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Abstract—A rapid increase has been lately noticed in the
number of individual and groups of users offloading independent
and inter-related computational tasks to mobile edge computing
(MEC) servers, thus overloading them and increasing risks of
service interruptions. In response to this issue, reactive service
replication has been suggested to enable individual and groups of
users to access services on remote edge servers, thus guaranteeing
system scalability. In this paper, we propose a task offloading and
service replication scheme on local and remote MEC servers,
which minimizes the response time of all users while satisfying
the delay requirements of user groups involved in same traffic-
heavy and/or multimedia-intense applications (e.g., online gam-
ing, multimedia conferencing, augmenting reality). We formulate
the problem as an integer non-linear problem, and solve it
using numerical solvers. We then compare the performance of
our optimized solution with distance-based and resource-based
greedy approaches. Simulation results show that our optimized
solution can achieve up to 14% and 13% performance gains in
comparison to these two greedy approaches, respectively.

Index Terms—Mobile Edge Computing, Computation Offload-
ing, Service Replication

I. INTRODUCTION

Due to the resource limitations of mobile devices (pro-
cessing power, battery lifetime, and storage capacity), many
techniques have been proposed to handle the complex com-
putations currently needed by such devices. One of the con-
ventional solutions to this problem is computation offloading,
where part or all such computations are offloaded to remote
resourceful cloud servers, thus saving processing power and
energy. However, offloading these computations to the cloud
may cause long communication latency between cloud servers
and mobile devices. Mobile Edge Computing (MEC) has
thus emerged as an alternative technology that enables mo-
bile devices to access cloud-like computing services at edge
servers located within the radio access network of the mobile
subscribers. The major objective of MEC is reducing latency
by enabling the computations and data storage to be done

at these edge servers [1]. Despite their significant potential
to improve the performance of delay-sensitive applications,
edge servers have relatively limited computation resources
compared to cloud servers. This fact may cause edge servers
to be overloaded with computations to the extent of service
interruption [1]. This is especially true in scenarios of high
density demand such as those sports events and live concerts.

To minimize such instances, partial and full task offload-
ing and resource allocation strategies have been extensively
investigated by many researchers either in single-server or
multiple servers edge computing environments. In [2], Du et
al. proposed a joint task offloading and resource allocation
scheme for multi-server edge computing environments. This
scheme intended to maximize service capacity (defined by the
number of served mobile devices) and minimize the service
cost (measuring the service latency and power consumption
experienced by users). However, this work assumed that some
users can be left unserved due to lack of resources. On the
other hand, another line of research aimed to jointly optimize
task allocation and resource scheduling to reduce the cost of
MEC while assuming that the capacity of the edge servers
will always satisfy the demands of the users. In [3], Zhang et
al. investigated the joint task scheduling and dynamic resource
management problem to reduce the cost of an edge computing
system consisting of multiple collocated edge servers. In [4],
Li et al. proposed a mixed-integer non-convex optimization
problem to maximize the number of offloaded tasks and
minimize the energy consumption of all the user devices and
edge servers, by selecting the best edge servers with capacity
for offloading.

The majority of the above works ignored the notion of scal-
ability in MEC, which guarantees the availability of service
regardless of the number of user devices and capacities of
the edge servers. With the increasing number of devices and
complexity of the applications that run on them, a massive
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load is typically imposed on the local edge server from these
devices resulting in network bottlenecks and service interrup-
tions [1]. In [5], Maheshwari et al. analyzed the scalability and
capacity performance of a hybrid edge-cloud system designed
to support latency-sensitive applications. On the other side of
the spectrum, the distribution of offloaded tasks between edge
servers and peer user devices was proposed to determine the
best load partitioning between them for minimizing the excess
delay and energy consumption compared to the no-offloading
alternative [6].

To achieve scalability within the edge servers’ layer itself,
many researchers have suggested load balancing mechanisms
and server clustering to ensure the scalability of the service.
In [7], a first-come-first-serve queuing and service model was
proposed to improve the QoS of edge servers by clustering
these servers together for load sharing. In [8], a cooperative
load balancing scheme was proposed to minimize the blocking
states at each edge server. In [9], collaborative data caching
and computation offloading among collaborating MEC servers
were proposed. The caching and computation resources are al-
located to multiple service requesters based on their demands
and payments.

