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Abstract— In the era of autonomous cars, accurate vehicular
positioning becomes very essential. The global navigation satellite
systems (GNSS) suffer from signal blockage and severe multipath
in urban canyons, which degrades the positioning accuracy and
availability. Therefore, vehicles solely relying on positioning from
GNSS receivers have limited performance. In this research,
we present a novel unified cooperative positioning solution which
enhances positioning accuracy and availability in urban canyons.
The proposed system exploits the fact that vehicles have different
positioning resources and is based on angle approximation,
which artificially generates the hindered pseudorange by sharing
angle information between vehicles using dedicated short-range
communication. In addition, we propose a system that employs
the proposed cooperative technique to assist the loose integration
between the inertial navigation system (INS) and the GPS system
(using extended Kalman filter) during partial GPS outages. Using
raw data from inertial sensors and GPS receivers in the real
road trajectories, we implement the cooperative INS/GPS loose
integration and show that our cooperative integrated system
outperforms the non-cooperative integrated system. The perfor-
mance metrics used are the 2-D positioning root-mean-square
error, the maximum 2-D positioning error, and the positioning
accuracy gain (PAG). Specifically, the PAG gain is around 88%,
80%, and 60% when the number of blocked satellites is one, two,
and three, respectively.

Index Terms— Cooperative positioning, connected vehicles,
urban areas.

I. INTRODUCTION

INTELLIGENT Transportation Systems (ITS) aim at reduc-
ing traffic accidents and congestion. In addition, ITS sys-

tems enable many applications including entertainment and
driver assistance applications. The recent developments in
Vehicular Ad-Hoc Networks (VANETs) and Dedicated Short
Range Communication (DSRC) enabled many of the ITS
applications. Information about the position of the vehicles are
used by many ITS applications and Location-Based Services
(LBS). For example, in automated driving modes and safety
critical applications, vehicles have to exchange their accurate
positions. The required positioning accuracy and availability
of the vehicles’ position depends on the application.
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In urban environments, the positioning accuracy and avail-
ability of land vehicles is limited. Tall buildings block signals
from various Global Navigation Satellite Systems (GNSS).
In addition, buildings and other objects in dense urban areas
also reflect GNSS signals causing severe multipath effects.
Moreover, vehicles in urban areas have different positioning
capabilities:

• A limited number of vehicles are capable of decoding
multi-constellation GNSS signals.

• A limited number of vehicles employ advanced multipath
detection and mitigation techniques.

• A limited number of vehicles employ advanced
anti-jamming (e.g., using multiple antennas) detection
and mitigation techniques.

Accurate positioning of vehicles is required by most safety
critical ITS applications. Positioning systems can be cat-
egorized as non-cooperative (conventional) and cooperative
systems. Due to the harsh signal environment in urban
areas, non-cooperative systems suffer from limited positioning
accuracy [1]. Recently, Cooperative Positioning (CP) has been
proposed as an ideal solution to the problem of limited posi-
tioning accuracy in urban environments. CP takes advantage
of the fact that vehicles have different positioning resources
and uses DSRC to exchange positioning information between
vehicles and subsequently estimate accurate positions. Most
of the proposed systems rely on ranging methods to estimate
the distance between vehicles or between vehicles and Road-
Side-Units (RSUs). Ranging methods introduce range errors
to the estimated distances [2]. These errors propagate to the
final computed position and thus, the performance of the range
based CP systems are also limited.

This paper aims at introducing a CP system that utilizes
the exchange of pseudoranges from assisting vehicles to
aid INS/GPS Loosely Coupled integration using Extended
Kalman Filter (LC-EKF). The proposed system enhances the
performance of the LC-EKF during partial GPS outages. The
Reduced Inertial Sensor System (RISS) mechanization process
is utilized in this research. Both the system and measurement
model of the LC-EKF which are presented in this research
are used to fuse the INS and the GPS states. We conduct
real experiments by collecting road trajectories in Kingston,
Ontario. The proposed system is compared to the existing
LC-EKF during all simulated GPS partial outages to exmaine
its performance.

II. BACKGROUND AND LITERATURE REVIEW

There are two main approaches used to enhance positioning
of vehicles. Non-cooperative and CP positioning approaches.
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This research focuses on positioning of vehicles in very
challenging environments like urban areas where most of the
conventional positioning techniques fail to meet the require-
ments of ITS applications. Here, we will only provide a
literature review of the most common cooperative positioning
techniques in the literature. Moreover, we will introduce the
advantages of INS/GPS integration.

A. Cooperative Positioning

Extensive research has been conducted in the area of
Wireless Sensor Network (WSN) localization. Many of the
proposed methods rely on CP techniques to enhance the posi-
tioning accuracy of the nodes. Some of the WSN positioning
methods have been re-proposed in the domain of VANETs.
However, the main difference between WSN and VANETs is
the high mobility of the nodes in the network. Moreover, WSN
nodes have very limited processing capabilities compared to
nodes in VANETs. Some CP methods rely either on the
availability of ranging information to other vehicles using
Vehicle-to-Vehicle (V2V) communication or the availability of
ranging information to RSUs using Vehicle-to-Infrastructure
(V2I). Other CP methods do not use ranging techniques due
to their limited performance.

1) Ranging-Based Techniques: In order to enhance the
position of a vehicle, ranging methods are proposed to estimate
the distance between the vehicle to be localized and a reference
point with known position. This reference can be a RSU,
an adjacent vehicle or a cellular tower. There are two main
techniques used to estimate the range between a vehicle and
another reference:

• Signal Strength-Based Ranging
• Time-Based Ranging

2) Signal Strength-Based Ranging: The concept behind
Received Signal Strength(RSS) based ranging is that the
strength of an RF signal decays as the signal propagates.
Some research has been directed towards RSS-based ranging
in cellular networks [3]. However, the achieved accuracy is
in the range of hundreds of meters and therefore is not
suitable for CP. Other research directions in the field of WSN
localization [4]–[6], assume that α is the same for all links and
is non-changing over time and thus not suitable for VANETs
dynamic environment where many obstacles exist.

The work in [7] and [8], attempts to enhance the positioning
accuracy of vehicles in urban areas where multipath is a
dominant source of error. Once a vehicle detects a multipath,
it requests positions and relative distance from vehicles in its
vicinity using CP. An optimization problem is then formulated
incorporating information from the participating vehicles with
accurate positions and their distances to the target vehicle. The
distances are computed using RSS which result in significant
relative distance errors.

