
Heuristic-Based Proactive Service Migration
Induced by Dynamic Computation Load in Edge

Computing
Amr M. Zaki, Sara A. Elsayed, Khalid Elgazzar, Hossam S. Hassanein

School of Computing, Queen’s University, Kingston, ON, Canada
Email: amr.zaki@queensu.ca, selsayed@cs.queensu.ca, khalid.elgazzar@ontariotechu.ca, hossam@cs.queensu.ca

Abstract—Edge Computing (EC) has paved the way toward
the realization of the Internet of Things (IoT). This can be
attributed to the ability of EC to bring the computational
resources within close proximity to end-users, which significantly
improves the response time. However, performance gain in EC
can be compromised by service interruptions triggered by vari-
ous dynamic changes. Consequently, reliable service migration is
crucial in EC. However, most service migration schemes either
fail to consider the profound impact of the dynamic computation
load on service continuity or provide impractical and time-
inefficient solutions based on optimization techniques. This paper
proposes the Heuristic-based Load-induced Proactive Migration
(HLPM) scheme. HLPM incorporates a Finite State Machine
(FSM) to model the dynamic computation load. It then makes
proactive migration decisions based on the underlying transition
probabilities. The proactive migration problem is solved using
the MTHG heuristic algorithm. Performance evaluation shows
that HLPM produces a significant decrease of up to 97% in mi-
gration decision latency compared to conventional optimization
techniques. Furthermore, the performance gap of HLPM with
respect to the optimal migration solution is just 1.44% latency
and 3.89% number of migrations.

Index Terms—Edge computing, migration decision latency,
MTHG heuristic algorithm, proactive migration,

I. INTRODUCTION

With the substantial growth of the Internet of Things (IoT),
it is expected that by 2023 IoT devices will account for
50% (14.7 billion) of all globally networked devices [1].
IoT devices are expected to foster a broad range of time-
sensitive services, including healthcare, industrial IoT (IIoT)
and infotainment. [2].

The aforementioned time-sensitive applications cannot
be adequately served by conventional cloud computing
paradigms [3] as they often rely on geographically distant
data centers, which make them susceptible to service inter-
ruptions, causing significant delay [4] [5]. Edge computing
has emerged as a ubiquitous computing paradigm to alleviate
such challenges. This can be attributed to the close proximity
of edge computing servers to IoT devices, thus significantly
reducing the delay [4].

The performance gain achieved by edge computing tends
to be compromised by dynamic changes, typically attributed
to users’ mobility and the restricted coverage of edge servers
[6]. Such changes cause service disruptions and drastic net-
work performance deterioration, profoundly affecting the de-

lay [7]. Migration policies must be implemented to manage
the migration of the affected service to the closest node
(i.e., edge server) capable of accommodating the request.
Migration policies should avoid performing too many or too
few migrations. This is because frequent migrations can lead
to service downtime. In contrast, infrequent migrations can
trigger increased delay because of continuing to perform the
service too far away from the user [8]. Accordingly, efficient
service migration schemes need to thoroughly determine when
to migrate and to which edge node.

Service migration schemes can be categorized into reactive
and proactive schemes. In reactive schemes, migration occurs
in response to a triggering event [7]. In contrast, in proactive
schemes, the need for migration is estimated in advance, and
migration decisions are made beforehand [8]. Accordingly,
proactive migration can significantly reduce delays compared
to reactive migration [6]. Most existing proactive migration
schemes focus on addressing dynamic changes resulting from
the mobility of users. In particular, such schemes tend to
predict the future location of users and incorporate mobility
predictions into the migration decision. Unlike users’ mobility,
the dynamic computation load tends to be overlooked in most
service migration schemes.

