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Group Delay-Aware Scalable Mobile Edge
Computing Using Service Replication

Shimaa A. Mohamed”, Sameh Sorour

Abstract—The number of individuals and groups of users of-
floading independent and inter-related computational tasks to mo-
bile edge computing (MEC) servers is rapidly increasing, thus
overloading them and raising the risk of service interruptions.
Hence, reactive service replication has been suggested to enable
individuals and groups of users to access services from remote edge
servers, thus guaranteeing system scalability. This paper proposes
a task offloading and service replication scheme on local and remote
MEC servers. The scheme minimizes the response time of all users
while satisfying the delay requirements of user groups in traffic-
heavy and multimedia-intense applications (e.g., online gaming,
multimedia conferencing, augmenting reality). We formulate an
integer linear problem that minimizes the average response time of
all users while satisfying the time and time difference constraints
of the user groups running the same applications. We then use
linear relaxation programming using Lagrangian analysis and
solve the problem using a numerical solver. In addition, we compare
the optimal solution to distance-based and resource-based greedy
approaches. The results demonstrate the merits of our proposed op-
timized decision scheme compared to these two greedy approaches.

Index Terms—Mobile edge computing, computation offloading,
service replication, lagrangian analysis.

1. INTRODUCTION

OBILE devices currently need complex computations

because of their resource limitations (processing power,
battery lifetime, and storage capacity). One conventional solu-
tion to this problem is computation offloading, where part or all
such computations are offloaded to remote resourceful cloud
servers, thus saving processing power and energy. However,
offloading such computations to the cloud may cause long com-
munication latency between cloud servers and mobile devices.
Mobile Edge Computing (MEC) has emerged as an alternative
that enables mobile devices to access cloud-like computing
services at edge servers located within the mobile subscribers’
radio access network. MEC’s primary objective is reducing
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latency by offloading the computations and data storage to these
edge servers [2]. Despite their significant potential to improve
the performance of delay-sensitive applications, edge servers
have relatively limited computation resources compared to cloud
servers. This fact may cause edge servers to get overloaded with
computations to the extent of causing service interruption for a
subset of its subscribed users [2]. This scenario is real during
high-density user demand, such as viewing live sports events
and concerts.

A. Related Work

Partial and full task offloading and resource allocation strate-
gies have been extensively investigated in single server edge
computing environments to minimize the overloading and pre-
vent service interruption. Liu et al. [3] use a Markov Decision
Process to solve a proposed stochastic optimization problem,
which minimized the latency for one user with multiple tasks
connected to one MEC server. In [4], Mao et al. study task of-
floading, scheduling, and transmit power for MEC systems with
independent tasks by proposing a joint optimization problem
that minimized the weighted sum of the latency and device en-
ergy consumption. Other works considered a multi-server MEC
system. In [5], Liu et al. investigate the power-delay trade-off
in a multi-user MEC system by using Lyapunov stochastic op-
timization for optimizing the transmission power and allocated
user tasks between local and on-server computations. In [6],
Ranadheera et al. propose an energy-efficient mechanism for
computation offloading to MEC servers by activating a subset
of servers and satisfying users’ latency requirements by using
the theory of minority games. In [7], Dinh et al. propose an
optimization problem on offloading from a single mobile device
to multiple access points, besides local computation on the mo-
bile devices. Their goal is to minimize the mobile device’s total
latency and energy consumption while jointly optimizing the
mobile device’s task allocation decisions and frequency scaling.
Two cases for the mobile device were considered, fixed comput-
ing capacity and elastic computing capacity. They studied how
the computing capacity range can influence the task allocation
decision. In [8], Du et al. propose a joint task offloading and
resource allocation scheme for multi-server edge computing
environments. This scheme intended to maximize service ca-
pacity (defined by the number of served mobile devices) and
minimize the service cost (measuring the service latency and
power consumption experienced by users). However, this work
assumed that some users could be left unserved due to a lack of
resources. Gu et al. [9] investigate the task offloading problem
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in the MEC-enabled Ultra Dense Network (UDN) architecture.
They propose an offloading algorithm to minimize the task
response time while satisfying the energy budget constraints.

