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Abstract—Edge sensing (ES) is rising as a potential solution
for remote sensing challenges, as it exploits the proliferation of
smartphones, leverages their embedded sensors to collect data
from users’ surrounding environments and uses their processors
to perform edge computing tasks. Moreover, it is characterized
by its low cost and time efficiency. Tremendous efforts have been
dedicated to ES systems’ quality of data (QoD) and coverage
to enhance its performance. Since users incentivization plays a
crucial role in enhancing the system’s performance, the research
community concentrated on improving incentives schemes. In
this paper, we evaluate the effect of users’ mobility on ES
systems’ quality of data and coverage, and propose a users’
distribution-based dynamic-incentive scheme. In particular, we
use a 2-dimensional random waypoint (RWP) model to emulate
the randomness of users’ mobility and velocity. The proposed
incentive scheme aims to eliminate the negative impact of mobility
on the QoD; by considering different factors to determine users’
incentives and creating users’ attraction areas in the targeted
cells.

Index Terms—Edge sensing; Quality of data; Mobility; Incen-
tive; Random waypoint.

I. INTRODUCTION

On the grounds of the prevalence of smartphones among
users, mobile crowd-sensing (MCS) evolved as a sensing
paradigm that leverages the smartphones’ built-in sensors to
collect data from users’ surrounding environment [1]. The role
of MCS is limited to sensing and sharing data, however with
the advances introduced to smartphones’ processors, there is a
need for an innovative technology that allows maximizing the
utilization of the advancements installed in smartphones. Edge-
sensing (ES) is a recent paradigm that, in addition to sensing
and sharing data, involves computations and processing on the
edge (i.e., users’ smartphones). Therefore, ES can be used for
a wider range of applications such as environment monitoring,
safety, and smart cities applications [2]. However, concerns
arise regarding the ES systems’ performance as it faces chal-
lenges in having proper task allocation, cost minimization, and
data quality maximization. Recruiting ample participants is a
preeminent way to improve quality and coverage. However,
recruitment results in cost increment, and subsequent cost-
quality trade-off. Sparse edge sensing reduces the number of
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tasks allocated by dividing the area of interest (Aol) into
spatiotemporal cells [3].

The challenges of improving sensed data quality and en-
hancing the system’s spatiotemporal coverage are very critical
for every ES application. The problem stems from the fact
that users who share the data have varying levels of expertise
and are barely controllable [4]. The contributed data could be
inaccurate or corrupted because of the users-centric architec-
ture, which could affect the QoD dramatically [5]. The fact
that the objective of any ES system is to have a realistic
representation of users’ surrounding environment makes QoD
and system coverage critical factors for any ES administrator.
This is particularly essential as the aim exceeds completing the
tasks to completing it with an acceptable QoD, and to have full
coverage to eliminate the risk of blind spots within the system.

ES exploits the mobility of users to have extensive coverage.
Unlike wireless sensors networks (WSN), the architecture of
ES depends on mobile users’ smartphones instead of the
stationary sensors to complete the required sensing tasks. The
mobility of users helps in reflecting a more realistic image
of the targeted area. Moreover, users’ mobility enables ES
to be an optimal solution for a wide range of applications.
However, users’ mobility can affect the QoD, task assignments,
and system’s performance [6]. Furthermore, the movement of
users is associated with some costs such as transportation costs
and users’ resources consumption such as mobile battery and
data usage, all these costs should be compensated to guarantee
proper system performance.

The core of any ES system is the users or participants
who are responsible for executing the sensing tasks, where
incentivizing participants to do the required task is extremely
critical. However, ES systems work with a constrained budget,
hence, incentive schemes should be optimized for each system
to guarantee the system’s performance within the minimum
budget [7]. Incentives come in two main forms: monetary in-
centives and non-monetary incentives such as services provided
for the users. These forms can be further sub-categorized into
fixed and dynamic incentives.

