
Evaluating Softwarization Gains in Drone Networks
Mohannad Alharthi∗ § , Abd-Elhamid M. Taha†, Hossam S. Hassanein∗

∗School of Computing, Queen’s University, Kingston, Ontario, Canada. Emails: {harthi, hossam}@cs.queensu.ca
†Electrical Engineering Department, Alfaisal University, Riyadh, Saudi Arabia. Email: ataha@alfaisal.edu

Abstract—Unmanned Aerial Systems (UASs) or drones are
becoming increasingly dependable tools for many civil and indus-
trial applications. Due to the increasing usage and capabilities
of drones coupled with advances in innovative technologies
and algorithms for managing and conducting tasks, drones are
expected to crowd low-altitude airspace in urban areas. This
brings many opportunities for service providers to provide drone-
related services. Hence, efficient use of drones is required. In this
paper, we investigate the benefits of reconfigurable softwarized
drones operated by an entity or a service provider to perform
tasks for its operations or for interested customers. We model a
system of reconfigurable drones that can conduct multiple tasks
per flight using Virtual Network Functions (VNFs) running on
on-board capable computing systems. We compare our proposed
model with alternatives with limited and no softwarization
capabilities. Our evaluation demonstrates the performance gains
due to reconfigurability in softwarized drone networks. Results
show that softwarization allows drones to perform a variety of
tasks using a limited number of reconfigurable drones and in a
shorter time.

Index Terms—Drones, UAVs, Softwarization, NFV

I. INTRODUCTION

Unmanned Aerial Systems (UASs) or drones are considered
essential tools in search and rescue missions, disaster relief ef-
forts, industrial operations, remote sensing, aerial surveillance
and security. The rate of growth of such applications is driving
innovative technological advances. For instance, the Federal
Aviation Administration (FAA) and NASA are developing
UAS Traffic Management (UTM) a cloud-based service that
provides automated services for drone operators, such as UAS
registration, flight planning, airspace authorizations and provi-
sion of relevant information to UAS operators. As well, cost-
effective and capable drones are becoming increasingly avail-
able. Furthermore, research activities are introducing more
drone applications driven by machine learning and innovative
technologies [1]. These also include using drones for network
applications as relays, drone base stations and for offering
computing services.

Softwarization of drones enables programmability and re-
configurability. Research efforts focused on integrating Soft-
ware Defined Networking (SDN) and Network Functions
Virtualization (NFV) into networked drones [2]. In addition
to the flexible control and efficient utilization of resources,
softwarization lends itself to leveraging on-board computing
capabilities and enables intelligence and autonomy in con-
ducting tasks. Softwarized drones with on-board computing
systems can be reconfigured with different implementations
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of sophisticated ML algorithms to conduct tasks and process
collected data [2]. Relevant results can be transmitted with
little delay and without need for further processing. Task
software can be implemented as swappable and upgradable
Virtual Network Functions (VNFs), which can be reconfigured
on-demand at deployment time or inflight, leading to more
flexibility and reuse of the physical drone.

Using softwarization, an industrial entity, for instance, can
efficiently utilize its fleet and reconfigure drones for its dif-
ferent operations while automating the process of scheduling
tasks and deploying configured drones. The operator bene-
fits from such flexibility by serving more tasks with a low
turnaround time, and ultimately completing a batch of tasks
in a short time. Such flexibility can bring an opportunity
for service providers (SPs) to offer their fleet of softwarized
drones to conduct tasks for customers such as industries re-
quiring infrastructure inspection tasks, municipalities conduct-
ing aerial surveys and mapping missions, law enforcement,
weather services, and academic institutions. The reconfigura-
bility of such a system can translate to better efficiency and
profitability for the SP. Such a service can also be more flexible
from a regulations standpoint as the SP can obtain required
authorizations and better integrate with UTM services.

In this paper, we investigate the benefits of reconfigurable
softwarized drones used to conduct a variety of tasks. In doing
so, we propose and model a system of softwarized drones that
can conduct multiple tasks per flight using VNFs running on
capable drone-mounted computing systems. We compare the
gained efficiency of the system with alternatives with limited
and no softwarization capabilities. This evaluation provides
novel results quantifying the gains due to softwarization and
reconfigurability of networked drones.

