Differentiated Services in Switching-based

Web Caching System

by

JIAN ZHOU

A thesis submitted to the School of Computing
in conformity with the requirements

for the degree of Master of Science

Queen’s University
Kingston, Ontario, Canada

June 2003

Copyright @ Jian Zhou, 2003

g |

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellingion Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-81141-7

Canada

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Vatre référence

Our ke Notre référence

L’ auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

Differentiated services (DiffServ) are being adopted in a wide number of Internet
applications, including web services. In the web-caching field, researchers have
proposed to achieve DiffServ on original web servers, cache servers, or at the client
side. We argue that there are significant advantages of achieving DiffServ on another
kind of nodes - edge routers - in a web caching system. Edge routers can perform
request classification, and assign the type of service, hence the per-hop Behavior
(PHB) of the classified requests. If it maintains content information for each cache
server, then the edge router is able to provide quality of service to different requests
by forwarding the requests to the most appropriate cache server from the clients’ point

of view, while balancing the workload of cache servers.

We propose a Switching-based Differentiated Service Caching (SDSC), the goal of
which is to provide three different types of service to three classes of requests,
namely Streaming-object Class, Real-time Assured Class and Best-effort Class. A
detailed simulation model is described. We show that for streaming object requests, if
cache servers have enough disk-bandwidth and cache size, then most SC requests
meet the DiffServ requirements in terms of response time. We also show that the
Acceptance Rate (AR) of SC is not influenced by the request intensity of RC and BC.
Compared with BC, the average response times of RC are lower than that of BC.

Furthermore, the workload of all cache servers is well balanced.

II

Acknowledgements

I would like to express my gratitude to my supervisors Dr. Hossam Hassanein and Dr.
Patrick Martin, for their enlightening guidance and instruction without which this

thesis is impossible.

I would like to thank all members of the Telecommunications Research Lab and the
Database Lab at Queen’s University for their suggestions, assistance, comments and

friendship.

Special thanks to my wife Yaping and my son Carl, who constantly supported,

encouraged me to do my best.

Finally, I would also like to extend my appreciation to the School of Computing and
Queen’s University for providing such great study environment and all-aspect

support. My experience at Queen’s University is unforgettable.

I

List of Acronyms

AR Acceptance rate of SC requests

BC Best-effort Class

Cal Common Gateway Interface

DB Delay Bound

DBR Disk-bandwidth Routing

DSCP Differentiated Service Codepoint

SDSC Switching-based Differentiated Service Caching
HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

ICp Internet Cache Protocol

IETF The Internet Engineering Task Force

LB_L5 Load Balancing Layer 5 switching-based transparent
LRU Least Recently Used algorithm

NLANR National Laboratory for Applied Network Research
MRT Minimum Response Time

PHB Per-hop Behavior

QoS Quality of Service

RC Real-time Assured Class

RIT Round Trip Time

SC Streaming-object Class

SLA Service Level Agreement

TCP Transmission Control Protocol

URL Uniform Resource Locator

WR Workload Routing

W3C

World Wide Web Consortium

v

Table of Contents

N 0T 8 o S I
ACKNOWIBAZEMENTS. ... e IT
| IR 0] V03 1)1 44 - T P PP m
Table Of COMEEIES. ueit ettt ettt e e ettt aae e e e e et ea e eeenanns v
LSt Of FIGUIES. .. c.uitinititit et VII
| BT 1 o) [RO EOSPPSP VIII
Chapter 1 IntroduCtion.ooiuiiii i 1
Chapter 2 Related Work..........oooiiiii 5
2.1 Distributed Web Caching and Cache Selection Algorithms....................... 5
2.1.1 Minimum Round Trip Time...........coooiiii 7

2.1.2 Minimum HTTP Request Latency.........ocooviiiiiiiiiinnne 7

2.1.3 Content-based SeleCtion..........covviiiiiiiiii i 8

2.1.4 Workload-based Selection...........ccoviiiiiiiiiiiiiiiii e 9

2. 1.5 LB-L5 SeleCtion. . .oovuiiie ettt 9

2.1.6 MRT SeleCtion.ovieiiiiiiiiei i e 10

2.2 Differentiated SEIVICE.cvuiiriieiinii i 10
2.2.1 Differentiated Service Architecture.............cooiiiiiiiiiiiiiin. 11