Heavy computation loads can dramatically reduce the com-
pute power of an edge node, which can profoundly affect its
ability to serve newly migrated services. Because such com-
putation load is highly dynamic, it is imperative for service
migration policies to account for this dynamicity. Recently,
optimization techniques have been utilized to consider the
dynamic computation load [9]. Such optimization techniques
are mostly based on branch-and-bound algorithms to find the
exact optimal assignments [10]. However, these optimization
techniques are both time-inefficient and impractical, as they
require a considerable amount of time to reach an optimal
solution. This renders them unsuitable for the time-sensitive
nature of modern IoT applications. This problem is exac-
erbated even further when extending the edge computing
environment to work with a multitude of edge nodes and
IoT devices. As the number of edge nodes and devices in-
creases, the complexity of the optimization problem increases,
which reflects in the time needed to solve it optimally [11].
Consequently, the need to study heuristic methods, capable
of reaching near optimal migration decisions under dynamic978-1-6654-3540-6/22/$31.00 © 2022 IEEE

2022 IEEE Global Communications Conference: IoT and Sensor Networks

5668

GL
O

BE
CO

M
 2

02
2

- 2
02

2
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

00
91

3

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

computation load while maintaining time efficiency arises.
This aspect has been overlooked in existing schemes.

In this paper, we propose the Heuristic-based Load-induced
Proactive Migration (HLPM) scheme. HLPM employs the
use of a Finite State Machine (FSM) to model the dynamic
computation load. HLPM relies on the underlying dynamic
changes in the computation load of edge nodes to make proac-
tive migration decisions to the nearest edge node that has the
highest probability of having the lowest load. HLPM solves
the service migration problem under dynamic computation
load using the MTHG heuristic approach. A greedy heuristic
has also been proposed. The proposed heuristic schemes are
compared to conventional optimization techniques [9]. Per-
formance evaluations show that HLPM significantly reduces
up to 97% migration decision latency compared to conven-
tional optimization techniques. HLPM has also outperformed
the greedy heuristic while maintaining comparable migration
decision latency.

The remainder of the paper is organized as follows. Section
II highlights some of the related work. Section III provides
a detailed description of HLPM and presents the underlying
greedy and MTHG heuristics. Section IV discusses the per-
formance evaluation and simulation results. In section VI, we
draw our conclusions and outline future directions.

II. RELATED WORK

Multiple recent works have thoroughly studied service mi-
gration in edge computing [6]. Service migration is associated
with various challenging issues that can decrease the quality
of service (QoS) provided to end users. These issues include
user mobility and the limited coverage of edge servers [7].

Most existing migration schemes focus on the mobility
of users and consider it the predominant triggering cause of
migration. Such schemes can be categorized into reactive and
proactive schemes. Migration is initiated in reactive schemes
after a handoff [7], thus keeping the service close to the user.
However, reactive schemes can cause prolonged delays. This
delay occurs after the handoff process is concluded; the user
utilizes a new access point to access the corresponding source
edge node, which leads to more than one communication
hop to access the service [12]. In contrast, proactive schemes
enable migration to be initiated before the handoff process,
which allows the service to be at the destination node once
the handoff process is concluded [12].

Most proactive migration schemes incorporate mobility
predictions into the migration decision-making process. In this
context, numerous prediction models have been proposed. In
[13], Markovian-based approaches are considered, whereas
deep learning models, such as Long-Short Term Memory
(LSTM), are considered in [14]. Despite the demonstrated
leverage of designing proactive migration schemes based
on mobility predictions, such schemes tend to overlook the
impact of the dynamic computation load of edge nodes [9].

Recent work by authors in [9] introduced a proactive
service migration scheme for a dynamic-load edge computing
environment. Their scheme optimizes the service migration

placement strategy only on nodes with a higher probability of
being more computationally capable than other nodes. They
formulate the problem as a generalized assignment problem
(GAP), which is solved periodically to decide whether migra-
tion is needed. If the migration is needed, decide which node
to migrate to is the best one. The formulated model optimized
the total average delay throughout all mobile devices. They
then used an IBM CPLEX solver [15] to solve the problem and
find the optimal solution. However, optimization techniques
such as branch-and-bound tend to be both time-inefficient
and impractical for industry use. Furthermore, authors in
[11] found optimization solvers were incapable of solving
problems for large scenarios with a multitude of users and
edge nodes.

Encouraged by the findings of [11], we extend on the
problem presented in [9] to investigate the workings of differ-
ent heuristic approaches in the context of service migration
in a dynamic-load edge computing environment to provide
practical time-efficient resource allocation algorithms. First,
we introduce two heuristic approaches: a greedy approach
and a scheme that uses a heuristic method called MTHG [10]
known to solve the GAP problem. We then compare the results
obtained by MTHG with that of the optimization solver and
the greedy heuristic.