3) Time-Based Ranging: The first type of Time-Based
ranging is Time of Arrival (TOA). In order to estimate the
distance between receivers A and B , receiver A sends a
packet with a time stamp denoted by TA which represents the
transmission time to receiver B . Receiver B receives the packet
and adds another time stamp denoted by TB which represents

the reception time at receiver B . Subsequently, receiver B
sends the packet to receiver A. The difference between the
reception time and the transmission time multiplied by the
speed of light is the distance between receivers A and B .
To achieve a meter level accuracy, the clock synchronization
between receiver A and B has to be in terms of nanosec-
onds. In vehicular communications, DSRC uses IEEE802.11p
which is based on IEEE802.11. The clock synchronization in
IEEE802.11 protocols is in terms of microseconds [9]. This
means that the error in the calculated distance will be in terms
of thousands of meters.

Another Time-based ranging technique is Time Difference
Of Arrival (TDOA). In this ranging method, two signals from
two stations are transmitted and the vehicle to be localized
processes the difference between the arrival time of both
signals to identify the locus of the vehicle [10]. The most
important constraint is that the two stations have to be synchro-
nized to the nanosecond level. Vehicles using DSRC can not
reach such level of synchronization. TOA and TDOA require
very complex hardware to achieve the time synchronization
between vehicles and therefore both methods are not practical
for determining ranges between vehicles in VANETs.

A third Time-Based ranging approach is Round Time
Trip (RTT) and is the most promising technique in terms of
ranging accuracy. The distance is computed using the round
time trip of the signal between two vehicles. Synchroniza-
tion is not required between the two vehicles because the
relative distance is computed relative to one clock. However,
the processing and the queuing time need to be modeled in
order to estimate the correct relative distance.

In [11], a localization framework for VANETs is proposed.
Using TOA as a ranging method, the distance between vehicles
is estimated. Moreover, a particle filter is used to fuse GNSS
position, odometer reading and distance between vehicles to
enhance the position of vehicles. A map matching algorithm is
used to enhance the vehicle’s position. The author assumes that
the error in the estimated distance due to mis-synchronization
between the receivers is in terms of tens of meters which
should reflect a mis-synchronization in terms of nanoseconds.
This is not a realistic assumption and hence the results
are not practical. Moreover, in urban areas, multipath sig-
nals are dominant due to many reflectors and thus degrades
the performance of TOA and TDOA. References [12]–[15]
present different TOA and TDOA ranging approaches. Due to
their synchronization requirements, these approaches are not
practical for VANET positioning and will not be discussed
further.

4) Non Ranging-Based Techniques: Range-Based tech-
niques suffer from many limitations that prevent the usage
of such techniques in CP. A detailed discussion of the lim-
itations of the ranging-based techniques is presented in [2].
Non Range-Based techniques do not rely on time or signal
strength ranging techniques. References [16] and [17] assume
no GNSS coverage is available and propose a method by
which vehicles can estimate their positions and also their
lane. Two RSUs on the opposite sides of the road broad-
cast their position and road geometry information. Using the
broadcasted information, the odometer measurements and the
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Carrier-Frequency-Offset (CFO) of the received signals from
the RSUs, vehicles compute their position and lane. This
approach is very expensive since it requires RSUs storing
information about the road geometry to be installed at each
intersection.

Using only two GNSS satellites, vehicle to infrastructure
communication and RSS of the DSRC packets, Alam [18]
proposes a CP positioning method. This method is based on
intersecting the equation of the line representing the street
with the TDOA hyperboloid from the two GNSS satellites to
estimate the vehicles position. A Doppler shift filter is used to
mitigate multipath. This method assumes an RSU is installed
at each intersection and broadcasts its positions. Hence, it is
an expensive solution. The filter used to mitigate multipath is
based on observing Doppler shifts from the RSUs. However,
for low vehicle speeds, Doppler shifts are not observed due to
the high noise threshold [18].

In [19], pseudorange measurements are exchanged between
two vehicles. Using Double Differencing (DD) and a tightly
coupled particle filter is used to estimate the relative distance
between vehicles. The concept of DD is close to DGPS since
the common errors are removed from the pseudoranges of
both vehicles. The real time response of the particle filter is
questionable and the proposed method assumes full satellite
coverage which is not suitable for VANETs in dense urban
areas.

In [21], a system is proposed for estimating the relative
distance between vehicles in urban areas when the number of
visible satellites is at least four. Pseudoranges are exchanged
between vehicles and a form of DD is applied to remove
the common errors. A tight integration is adopted fusing the
DD values to estimate the relative distance between vehicles.
Even though, the proposed system eliminates the need for a
DGPS infrastructure, it does not mention multipath. Multipath
is dominant in dense urban areas and will certainly degrade
the performance of the proposed system. In [20], a system is
proposed for enhancing the position of vehicles in urban areas
when the number of visible satellites is at least four. Loose
integration is adopted for fusing GPS position with range-rate
estimated from the CFO of the received signals from adjacent
vehicles. The range-rate estimation is based on observing
Doppler shifts. In order to be able to observe the Doppler
shifts, a minimum relative speed between vehicles should
exist. In urban areas, the relative speeds between vehicles are
very low and hence the proposed system is not effective.

B. INS/GPS Integration

The solution estimated using a GPS receiver has different
characteristics compared to the solution estimated by an INS
system. Due to the complementary characteristics of the GPS
and INS systems, integrating both systems has been exten-
sively used in practice. Table I summarizes the characteristic
of the solution offered by the commercial GPS receiver and
an INS system. GPS solution can be used to aid INS by
slowing down the accumulation of error. On the other hand,
INS systems can extrapolate solutions by estimating states
during short GPS outages. Finally, using an INS and GPS

TABLE I

SUMMARY OF GPS AND INS IMPORTANT FEATURES

integrated solution provides an accurate position, velocity and
attitude information. It is worth noting that the accuracy of
the estimated states depends on the grade of the INS (whether
strategic or MEMS-based) and the complexity of the GPS
receiver.