The difference between this work and the aforementioned
ones is that our problem considers multiple sets of users form-
ing service groups due to the participation of each group in the
same synchronized traffic-heavy and/or multimedia-enabled
activities, such as online gaming, multimedia conferencing,
and augmented reality. Also, our proposed scheme improves
the scalability of the offered services by replicating them on-
demand at remote edge servers in the MEC system to serve
all users concurrently when the local server(s) cannot bare the
load of all user groups.

In this paper, we dynamically manage task offloading for
groups of users requesting to perform inter-related compu-
tations on local and remote MEC servers. We formulate an
optimization problem minimizing the response time of all
users while satisfying the delay requirements of user groups
running the same applications. We compare the performance
of our optimized solution with distance-based and resource-
based greedy approaches.

The rest of the paper is organized as follows, Section II
details our system model and parameters. Section III discusses
the problem setup. Section IV presents the performance evalu-
ation and the comparison with the two greedy approaches. We
conclude the paper and highlight future research directions in
Section V.

II. SYSTEM MODEL

The system model is depicted in Figure 1, in which the
MEC system consists of two sets of entities namely the set of
edge servers and the set of users requesting service from these
servers. Let S = {0,1,2,..., M — 1} be the set of M edge
servers in the system, where edge server 0 is the local edge
server and edge server i € S\ {0} is one of the M — 1 remote
edge servers. The local server is the one that all users should
typically offload to unless overloaded. Only in this case, the
un-served devices are allowed to access remote edge servers
after replicating their needed service(s) on them.

Edge servers are connected via backhaul links, which
can be used for service replications whenever needed. In
addition, their computational resources are divisible among
multiple users from the same or different groups. The available
computing capacity of each edge server ¢ € § is denoted by
F; measured in gigahertz (Ghz).

On the user side, 4/ = {1,2,..., N} denotes the set of
all N user devices in the MEC system. These users are split
into a set G = {1,2,..., NG} of NG groups. Each group
g € G consists of U, users, where users belonging to the
same group are participating in the same common traffic-
heavy and/or multimedia application/activity, such as online
gaming, multimedia conferencing, and augmented reality.’
Consequently, each group has application-dependent QoS re-
quirements 7, and Fgmi”, defined as the maximum delay
all members within the group can tolerate for having their
tasks completed and the minimum CPU speed these tasks can
be processed with, respectively. We assume that users can
all connect to the local edge server, which is typically col-
located with their nearest base station (BS) usually identified
according to its received signal strength. Whenever needed,
each user can also wirelessly connect to one of a subset or all
the M — 1 remote servers with different levels of connection
qualities, which are impacted by to its distance and fading
conditions with each of them.

At execution time, each user sends its task to one of its
accessible edge servers. A user’s task T, is identified as:

T. = (Cu,Bu,g), Vu€el, (1)
where (', (measured in gigacycle) denotes the total number
of the CPU cycles required to complete user u’s task, B,
(measured in bits) describes the size of the information that
user u needs to send to the edge server for it to execute this
task, and g denotes the ID of the group user u belongs to.

IThis model captures as a special case scenarios where any one or multiple

users are solely involved in applications. In this case, each of these users forms
a separate group of size 1 (i.e., Uy = 1).
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Fig. 1. System Model

III. PROBLEM SETUP

In this section, we formulate our group-delay aware task
offloading and service replication problem with the aim to
minimize the total response time of all users served by both
local and remote edge servers, while satisfying the delay
requirements of user groups running the same applications.

A. Definition of Objective Variables

Let a;, ¢ € S be a binary variable determining whether
remote edge server ¢ in the MEC system is active or not in
serving our considered set of users. This variable is defined
for i € S\ {0} as:

1, Remote edge server ¢ is active
0  Otherwise.
Clearly, ap = 1 is as the local edge server is always active

a; =

and achieves the least time in performing the computations of
a subset or all the user. In addition, let x,;, u €U/ and i € S
be task offloading indicator, where x,,; is set to 1 when user
u offload its task to edge server ¢, i.e., x,; = 1, and is set to
0 otherwise.