This paper is organized as follows. In the next section, we
review the relevant literature. In section III, we provide an
overview of the system operation, and in section IV, we detail
the system model. In section V, we present the evaluation and
results.

II. RELATED WORKS

Softwarization of drone-assisted wireless networks using
SDN/NFV has been an active research area in the last few
years [2]. SDN has been utilized to enhance the network
performance of such highly dynamic systems. In this work,
we focus on on-board computation using NFV, which has
been utilized to deploy reconfigurable networks for a variety
of applications.
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Fig. 1. Overview of the system components and the general operation
including drone states, task assignments, and VNF activations. Underlines
mark the active task and VNF. Dashed arrows indicate the trajectory of a
flight, marked with requests transition distances as described in IV.

In [3], a configurable NFV-system for multi-drone ad-
hoc networks is implemented. The system enables deploying
several network services (e.g, VoIP) on the virtualized drone
computing resources. Authors in [4] describe an SDN/NFV-
based architecture for drone networks for rural zone moni-
toring. The Flying Ad hoc Network (FANET) provides video
monitoring as a service where cameras on the ground and on
drones capture and stream footage of monitored areas using
specialized VNFs. In [5], we propose a scheme for planning
the deployment of NFV-based drone networks hosting VNFs
that process and delivers mission traffic flows using the virtual-
ized on-board computing resources. Works such as [6] and [7]
are recent instances of utilizing drone computing capabilities
in the context of Multi-Access Edge Computing (MEC). To the
best of our knowledge, none of the existing works evaluated
direct gains attributed to softwarization and reconfiguration in
networked drones compared to non-softwarized drones.

III. SYSTEM OVERVIEW

Consider an entity or an SP that owns a fleet of drones
and offers to perform various tasks and is stationed in an area
with demand for such services. Such a system consists of a
drone depot or station, a set of reconfigurable drones, and
an orchestrator that controls the whole system and mainly is
responsible for receiving and deploying tasks. The system is
depicted in Figure 1. Parties interested in drones tasks submit
task requests to the SP. Requests state the task requirements
in terms of the trajectory, duration, and energy required.
Requests also supply the software implementation of the task
as VNFs or select from an available set of VNFs offered by
the SP, which include VNFs that implement algorithms for
conducting different tasks such as those shown in Figure 1.
Such requests are handled by the orchestrator, which processes
a queue of task requests and schedules tasks on the available
fleet using an orchestration strategy. Drones, fitted with a
common set of sensors and a virtualized computing system,
are reconfigurable (or softwarized) and are loaded with VNF
images corresponding to assigned tasks. Due to this flexibility,

drones can be assigned a series of tasks to perform in a single
flight. While a drone cruises along the combined trajectory of
assigned tasks, VNF images corresponding to the active task
are instantiated and terminated as the drone transitions from
one task area to another. Figure 1 demonstrates this process.

Drones are stationed at the depot, where they initially get
configured. The depot is equipped with facilities to connect
to drone computing systems to configure them as instructed
by the orchestrator. The depot also handles the charging, or
battery swapping when drones land after performing tasks.
The reconfigurability of drones permits the assignment of
additional tasks while inflight, presuming a high data rate
connectivity between the drone and the orchestrator.

The reconfigurability of drones is enabled by an on-board
system with virtualization capability to host virtual machines
(as containers or VNFs). The system should be designed so
VNFs are given controlled access to drone sensors and the
ability to specify a flight path for the duration of the task. The
underlying system controls the time of activation of VNFs
and their deactivation when a task exceeds its allotted time or
energy as configured by the orchestrator.

The orchestrator oversees the operation of the system. It
employs orchestration strategies to prioritize task requests in
a queue and make assignment decisions to reconfigure drones
with assigned tasks. Furthermore, it monitors the overall state
of the system, including the deployment status, current loca-
tions, trajectories, and energy levels of drones. Once a number
of tasks are assigned to a drone, the orchestrator generates
the flight plan for the drone. However, tasks may choose to
have their own flight paths for the duration when in control of
the drone. The orchestrator may alter trajectories in response
to errors, e.g., an unexpected battery drain or task software
malfunction. The orchestrator is assumed to communicate such
aspects using a well-defined control interface and channel,
which is outside of the scope of this work.