On the other hand, another direction aimed to optimize task
allocation and resource scheduling to reduce MEC’s cost while
assuming that the capacity of the edge servers will always satisfy
the demands of the users. In [10], Zhang et al. investigated the
joint task scheduling and dynamic resource management prob-
lem to reduce the cost of an edge computing system consisting
of multiple collocated edge servers. They modeled this problem
as an optimization problem, whose objective was to minimize
the system cost given delay requirements. In [11], Li et al.
proposed a mixed-integer non-convex optimization problem
to maximize the number of offloaded tasks and minimize the
energy consumption of all the user devices and edge servers
by selecting the best edge servers with capacity for offloading.
In [12], Long et al. investigated the computation offloading and
communication and computation resource allocation scheme for
the MEC system. They designed a multi-objective computation
offloading resource allocation algorithm optimizing the uplink
and downlink spectrum resources, computation resources, and
offloading strategy.

In most of these works, the notion of scalability in the MEC
system was ignored under the assumption of guaranteed ser-
vice availability regardless of the number of user devices and
capacities of the edge servers. With the increasing number of
devices and complexity of the applications that run on them,
these devices impose a massive load at their local edge servers
resulting in network bottlenecks and service interruptions [2].
In [13], Maheshwari et al. analyzed the scalability and capacity
performance of a hybrid edge-cloud system designed to support
latency-sensitive applications, namely an augmented reality ap-
plication with service constraints. Their results presented a guide
for selecting the right balance between edge and cloud resources
in such scenarios. On the other side of the spectrum, the distri-
bution of offloaded tasks between edge servers and peer user
devices was proposed [14]. The purpose of this work is to deter-
mine the best load partitioning to minimize the excess delay and
energy consumption compared to the no offloading alternative.

Many researchers have suggested that load balancing mecha-
nisms and server clustering ensure service scalability within the
layer of the edge server. In [15], Liu et al. proposed a first-come-
first-serve queuing and service model for scenarios with multiple
MEC servers to improve the blocking probability and waiting
time experienced by users through clustering edge servers to-
gether for load sharing. When the buffer is full, the system ad-
ministrator handles user requests differently according to three
proposed load-sharing schemes: No Sharing, Random Sharing,
and Least Loaded Sharing. In [16], Beraldi et al. proposed a
cooperative load balancing scheme to minimize the blocking
states at each edge server. Each edge server has a buffer to store
service requests for future execution. The upcoming demands
migrate to a neighboring edge server in a full buffer case, which
accepts the demand if its queue length is less than a specific
threshold. In [17], Ndikumana et al. proposed collaborative data
caching and computation offloading among collaborating MEC
servers. The allocation of caches and computation resources into
multiple service requesters is done based on their demands and
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payments thus, maximizing utilization from the MEC server.
In [18], Zhang et al. introduced the fiber-wireless technology to
promote the load balancing of the edge servers’ computation
resources in vehicular edge computing networks. They pro-
posed the software-defined networking-based load-balancing
task offloading scheme between vehicles and edge servers to
minimize the processing delay of the vehicles’” computation
tasks. In [19], Li et al. investigated the capability of partial
processing the tasks of mobile devices between edge computing
and cloud computing. They proposed a joint communication
and computation resource allocation problem to minimize the
weight-sum latency of all mobile devices. In [20], Zhao et al.
investigated the collaborative computation between cloud com-
puting and MEC to jointly optimizing computation offloading
decision and computation resource allocation by proposing a
collaborative computation offloading and resource allocation
optimization scheme. In [21], Liu et al. propose an online
offloading framework for multiple mobile applications, which
consists of dependent tasks and propose a heuristic algorithm to
minimize the average makespan of multiple mobile applications
to the MEC-Cloud architecture. The logical sequence of these
dependent tasks can be represented by a direct acyclic graph
(DAG) [22], [23], where they use release time and deadline to
ensure the sequence of executing dependent tasks.

The above works did not consider the concept of users group-
ing, where users are split into groups due to participating in
the same activity under time and time different constraints. In
addition, our proposed work seeks to improve the scalability of
real-time applications that cannot tolerate queuing at the MEC
servers to be executed.