III. METHODOLOGY

A. Proposed Cooperative System

In an urban environment, vehicles are equipped with dif-
ferent positioning resources. Some expensive vehicles are
capable of decoding many GNSS constellations while others
might only track GPS satellites. Different vehicles employ
INS systems that vary in grades. Some vehicles use advanced
signal processing techniques to detect and mitigate jamming
and short delayed multipath signals while other vehicles are
only capable of detecting and mitigating medium and long
delayed multipath signals and might not have the necessary
hardware resources (array of antennas) to mitigate the effect
of jamming signals. The need for utilizing resources from
neighboring vehicles in a cooperative manner to assist in
enhancing the positioning availability and accuracy of other
vehicles is critical in dense urban areas.

In this paper, a cooperative positioing system based on [23]
is presented. We design a system that utilizes DSRC trans-
ceivers to request pseudoranges from vehicles within the
communication range of a target vehicle. Using Angle Approx-
imation (AA), a vehicle selection method (ASOSD) and a
satellite selection method (ASODD), we artificially reconstruct
the hindered pseudoranges of the target vehicle and hence
enhance the performance of the INS/GPS filter during partial
GPS outages. In order to design a navigation system which
is commercially viable and affordable, MEMS-based sensors
are used in vehicular navigation. The errors of MEMS-based
sensors are very complex and thus can be used in standalone
mode only for very short durations. On the other hand, GPS
errors are bounded but the visibility of at least four satellites
is essential for estimating a 3D position and velocity. The
implementation of the LC filter is very simple, however, its
main drawback is the low positioning accuracy when GPS
outages are prolonged. This is due to the fact that only INS
solution is used when the number of visible satellites is less
than four.

Figure 1 depicts the proposed cooperative RISS/GPS
LC-EKF (CLC-EKF) system which consists of three main
components. We assume that a target vehicle v j is not capable
of estimating pseudoranges to at least 4 satellites. The first
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Fig. 1. Proposed cooperative 3d-riss/gps lc-ekf system.

block in the proposed system depicts the Angle Approximation
technique which aids in reconstructing the missing pseudor-
anges of v j . The first block also includes an assisting vehicle
selector which decides which assisting vehicle to rely on in
order to reconstruct v j pseudoranges. Moreover, a satellite
selector is utilized to determine which satellite to rely on in
order to reconstruct v j pseudoranges.

The second component is the 3D Reduced Inertial Sensor
System (RISS) mechanization process used to estimate the
states of v j . In addition, the last component of our proposed
system is using LC Extended Kalman Filter (LC-EKF) for
the fusion of the RISS and the GPS solution to estimate an
optimal position. When the number of visible satellites to v j

is at least four, a least squares algorithm is applied to the
measured pseudoranges. However, if the number of visible
satellites is less than four, the reconstructed pseudoranges are
used to estimate the GPS position.

B. Blocked Pseudorange Estimation

In this Section, we introduce the concept of Angle Approx-
imation (AA). In addition, the Absolute Sum of Double
Differencing (ASODD) method for satellite selection and the
Sum of Single Differencing (ASOSD) method for vehicle
selection are briefly presented.

1) Angle Approximation: In [24], we propose a geometric
method by which a target vehicle v j relies on assisting
vehicles to estimate a blocked pseudorange. This method
is called Angle Approximation (AA). Assume pseudoranges
from satellites k, m and n are available to vehicles vi and v j ,
while the pseudorange from satellite f is only available to vi .
Figure 2 depicts only satellites k and f . This occurs in urban
canyons due to the existence of obstacles. Moreover, Blockage
even for small distances between vehicles can also occur when
the receiver of the target vehicle has the capability of only

Fig. 2. Angle approximation for ACP generation.

decoding GPS signals, while the receiver of the assisting
vehicle is capable of decoding both GPS and GLONASS
signals. Furthermore, v j might have the capability of decoding
GPS/GLONASS but a jamming signal could lead to the
blockage of GLONASS constellation, while vi uses complex
anti-jamming algorithms. Therefore, vi has access to more
satellites than v j . Hence, v j is either not capable of computing
a 3D position due to the limited number of equations compared
to the number of unknown states or is capable of computing
a position with poor accuracy.

The distances between the satellites and the vehicles are
significantly larger than the distance between the vehicles,
pseudoranges ρk

i , ρk
j and also ρ

f
i , ρ

f
j are almost parallel [22].

Therefore, we can conclude that the angle between pseudor-
anges ρk

i and ρ
f

i denoted by θ
k, f
i in Figure 2 is almost equal

to the angle between pseudoranges ρk
j and ρ

f
j denoted by

θ
k, f
j . The following steps demonstrate how ρ

f
j is generated

using AA:
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1) v j receives periodic beacons containing visible satellites
from vi using DSRC and detects that the signal from
satellite f is blocked or jammed.

2) v j is ready to execute the AA technique. First the
angle θ

k, f
i is computed using the cosine rule in (1)

3) Under the assumption θ
k, f
i

∼= θ
k, f
j , vehicle j gener-

ates pseudorange ρ
f
j by solving quadratic equation (2).

Denote by ρ
f,k
j the generated pseudorange using ρk

i .

Here, ρ
f,k
j is called an Artificial Candidate Pseudor-

ange ACP) for the hindered pseudorange ρ
f
j .

θ
k, f
i = cos−1 (ρk

i )2 + (ρ
f

i )2 − (a)2

2ρk
i ρ

f
i

(1)

(ρ
f,k
j )2 − 2ρk

j ρ
f,k
j cos θ

k, f
i + ((ρk

j )
2 − a2) ∼= 0 (2)

In the previous example, the number of common satellites
between vehicle i and j is three. Therefore, the AA technique
can be executed several times using three angle approxima-
tions resulting in three different ACPs for the hindered pseudo-
range. Assuming θ

k, f
i

∼= θ
k, f
j , AA generates the hindered

pseudorange using satellite k, such that ρ
f,k
j is expressed by 3.

Here, μ f,k denotes the error due to the inaccuracy of the
θ

k, f
i

∼= θ
k, f
j assumption.

ρ
f,k
j = ρ

f
j + μ f,k (3)

Similarly, assuming θ
m, f
i

∼= θ
m, f
j and θ

n, f
i

∼= θ
n, f
j respec-

tively generate ρ
f,m
j and ρ

f,n
j . Now the most critical question

becomes: which ACP should the receiver use to compute
its position. In [24], we discuss several factors affecting the
accuracy of the ACP including distance between the target
and assisting vehicle and geometry of the common and
non-common satellites. The ultimate goal is to use the ACP
which is based on the most accurate angle approximation since
it would result in the least range error.