IV. SYSTEM MODEL

We denote by D the set of available drones. At any time
instant, a drone can be in one of three states: standby, inflight
(performing tasks), and recharging. After landing, a drone
stays at the recharging state for a duration Tcharge to charge or
swap batteries, after which the drone goes into standby state.
Cd denotes the fully charged energy capacity of d.

A task request r arriving to the orchestrator is represented by
a tuple 〈r,Durr, Er,Kr, L

start
r , Lend

r , T arrival
r 〉. Here, Durr

is the time duration of the task, Er is the energy required
to fly while conducting the task, and Kr is the type of the
task, which maps to the task VNF image. Furthermore, Lstart

r

and Lend
r represent the distances from the depot to the task

area and from the end point of the task back to the depot,
respectively, while T arrival

r is the arrival time of the request.
R denotes the set of all requests. We denote by Transitr,r̄ a
matrix holding the distances between locations of any pair
of tasks r and r̄. Tr(.) denotes a function that calculates
the time required for a drone to travel a given distance in
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a predetermined speed. Figure 1 demonstrates the distances
associated with task requests.

The orchestrator maintains a queue Q of all arrived task
requests. The orchestrator engages its assignment procedure
at the arrival of task requests or at the availability of standby
drones in order to process Q and assign tasks to drones. At
any time instant, a softwarized drone d, can be assigned a
series of tasks denoted by Sd, with different tasks r ∈ R as
its constituents. We denote by Sdi and Sde the ith and last
tasks assigned to Sd, respectively, whereas the active task is
denoted by Sda.

A. Orchestration Strategy

The orchestration strategy is responsible for prioritizing
requests in Q and matching tasks to drones using certain
criteria. We serve requests with the smallest Durr first as
it reduces the average starting time of tasks. Then an or-
chestration procedure assigns tasks to drones by selecting
drones that can start assigned tasks in the shortest time given
drones current assignments. The assignment is completed by
allocating drones available energy capacity to the assigned
task. To make the allocation, the energy required to perform
the task on the selected drone must include, in addition to
Er, the energy required to fly the drone to the task area or to
transition from the preceding task of the drone, as well as the
energy required to return to the station.

The above strategy is encapsulated in the procedure listed
in algorithm 1. For each r in Q, the procedure iterates over
available standby and inflight drones and calculates ed, the
energy required to perform r using d given its preceding tasks.
If d has sufficient unassigned energy greater than ed, then
we calculate ttostartd , the duration until starting the task on d.
Then, d is added to the candidate assignment set Acand, where
each candidate is expressed as a tuple 〈d, ed, ttostartd 〉. Once
a number of candidates are collected, the candidate with the
lowest ttostartd is selected and assigned r. If no candidate is
found, then r is rejected. The procedure continues to the next
r in Q and repeats the steps above. Then, all rejected requests
are put back in Q for subsequent calls of the procedure. The
formulae for calculating ed and ttostartd are omitted for brevity.

B. Flight Duration and Energy Consumption

Once assignment decisions are made and drones configured,
flight plans are created for standby drones and updated for
inflight drones. Once a drone d is assigned a set of tasks Sd,
the flying duration can be calculated as:

FlightDur = Tr(Lstart
Sd1

+ Lend
Sde

)+∑
i∈Sd

Tr(Transiti−1,i) +Duri (1)

Algorithm 1 Orchestration Procedure
Input: Q,D
Output: Assignments of tasks to drones

1: Rrejected ← φ
2: Sort Q by Durr ∀r ∈ Q (Shortest Durr first)
3: while Q is not empty do
4: r = dequeue(Q)
5: Acand ← φ
6: for all d ∈ D do
7: Calculate ed and ttostartd