B. Our Contributions

In this paper, we consider multiple sets of users forming
service groups due to each group’s participation in the same
synchronized activity, such as online gaming or augmented re-
ality. In addition, our proposed scheme improves the scalability
of real-time offered services by replicating them on-demand at
underloaded remote edge servers in the MEC system to serve
all users concurrently when the local servers cannot sustain the
load of all user groups.

The main contributions of this paper are the following:

® We manage task offloading for groups of users requesting to
perform delay-correlated computations on multiple MEC
servers.

® We formulate an integer linear problem that minimizes the
average response time of all users while satisfying the time
and time difference constraints of the user groups running
the same applications.

e We deal with the linear programming (LP) relaxation of
our problem, which is used to derive the optimal decisions
using Lagrangian analysis.

® We solve the proposed LP problem numerically and apply
a proposed rounding algorithm to reach the integer values
of the decision variables.

® We compare the proposed solution with the ILP solution
and show that the LP relaxation solution is performing
almost the same while saving big on the time complexity.
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Fig. 1. System Model.

e We compare the performance of our proposed LP re-
laxation solution with distance-based and resource-based
greedy approaches.

The rest of the paper is organized as follows; Section II details
our system model and parameters, and Section III discusses the
problem setup. Section IV describes the solution using linear
relaxation. Section V presents the performance evaluation and
the comparison with the two greedy approaches. We conclude
the paper and highlight future research directions in Section VI.

II. SYSTEM MODEL

The system model is depicted in Fig. 1, in which the MEC
system consists of two entities, namely a service provider and
a set of users requesting service from this service provider. The
service provider manages a cluster of edge servers, namely, local
edge servers and remote edge servers. We assume that users
can all connect to their local edge servers, which are typically
collocated with their nearest base station (BS), usually identified
according to their received signal strength. Whenever needed,
each user can also wirelessly connect to one of a subset of remote
servers with different levels of connection qualities, which are
impacted by its distance and fading conditions. The local edge
server of every User U, always achieves the least response
time. The MEC servers are divided into two subsets, namely the
overloaded and underloaded sets. The overloaded set typically
consists of local servers whose local users have demands that
exceed their capacities. In this case, the un-served users of
overloaded edge servers are allowed to access the remote under-
loaded servers after the latter replicates their needed service(s)
on them. Let §° = {S7,55,...,5%, } be the set of overloaded
edge servers in the system, M; = |S°| denotes the number
of overloaded local edge servers, S* = {S{*, S¥. ..., SluVIz} be
the set of underloaded edge servers in the system, M, = |S"|
denotes the number of underloaded remote edge servers, and
S = 59 J S be the set of the possible edge servers that a user
can offload its task to one of them.

= Gd
T oA
6

edge server M,

All edge servers connect via backhaul links, which are helpful
for service replications whenever needed. Besides, their compu-
tational resources are divisible among multiple users. Let F§.

denote the available computing capacity of each overloaded enge
server 57,59 € §° and Fgg denote the available computing
capacity of each underloaded edge server S}, S}* € S* in the
MEC system, their units are gigahertz (Gcycles/sec).

On the user side, U7 = {Ulj, Uzj, cey U{;,j} denotes the set
of user devices attached to their local overloaded edge server
S}-’,S;’ € §°. Moreover, let U = Uj-w:‘IZ/{j represent the set
of all such users {U;,U,,...,Un}. Subsets of these users
may be participating in the same common traffic-heavy, real-
time, and multimedia-intense application/activity, such as on-
line gaming, multimedia conferencing, and augmented real-
ity. We will refer to each of these subsets of users U/“s =

{UIGQ, UZG"7 cey Uﬁ;}l, and all such groups form a set G =

{G1,Gs,...,Gng} of groups. Being involved in the same
application, the members of each group are typically constrained
with application-dependent QoS requirements ng‘”, C’?gi",
and dg,, denoting the maximum delay all members within the
group can tolerate for having their tasks completed, minimum
CPU speed these tasks can be processed with, and maximum
delay difference between any two users belonging to the same
group, respectively. By delay difference, we mean the difference
between the delay experienced by any pair of users in the
group. This parameter is of extreme importance in many of the
considered applications, where users must get responses for their
offloaded computations within a very small difference in time,
or else the application fails. An example of such a case is online
gaming, in which players must see the results of each others’
actions almost at the same time or within a bounded (typically
very small) time difference. Otherwise, different players will be

!'This model captures a special case scenario where any one or multiple users
are solely involved in applications. In this case, each of these users forms a
separate group of size 1 (i.e., Ny = 1)
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seeing other users’ actions with different delays, which may
cause some of them to make wrong decisions in their next
actions/moves, thus totally ruining the game.