2) Satellite Selection: In order to infer which aritfically
candidate pseudorange is the most accurate, we propose a
satellite selector called Absolute Sum of Double Differencing
(ASODD). The ASODD selector uses the measured pseudo-
ranges from vi and v j and all the corresponding ACPs
representing the blocked pseudorange to compute a positive
indicator for the correctness of each ACP.

Following the AA assumption, the angle between the two
pseudoranges from satellites k and f to vi is approximately
equal to the angle between the two pseudoranges from satel-
lites k and f to v j . Hence, the double differencing of the
pseudoranges k and f from vehicle i and j tends to zero. The
idea behind ASODD is to apply a sequence of mathematical
operations to the ACPs which leads to the accumulation of
the error due to AA. The absolute value of the sum of the
double differencing of the pseudoranges indicates how far
each generated ACP is from meeting the angle approximation
assumption.

Assume satellites k, m and n are visible to the participating
vehicle i and the target vehicle j . While satellite f is only

visible to vehicle i . Using the assumptions θ
k, f
i

∼= θ
k, f
j ,

θ
m, f
i

∼= θ
m, f
j and θ

n, f
i

∼= θ
n, f
j , the AA technique gener-

ates three pseudoranges ρ
f,k
j , ρ

f,m
j and ρ

f,n
j with errors μ f,k ,

μ f,m and μ f,n respectively. Here we will derive the ASODD
indicator for ρ

f,k
j in details. Equation 4 depict the actual

pseudorange.

ρ
f
j = R f

j + β j + α f + ε
f
j (4)

where

• R f
j is the true range from vehicle j to satellite f .

• β j is the clock bias of vehicle j and the receiver’s noise
(common errors to a single receiver).

• α f is the clock bias of satellite f , the ionosphere and
troposphere errors(common errors to a single satellite).

• ε
f
j is the error due to multipath.

Our main aim is to attenuate the value ρ
f
j in (3) and amplify

the generated error denoted by μ f,k , such that the error in the
candidate pseudorange is observable.

Denote by ASO DD f,k the ASODD indicator for the
ACP ρ

f,k
j . This quantity is calculated by taking the sum of

the absolute value of the double differencing between the ACP
and all the other observable pseudoranges from vehicles i and
j . ASO DD f,k is given by

ASO DD f,k =
�

s=k,m,n

|�ρ
s f
i − �ρ

s f,k
j | (5)

where s is the number of common visible satellites between
vi and v j

ASO DD f,k = |�ρ
k f
i − �ρ

k f,k
j | + |�ρ

m f
i − �ρ

m f,k
j |

+|�ρ
m f
i − �ρ

m f,k
j | (6)

�ρ
k f
i is the difference between the pseudorange ρk

i and ρ
f

i .
This difference eliminates the clock bias of vehicle i and the
receiver’s noise. Similarly, �ρ

m f,k
j and �ρ

n f,k
j is the difference

between ρm
j and ρ

f,k
j and ρn

j and ρ
f,k
j respectively. This

step removes the receiver’s clock bias and noise from all the
pseudoranges of vehicle j. The effect of the second step of the
double differencing is removing the satellite’s clock bias.

Likewise, the absolute double differencing in the ASODD
indicator;|�ρ

mf
i − �ρ

m f,k
j | and |�ρ

n f
i − �ρ

n f,k
j | can be cal-

culated. Therefore, (6) can be represented as:

ASO DD f,k = |�Rk f
i j + �ε

k f
i j + μ f,k| + |�Rm f

i j + �ε
m f
i j

+μ f,k| + |�Rn f
i j + �ε

n f
i j + μ f,k | (7)

where:

• �Rk f
i j , �Rm f

i j and �Rn f
i j are the double differencing

terms for the difference in the true ranges.
• �ε

k f
i j , �ε

m f
i j and �ε

n f
i j are the double differencing terms

for the multipath error. It is not removed because it is
not common between the pseudoranges. Here we assume
multipath is almost zero because pseudoranges affected
by severe multipath are not used to generate hindered
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pseudoranges. Therefore, 7 can be approximated by:

ASO DD f,k = |�Rk f
i j + μ f,k | + |�Rm f

i j + μ f,k |
+|�Rn f

i j + μ f,k | (8)

Following the same steps, ASO DD f,m and ASO DD f,n can
be derived. Equations 9 and 10 depict the final stage of the
derivation.

ASO DD f,m = |�Rk f
i j + μ f,m | + |�Rm f

i j + μ f,m |
+ |�Rn f

i j + μ f,m | (9)

ASO DD f,n = |�Rk f
i j + μ f,n | + |�Rm f

i j + μ f,n |
+ |�Rn f

i j + μ f,n| (10)

Equations 8, 9 and 10 consist of the double differencing terms
for the true ranges and the error in the generated pseudoranges.
The error in the generated pseudoranges accumulates several
times for each indicator depending on the number of com-
mon satellites between the target and the assisting vehicle.
Consequently, ASODD increases the probability of observing
the magnitude of the error for each ACP. Hence, the ASODD
indicator can be used to select the least erroneous ACP.

3) Vehicle Selection: In urban areas, several vehicles are
within the communication range of the target vehicle. Some of
those vehicles can assist the target vehicle in either enhancing
positioning availability or accuracy. In [25], we propose a
method called Absolute Sum of Single Differencing (ASOSD)
by which one assisting vehicle is selected from the candidate
assisting vehicles. After a single assisting vehicle is selected,
AA is applied to generate ACPs and then ASODD is used to
select the final ACP. Here, the final ACP refers to the pseudo-
range which will be used in the final position estimation.

The accuracy of the AA method is affected by the distance
between vehicles. Hence, the distance between the candidate
assisting vehicles and the target vehicle is the most important
factor affecting the accuracy of the generated ACPs. The
ASOSD method uses the difference between the common
pseudoranges of the target and the Candidate Assisting Vehi-
cles (CAV) to calculate a distance indicator for each vehicle.
This method assumes that each CAV can estimate its GNSS
receiver’s clock bias and the pseudoranges transmitted to the
target vehicle are corrected for the error due to the clock bias.
Equation 11 is used to calculate the ASOSD distance indicator
for a assisting vehicle i denoted by ASOSDi . Assuming S
is the number of common satellites between the target and
assisting vehicle.