III. HEURISTIC-BASED LOAD-INDUCED PROACTIVE
MIGRATION (HLPM)

This section provides a detailed description of the system
model, the migration problem under dynamic computation
load, and the proposed heuristic schemes HLPM-Greedy and
HLPM-MTHG.

A. System Model and Overview

Consider a set of services for the mobile devices D= {d1,
d2,..., D} to be proactively migrated to a set of edge nodes N=
{n1, n2, . . . , N} at any given time. Each service requires a
certain computation load, which is the number of instructions
that must be executed (measured in the number of instructions
executed batch size β). Each service should be allowed to run
on the closest most computationally capable edge node. The
dynamic load is modeled using a FSM. The computational
capability of each edge node ni can be in one of three
possible states (expressed in terms of million instructions per
second (MIPS) and denoted νsi). These three states are high,
medium, and low. Each edge node is assumed to build its
local model that captures its transition probabilities (ψsi) from
moving from one computational capability state to another.
This model is then sent to a centralized entity that runs the
migration decision. These probabilities are used to proactively
migrate services to edge nodes that are best capable of serving
the migrated service. The migration decision is performed
periodically (each tr seconds) by the centralized entity that
tries to optimize the total average delay of all the participating
users in the environment. In this work, we consider vehicle-to-
network services (V2N), which 3GPP mandates to have very
short deadlines, far less than (tr), and shorter than one second.

2022 IEEE Global Communications Conference: IoT and Sensor Networks

5669

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

In addition, V2N services have small instance data sizes (θ);
besides this, the VM migration strategy typically prevents the
migration process from taking too long [16]. Thus, this work
does not focus on optimizing the migration time of services
between edge nodes.

We aim to maximize the difference between the expected
delays of both the end user and the edge node currently serv-
ing the mobile device and between the end user and a potential
next edge node to which the service can migrate. If the latter’s
expected delay is lower than that of the former, migration
should be triggered. The problem is solved periodically (each
tr = 1sec) at a central entity, enabling the system to identify
when and where to migrate.

The total delay between the end user and any edge node,
denoted tdn, is given by Eq. 1, where cdn is the computation
delay, and zdn is the propagation delay. The computation delay
is the time taken by edge node n to compute the task of mobile
d, whereas the propagation delay is the time taken for the
service to reach the user. Transmission delay is ignored, as
the data rate is assumed to be the same for all devices across
all nodes.

tdn = cdn + zdn (1)

The transition probabilities ψsi are used to compute the
expected computational delay of the service of mobile device
d on the edge node n, which is given by Eq. 2.

cdn = (β/νs1)× ψs1 + (β/νs2)× ψs2 (2)

The main objective is to optimize the expected differential
delay xdn between the total delay td1 of the mobile device
d and the current occupied edge node (n = 1), and the total
delay td2 of the mobile device d and a new node (n = 2), as
given by Eq. 3.

xdn = td1 − td2 (3)

Thus, the objective is given by Eq. 4.

max
D∑

d=0

N∑
n=0

xdn (4)

Assignment restrictions are considered to ensure that each
edge node can have at most one migrated service, and that
each service should be allocated to only one edge node. The
assigned edge node is either a new node to which the service
migrates or the current node where the service resides (if no
migration occurs).

Memory and energy constraints ensure that the memory
requirements (md) and the migrated service’s energy con-
sumption (ed) do not exceed certain predefined thresholds,
denoted Mn and EN , respectively. This energy constraint
is only enforced when migration occurs (Xdn ̸= 0), as in
the case of no migration, the current node will be selected
regardless of the energy constraint.

A threshold constraint is needed to avoid migration to a
new node when the value of xdn is smaller than a predefined
threshold (τ). This case was found to occur when two nodes of

similar computation load are close to one another; this would
cause an oscillation effect, making the model oscillate in the
assignment between these two edge nodes. This constraint is
only enforced for the case when xdn ̸= 0 (i.e., a migration is
needed); otherwise the current edge node is selected regardless
of the threshold.

This optimization problem is a modification of the GAP
problem [17]. This problem is known to be NP-hard [17], re-
quiring optimization techniques to reach an optimum solution.
In [9], the authors used IBM CPLEX [15] to periodically solve
the problem of knowing when and where to migrate. However,
optimization solvers are an impractical approach due to their
time inefficiency. Encouraged by this, we propose multiple
heuristics capable of reaching a near-optimum assignment in
a time-efficient practical manner.