At execution time, each user sends its task to either its local
edge server or one of its accessible remote edge servers. A user’s
task 7, is defined by the following 3-tuple:

7; = (Cu7BuaGg)7 (D

where u refers to User U,,, U, € U, C,, (measured in megacy-
cles) denotes the total number of the CPU cycles required to
complete user U,,’s task, B,, (measured in megabytes) describes
the size of the information that User U, needs to send to the
edge server for it to execute this task, and Gy, G4 € G denotes
the ID of the group user U,, belongs to. Given this description of
the system, we can formulate in the next section our group-delay
aware task offloading and service replication problem. The aim
of this problem is to minimize the average response time of all
users served by both local and remote edge servers while satis-
fying all the QoS requirements of users and groups. By response
time, we mean the total time between a user submitting a task
and getting the response of it. This includes the transmission
time of the task to the edge server, the computation time at the
server, and (if needed), the replication time of the application on
a remote edge server when a user is forced to send its task to a
remote edge server.

III. PROBLEM SETUP

A. Definition of Objective Variables

Let x4, Vu, i, be the task offloading indicators, where u and
1 refer to User U, U,, € U and Server S;, S; € S, respectively.
In our formulation, x,,; is set to 1 when User U,, offloads its task
to Server S;, and is set to O otherwise.

Asintypical MEC settings, users offload their tasks and access
services at their assigned edge server through a direct wireless
channel between them. The rate at which the instructions and
data of user U, ’s computational task (i.e., 7T,) is sent to Server
Si,S; € Sis expressed as [11]:

@)

Ry; = Blog, (1 + P“H“i> .

O‘iB

where B is channel bandwidth, P, is the transmission power of
User U,,, o; denotes the noise power spectral density at Server
S;,and H,,; represents the channel power gain between User U,
to Server S; defined as:

Hyi=d,?. 3)

where d,; is the distance between User U,, and Server S;, and
« is the path loss exponent, which is typically set to 4 in mobile
edge environments [24].

Consequently, the transmission time of Task 7, of User U,
to Server S; can be expressed as:

B
T = =~ 4

The transmission time includes any re-transmission due to
packetloss. In addition, the computation time of task 7, at Server
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S; can be defined as:

Cy

s =5 (5)
where f, > ng” is the CPU frequency assigned to the task
of User U, that belongs to Group G4, G, € G. Finally, if the
task of User U, is offloaded to remote Server S}, S}' € S¥, an
additional time 7'/t will be required to replicate and deploy this
service on that remote edge server. Its value depends on the
required service of Group G, that User U,, belong to. Thus, the
response time of the user U,,’s task T, at Server S; is given by:

T = T8 + TS + TR, (6)

B. Problem Formulation

Given the preceding definition of the objective variables, the
task offloading problem achieving our target can be expressed
as follows:

1 N
. resp
nin g 2 2 o

(7a)
1€S u=1
S.T. qu =1, VYU, eU (7b)
€S
Y uifu<Fg, VSjES (7¢)
u€eUI
N
> wuifu < Fu, VS'eSY (7d)
u=1
> wui Tyt < T,
€S
VG, € G, VUL € U (Te)
> wui T =Y T < dg,
€S €S
G G G, -
VG, € GVUL U eUSs j#u  (T)
Tyui € {07 1}7 VUu S u7vsi €S (7g)