As in typical MEC settings, users offload their tasks and
access services at their assigned edge server through the
direct wireless channel between them. The rate at which the
instructions and data of user u’s computational task (i.e., 7T,,)

is sent to edge server ¢ is thus expressed as [4],
Rm-—BlogQ(1+ VueUUvVieS 2)
g

where B is channel bandwidth, P, is the transmission power

of user u, o; denotes the noise power spectral density at edge

server ¢, and H,; denotes the channel power gain between
user u to edge server ¢, defined as:

Hy=d, YueldVieS 3)
where d,,; is the distance between user v and edge server @ ,
and « is the path loss exponent, which is typically set to 4 in
mobile edge environments [10].
Consequently, the transmission time of Task 7, of user u to
edge server ¢ can be expressed as:

B, .
Ti=f- YuelVies )
In addition, the computaqﬁon time of task 7, at edge server @

can be expressed as:

C
TS = =2, 5

where F; > F, gmm is the assigned CPU frequency assigned
to the task of user u that belongs to group g if it is offloaded
to edge server ¢. Finally, if the task of user u is offloaded to
remote edge server i € S\ {0}, an additional time 7% will
be required to replicate and deploy this service on that remote
edge server. Clearly, T is assumed to be 0 V u € U as the
local edge server has all the services ready to directly run for
the tasks of its own users.Thus, the response time of the user
u’s task 7, at the edge server ¢ € S is given as,

TP =T+ TS+ T ©)

B. Problem Formulation

Given the above definition of objective variables, the tasks
offloading process achieving our target can be expressed as

follows:
| Mo N
a{r}ﬂlc{,lz N Z Zaime:;fSp (72)
vV ie€S,ucl =0 u=1
S.T. a; € {0,1} vie S\ {0} (7b)
ap =1 (7¢)
xyi € {0,1} VieS,ueld (7d)
M-1
Y zu=1 VYuel (Te)
i=0
M—1
Z AiTy; = 1 Yueld (71)
i=0
N
ai—» 2, <0 VieS\{0} (7g)
u=1
N
u=1
M-1

Z a;xy; TP < e YVgegG,uel
i=0

(71)
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Clearly, the objective function in (7a) minimizes the average
response time of all users tasks by determining the best
edge server and service replication decisions. Constraints (7b)
and (7d) impose binary decision values for the variables a;
of remote edge servers and x,; of all users and servers.
Constraints (7e) ensure that each task is offloaded to only one
server, whereas Constraints (7f) ensure that an active server
is handling each of these offloaded tasks (i.e., ensuring that
a; = 1 if x,; = 1, thus preventing cases where a; = 0
when x,; = 1 for at least one u index). On the other hand,
Constraints (7g) ensures that a remote edge server is never
active unless at least one task is offloaded to it (i.e., ensuring
a; = 1 only if z,; = 1 for at least one u index, thus preventing
cases of a; = 1 when all z,,; = 0). Constraints (7h) ensure that
the sum of assigned CPU frequencies to all users offloading
their tasks to each edge server does not exceeding its total
available CPU frequency. Finally, Constraints (7i) ensure that
the total response time of a user’s task belonging to any
group g € G does not exceed this group’s maximum delay
requirement.

It can be easily inferred from (7) that the problem is
an integer non-linear problem, which is known to be very
complex to solve analytically. Yet, we will solve this problem
using a numerical solver in this paper to assess its gains
compared to the two possible greedy approaches that can
satisfy the scalability and group-delay awareness settings
considered in this paper.

1V. PERFORMANCE EVALUATION
A. Simulation Setup

Here, we present the simulation results to show the per-
formance and merits of the considered problem’s optimal
solution. The physical and task-related parameters considered
in our simulation are listed in Table I. The edge servers are
deployed at random locations in the simulation area randomly.
All groups of user devices are then deployed near to (yet at
random distances from) one specific edge server, when is thus
designated as the local edge server (i.e., element 0 in set S).