B. HLPM-Greedy

The first heuristic presented in this work is a greedy
approach, detailed in Algorithm 1. This heuristic is used as a
baseline, to compare other heuristics in terms of the optimality
of the found solution and the time efficiency of the proposed
heuristic.

Algorithm 1 : HLPM-Greedy
Input: Devices (D), Nodes (N), total delay (X),

energy constraints (E), memory constraints (M),
oscillation threshold (τ)

Output: nodeAssignments
1: nodeAssignments = {}
2: for d ∈ Devices do
3: maxGain = 0
4: chosenNode = -1
5: for n ∈ N odes do
6: if xdn > maxGain AND xdn >= τ AND
7: not used by other devices AND
8: not assigned in previous loops to other devices AND
9: within energy and memory constraints then

10: maxGain← xdn

11: chosenNode← n
12: end if
13: end for
14: nodeAssignments[d]← chosenNode
15: end for

In HLPM-Greedy, for each mobile device d, all edge nodes
N are searched to find the node n that has the highest expected
differential delay. This search is done while ensuring the
following: 1. the expected differential delay xdn is greater
than a predefined threshold τ (line 6), 2. each edge node is
assigned to only one device (Lines 7 and 8), and 3. abidance
to the required energy and memory constraints on the selected
edge node (Line 9).

Given the simplicity of the greedy approach, it can provide
a more time efficient solution than conventional optimization
techniques, such as branch and bound. However, greedy
heuristics can easily be trapped in local minima, increasing
the gap to the optimal solution. To alleviate this risk, another
heuristic, namely HLPM-MTHG, is introduced.

2022 IEEE Global Communications Conference: IoT and Sensor Networks

5670

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

C. HLPM-MTHG

HLPM-MTHG uses the MTHG heuristic [10] [18] , an
effective polynomial-time heuristic capable of solving the
GAP optimization problems. It is a combination of both
constructive and local search heuristics.

Algorithm 2 : HLPM-MTHG
Input: Devices (D), Nodes (N), total delay (X),

energy constraints (E), memory constraints (M),
oscillation threshold (τ)

Output: nodeAssignments
1: nodeAssignments = {}
2: cost = {}{}
3: // Enforce constraints using masks
4: for n ∈ N odes do
5: for d ∈ Devices do
6: if (xdn >= τ AND
7: within energy and memory constraints) OR
8: xdn == 0 then
9: cost[n][d]← xdn ∗ −1

10: else
11: cost[n][d]←∞
12: end if
13: end for
14: end for
15: // MTHG algorithm
16: // Step1: Constructive search
17: Compute the desirability fdn metric of all the assignments
18: while node not assigned do
19: Find the node n (chosenNode) with the maximum dif-

ference between the largest and second largest assignment
desirability fdn (greatest regret) that can be feasibly assigned

20: nodeAssignments[d]← chosenNode
21: end while
22: // Step2: Local search
23: for n ∈ Nodes do
24: Cdn ← min(fdn)
25: if
26: (Cdn < regret of assigning this node) then
27: nodeAssignments[d]← newChosenNode
28: end if
29: end for

As detailed in Algorithm 2, HLPM-MTHG enforces the
previously mentioned memory, energy, and threshold con-
straints. This is done by masking the xdn values that lie
outside these constraints by setting their values to infinity
(Lines 4–14), to not be considered by the MTHG heuristic.
This masking step only occurs for the case when migration is
considered (i.e., xdn ̸= 0), since otherwise, the current edge
node would be selected regardless of these constraints.

In order to ensure that each edge node has at most one
migrated service, and that each service is allocated to only one
edge node, we set the resource consumption of each device
to 1 so that each device can use at most one node. We also
set the resource capacity of each edge node to 1 so that it can
host at most one device.

After setting the constraints of the optimization problem,
the MTHG heuristic is applied. In its first phase (Lines 15–21),
MTHG calculates fdn, which measures the desirability of

assigning the device d to a certain edge node n (benefit).
By iteratively considering all unassigned devices, the scheme
assigns the device to the edge node n that has the maximum
difference between the largest and second largest fdn (regret).
In the second phase (Lines 22–29), MTHG improves on the
solution found in the first phase through local search by
iteratively analyzing a subset of the search space close to the
found solution (within its neighborhood).