The objective function in (7a) minimizes the average response
time of all users’ tasks by determining the best edge server each
UserU,, should offload their tasks to. Constraint (7b) ensures that
each task is offloaded to only one server, whereas Constraint (7¢)
ensures that the sum of assigned CPU computing capacities to
the subset of users offloading their tasks to their local edge server
does not exceed its total available CPU computing capacity.
Meanwhile, Constraint (7d) ensures that the sum of assigned
CPU computing capacities to all users offloading their tasks to
each remote edge server does not exceed its total available CPU
computing capacity. Constraint (7e) ensures that the total re-
sponse time of a user’s task belonging to any Group G4 does not
exceed this group’s maximum delay requirement. Constraint (7f)
ensures that the delay difference between two users belonging
to the same Group G, does not exceed its application’s upper
limit. Finally, Constraint (7g) imposes a binary decision value
for the variable x,,; of all users and servers.
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It is cleared that optimization problem (7) is an integer linear
problem (ILP). To solve this problem, we relax the ILP opti-
mization problem into a linear programming (LP) by relaxing
the integer decision variables, deriving analytical and solver-
based solutions for them, and then restoring the integer decision
variables using a rounding greedy approach. We then compare
this solution to both a solver-based solution to the ILP problem,
and two greedy approaches that can satisfy the scalability and
group-delay awareness settings considered in this paper.

IV. SOLUTION USING LINEAR RELAXATION

In this section, we relax the previous optimization problem in
(7) into a linear programming (LP) formulation. The objective
function and constraints are similar to the integer linear problem
(7) except constraint (7g), which is replaced by 0 < z,,; < 1.
In [26], the output of a linear problem is an integer if each square
submatrix of constraint coefficient matrices is unimodular. This
can be determined by calculating the determinant of each coef-
ficient matrix. We investigated whether this property applies to
our problem, but it, unfortunately, failed for some sub-matrices.

A. Analytical Solutions

The linear problem version of (7) is a convex optimization
problem. The Karush-Kuhn-Tucker (KKT) conditions thus pro-
vide necessary and sufficient conditions for an optimal solu-
tion [27]. Therefore, applying the KKT conditions to the con-
straints of the problem and the Lagrangian function’s gradient
allows us to find the analytical solution of the real offloading
decision variables x,,;. The Lagrangian function associated with
the linear optimization problem is given by (8) shown at the
bottom of this page, where X is the vector of offloading decisions

11915

(i.e., X = [xy;]), u refers to user U, VU, € U and i refers to
the edge server S;,V.S; € S, and:

® Alocal = [)"locali]v)‘"remote = [)"remotei]a a = [au]a g =
[0gu1], are the associated Lagrange multiplier to inequality
constraints (7c¢), (7d), (7e), (7f), respectively.

B = [Buil, ¥ = [7ui] are the associated Lagrange multiplier
to the lower bound and upper bound inequality constraint
of x,,, respectively.

v = [v,] is the associated Lagrange multiplier to the equal-
ity constraint (7b).

Appendix A shows the derived equations by applying the KKT
conditions. After applying the KKT conditions on the equality
and inequality constraints, the following theorem illustrates the
optimal solution for the linear problem.

Theorem 1: The optimal offloading decisions of the linear
optimization problem can be expressed as in (9), shown at the
bottom of this page.

Proof: Appendix B shows the proof of Theorem 1.

B. Numerical Results

From (9), we found that the analytical solutions did not yield
closed-form expressions for the relaxed problem. Therefore,
we solve the linear problem using a numerical solver. We then
employ the rounding greedy approach, described in Algorithm
1, to restore the binary values of the decision variables z,,;. This
algorithm is based on the one defined in [28]. The worst-case
time complexity of the rounding algorithm is O(N?M3). The
time complexity of the linear-relaxation-based solution is the
summation of the complexities of solving the linear problem
and the rounding algorithm. This time complexity was shown to
be less complex than that of solving the original ILP [29]-[31].

L(X )"localy )\remotm «, o, ﬁ7 v V)

resp
= Z Z Ty + Z )‘locali

Z Suus —

< FSD)
ueY?