8: if GetUnallocatedEnergy(d) > ed then
9: Acand = Acand ∪ {〈d, ed, ttostartd 〉}

10: end if
11: end for
12: if Acand 6= φ then
13: 〈d, ed, ttostartd 〉 ← Select from Acand the tuple with

minimum ttostartd

14: Append r to Sd and update allocated energy
15: else
16: Rrejected = Rrejected ∪ {r}
17: end if
18: end while
19: Add all r ∈ Rrejected back to Q

Note that Transit0,1 = 0. If the drone is already inflight, the
remaining duration from the current time instant is:

RemDur = Remaining Duration of Sda+[ ∑
i∈Sd

xi ×
(
Tr(Transiti−1,i) +Duri

)]
+

Tr(Lend
Sde

) (2)

where xi ∈ {0, 1} indicates if i ∈ Sd is pending execution
when equal to 1.

The energy consumption in Joules for a drone in forward
flight for any duration T in seconds and speed v in m/s is:

Eflight = Energyf (v)× T (3)

where Energyf is a function that computes the instantaneous
power required for flight in watts given v. We adopted an
energy model for rotary-wing drones that models the power
consumption of drones in hovering (v = 0) and in forward
flight. The model involves a host of parameters that include the
drone mass, rotors and blade configuration and measurements,
as well as air dynamics. The model is described in detail in
[8]. We omit the energy required for ascending and descending
as they are negligible and to simplify the evaluation.

V. PERFORMANCE EVALUATION

We evaluate the benefits of softwarized drones (referred to
as dynamic NFV) compared to drones with limited and no
softwarization. Drones with limited softwarization (hereafter
called fixed NFV), are only reconfigurable when in standby
and allows for assigning a single task per flight. On the other
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hand, a non-softwarized drone is only capable of performing
a single type of task (e.g, only aerial mapping), and is also
assigned a single task per flight. The assignment strategies for
these two models are simple assignments to the first available
drone. For non-softwarized drones, a request task type Kr

must match the assigned drone task type.
A discrete-event simulation environment is built using

Python. The environment models the different drone states,
energy consumption, task request generation and assignment
according to our system model. It also records task starting
and completion times on assigned drones according to tasks
durations and transition times.

We investigate the benefits of softwarizing drones perform-
ing tasks as services. For scenarios where the batch of tasks
is known beforehand, we report the total time to complete
all tasks, which is the landing time of the last drone after
performing all tasks. For use cases where task requests are
not known a priori and thus arrive at random times, the total
completion time is affected by inter-arrival times. Instead, we
report the average task completion time, which is the delay
from the arrival of a task to the end of its execution, averaged
over the total number of tasks. The average task completion
time can be calculated as:

1

|R|
×
∑
r∈R

T completion
r − T arrival

r (4)

where T completion
r is the recorded time of deactivating the task

VNF in the drone after completing the task. We also calculate
the total energy consumption for executing all tasks

A. Simulation Setup
The simulation is setup as follows. Task durations are

uniformly distributed in the range [5, 20] minutes, while energy
requirements are equal to the energy required for forward
flight for the respective task durations. Request task types
are also uniformly distributed over five task types. Assuming
tasks take place in a 2× 2 km2 area and the depot located at
(0, 0), all distance in L and Transit are drawn from two
normal distributions, the first with µ = 1.6 and σ = 0.5,
and the other with µ = 1.2 and σ = 0.5. For the scenario
with random requests, inter-arrival times are exponentially
distributed with with mean 5 and 10 minutes, denoted as
Rarrival. In simulations with non-softwarized drones, drones
are divided equally to task types. For example, for five drones,
there is one non-softwarized drone available for each task type.
Drone flying speeds are fixed at 10 m/s, while battery capacity
is 702.58 kJ as the total of two batteries, resulting in about
45 minutes of maximum flight time after leaving out 10% of
the capacity for safety. The parameters of the energy model
used are as stated in [8], except drone mass is set to 3.5 kg.
The charge time Tcharge is set to 10 minutes. Simulations are
terminated when all tasks are completed. All reported results
are averages of 10 experiments.