IV. PERFORMANCE EVALUATION

In this section, the performance of our heuristic proactive
schemes HLPM-MTHG and HLPM-Greedy are compared
with the Dynamic Load-based Proactive Migration (DLPM)
scheme [9], as well as the Reactive Greedy Lowest Latency
(RGLL) scheme [12]. Note that DLPM uses conventional
optimization techniques to solve the proactive migration prob-
lem, and RGLL uses a common baseline reactive migration
approach.

We use the following performance metrics: 1. the average
delay experienced by the selected mobile devices starting from
the time a request is sent until a response is received, 2. the
average number of migrations triggered by the system, and
3. the migration decision latency, which is the run time that
the scheme takes to make the migration decisions. Evaluating
the migration decision latency of the proactive schemes is
important for assessing their time efficiency and practicality
for use in the industrial sector.

A. Simulation Setup

Simulations are conducted using the MobFogSim simulator
[12], a Java-based simulator used to simulate service migration
between mobile devices and edge nodes. Realistic mobil-
ity traces are employed by incorporating the Luxembourg
SUMO Traffic dataset (LuST) [19]. These traces constitute
the mobility patterns of buses in Luxembourg City, traveling
an average speed of 22.3 km/h on routes averaging 26.44
min. Simulations are conducted over an area of 16kmx16km,
which includes evenly distributed 144 edge nodes each with a
communication range of 1km. The number of mobile devices
varies from 10 to 40. The batch size of services is set to be
20k million instructions. The data rate of all the services of the
participating devices is fixed to the same value. The simulation
period is set to 10 minutes (i.e., ts = 600 seconds). Each node
changes its computation load every 30 seconds (i.e., tf = 30
seconds) according to the FSM. The oscillating threshold τ is
set to 3. Table I summarizes the simulation parameters.

B. Simulation Results and Analysis

In our experiments, we evaluate the performance of HLPM-
MTHG, HLPM-Greedy, DLPM, and RGLL over a varying
number of users. Simulation results are presented at a confi-
dence level = 95%.

Figure 1a depicts the performance of HLPM-MTHG,
HLPM-Greedy, DLPM, and RGLL in terms of the average
delay. Note that as the number of requesting devices increases,
the system becomes more congested, which causes the average
delay of mobile devices to increase. This delay is due to the

2022 IEEE Global Communications Conference: IoT and Sensor Networks

5671

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

10 15 20 25 30 35 40
Number of Mobile Devices

40

45

50

55

Av
g

De
la

y
(m

s)

RGLL
DLPM (3-threshold)
HLPM-Greedy (3-threshold)
HLPM-MTHG (3-threshold)

(a) Average delay

10 15 20 25 30 35 40
Number of Mobile Devices

20

30

40

50

60

70

Av
g

Nu
m

be
r o

f M
ig

ra
tio

ns

RGLL
DLPM (3-threshold)
HLPM-Greedy (3-threshold)
HLPM-MTHG (3-threshold)

(b) Average number of migrations

Fig. 1: Performance results of HLPM-MTHG, HLPM-Greedy, DLPM, and RGLL over varying numbers of users.

TABLE I: List Of Simulation Parameters

Parameters Value
Simulation Time (ts) 10 mins
Frequency of MIPS State Change (tf) 30 secs
Frequency of Running the Decision Making Algorithm (tr) 1 sec
Number of Edge Nodes 144
Batch Size (β) 20k million instructions

Number of Users 10,15,20,30,35,40
Oscillating Threshold (τ) 3
State A (normal MIPS) 3234 MIPS
State B (low MIPS) 646 MIPS
State C (high MIPS) 4851 MIPS
Service Instance Data Size (θ) 100 KB

contention on system resources as the number of requests
increases. Thus, making it harder to find a better edge node
to migrate to since it might already be serving other requests.
The reactive approach RGLL yields the highest delay than
the proactive schemes HLPM-MTHG, HLPM-Greedy, and
DLPM.