+ Z )Lremofe7 (Z fuTuwi — FS“)

€S u=1 1€S° 1ESY
NG
I 3 R0 YD VI VY DRI Ay
g=1 uecifGyg €S 9=l uecldC9 jelUS9 j#u €S €S
N N N
S A S = )+ 30 (zxm— 1)
€S u=1 i€S u=lI u=1 €S
V59 € 8°,VS! € U, VG, € G, VU7, € UC ®)
When VS? € 8°,VU,, € U,
"E*' _ 07 'Lf’)/f“ =0 5* local U+auT1:zesp+V #0
“ 1, ifvy:, >0,8: = + ol TP + vl = =,
Otherwise, when VS}' € §“,VU,,€ U,
. T
xr = {07 Zf’y“i = 07 ﬂ:z > 0’ remofe fu + auT;Azesp + V 7& 0 (9)
17 lf’Ym > O’ BuL =0 N remote fu + auTz:zesp + V = "Vui
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Fig. 2. Simulation setup.
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Algorithm 1: Rounding Algorithm.

Inputs:
The linear relaxed decision variables.

Steps:

1-  Sort the set of decision variables z};,
VS; € §,YU, € U in a descending order.

2- round(x},;) € {0,1} :

3-  Check round(x%,;)

4- Ifround(zi;) = 1:

5- If constraints (7b) to (7f) are achieved.
6- Lyi = 1
7- Else, x,;, =0
8- End If
9- Else,
10- Lyi = 0
11- EndIf
Output:

The output of linear optimized solution.

V. PERFORMANCE EVALUATION

Here, we present the simulation results showing the perfor-
mance of the ILP and linear-relaxation-based solution and the
merits of the latter.

A. Simulation Setup

In our simulations, there are eight edge servers deployed in an
area of dimensions 1000X1000 m. Fig. 2 shows the distribution
of users and servers in the area of interest. For wireless access,
the bandwidth for uplink and downlink channels is equal and is
set to B = 1 MHz. The user devices’ transmission power is set

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 11, NOVEMBER 2022
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)
e
e @

(750 m,0 m)

Local edge server 2

to P, = 20 dBm, and the noise power spectral density is set to
—174 dBm/HZ. The computation frequency of each MEC server
follows a uniform distribution in the range of [400-800] GHz.
The data size of the tasks follows a uniform distribution? in the
range of [0.01-0.05] Megabits. The computing cycle of any one
task follows a uniform distribution in the range of [100-700]
cycles/byte. The edge servers are deployed at fixed locations
in the simulation area. All user devices are then deployed near
to (yet at random distances from) the number of specific edge
servers designated as overloaded edge servers S°. There are four
overloaded local edge servers and four underloaded remote edge
servers. For each overloaded local edge server, there are up to
three groups of users; each playing a multiplayer game using a
virtual reality application with different QoS requirements, the
maximum delay difference between any two users belonging to
the same group follows a uniform distribution in the range of
[4-11] mSec and the maximum delay of the group is selected
randomly between 25 and 40 mSec. The numerical solver em-
ployed to derive the optimized ILP and LP solutions are the cor-
responding solvers in the MATLAB Optimization Toolbox [25].
The merits of the ILP and linear-relaxation-based solutions are
compared with two greedy approaches: (1) the distance-based
approach in which users close to their overloaded local server
offload their tasks to it and the remaining users offload their
tasks to their closest available underloaded remote servers (i.e.,
the closest ones that can still satisfy both of their group’s QoS
requirements). (2) The resource-based approach in which users
offload tasks to the overloaded local server then to underloaded
remote servers in descending order of their CPU computing
cycles while satisfying the group’s QoS requirements.

2We experimented with other distributions for data size but found the results
to be very similar. Hence these results are not explicitly depicted in the paper.

Authorized licensed use limited to: Queen's University. Downloaded on November 21,2022 at 13:43:43 UTC from IEEE Xplore. Restrictions apply.



MOHAMED et al.: GROUP DELAY-AWARE SCALABLE MOBILE EDGE COMPUTING USING SERVICE REPLICATION

N B (=] ™

w

Average Response Time (mSec)

20 40 60 80 100 120 140 160 180 200
Number of users

(a)

P

»
2
&

o
o
%

Average Response Time (mSec)

20 40 60 80 100 120 140 160 180 200
Number of users

(b)

Fig. 3. Average response time of integer linear programming (ILP) vs. linear-
relaxation-based (LR). (a) All users. (b) Users whose tasks are assigned to remote
SErvers.