2.2.2 Differentiated Service in Web Caching..................on 13

2.3 Caching Streaming Media Content.............ooiiiiiiiiiiiiiii 17
2.3.1 Caching of Streaming Media Content................ccoeieiieiiiiiinen. 17

2.3.2Prefix Caching.......coiiiiiii i 19

2.4 SUIMIMIATY ..o ottt ettt ettt et eee et e st e e et et e e e e aeaa 19
Chapter 3 Switching-based Differentiated Service Caching (SDSC).................... 21
3.1 0verview of SDSCo e 21
3.1.1 Client Request Classification...........cooeiitiiiiiiinininiii e 24
3.1.2 Cache Content Representation............ooovviiiiiiiiniiiiiineneiinenns 25
3.1.3 Cache Server Selection Principles.........ooooviiiiiiiiiiiiii e 26
3.1.4 Processing Procedures for SC Requests............coviiiiiiieniins 28
3.1.5 Protocols for RC Requests and for BC Requests......................c... 33
3.1.6 Queuing at Cache SeIVEIS........ociiiiiiiiiiiiai e 36
3.2 Streaming-object Request Routing.............cooooiiiiinii i 37
3.3 Real-time and Best-effort Request Routing..............oooooiiiiiins 39
3.4 Information Exchange between switches and servers.................ooooeenen. 40
T T 11001172 U G PPN 41
Chapter 4 Performance Evaluation.................oooiii 43
4.1 Simulation Model.o e 43
4.1.1 SystemModel........oooiiiii e 44
4.1.2 Network Latency Model.............cooiiiis 45
4.1.3Workload Model.........ooiiiiii e 46
4.1.4 Simulation Parameter Setting...........oocoiiiiiiiiiimriiiiiiene 47
4.2 DBR, MRT and WR Implementation.............c.oooiiiiiiiiiiiiiini e 49
4.3 Performance MELIICS.voueet ittt ettt e 50
4.4 Simulation ReSUltS.ovviiiii i e 51

4.4.1 Raw-trace Driven SImulations.oovvviiiii i iiiereanaeecainen 51

4.4.2 Controlled-trace Driven Simulations.............coooooiii 58

I 1 §311117: VU 71
Chapter 5 ConClUSION.ot e 73
5.1 ContriDULION. .. .ottt e et e 74
S.2FUture WOrK. ..o 75

| N S (1110 T PP S 76
Appendix A. Bloom Filter.............ooooi 78
Appendix B. Simulator Structure......... ..o 81
Appendix C. Pseudo Code............oooiiii 83