Also as depicted in the Figure. 1a, all the proactive decision
making schemes that take the probabilities of the CPU capa-
bilities change for the edge node into consideration, yields
much better average delay than that of the RGLL scheme.
This is because in contrast to RGLL, the proactive schemes
HLPM-MTHG, HLPM-Greedy, and DLPM account for the
dynamic computational capability of edge servers to make
proactive migration decisions beforehand. This capability fa-
cilitates selecting the edge nodes with a higher probability of
having higher compute power, resulting in faster processing
of the migrated services. DLPM renders the lowest delay
among all schemes, since it provides the optimal solution.
Both HLPM-Greedy and HLPM-MTHG approach the optimal
solution. However, HLPM-MTHG is closer to the optimal
solution (i.e., DLPM) than HLPM-Greedy. In particular, the
performance gap of HLPM-Greedy compared to DLPM is
2.82%, while that of HLPM-MTHG is 1.44%. This behavior
can be observed when varying the number of users because,
HLPM-Greedy has a higher chance of being trapped in a local
minima, since it loops through the devices sequentially to
optimize the average delay of each device on its own before

considering the others. In contrast, HLPM-MTHG strives
to optimize the delay for all the devices at once without
considering each one sequentially.

The same experiment is conducted in terms of the average
number of migrations. As depicted in Figure 1b, the number
of migrations increases in all schemes as the number of users
increases. RGLL yields the highest number of migrations
among all the schemes because, in RGLL, migrations are
triggered by the mobility of users. In particular, when a mobile
user moves away from an edge node, service migration is
triggered. Note that users’ mobility change at a faster rate
than the computational capability, increasing the rate at which
migrations are triggered in RGLL compared to the proactive
schemes that consider the dynamic computational capability.
DLPM exhibits the lowest number of migrations, whereas
both HLPM-MTHG and HLPM-Greedy closely approach the
optimal solution (i.e., DLPM). The performance gap between
HLPM-Greedy and HLPM-MTHG compared to DLPM is
0.49% and 3.89%, respectively. Thus, HLPM-Greedy is closer
to achieving the optimal number of migrations. Unlike HLPM-
Greedy, HLPM-MTHG triggers better assignments to prompt
a lower delay by solving the migration problem for mobile
devices in parallel rather than in sequence, causing more
migrations in HLPM-MTHG.

We evaluate the proactive schemes HLPM-MTHG, HLPM-
Greedy, and DLPM in terms of the migration decision latency
over a varying number of users. As depicted in Figure 2, the
decision latency increases as the number of users increases.
This increase in decision latency is due to the increase in the
complexity of the migration problem. Note that the heuristic
proactive schemes HLPM-Greedy and HLMP-MTHG yield
significant reductions, of up to 99.6% and 97.1%, respectively,
in the time taken to solve the migration problem compared to
the conventional optimization technique adopted by DLPM.
Furthermore, HLPM-Greedy demonstrates the lowest time due
to its simplicity, whereas HLPM-MTHG takes slightly more
time to solve the migration problem.

2022 IEEE Global Communications Conference: IoT and Sensor Networks

5672

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

10 15 20 25 30 35 40
Number of Mobile Devices

0

2

4

6

8

10

M
ig

ra
tio

n
de

cis
io

n
la

te
nc

y
(m

s)

DLPM (3-threshold)
Proactive Greedy Heuristic (3-threshold)
HLPM (3-threshold)

Fig. 2: Average migration latency of HLPM-MTHG, HLPM-
Greedy, and DLPM over varying number of users.

V. CONCLUSION AND FUTURE WORK

In this work, we study a typically overlooked aspect of
service migration, accounting for the dynamic computation
load of edge nodes. We have developed multiple heuristics
to efficiently solve the assignment problem of the service
migration for a dynamic-load edge computing. We propose
both a greedy heuristic and a heuristic method that uses the
MTHG scheme. Quantitative analysis demonstrates the ability
of the proposed heuristics to provide time-efficient and accu-
rate decision-making that adapts to large scenarios of multiple
mobile devices with edge nodes having dynamic computation
capability. In contrast to defying a custom heuristic to solve
our problem, we focus on studying generalized heuristic
approaches that can easily be integrated to solve similar
resource allocation tasks. Performance evaluation has shown
that using the HLPM-MTHG heuristic achieves significant
reduction in the decision making time by 97% compared
to using an optimization solver, without compromising the
optimality of the assignments. We have shown that HLPM-
MTHG achieves better results in terms of lower average delay
than a simple greedy heuristic, with a non-significant increase
in the decision time and the average number of migrations.
Our work proves the impact of integrating generic heuristic
methods to solve assignment problems in edge computing.