B. Simulation Results

In Fig. 3, we plot the average response time of the integer
linear programming (ILP) and the linear-relaxation-based (LR)
solutions as the number of users increased. In Fig. 3(a), the ILP
and the LR solutions have almost the same average response
time of all users. While the worst case of the average response
time of the LR solution can achieve up to 5% more than the
ILP solution of users whose tasks are assigned to the remote
edge servers when the number of users equals 100 as shown in
Fig. 3(b). Therefore, the following simulation results will only
compare the linear-relaxation-based solution compared with
distance-based and resource-based greedy approaches. Fig. 4
shows the simulation time of the ILP and the LR solutions as
the number of users increased. The ILP solution is more complex
than the LR solution for larger number of users, namely 100 users
and above. The LR solution saves up to 89% of the simulation
time compared to the ILP when the number of users equals 140.

Fig. 5 shows that the LR solution outperforms the two greedy
approaches in the average response time for larger number of
users, namely 100 users and above. As for smaller number of
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users, the figures shows that the LR scheme does not provide
performance gains compared to the two schemes. This can be
interpreted by the fact that most users in this scenario will
execute their tasks at their local servers, and only a very small
number of users will be assigned to execute their tasks at remote
servers. This makes the impact of such assignment using the
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three schemes quite indifferent, unlike the case of larger number
of users, where the LR solution minimizes the response time of
all users while satisfying the delay requirements of user groups
in traffic-heavy and multimedia-intense applications compared
with distance-based and resource-based greedy schemes. In
Fig. 5(a), the LR solution can achieve 11% and 12% response
time reduction over the solutions achieved by the distance-based
and resource-based greedy schemes, respectively for all users
when the number of users equals 200. While the LR solution
can achieve up to 9% and 10% response time reduction over
the solutions achieved by distance-based and resource-based
greedy schemes, respectively for users whose tasks are assigned
to remote edge servers when the number of users equals 200 as
shown in Fig. 5(b).

Fig. 6 shows the satisfaction ratio, which is the ratio of the
number of users who satisfy the time difference constraint to
all number of users in the system for our proposed LR solution
compared with the distance-based and resource-based greedy
baseline solutions when the number of users varies from 20 to
200. The distance-based and resource-based greedy approaches
do not meet all group’s QoS requirements in terms of the
delay difference (i.e., the delay difference between two users
belonging to the same group does not satisfy the value dg,, for
a fraction of the users). This degradation becomes more evident
for the larger number of users, in which case it is harder for these
algorithms to satisfy such requirements. On the other hand, our
proposed LR solution achieves this group’s QoS delay difference
requirements for all users

VI. CONCLUSION

In this paper, we investigated the problem of task offloading
with service replications in scalable MEC environments for
groups of users involved in similar multimedia-intense applica-
tions. By scalable MEC, we mean MEC systems that allow local
overloaded servers, which cannot immediately admit the tasks
of all their local users, to replicate the services of the un-served
users on remote underloaded servers so that these users get their
tasks executed on them. Our study aimed to minimize the average
response time of all users’ offloaded tasks while respecting the
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application-imposed delays and delay difference requirements
for each group of users involved in the same application. The
problem was formulated as an integer linear program and was
solved numerically using the MATLAB Optimization Toolbox.
To reduce complexity, we proposed a linear-relaxation-based
solution, derived its optimal solution of its relaxed linear prob-
lem using Lagrangian analysis and KKT conditions, solved
numerically using the MATLAB Optimization Toolbox, and
presented a greedy rounding algorithm to restore binary val-
ues for the decision variables. Simulation results show that
this linear-relaxation-based solution both achieves almost the
same performance of the ILP solution and outperforms the
distance-based and resource-based greedy schemes that respect
our model’s scalability and group requirement settings. More
gains were achievable by our scheme compared to the two greedy
schemes as the number of users increases. Up to 11% and 12%
were observed by our proposed scheme compared to both the
distance-based and resource-based greedy approaches, respec-
tively. Compared to the ILP solution, our proposed solution
achieved up to 89% reduction in run time.