ASOSDi =
S�

s=1

|ρs
j − ρs

i − Clki |

=
S�

s=1

|(Rs
j + β j + αs + εs

j )

− (Rs
i + βi + αs + εs

i ) − Clki |

�
S�

s=1

|(Rs
j − Rs

i ) + β j + εs
j | (11)

Removing the assisting vehicle’s clock bias denoted by Clki

in (11) is very important as it is not common to all assisting
vehicles. However, the target’s clock bias does not need to be
removed since the all ASOSD indicators are referenced to the
target vehicle. In other words, the target vehicle’s clock bias
equally affects the ASOSD indicator for each assisting vehicle.
Assuming the assisting vehicle’s clock bias is correctly esti-
mated and hence Clki � βi . Moreover, all common errors
between pseudoranges to the same satellites are removed.
These commmon errors are due to the uncompensated satellite
clock bias, ionospheric and troposheric delays.

The non-common errors between the target vehicle j and the
assisting vehicle i is denoted by εs

i . Assuming non-common
errors like multipath or receiver noise at the assisting vehicles
are approaching zero. This occurs for example when assisting
vehicles are capable of mitigating short delay multipath signals
or are not affected by multipath.

The effects of the target’s clock bias denoted by β j and the
non-common errors on the pseudoranges of the target vehicle
denoted by εs

j does not affect the accuracy of the ASOSD
distance indicator because they are common to all assisting
vehicles.

Using the ASOSD method reduces the complexity of the
overall system. When selecting one assisting vehicle based
on the distance indicator, the AA and the ASODD selection
method is applied only to one vehicle instead of all the
assisting vehicles.

C. The 3D Reduced Inertial Sensor System

A full IMU system consists of 3 gyroscopes monitoring
angular rotations across the 3-axis of the vehicle. In addition,
3 accelerometers that measure the specific forces across the
3-axis of the vehicle. The full IMU is the most accurate
mechanization process, however it is expensive and of high
complexity. The 3D RISS [26], [27] is an attempt to reduce
the cost and complexity of a full IMU system. The 3D RISS
system proposed in the literature consists of 1 gyroscope
perpendicular to the horizontal plane and 2 accelerometers
parallel to the horizontal plane (one parallel to the x-axis and
the other parallel to the y-axis) along with speed information
from the wheel rotation sensor (odometer). The advantages of
using the partial IMU (3D RISS) over full IMU are discussed
in [26]–[28].

The process by which the RISS system computes the states
of the land vehicle from the raw data of the sensors is called
mechanization. Denote by fx and fy the transversal and
forward specific forces from the accelerometers respectively.
Moreover, the angular rotation rate from the vertical gyroscope
and the speed from the odometer are denoted by ωz and
vod respectively. The system states representing the latitude,
longitude and altitude are denoted by ϕ, λ and h respectively.
In addition, the system states representing the East, North and
Up velocity are denoted by ve, vn and vu respectively. The first
step in the 3D RISS mechanization process is the computation
of the attitude angles. The pitch and roll angles are computed
using specific forces from the accelerometers and an accurate
gravity model. Equations 12 and 13 are used to compute the
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pitch and roll angles denoted by p and r . The integration of
the speed from the odometer yields the acceleration and is
denoted by aod

p = sin−1
�

fy − aod

g

�
(12)

r = −sin−1
�

fx − vodωz

gcos(p)

�
(13)

The azimuth angle denoted by Az is computed using the
previous azimuth angle and the current angular rotation rate.
Two effects must be removed from the current ωz mea-
surement. The stationary effect of Earth’s rotation denoted
by ωesin(ϕk−1) on the output of the vertical gyroscope is
removed. Where, the angular rotation rate of Earth denoted by
ωe is approximately 15 degrees per hour (7.27 ∗ 10−5 radians
per second) [29] and ϕk−1 is the latitude from the previous
epoch. Moreover, the non-stationary effect (Coriolis effect) is
also compensated. Equation 14 is used to compute Az. The
current and previous azimuth angles are denoted by Azk and
Azk−1 respectively. Here, RN is the normal radius of curvature
of the Earth’s ellipsoid.

Azk = Azk−1 −
�

ωz − ωesin(ϕk−1) − ve
k−1tan(ϕk−1)

RN + hk−1

�
(14)

The attitude angles p, r and Az are computed and the next
stage of the mechanization is computing the East, North and
Up velocities. This is performed by transforming the speed
measurements from the body frame to the local frame using
the transformation matrix. The current attitude angles are used
to compute the transformation matrix. Using Equations 15, 16
and 17, ve, vn and vu is computed.

ve = vodsin(Az)cos(p) (15)

vn = vodcos(Az)cos(p) (16)

vu = vodsin(p) (17)

The final stage of the mechanization process is the com-
putation of the position of the platform. East, North and
Up velocities are integrated to respectively compute the
latitude, longitude and altitude. Equations 18, 19 and 20
yield states of the system representing its position. The
sampling time is denoted by �t and the Meridian radius
of curvature of the Earth’s ellipsoid is denoted by RM .
The main reason for the unbounded error of the INS sys-
tem on the long run is the integration process. This is
due to the fact that sensors’ biases and drifts propagate to
the velocities through the attitude angles, and velocities are
then integrated every epoch to compute the position of the
vehicle.

ϕk = ϕk−1 + vn
k + vn

k−1

2(RN + h)
�t (18)

λk = λk−1 + ve
k + ve

k−1

2(RM + h)
�t (19)

hk = hk−1 + vu
k + vu

k−1

2
�t (20)

D. System and Measurement Model for 3D-RISS/
GPS LC-EKF

In this section, the system and the measurement model of
the 3D-RISS/GPS LC-EKF integration is introduced. The main
reference for the system and measurement model is [29] unless
stated otherwise.

Since a form of KF is used as a data fusion method,
the system and the measurement model have to meet the
requirements of KF to converge and hence achieve optimal
state estimation.