In this paper, we aim to study the effect of users’ mobility on
QoD, where the random waypoint (RWP) model is adopted to
emulate the users’ mobility and velocity. A users’ distribution-
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based dynamic-incentive scheme is proposed to eliminate the
negative impact of mobility on QoD. The rest of the paper
is organized as follows. Section II includes a brief literature
review. The mobility model effect on QoD is addressed in
Section III. After that, the QoD incentive scheme is proposed
in Section IV. Simulation and performance evaluation are
explored in Section V and conclusions are drawn in Section
VL

II. RELATED WORK

Data Quality: The authors in [8] introduce a cross-
validation technique in which validating the crowd is required
to verify the sensor data provided by participants. Validation
outcome is used to reshape data into a more realistic represen-
tation of the ground truth. The work in [9] aims to assess
the reliability of the sensed data based on social network
theory, the participants are modeled as nodes in a social
network where common tasks are assigned to them. The trust-
worthiness is assessed by a combined centralized reputation-
based assessment and a vote-based collaborative reputation
value. EndorTrust, proposed in [10] to evaluate and predict the
reliability of the participants’ contributions, by using machine
learning to investigate an inter-worker connection for reliability
prediction enhancement, while also taking into consideration
the heterogeneity of both participants and tasks. In [7], a metric
that uses the difference in centrality estimate to find the quality
of source in small data cases is introduced.

Users Mobility: With a restricted budget, [11] proposed
a vehicular edge sensing system that incentivizes vehicle
agents to match the sensing distribution of the sampled data
to the intended target distribution. The authors designed the
incentive problem as a novel type of non-linear multiple-
choice knapsack problem, with the dissimilarity between the
gathered data distribution and the desired distribution as the
objective function, to make the system adjustable to various
desired target distributions. To make the most of the money,
a personalized incentive that combines monetary incentives
with a prospective task (ride) demands at the destination was
presented. The purpose of the work presented in [12] is to
investigate some of the mobility characteristics of a real-world
ES dataset ParticipAct, to describe how these characteristics
might be used to organize a successful ES data collecting
campaign. Authors examine mobility traces gathered using
ParticipAct and explain how the data obtained help an ES task.

Incentives Schemes: A greedy algorithm-based recurrent
reverse auction incentive mechanism is proposed in [13], that
picks a representative subset of users based on their location
given a fixed budget. While in [14], a budget constrained incen-
tive mechanism that uses the user’s previous data is presented,
to mainly determine the user’s preferences. Subsequently, a
sub-module approximation algorithm is designed to greedily
pick the data contributor while staying within the budget.

To the best of our knowledge, the impact of users’ mobility
on QoD has not been conducted yet in ES systems. The
literature addresses the challenges of users’ mobility and QoD
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separately. However, the mobility does not only affect the
quality of service (QoS), but the users’ mobility could also
result in decreasing the number of measurements in the cell,
which will have an impact on the QoD. In this paper, we aim
to study the effect of users’ mobility on the quality metric
proposed in [7] and to propose a users’ distribution-based
dynamic-incentive scheme.

III. MOBILITY MODEL EFFECT ON QOD

The considered system model includes Nyt number of
users distributed over and area of X,,, x Y,,, dimensions. Such
Aol is divided into square cells to study the distribution of
users over the whole Aol.

To evaluate the repercussion of mobility, the users are
considered to follow a RWP mobility model. The location
of a user performing RWP movement on a line [0, X,,,] can
be expressed using the following probability density function
(PDF) [15]

6 6

However, the previously described 1D PDF considers line
movement, thus, it should be changed into 2D PDF to reconcile
with the square-shaped cells. This is done by considering two
1D movements one on the x-axis and the other on the y-axis,

as follows

Yo+ pr+v 61

[l Gl

y° z° T,
Solving Eqn. (2) gives the PDF of users’ distribution over the
square cells. Where y°, y° + v/, z° and z° + 57 define the
borders of the cell. We obtain Eqn. (3) at the top of next page,
showing the resultant PDF of users’ distribution over the Aol.

In order to rely on the users’ smartphones, their mobility
must be tackled in the analysis. While the users are moving,
the task completion (e.g., sensing or picturing some area) is
mainly spatio-temporally constrained, and therefore, a proper
approach is needed to account for mobility impact on Eqn. (3).
Taking into account that the users mobility will make them not
always available for task completion [16], a way to measure
mobility impact is by considering users not available the whole
duration of the sensing task, due to mobility. Therefore, we
propose a new parameter which is the corrected number of
users V., to assure the completion of the task.