VII

List of Figures

FIGURE 2.1 DISTRIBUTED WEB CRCHING ARCHITECTURE..........cocooiii 6
FIGURE 2.2 DIFFSERV ARCHITECTURE BY IETF. ..o 12
FIGURE 3.1 STRUCTURE OF SWITCHING-BASED DIFFSERV. ... 22
FIGURE 3.2 DS FIELD STRUCTURE. ... 25
FIGURE 3.3 CACHE-HIT IN DISK-BANDWIDTH ROUTING. ..o 29
FIGURE 3.4 CACHE-MISS IN DISK-BANDWIDTHROUTING. ..ot 31
FIGURE 3.5 FALSE-HIT IN DISK-BANDWIDTH ROUTING.ccooiiiiiiiii i 32
FIGURE 3.6 CACHE-HIT IN MINIMUM RESPONSE TIME. ..ot 34
FIGURE 3.7 CACHE-MISS AND FALSE-HIT IN MINIMUM RESPONSE TIME.................... 35
FIGURE 3.8 ICP MESSAGE FORMATot e 40
FIGURE 4.1 SYSTEM MODEL OF SWITCHING-BASED WEB CRCHING............c...coeei 44
FIGURE 4.2 NETWORK LATENCY MODEL......c.coiiiiiiiiiiii it 45
FIGURE 4.3 REQUEST INTENSITY OF RAW TRRCE.ccioiiiii 52
FIGURE 4.4 SC RCCEPTANCE RATE WHEN DB=800MS, DBANDWIDTH=80K, SC LATENCY
FRCTOR=10, SCCRCHE=80M.ot ittt e et e e e e n e e 53
FIGURE 4.5 RC, BC RESPONSE TIME WHEN RC LATENCY FRCTOR=20MS, RC
CRCHE=120M; BC LATENCY FRCTOR=24MS, BC CRCHE=100M........cc.cocoiiiiiiniiiinn 54
FIGURE 4.6 SC RCCEPTANCE RATE WHEN DB=800MS, DBANDWIDTH=80K, SC LATENCY
FRCTOR=40, SC CRCHE=80M.t ittt ettt et can e ee e 55
FIGURE 4.7 RC, BC RESPONSE TIME WHEN RC LATENCY FRCTOR=80MS, RC
CRCHE=120M; BC LATENCY FRCTOR=96MS, BC CRCHE=100M...........ccooeviiiiniinin 55
FIGURE 4.8 SC RCCEPTANCE RATE WHEN DB=800MS, DBANDWIDTH=80K, SC LATENCY
FRCTOR=60MS, SC CROHE=S0M.ccuititiiiiitiiiiiiia e ettt et is 56
FIGURE 4.9 RC, BC RESPONSE TIME WHEN RC LATENCY FRCTOR=120MS, RC
CRCHE=120M; BC LATENCY FRCTOR=144MS, BC CRCHE=100M...........ccccoooiiiiiiinnnnn. 56
FIGURE 4.10 SC RCCEPTANCE RATE WHEN DB=860MS, DBANDWIDTH=80K, SC
LATENCY FRCTOR=10MS, SCCRCHE=80M..........ciiiiiiiiiiiii e 57
FIGURE 4.11 SC RCCEPTANCE RATE WHEN DB=860MS, DBANDWIDTH=80K, SC
LATENCY FRCTOR=60MS, SCCRCHE=80M........ccoiritiiiniiii et 58
FIGURE 4.12 SC RCCEPTANCE RATE AND DISK-BANDWIDTH...............oceee. s 59
FIGURE 4.13 SC RCCEPTANCE RATE AND DELAY BOUND..........coiii 60
FIGURE 4.14 RC, BC RESPONSE TIME AND SC DELAY BOUND ... 61
FIGURE 4.15 SC RCCEPTANCE RATE AND REQUEST INTENSITY........coooiin s 62
FIGURE 4.16 RC, BC RESPONSE TIME AND REQUEST INTENSITY.....coocooiiiiiiin 63
FIGURE 4.17 SC RCCEPTANCE RATE AND RC, BC REQUEST INTENSITY.........ooceienninnn 64
FIGURE 4.18 SC RCCEPTANCE RATE AND SCCRCHE SIZE........coiiiiiiienaes 65
FIGURE 4.19RC, BC RESPONSE TIME AND SCCRCHE SIZE........coiiiiiiiiiiinis 66
FIGURE 4.20 SC RCCEPTANCE RATE UNDER UNBALANCED REQUEST INTENSITY........67
FIGURE 4.21 RC, BC RESPONSE TIME UNDER UNBALANCED REQUEST INTENSITY....... 67
FIGURE 4.22 CACHE WORKLOAD UNDER UNBALANCED REQUEST INTENSITY............ 68
FIGURE 4.23 SC RCCEPTANCE RATE UNDER UNBALANCED CRCHE SIZE AND
UNBALANCED REQUEST INTENSITY ...ttt 69
FIGURE 4.24 RC, BC RESPONSE TIME UNDER UNBALANCED CRCHE SIZE AND
UNBALANCED REQUEST INTENSITY ..o 70

FIGURE 4.25 CACHE SERVER WORKLOAD UNDER UNBALANCED CRCHE SIZE AND
UNBALANCED REQUEST INTENSITY ...ttt 71

VI

List of Tables

TABLE 3.1 INFORMATION TABLE AT ASWITCH......c.coiiii 41
TABLE 4.1 PARAMETERS FORLINKS 48
TABLE 4.2 PARAMETERS FOR SWITCHES. ...t 48
TABLE 4.3 PARAMETERS FOR WEB SERVERS. ... 48