1) System Model: The discrete-time system model of the
3D-RISS/GPS integration can be expressed using the follow-
ing equation:

xk = μk,k−1xk−1 + Gk−1wk−1 (21)

where
• xk is the current state vector of the system
• xk−1 is the previous state vector of the system
• μk,k−1 is the discrete-time linear state transition matrix

which models the deterministic relation between the
previous and the current state vectors. Given the dynamic
coefficient matrix F of a continuous system, the lin-
earized state transition matrix is shown in Equation 22.
where I is the identity matrix.

μ = (I + F�t) (22)

• Gk−1 is the noise coupling matrix.
• k is the measurement epoch.
• wk−1 is the system noise.

Equations 12 to 20 are the RISS mechanization equations.
These equations are non-linear and in order to meet the KF
linearity requirements, linearization of the RISS mechanization
equations is essential. Taylor series expansion is applied to the
system equations describing the rate of change of the states.
Only the first order terms are considered in the transition
matrix. Moreover, very small terms are ignored to reduce
the complexity of the system. The process of linearization
forces the states of the system to become errors in the
states. Therefore, the RISS states of the system are given
by vector 23. The error in latitude, longitude and altitude is
denoted by δϕ, δλ and δh respectively. East, North and Up
velocity errors are denoted by δve, δvn and δvu respectively.
Moreover, δAz, δaod and δbz denote the error in azimuth, error
in acceleration due to wheel rotation sensor measurement and
gyroscope bias error respectively.

xk = [δϕ, δλ, δh, δve, δvn , δvu , δAz, δaod, δbz] (23)

2) Measurement Model: The discrete-time linear measure-
ment model relating the system states to the error in the
measurement is given by:

δzk = H δxk + ηk (24)

where
• δzk is the error in the measurement vector.
• H is the design matrix. Here the design matrix is not

changing with time.
• ηk is the measurement noise.
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In the LC implementation of EKF, the integration is per-
formed on the level of states of the system which makes
LC implementation simpler than TC implementation. Here we
only use the latitude, longitude and altitude estimated by the
GPS to aid the INS system. Velocities can also be used to aid
the INS system. The measurement vector is given by:

δz =
⎡
⎣δϕG PS − δϕI N S

δλG PS − δλI N S

δhG PS − δhI N S

⎤
⎦

Since only position information is used to aid the INS system
in an LC integration, the design matrix relating the error states
to the measurement error is given by:

H =
⎡
⎣1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎤
⎦

Therefore, the measurement model can be expressed as:

δz =
⎡
⎣1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δϕ
δλ
δh
δve

δvn

δvu

δAz
δaod

δbz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ η

E. Extended Kalman Filter

There are many types of filters used to fuse INS and
GPS solutions in order to produce an optimal estimation
of the states of the system. The most common filters are
KF and Particle Filter (PF) which are recursive Bayesian
estimators. In this research, we have implemented a closed
loop configuration of KF which is known as Extended Kalman
Filter (EKF). The main advantage of PF over KF is that
the system and measurement noise are not constrained to
Gaussian distributions and hence PF could provide more
accurate solutions. Moreover, the system and measurement
models are not limited to linear systems just like the case
in KF. However, the main advantage of KF over PF is the
low complexity of the filter and the real time response. EKF
is a closed loop implementation of the KF, where error states
computed by KF are fed back to the INS mechanization stage
to predict a more accurate INS solution and to keep the
system model in the linearity region. Some critical parameters
have to be initialized before the operation of KF. The initial
system noise covariance matrix is denoted by Q0 and the
initial measurement covariance matrix is denoted by R0.
Moreover, the initial error states of the system are denoted
by δx̂0 and the initial state covariance matrix is denoted
by P0.

The KF algorithm consists of two main stages which are
the prediction stage and the correction stage. In the prediction
stage, the system transition matrix μk,k−1 is used to predict
the current error states at epoch k denoted by δx̂p

k from the
previous corrected errors states denoted by δx̂c

k−1. Moreover,

the prediction stage includes computing the predicted state
covariance matrix denoted by P p

k using the knowledge of the
previous corrected state covariance matrix denoted by Pc

k−1,
the system transition matrix and the system noise covariance
matrix. Equations 25 and 26 depict the prediction of the states
and the states covariance matrix of the system.

δx̂p
k = μk,k−1δx̂c

k−1 (25)

P p
k = μk,k−1 Pc

k−1μ
T
k,k−1 + Q0 (26)

In this EKF, the system noise covariance matrix does not
vary over time and is specific to the error characteristics
of the inertial sensors. The next stage of the KF is the
correction stage. In this stage, the KF gain denoted by Kk

is computed as a function of the predicted state covariance
matrix and the measurement noise covariance matrix which is
denoted by Rk . The KF gain is computed using the following
Equation:

Kk = P p
k H T

k

�
Hk P p

k H T
k + Rk

�−1

(27)

The Rk is propagated from the LS estimator to the KF at
each epoch and represents the confidence in the δϕ, δλ and
δh. The next step in the correction stage is to calculate the
corrected states. The innovation vector depicted in Equation 28
is a quantity describing the difference between the measured
error states denoted by δzk and the predicted error states.
The corrected error states denoted by δx̂c

k are computed
using Equation 29. When Kk approaches zero (measurement
is unreliable), the corrected and predicted error states are
equal. As the KF gain increases (measurement is reliable),
a larger quantity of the innovation vector is used to correct the
predicted error states. The final step of the KF correction stage
is shown in Equation 30 and is used to compute the corrected
state covariance matrix based on the calculated KF gain and
the predicted state covariance matrix. The corrected states and
the corrected states covariance matrix are propagated to the
next epoch.

vk = δzk − Hkδx̂p
k (28)

δx̂c
k = δx̂p

k + Kkvk (29)

Pc
k = P p

k + Kk Hk P p
k (30)

In an EKF, the state prediction step depicted in Equation 25
is not considered because of the closed loop implementation.
In the closed loop implementation, the corrected error states
are fed back to the INS mechanization stage and the previous
error states are set to zero. Therefore, the predicted error states
are always zero and the first step in the prediction stage is
unnecessary.

IV. EXPERIMENTS AND RESULTS

In order to test the proposed cooperative system, a target and
an assisting vehicle are employed in a real road trajectory in
Kingston, Ontario. In this section, we present the equipment
used to conduct a real road trajectory in order to evaluate
the proposed cooperative system. Secondly, the evaluation
criteria which is used to test the performance of our system
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TABLE II

IMU CHARACTERISTICS OF IMU-CPT [30] AND
CROSSBOW IMU300CC [31]

is introduced. In addition, the experimental setup for the real
road trajectory is described. Finally, the results are presented
and analyzed.