Assuming that the travelled distance by a user within the
cell is uniformly distributed from D,,;, t0 D,,4,, Which is
the maximum distance that could be traveled within a cell.
Users travel at a constant speed then the duration spent by the
user in the cell will be inversely proportional to their velocity.
A time threshold to ensure the task completion should be
determined based on the application of the ES system. For
instance, emergency applications impose a strict deadline for
sensing when compared to environment monitoring. The time
threshold can be actually converted into a velocity threshold
as well.
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Therefore, considering a velocity threshold for users velocity
is necessary to enhance the system’s performance through
assigning tasks to users who will spend enough time to
complete the task. The corrected number of users will improve
the performance of the quality metric, as it will give a more
realistic number of users by excluding users with higher
velocity and lower task completion rate. The corrected number
of users NV, is then formulated as

Vmax - V%h
Vmax - Vmin

where V.. and V,,,;, are the maximum and minimum veloc-
ities of users respectively, and V};, is the velocity threshold.

The probability p of the presence of the user in the cell is
obtained by substituting the cell coordinates (x,y) in Eqn. (3).
It is required for the calculation of the probability of having
N users in a certain cell (P(N)), as

N.!
ba

P(N) = (Z]VV) pNgNeN = AR

where ¢ is the complementary probability 1 — p.

Several quality metrics have been proposed in literature,
where the one in [7] can reliably quantify samples as little
as N,,;» = 11. With above obtained results, we can formulate
the probability of unsatisfying the quality metric for any N,
value as

Nc = ]Vtotal <1 - (4)

N Ne=N ()

Nl‘nil] N
P(N < Nuin) = Y ( N )quNC_N (6)
N=0

IV. QoD INCENTIVE SCHEME

To deal with the effect of mobility shown in section 3, we
propose a users’ distribution-aware dynamic-incentive scheme.
After the task’s location is determined and to guarantee accept-
able QoD, a necessity factor (n f) might be needed [17]. The
necessity factor indicates the need for an incentive to finish
the task with an acceptable QoD. As an example, in a scenario
where there are enough users and QoD is satisfied, the nf = 0.
Multiple scenario parameters can be taken into consideration to
find the optimal necessity factor. This factor is used to calculate
a dynamic incentive for each situation which will result in
changing users’ distribution over cells, by creating attraction
areas within the targeted cells. Our proposed nf is proposed
as

nff = wizl + worky + wiky @)

where 7%, %, and z% reflects the impacts of probability of
satisfying the quality metric, task fulfilment and deadline on
the necessity factor, respectively. The weight of each parameter
can be fixed by the administrator based on the importance of
each parameter to the task goal, where their summation is equal
to 1.

Probability of satisfying the quality metric: The proba-
bility of satisfying the quality metric differs from one cell to
another. This difference should be considered in the incentive
scheme to assure the completion of all tasks regardless of their
location.

2, =1In(2 — P (Nuin)) ®)

7

where P (Nyin) is the probability of satisfying the quality
metric with the least number of available users N,,,;,, obtained
from Eqn. (5). As a result of the mobility model, center
cells have a higher probability of satisfying the quality metric
compared to cells on edge, thus, this parameter is crucial in
the process of determining the necessity factor. Notice that
the probability of satisfying the quality metric is inversely
proportional to the necessity of incentives, where a decrease
in P (Npin) will drive a larger z¥, value.

Task fulfilment: To achieve an acceptable QoD, the mini-
mum number of sensing samples should be reached. Therefore,
the number of measurements affects the necessity of incentives.

ST
k — S
Tijo =1n <2 TT) 9)

where ST represents the number of the submitted sensing sam-
ples and T'T is the total number of the required sensing samples
to fulfil the task. Assuming the availability of minimum number
of users, TT is calculated using TT = N,,;nUst where U
is the number of sensing samples that each user can submit.
It is noticeable that there is less need for incentives with the
increased number of submitted samples.

Deadline: Deadline is a critical parameter that should be
considered to assure completing the tasks within the specified
period. The closer the deadline, the higher the necessity of
incentives to guarantee the completion of the sensing task.

1
k
i3 n(+tk1)

where t is the deadline of the task, we can see that as round
k gets larger, the value of x% increase then the need for an
incentive is higher.

(10)

A. Attraction area

From the previous subsection we have 0 < z¥ < In(2),
0 <z <In(2), 0 < 2% < In(2) and wy + wa + w3 = 1,
then 0 < nf k< In(2). So the normalized necessity factor can
be calculated as follows

nfk = nf*

In(2)
The aim of calculating the necessity factor is to implement
it in the creation of an attraction area in the targeted cell, this

Y
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can be done as follows

— p—
9(z,y) = (1 - nf"’) A+ <f> Ac (12)
p
where A; represents all the points within the Aol is
At = (u(zg+om) —u(Tg — Tm)) -
(w(Yd + Ym) —u(Ya — ym)) (13)

while A, corresponds to all the points within targeted cell as
Ac = (U (.’L'd - mc,max) —u (.’Ed - xc,min)) .