TABLE 4.4 PARAMETERS FOR CRCHE SERVERS. ..o 48

Chapter 1 Introduction 1

Chapter 1 Introduction

The increasing diversity of Internet applications calls for differentiated services for
different types of applications. For instance, IP voice and video services require high-
quality support in terms of low delay, low jitter and great bandwidth while email and
file transfer have low quality requirements. The dramatically increasing number of
clients accessing the Internet, combined with limited network resources, also means it
is desirable to provide differentiated Internet access, providing clients with a range of
service-quality levels at a range of prices. For this purpose, IETF has introduced
differentiated services — DiffServ [25], whose structure and scheme has been adopted

in a variety of Internet applications, including web applications.

Web proxy caching is the key performance accelerator in the Web infrastructure [13].
It can reduce latency by satisfying a request from a cache instead of the origin server.
It can also reduce traffic as each object is only retrieved from the server once, thus
reducing the amount of bandwidth used by a client. Finally, it can provide

differentiated service (DiffServ) to network clients and applications.

To achieve DiffServ in web caching, many research efforts have addressed
performance differentiation on web servers or cache servers. On web servers,
resources (CPU, memory, disk or network bandwidth) can be allocated according to
DiffServ requirements of different clients. For instance, Abdelzaher, Shin and Bhatti

[1] presented an approach to resource management based on web content adaptation.

Chapter 1 Introduction 2

Service differentiation can also be achieved on cache servers. Several policies have
been devised for optimally allocating disk storage to static files, such as bias
replacement in favor of important users. For example, Lu, Saxena and Abdelzaher
[31] proposed a resource management architecture for web proxy caches that allows

differentiating hit ratio values seen by different content classes.

In an enterprise domain, DiffServ can be achieved on edge routers. Since an edge
router possesses the ability to categorize incoming requests into different classes, and
to assign per-hop behaviors (PHB) to the requests based on classification, an edge
router is a good place at which to achieve DiffServ for web caching. LB_LS [30] is a
Load Balancing Layer 5 switching-based transparent Web caching scheme that forms
the basic structure for our research, with switches as edge routers. In LB_LS5, a switch
forwards an incoming request to one of the caches it connects with according to the
content and workload of the caches and network latency. LB_LS, however, does not
guarantee the minimum response time. The Minimum Response Time (MRT) scheme

[45] extends LB_L5 to guarantee the minimum expected response time for requests.

Our research has two main goals. The first goal is to study how DiffServ can be
achieved in a switching-based web caching system. The second goal is to study how
streaming-object requests can be serviced in this system, and how the DiffServ

requirements of such requests can be satisfied.

Chapter 1 Introduction 3

The motivation of the research is to propose an end-to-end web-based DiffServ
system. The system is integrated in that DiffServ is achieved at ISO Application
layer, Transport layer and Network layer. In this thesis, we are concerned with
achieving DiffServ at Application layer, which utilizes DiffServ at Network and
Transport layers. DiffServ at Network layer can be achieved by adopting IETF’s

DiffServ model [26].

To this end, we propose the Switching-based Differentiated Service Caching (SDSC),
which contains two major components: request classification and request routing at
the switch. Request classification categorizes client requests into three classes —
Streaming-object Class (SC), Real-time Assured-object Class (RC) and Best-effort
object Class (BC), based on request content type. Class information is then carried on
in the IP DSCP byte [26]. After request classification, a switch uses the IP DSCP
information and routing algorithms to forward the request to the most appropriate
cache sever, if the DiffServ of the request can be achieved. Otherwise the request is
dropped. Request Routing uses three routing algorithms, namely, Disk-Bandwidth
Routing (DBR) for streaming media, Minimum Response Time (MRT) for real-time

assured class objects, and Workload Routing (WR) for best-effort class objects.

The main contribution of the research is twofold. First, we studied differentiated
service in web caching, and proposed a solution (SDSC) to classify HTTP requests
and then achieve DiffServ for the classified requests. Second, a comprehensive

simulatior was developed to evaluate the performance of the proposed SDSC.

