

Fig. 9 illustrates the resulting average signal strength map

at 7 pm. The periodicity of signal strength variations with

time are apparent with major peaks and dips along the route.

Additionally, the sub-urban area suffers from a relatively long

period of low signal. In addition to the average, we have also

generated variance maps to investigate the geographical and

temporal variance of the signal strength. The results in Fig. 10

show that at 12 pm the variance is significantly higher than

at 7 pm, with particular geographical areas being affected the

most.

C. Effects of Geographical Context

We now divide the bus route into three geographical seg-

ments. The first is between the start point and the Cataraqui

Centre, which we refer to as the urban segment. The second is

during the wait at the Cataraqui Centre before departure, which

we refer to as the waiting segment. The third is comprised of

the remaining route after the Cataraqui Centre, and we call this

the sub-urban segment. Next, we investigate the mean square

error (MSE) of the measured signal strength for each segment,

at the three different times of the day. For now, we assume

perfect location information, i.e. the variability is only due to

the variance in the signal strength between the different trips.

In other words, we assume that the location is known, and then

reconstruct a predicted signal strength based on the average
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Fig. 6. Signal strength variation per second for sample bus trips at (a) 12 pm, (b) 6 pm, and (c) 7 pm.

2015 IEEE Wireless Communications and Networking Conference (WCNC 2015) - Track 2: MAC and Cross-Layer Design

1198Authorized licensed use limited to: Queen's University. Downloaded on December 13,2021 at 16:10:15 UTC from IEEE Xplore.  Restrictions apply. 



−110 −100 −90 −80 −70 −60 −50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
P

ro
b
a
b
ili

ty

Signal Strength [dBm]

12 pm

(a)

−110 −100 −90 −80 −70 −60 −50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ro

b
a
b
ili

ty

Signal Strength [dBm]

6 pm

(b)

−110 −100 −90 −80 −70 −60 −50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
ro

b
a
b
ili

ty

Signal Strength [dBm]

7 pm

(c)

Fig. 7. Distributions of signal strength along the bus route at (a) 12 pm, (b) 6 pm, and (c) 7 pm.
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Fig. 8. Cumulative signal strength density for different times of the day.

signal strength maps shown in Fig. 9. Then, we compare the

predicted signal strength to the actual traces and compute the

MSE. The results are depicted in Fig. 11(a), from which we

can make several observations:

• The measurements at 12 pm exhibit the highest signal

strength variability, followed by 6 pm and 7 pm.

• The time waiting at the Cataraqui Centre has the highest

MSE, which we suspect is due to the high volume of

buses and people at the transfer point and in the shopping

mall. This is supported by the observation that it does not

decrease even at 7 pm.

• The sub-urban segment has the lowest MSE which was

expected due to the line-of-sight areas and road along the

waterfront.

• At 7 pm, the MSE for the urban segment decreases

considerably. Our speculation is that road traffic and

network usage is much less at this time, leading to lower

interference levels.

D. Effects of Location Predictability

In order to investigate the joint effect of location and

signal strength variability, we compute the MSE with both

an average location estimate and average signal strength map.

The results for the sub-urban segment are shown in Fig. 11(b),
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Fig. 9. Constructed signal strength map of the bus route at 7 pm.

where we can see the dramatic effect of location errors on

the predicted signal accuracy. However, note that location

variance of the sub-urban segment corresponds to that shown

in Fig. 5(a) which has a forecast window of 1400 seconds,

with no location updates. The high location uncertainty in

Fig. 5(a) also matches the results of Fig. 11(b). Typically,

one would not make forecasts for such a long duration with-

out intermediate updates. Nevertheless, these results indicate

that location-awareness is key to facilitating accurate signal

strength predictions.

V. CONCLUSIONS

We hope that the conducted measurements and initial anal-

ysis in this paper can be used to further investigate and drive

research into predictive vehicular content delivery. We now

summarize our major findings and their implications.

Signal strength variability: The surveyed bus route exhib-

ited several areas of low signal strength. Some of those were

short-lived, while others were prolonged such as along the

sub-urban area. This increases the need for predictive resource

allocation schemes [2]–[6] to provide sustainable services. Our

findings also demonstrate the importance of modeling signal

strength variability across the routes at the different times of

the day. This can provide a guideline as to when and where

predictive transmission schemes can be applied.
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Fig. 10. Variance of the signal strength maps at (a) 12 pm, and (b) 7 pm.
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Fig. 11. MSE of the predicted signal strength (a) for the different road segments, (b) with location prediction errors along the sub-urban segment.

Developing mathematical models: Real measurements will

be typically needed before predictive transmission schemes

can be applied, due to the significant temporal and geo-

graphical variability observed. Mathematical models for signal

strength will have to account for both the general statistics

observed at the different times (as in Fig. 7), and the more spe-

cific geographical dependencies. The results also demonstrate

that location accuracy affects the predictability significantly.

Thus a primary challenge is to develop accurate location

predictors that incorporate contextual factors of signal lights,

bus stops and time of the day.

Optimizing the forecasting window: The optimal forecast-

ing window duration is needed to control the tradeoff between

prediction accuracy and the derived gains of predictive RA

For this, measure of the joint uncertainty in signal strength

and location predictability will be needed. Further, the results

in Fig. 5 also indicate that contextual factors can influence the

location predictability significantly, and thus it may be chal-

lenging to derive general solutions without real measurements.
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