A. Equipment

There are two IMUs used in this experiment, a high tactical
grade IMU from Novatel called IMU-CPT and a MEMS-based
IMU called Crossbow IMU300CC. High grade IMUs are
not used in commercial land vehicle applications due to
their high cost. However, here we use IMU-CPT to aid the
GPS system in estimating the reference solution. On the
other hand, MEMS-based IMUs can be used in commercial
land vehicle applications because they are less expensive and
light weight. The proposed system uses data from Crossbow
IMU300CC. The characteristics of the high tactical grade
and the MEMS-based IMUs are depicted in Table II. It is
important to mention that the IMU-CPT employs a full IMU
mechanization process by utilizing 3-axis accelerometers and
3-axis gyroscopes, however, the RISS mechanization used in
this research only utilizes the vertical gyroscope and the two
horizontal accelerometers from the MEMS-based IMU along
with the wheel rotation sensor readings to compute the states
of the target vehicle.

The RISS mechanization process requires information about
the speed of the vehicle. This is acquired by using a speed
logger. CarChip [32] is a data logger which was connected
to the OBDII interface of the target vehicle. This data logger
records the speed of the vehicle and saves it on a flash memory.
The memory can be accessed offline through the CarChip
software installed on a laptop. The logged speeds are then
synchronized with the GPS time tag as a post-processing step.

There are two types of GNSS receivers used in our experi-
ments, the NovAtel SPAN-SE reference system and the NovA-
tel ProPak-G2plus GPS receiver. The SPAN-SE unit integrates
GNSS signals with the high tactical grade IMU-CPT in a
tightly coupled KF using L1 and L2 signals. The SPAN-SE
is installed inside the target vehicle with two antennas and
the output from the SPAN-SE is used as a reference solution.

The second type of receivers used is a GPS receiver (NovAtel
ProPak-G2plus) capable of decoding only GPS signals.

The equipment installed on the target vehicle is:

1) Two L1 and L2 GNSS antennas (GPS-702-GG) offering
combined GPS and GLONASS signal reception. Here,
two antennas are used to aid SPAN-SE unit in accurately
determining the heading of the target vehicle.

2) The SPAN-SE GNSS receiver which offers GPS stand-
alone solution and an integrated IMU-CPT/GNSS
solution.

3) A high tactical grade IMU called IMU-CPT offering full
IMU 3D solution.

4) A Data logger (CarChip) that is connected to the OBDII
interface collecting speed logs.

The equipment installed on the assisting vehicle are:

1) An L1 and L2 GNSS antenna (GPS-702-GG) offering
combined GPS and GLONASS signal reception.

2) A NovAtel ProPak-G2plus GPS receiver. The pseudor-
anges from GLONASS satellites are not processed.

B. Evaluation Criteria

The purpose of this experiment is to investigate if the
proposed cooperative 3D-RISS/GPS LC-EKF (CLC-EKF) is
capable of outperforming the conventional non-cooperative
3D-RISS/GPS LC-EKF (NLC-EKF) during partial GPS out-
ages in urban environments. If the target vehicle does not have
an INS system installed, there will be no solution available
during partial GPS outages. However, if a commercial INS
system is installed, a solution is available but its accuracy
degrades exponentially as the GPS outage duration prolongs.
In order to evaluate the proposed cooperative system, we col-
lect data from two vehicles in an open sky environment and
then manually introduce GPS partial outages. The 2D RMS
error of the position estimated by the CLC-EKF is compared to
the 2D RMS error of the position estimated by the NLC-EKF.
The 2D RMS value is computed using the following
Equation:

RM S =

N

n=1

�
(ϕn − ϕ̂n)2 + (λn − λ̂n)2

N
(31)

Where ϕn and λn are respectively the reference latitude
and longitude of the target vehicle for the nth pseudorange
samples. Moreover, ϕ̂n and λ̂n are respectively the estimated
latitude and longitude using the positioning systems under
evaluation (CLC-EKF or NLC-EKF). The number of available
pseudorange samples are denoted by N . The second met-
ric used to evaluate the proposed system is the Positioning
Accuracy Gain (PAG) and is given by Equation 32. Where
RM SC LC−E K F is the 2D RMS position error of the CLC-EKF
system and RM SN LC−E K F is the 2D RMS position error of
the NLC-EKF system. Finally, the third metric used to evaluate
the performance of the proposed system is the maximum 2D
position error.

P AG = RM SN LC−E K F − RM SC LC−E K F

RM SN LC−E K F
× 100 (32)
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Fig. 3. Road trajectory estimated using NovAtel SPAN-SE unit.

Fig. 4. Speed of the target vehicle for the road trajectory.

C. Experimental Setup

The road trajectory of the target vehicle and the assisting
vehicle is shown in Figure 3. This trajectory is computed using
the SPAN-SE unit installed on the target vehicle. On the map,
points marked “A” and “B” are the start and end point of
the trajectory respectively. Moreover, the blue crosses show
the segments of the trajectory where partial GPS outage
was introduced later in the offline phase. The speed of the
target vehicle throughout the trajectory is shown in Figure 4.
The average speed is 20.42 Km/hr, the maximum speed is
46.44 Km/hr and the speed standard deviation is 14.87 Km/hr.
The average distance between the target and the assisting
vehicle is 35 meters and the minimum distance is 15 meters.
The trajectory was conducted in an open sky environment so

Fig. 5. Number of visible GPS satellites.

we can easily block any visible satellite in the offline stage and
test our system with different satellites’ geometries relative
to the position of the vehicles. The number of visible GPS
satellites to the target vehicle is shown in Figure 5. In order
to mimic the limited number of visible satellites in urban areas
due to tall buildings, initially only four satellites were made
visible to the target and the assisting vehicle in the outage
segments of the trajectory. The number of common satellites is
four and is denoted by C S. The four satellites with the highest
elevation angles were used as the common visible satellites.