(’LL (yd - yc,max) —Uu (yd - yc,min)) (14)

In Eqn. (13) and Eqn. (14), Heaviside unit step functions are
used to examine the x and y coordinates of each point. Using
Heaviside unit step functions allows the separation of points
within the targeted cell from points within the Aol.

Eqn. (12) is used to scale the distribution of users’
locations by creating an attraction area in the cell
[1‘(c,min)a -T(c,maa:)][y(c,min)a y(c,maw)]’ while nfk ISE nor-
malized necessity factor between 0 and 1. A higher n f* will
result in more users attraction to the cell. p is the probability
of having users in the cell under normal conditions. The
multiplication of Eqn. (12) and Eqn. (3) will give the new
users’ distribution which is considered as a response to the need
for more users in the targeted cell to accomplish the sensing
task.

V. SIMULATION AND PERFORMANCE EVALUATION
A. Simulation set-up

To test the mathematical formulas derived in this paper, a ES
system with various conditions is simulated and the simulation
results are explored in this section. The system consists of
9 square-shaped cells with N number of moving users. The
users’ mobility is following the RWP, specifically, 2D model
movement. Users travel within the system’s Aol which is
considered to be [0, z,][0, ¥m]. Users’ velocity is uniformly
distributed with 1 < v < 20.

B. Simulation results

It is shown in Table I that the derived PDF succeeded in
estimating the number of users in each cell as the results from
the simulation align with the results from the PDF. Fig. 1
shows users’ distribution over the system cells. It is noticeable
that the users are not uniformly distributed over the cells as
a result of the RWP mobility model. As shown in Fig. 1 the
center cell has higher users density which can affect the system
drastically. The probability of unsatisfying the quality metric

TABLE I
COMPARISON OF USERS’ DISTRIBUTION MATH AND SIMULATION RESULTS

Cell number Cell 1 | Cell 5 | Cell 8
Estimated N (math) 6.03 20.88 | 11.25
Average N (simulation) | 6.17 21.29 | 11.10
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Fig. 1. Users’ distribution over the cells

in edge cells is expected to be much higher than itself in center
cells. Consequently, the Aol edges could become blind spots
causing a failure in having a full coverage. Fig. 2 shows these
probabilities.
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Fig. 2. Cell location effect on the quality metric

Moreover, from Fig. 1 and Eqn. (3) it is noticeable that the
probability of satisfying the quality metric can be affected by
the size of the cell. Fig. 3 plots how the size of the center
cell affects the probability of satisfying the quality metric. It is
noticeable from Fig. 3 that larger cells have a higher probability
of satisfying the quality metric as the probability of having
more users increases.

Fig. 4 shows how V};, affects the corrected number of users
which shows that velocity may not affect the distribution of
the users, however, it affects the number of eligible users to
do the sensing task.

To assess the incentive scheme, Fig. 5 and Fig. 6 are used to
evaluate the incentive scheme ability to create an attraction area
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within a specific cell. As Fig. 5 shows users’ attraction area
was created in an edge cell which results in increasing users’
presence probability. The created attraction area can solve
multiple issues faced by ES systems as it enhanced the system
coverage by improving users’ presence probability in edge
cells, which results in increasing the probability of satisfying
the quality metric as shown in Fig. 6. Moreover, it shows that
the proposed incentive scheme enhanced the system’s coverage
without the need of recruiting more users which makes it a
suitable scheme for budget-constrained scenarios.

VI. CONCLUSIONS

The impact of mobile users on ES systems is evaluated
in this paper, specifically, the RWP model was considered
for users’ mobility. Additionally, a location-based dynamic-
incentive scheme was proposed to address the challenges
caused by users’ mobility. The proposed incentive scheme
succeeded in creating an attraction area within the targeted
cells which results in enhancing the system’s coverage and
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Fig. 4. Velocity threshold effect on corrected number of users
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eliminating the negative impact of users’ mobility on QoD. The
importance of studying the users’ mobility lies in the fact that
it gives estimation of users’ distribution and the overall system
coverage, which helps in designing more efficient and reliable
incentive schemes. Existing works have focused on designing
incentive schemes. However, the joint consideration of users’
response to incentive and users’ availability is marginally
considered in literature.
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