In the future, we plan to propose various prediction models
to estimate the dynamic computation load and incorporate
such predictions in the proactive migration decision.

ACKNOWLEDGMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number ALLRP 549919-20.

REFERENCES

[1] “Cisco annual internet report (2018–2023) white paper,”
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html,
2020.

[2] J. Lee, D. Kim, and J. Lee, “Zone-based multi-access edge computing
scheme for user device mobility management,” Applied Sciences, vol. 9,
no. 11, p. 2308, 2019.

[3] G. Fortino, C. Savaglio, C. E. Palau, J. S. de Puga, M. Ganzha,
M. Paprzycki, M. Montesinos, A. Liotta, and M. Llop, “Towards
multi-layer interoperability of heterogeneous iot platforms: The inter-iot
approach,” in Integration, interconnection, and interoperability of IoT
systems. Springer, 2018, pp. 199–232.

[4] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards
virtual machine migration in fog computing,” in 2015 10th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), 2015, pp. 1–8.

[5] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure integration
of iot and cloud computing,” Future Generation Computer Systems,
vol. 78, pp. 964–975, 2018.

[6] Z. Rejiba, X. Masip-Bruin, and E. Marı́n-Tordera, “A survey on
mobility-induced service migration in the fog, edge, and related
computing paradigms,” ACM Comput. Surv., vol. 52, no. 5, Sep. 2019.
[Online]. Available: https://doi.org/10.1145/3326540

[7] P. Bellavista, A. Zanni, and M. Solimando, “A migration-enhanced edge
computing support for mobile devices in hostile environments,” in 2017
13th International Wireless Communications and Mobile Computing
Conference (IWCMC), 2017, pp. 957–962.

[8] D. Gonçalves, K. Velasquez, M. Curado, L. Bittencourt, and E. Madeira,
“Proactive virtual machine migration in fog environments,” in 2018
IEEE Symposium on Computers and Communications (ISCC), 2018,
pp. 00 742–00 745.

[9] A. M. Zaki and S. Sorour, Proactive Migration for Dynamic Com-
putation Load in Edge Computing. ieee international conference on
communications, 2022.

[10] S. MARTELLO, “An algorithm for the generalized assignment prob-
lem,” Operational Research, pp. 589–603, 1981.

[11] N. Godinho, H. Silva, M. Curado, and L. Paquete, “Energy and latency-
aware resource reconfiguration in fog environments,” in 2020 IEEE
19th International Symposium on Network Computing and Applications
(NCA), 2020, pp. 1–8.

[12] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins,
E. Madeira, E. Mingozzi, O. Rana, and L. F. Bittencourt, “Mobfogsim:
Simulation of mobility and migration for fog computing,” Simulation
Modelling Practice and Theory, vol. 101, p. 102062, 2020,
modeling and Simulation of Fog Computing. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1569190X19301935

[13] N. Abani, T. Braun, and M. Gerla, “Proactive caching with mobility
prediction under uncertainty in information-centric networks,” pp. 88–
97, 09 2017.

[14] H. Khelifi, S. Luo, B. Nour, A. Sellami, H. Moungla, and F. Naı̈t-
Abdesselam, “An optimized proactive caching scheme based on mobility
prediction for vehicular networks,” pp. 1–6, 2018.

[15] I. I. Cplex, “V12. 1: User’s manual for cplex,” International Business
Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[16] X. Yu, M. Guan, M. Liao, and X. Fan, “Pre-migration of vehicle to
network services based on priority in mobile edge computing,” IEEE
Access, vol. 7, pp. 3722–3730, 2019.

[17] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algorithms for
the generalized assignment problem,” European Journal of Operational
Research, vol. 60, no. 3, pp. 260–272, 1992. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/037722179290077M

[18] “Generalized assignment solver,” https://github.com/fontanf/generalized
assignmentsolver, Dec. 2021.

[19] L. Codecá, R. Frank, S. Faye, and T. Engel, “Luxembourg SUMO
Traffic (LuST) Scenario: Traffic Demand Evaluation,” IEEE Intelligent
Transportation Systems Magazine, vol. 9, no. 2, pp. 52–63, 2017.

2022 IEEE Global Communications Conference: IoT and Sensor Networks

5673

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:35:51 UTC from IEEE Xplore. Restrictions apply.