The numerical solver employed to derive the optimized
solution is the MATLAB Opti-Optimization Toolbox [11].
This solution’s merits is then compared to two greedy ap-
proaches, namely (1) Distance-based approach in which users
closes to the local servers offload their tasks to it and the
remaining users offload their tasks to their closest available
remote servers (i.e., the closest ones to them that can still
satisfy both of their group’s QoS requirements after admitting
their closer users). (2) Resource-based approach in which

TABLE I
THE SIMULATION PARAMETERS

Parameter Name Parameter Value (unit)

3000 x 3000(m)

Simulation Area

B 108 (Hz)

Fo 100(Ghz)

F;,i € S\ {0} [10 — 50](Ghz)

Ry [1 — 10](Gigacycle)

By [10 — 40](KByte)

The QoS Requirement 7,*** | {2,2.2,2.4,2.6}(sec)

Py 0.5(W)

o 10~ 3(W/Hz)
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Fig. 2. Average response time vs. the number of users where the number of
groups of user devices=1.

users offload tasks first to the local server then to remote
servers in descending order of their assigned CPU frequencies
to them.

It is important to note that two described greedy approaches
have exhibited cases where they were not able to serve all
users. The merit evaluation is thus done based on two average
parameters (where averages are derived over a very large
number of trials with different server and user locations): (1)
The average response time of all served users. (2) Average
number of un-served users.

B. Simulation Results

2, and
outperforms the two greedy approaches in average response

Figures 3 show that the optimized solution
time as the number of users increased. In Figure 2, the
optimized solution can achieve up to 14% and 13% response
time reduction over the solutions achieved by distance-based
greedy approach and resource-based greedy approach respec-
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Fig. 3. Average response time vs. the number of users where the number of
groups of user devices=3.

tively when the number of users equals 35, where the number
of the edge servers is set to 7 and the QoS requirement of the
group equals 2 Sec, and the optimized solution can achieve up
to 12% and 10% response time reduction over the solutions
achieved by distance-based greedy approach and resource-
based greedy approach respectively when the number of users
equals 35, the number of the edge servers is set to 7 and the
QoS requirement of the three groups equal 1.8,2, and 2.2 Sec
as shown in Figure 3.
With different values of group’s QoS requirements, the num-
ber of users is set to 25 and the number of edge clouds equals
7, the optimized solution can achieve up to 9% response
time reduction compared with the above mentioned greedy
approaches when all users belong to the same group as
shown in Figure 4. While for multiple groups, the QoS
of three groups are set to QoS, 0.9*QoS, and 1.1*QoS.
The optimized solution can achieve up to 6% response time
reduction compared with two greedy approaches as shown in
Figure 5.
As the QoS requirement increased the difference of the
average response time between the optimized solution and two
greedy approaches increased, in case of NG = 1, from 0.04
Sec to 0.09 Sec approximately. While the case of NG = 3, the
difference of the average response time between the optimized
solution and two greedy approaches is nearly constant which
at around 0.04 Sec and 0.06 Sec, respectively.

Additionally, when the range of required CPU cycles is
increased, our optimized solution makes edge servers serve all
users simultaneously while the two greedy approaches cannot
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make edge servers serve all users. As shown in Figure 6, user
tasks computing resources increased up to 30 gigacycle, the
number of the edge servers is set to 7 and the QoS requirement
of three group are set to 2.2,2.4, and 2.6 sec, the optimized
solution can assign all user tasks at edge servers and edge
servers introduce service to all users. On the other hand,
two greedy approaches failed to assign all user tasks at edge
servers, where the average number of unserved users increased
from 20% to 30% when the number of users increased from
15 to 20 users.
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V. CONCLUSION

In this paper, we investigated the problem of task offload-
ing with service replications in scalable MEC environments
for groups of users involved in similar multimedia-intense
applications. By scalable MEC, we mean MEC systems
having the ability to replicate services on one or multiple
remote servers, when the local server is overloaded, to avoid
service interruption and accept the offloading requests of
as many users as possible. The aim of our study was to
minimize the average response time of all users’ offloaded
tasks, while respecting the application-imposed delay and QoS
requirements on all the users of each group. The problem
was formulated as an integer non-linear program and was
then solved numerically using MATLAB’s Opti-Optimization
Toolbox. Simulation results show that this optimized solution
outperforms the distance- and resource- based greedy schemes
that respect our model’s scalability and group service settings.
More gains were achievable by our scheme as the number
of users increases. The results also show that the average
response time of the optimized solution reduced by up to 14%
and 13% compared to both the distance- and resource-based
greedy approaches.

In future works, we plan to consider scenarios in which
service replication yield costs on the users, and extend our
study to jointly minimize the offloading response time and
cost We also aim to investigate scenarios in which users
simultaneously access more than one service from the MEC
system.
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