In our future work, we plan to consider scenarios from the
service provider’s perspective. Due to service replication, the
overloaded local service providers typically assume additional
costs to pay the remote servers for helping serve the former’s
users. We thus aim to extend this study to minimize the over-
loaded local service provider cost in addition to minimizing the
offloading average response time and while still considering the
users’ and groups’ QoS requirements.

APPENDIX A
KKT CONDITIONS

In the following equations, we apply the KKT conditions
on the equality and inequality constraints of the relaxed linear
relaxation problem.

® Primal Feasibility conditions:

> furi; —F <0 VS{ €S, (10a)
ueU’ /
N
Y fuwy, — Fé <0 VSPeS, (10b)
u=1
Y T~ TE <0
ieS '

VG, € G,VUS* € UCs (10c)
YT =Y @ T dg, <0,
€S €S

YG, € G,YUS UL e US (10d)
doan, =1 VU, eU (10e)
€S
-z, <0 VS; e S,VU, €U (10f)
2, —1<0 VS, €S,VU, eU (10g)
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¢ Dual Feasibility conditions:

* *
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remote;
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* * * * * * * *
8L(X ’ local’)‘remoteva O 75 y Y ’l/)
*
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Qs O s Buir andyy,; > 0,
(11a)

=0
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= Bui t Yui TV =0
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(11b)
8L(X*’ ?ocal’ )‘:‘emote’ Oé*, 0*7 5*7 'Y*, V*) =0
9z,
T res res
1;(7 Temote f“ =+ auTuz v + UguJTuz P
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VSt € §U VG, € GVUS U e USe,j + u
(11c)
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3x§i
73 T =0

VS; € 8,¥Gy € G, YU, U €U, j £ u (11d)

¢ Complementary slackness conditions:

> fuwi - Fg | =0, vS7 €S8 (12a)

wel?

*
)"locali

N
Semoter | 3 Futhy — Fhu | =0, VS' eS8 (12b)

u=1

Z Tresp *

€S

Tma:c — 0’
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APPENDIX B
PROOF OF THEOREM 1

Using the equations we derived using KKT conditions in Ap-
pendix A, we can see from (11d) that 7;;"*” # 0, and o}, ; > 0,
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and thus o7, . = 0. By substituting in (11b) and (11c), we get:
TT‘,BS:D
]<f + @ Ti™ = By + Vi + vy =0
vS? e §S°.VU, €U (13)
resp
% remote fu ZT;";ESP 627 + ’Y:;i =+ VZ =0

VSt e SU.VU,,U; elU,j #u (14)

By Multiplying (13) by 2, and using (12e), (12f), substitute in
the result of multiplication, we get:

* *
1’* . = “Vui —_ “Yui

ut TTNP P
F A par fu + TIEP 4vp P = Vi

local;
vS¢ € 8°,VYU,, e U (15)

Similarly, by multiplying (14) by 7} ,, and using (12e), (12f),
substitute in the result of multiplication, we get:

*

_ Vi
resp + * o 'y* )
Oéu wi l/ ut ut

(16)

*

* Vi

Lyi = presp
wi

remote fu
VS e SY, VU, e U

From (15), (12e), and (12f), we only have two viable cases:
® Case l: x;,; = 0 when v}, = Oand 3;, > 0, which means

Tresp

that Tei— 4 Alml wt TP + vk > 0.
® Case 2 x = 1 when ~r; > 0and 3, = 0, which means
that Tm + Mocat, fu + 0 T ™" + vy = —v5;. Conse-

quently, v should be negatlve.
Otherwise, when v}, = =0,v,;=
and 3, > 0, z}, has no vahd value
From (16), (12e) and (12f), we only have two viable cases:
e Case l: x},, = O wheny;;, = 0and 3}, > 0, which means

Tresp

v > 0,0r 95, >0

that Temote fu + auT:;zesp + V > 0.
® Case 2 zy; = 1 when~, > 0and 3, = 0, which means
that Tm + )“remote f’u + auTJzeép + V - _,y;iz Con-

sequently, v;, should be negative.
Otherwise when v, = 3, = 0 (because of the limitation of
; when ~;, and f3;;; tend to zero), v, = B, > 0, or v, > 0
and Bi; > 0, z},; has no valid value.
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