The next step is to reduce the number of common satellites
by blocking one, two or three satellites from the four satel-
lites which were initially visible to the target vehicle. Thus,
mimicking the effect of vehicles in an urban area having with
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Fig. 6. Estimated trajectory using NLC-EKF and CLC-EKF compared to
the reference solution for the first outage when the highest elevation satellite
is blocked.

different positioning resources. The number of visible satellites
is still four for the assisting vehicle. This might occur for
example when the assisting vehicle is capable of decoding
GPS and GLONASS while the target vehicle decodes only
GPS signals. Now the conventional 3D-RISS/GPS integration
using LC-EKF will rely only on RISS solution (positioning
accuracy degrades exponentially during the outage) since GPS
is partially blocked from the target vehicle and the number
of visible satellites is less than four. Here, we apply the pro-
posed cooperative system which applies AA and consequently
generates a number of ACPs that is equal to C S. The next
step is to select the most accurate ACP using the ASODD
selection criteria if C S is not equal one. The selected ACP
or ACPs (depending on the number of blocked satellites) are
then passed to the LS algorithm along with the measured
pseudoranges to the visible satellites to compute the GPS
position of the target vehicle. Finally, a LC-EKF is used to
integrate the GPS solution with the 3D-RISS solution and a
final estimate of the error states of the system are computed.
These error states are used to correct the solution of the
3D-RISS system.

The duration of each of the three outage regions is
100 seconds. We know that the accuracy of the generated
ACPs is a function of the satellite geometry relative to the
target and assisting vehicle. In order to diversify the possible
geometries and hence produce reliable results, the three outage
regions were chosen such that a sharp change in the direction
of the trajectory occurs during each outage segment. Moreover,
another technique used to diversify the possible geometries is
by blocking all possible combinations of visible satellites to
the target vehicle and then averaging the horizontal RMS error.

D. Results

Figures 6, 8 and 10 depict the estimated trajectory on
Google maps using the conventional NLC-EKF and the
proposed CLC-EKF for the first, second and third outage
segments respectively. Both NLC-EKF and CLC-EKF are
compared to the reference solution from the SPAN-SE unit.
The highest elevation satellite was blocked for a duration
of 100 seconds. The number of common satellites between
the target and the assisting vehicles was three and hence three
ACPs were generated using AA. Subsequently, ASODD was
applied and one ACP was selected and then used to compute
the GPS position using LS algorithm. Finally, LC-EKF was

Fig. 7. Position error of NLC-EKF and CLC-EKF for the first outage when
the highest elevation satellite is blocked.

Fig. 8. Estimated trajectory using NLC-EKF and CLC-EKF compared to the
reference solution for the second outage when the highest elevation satellite
is blocked.

Fig. 9. Position error of NLC-EKF and CLC-EKF compared to the reference
solution for the second outage when the highest elevation satellite is blocked.

applied to the RISS and the GPS position to produce the
CLC-EKF solution. On the other hand, the NLC-EKF relied
only on the 3D-RISS output since a minimum of 4 satellites
is required to compute a GPS position.

Figures 7, 9 and 11 depict the 2D position error in meters
using the conventional NLC-EKF and the proposed CLC-EKF
for the first, second and third outage segments respectively.
These errors are for the same simulation setup (blocking
the highest elevation satellite) that was used to estimate the
trajectories in Figures 6, 8 and 10. It is clear that the NLC-EKF
position errors accumulate over time during the outage seg-
ments of the trajectory. On the other hand, the CLC-EKF
position errors are not accumulative and are significantly better
than the conventional NLC-EKF.
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Fig. 10. Estimated trajectory using NLC-EKF and CLC-EKF compared to
the reference solution for the third outage when the highest elevation satellite
is blocked.

Fig. 11. Position error of NLC-EKF and CLC-EKF for the third outage
when the highest elevation satellite is blocked.

TABLE III

OUTAGE # 1

Tables V, IV and V shows the RMS and the maximum
2D position error for the estimated position using NLC-EKF
and CLC-EKF for the first, second and third outage segments
respectively. The RMS and maximum 2D position error is
computed for different number of blocked satellites between
the target and the assisting vehicle during the outage segments.
The CLC-EKF was applied for one, two and three blocked
satellites. For a specific number of blocked satellites, there
are many combination of visible satellites. The 2D position
error for each combination is different due to the sensitivity
of the AA to satellite geometry relative to the position of both
vehicles and also due to different accuracies of the measured
pseudoranges by the target vehicle. In order to compute a
realistic RMS error of the 2D position estimated by CLC-EKF,
all possible combinations of satellites were considered in the
RMS calculations for each number of blocked satellites setup.
The RMS errors shown in Tables V, IV and V are a result of
applying CLC-EKF to all possible satellite combinations for
each number of blocked satellites.

TABLE IV

OUTAGE # 2

TABLE V

OUTAGE # 3

First of all, we observe that the solution of the CLC-EKF
is always better than the NLC-EKF in terms of the 2D RMS
position error and the maximum position error regardless of
the number of blocked satellites for all three outage seg-
ments. Moreover, as the number of blocked satellites decrease,
the gain of the proposed cooperative system increases com-
pared to the conventional non-cooperative system. The 2D
RMS position error and the maximum error of the NLC-EKF
is the higher for third outage segment compared to the first
and the second outage segment. This error also affects the
proposed system due to the uncompensated gyroscope errors.
Correcting the gyroscope angular rate errors should result in
lower heading errors and therefore lower 2D RMS position
errors for the NLC-EKF and the CLC-EKF systems. Using
the proposed cooperative system (CLC-EKF) results in higher
positioning accuracy during partial GPS outages. The PAG
gain is around 88%, 80% and 60% when the number of
blocked satellites is one, two and three respectively.

V. CONCLUSION

ITS applications demand specific positioning availability
and accuracy requirements. In urban areas, GNSS signals are
hindered due to tall buildings, multipath effect, jamming and
limited GNSS channels per receiver; this leads to limited
positioning availability and accuracy. This paper proposed
the CLC-EKF system which integrates RISS and GPS using
EKF and assists GPS during partial outages. The proposed
system is implemented and tested using road trajectories and
compared to the conventional NLC-EKF system. The proposed
CLC-EKF outperforms the conventional NLC-EKF system in
terms of position RMS error and the maximum position error.
Specifically, the PAG gain was around 88%, 80% and 60%
when the number of blocked satellites during partial GPS
outages is one, two and three respectively.
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