B. Results
Figures 2a and 3a show the total completion time and energy

consumption for the predefined requests scenario. The results

are for five softwarized drones compared to five fixed NFV
and and five non-softwarized drones. Tasks are completed
faster using dynamic NFV compared to fixed NFV and non-
softwarized drones. This is due the ability of reconfiguring
and assigning multiple tasks to any available drone and due
to the time saved traveling between tasks instead of returning
to the depot after every task. Without softwarization, tasks
take the longest time to complete due to having to wait for
the availability of drones that match requested task types.
However, with fixed NFV, the system waits for the availability
of any drone to be reconfigured for the requested task type. As
expected, the total completion time increases linearly with the
number of requests, as does the difference in performance. The
reduction in energy consumption, as shown in Figure 3a, is a
direct result of the reduced travel times between tasks due to
reconfigurability. Fixed NFV and non-softwarized drones are
equal in energy consumption due to the identical operation in
terms of performing a single task per flight.

Next, we repeat the experiment above with task requests
spread out with a 5 and 10 minutes mean inter-arrival time
Rarrival. In Figures 2b and 2c, we report the average task
completion time. In both cases, with dynamic NFV, the or-
chestrator capitalizes on the dynamic reconfiguration ability
to assign tasks to drones inflight when possible resulting in
the shortest per task completion time, which includes waiting
time since request arrival. With Rarrival = 5, the dynamic
system deploys and completes tasks faster than the fixed NFV
and non-softwarized systems. Using fixed NFV, tasks wait for
drones to return and recharge before getting assigned, whereas
with the non-softwarized system, tasks wait further for drones
of the required task type, leading to higher completion times.
The advantage is also evident with Rarrival = 10, which
leads to equal performance for both dynamic and fixed NFV
due to the lower utilization of the fleet. Both softwarized
systems show an advantage over the non-softwarized system,
albeit with a narrower difference. The corresponding energy
consumption is shown in Figures 3b and 3c. The energy
consumption difference decreases as Rarrival increases. This
is due to the fact that task requests are more spread out in time
and drones become less utilized. This increases the chances of
having available drones on standby to serve requests regardless
of reconfigurability. As a result, many drone flights in dynamic
NFV will constitute a single task per trip leading to similar
energy consumption across all variants.

Figures 4a and 4b show the total completion time and the
average task completion time for 120 predefined and random
task requests (with Rarrival = 5) plotted against the number
of drones. Tasks are completed faster using more drones.
Naturally, an abundance of drones reduces the performance
gains of softwarization. However, the notable result here is
that softwarization enhances the performance of a limited
number of drones to an extent equal to or better than a larger
non-softwarized fleet. For example, 5 and 10 softwarized
drones perform similar to 10 and 20 non-softwarized drones,
respectively.
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Fig. 2. Total and average task completion for predefined and random tasks scenarios with |D| = 5

Fig. 3. Total energy consumption for predefined and random tasks scenarios with |D| = 5

Fig. 4. Performance of the predefied and random tasks scenario with 120 requests

VI. CONCLUSION

In this paper, we discussed the motivations for drone
softwarization to enable reconfigurable drones for providing
a variety of sensing tasks. We envisioned a system where a
fleet of drones performs civil and industrial tasks. A model for
such a system was presented, where the proposed NFV-enabled
drones can perform a multiplicity of dynamically configured
tasks. We compared the proposed system performance to
counterparts with limited and no softwarization. Our results
show that a service provider can efficiently perform such a
service and complete a predefined campaign of tasks in a
shorter period of time compared to the alternatives. As well,
a short turnaround time was achieved for random tasks.

The results presented herein represent a subset of results

of an extensive investigation. Additional results include a sce-
nario where higher priority task requests need to be deployed
to respond to urgent events. For such a scenario, we employ an
alternative orchestration strategy and then evaluate the ability
of the softwarized system to respond to such events compared
to a fixed system. Future work may consider sensing tasks that
perform simultaneously when applicable, or more specialized
use cases that seek objectives related to certain types of tasks.
Such objectives may include maintaining coverage of a service
or maintaining up-to-date sensing information by scheduling
flights efficiently.
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