Chapter 1 Introduction 4

The rest of the thesis is organized as follows. Chapter 2 provides a review of related
work. Chapter 3 presents an overview of the proposed SDSC scheme and describes
the two major components of the scheme — Request Classification and Request
Routing. Performance evaluations of the proposed scheme SDSC are conducted and
related models are presented in Chapter 4. Chapter 5 concludes the thesis and

suggests future work.

Chapter 2 Related Work 5

Chapter 2 Related Work

Distributed web caching is one of two most popular types of cooperative cache
system [35], with the other one being hierarchical system [35]. This chapter presents
a brief review of the two systems, introduces and compares several cache server
selection algorithms, two of which are adopted in our scheme. We then introduce
several differentiated service implementation schemes proposed by other researchers

that realize DiffServ on cache servers or web servers.

Streaming media caching [41] is another major concern of the research. Streaming
media is increasingly popular in current web applications, and caching it poses unique
problems because of its large size and real-time requirements. We introduce prefix

caching, a popular method of caching streaming media, which is adopted in our work.

SDSC extends the LB-L5 structure [30], which in turn is based on the transparent
distributed web caching architecture [16]. Transparent caching is a variant of web
caching where web traffic is automatically intercepted and redirected toward one or
more web cache servers, using L5 switches. The switch transparently intercepts web
traffic originated by the clients and applying a load balancing policy redirects http

requests toward one of the available cache servers.

2.1 Distributed Web Caching and Cache Selection

Algorithms

Chapter 2 Related Work 6

The two popular types of cache server cooperation are hierarchical and distributed
web caching. In hierarchical cache server architecture, each cache server in the
hierarchy is shared by a group of clients or by a group of child cache servers. In
distributed web caching, however, cache servers are organized into cache clusters
with no definite hierarchy among them, and are allowed to be distributed
geographically over large distances, as shown in Figure 2.1. A device, such as a
switch [6] or a local cache, sits between the client cluster and the cache server cluster

in the distributed web caching architecture.

Device Device Device Device

Figure 2.1 Distributed Web Caching Architecture [6]

Distributed web caching handles a data request in the following way: if a local cache
server contains the data requested by a client, the server sends the data to the client.
Otherwise, the local cache server or a switch device redirects the request to one of the
cache servers. If that cache server has a copy of the requested object, it sends the data
back to the client; otherwise the request is redirected to the web server. Compared

with the hierarchical architecture, distributed web caching systems have several

Chapter 2 Related Work 7

benefits such as distribution of server loads and improvement of client performance

by bringing cache servers closer to the client.

Popular cache server selection algorithms fall into two categories: client- initiated
selection and switch selection. Among these selection algorithms, Minimum Round
Trip Time and Minimum HTTP Request Latency [38] are client- initiated, while
Content-based Selection [12], Workload-based Selection [14], LB-L5 Selection [30]

and MRT [45] Selection are switch based.

2.1.1 Minimum Round Trip Time

The round trip time (RTT) of a request uses the Ping utility to determine the
proximity of distributed servers. The Ping utility uses the Internet Control Message
Protocol (ICMP) [27] to send ECHO_REQUEST to the cache server’s echo port and
listens to the ECHO_RESPONSE. The ping round trip time reflects the actual

network load on the route between the client and the server.

The NLANR [35] log traces used for our simulation use RTT to measure the response
time of packets. The drawback of RTT is that the ping round trip time does not

provide any indication of the cache server load and the speed of the cache server [38].

2.1.2 Minimum HTTP Request Latency

The response time of a HTTP request can be estimated by using the response time of

previous HTTP requests sent to the same cache server. This method assumes that the

Chapter 2 Related Work 8

HTTP request response times are stable within a short period of time. HTTP Request
Latency, a substitute of HTTP Request Response Time, is measured from sending the
request until the first byte of a response is received and is therefore independent of
the size of objects. Unlike RTT, the HTTP request latency reflects not only the actual
network load on the route between the client and the server, but also the server

workload and speed.

In the HTTP request latency algorithm, a client sends requests to the server with the
lowest median HTTP request latenéy in prior transfers. The problem with this
approach is that prior latency computations may not successfully estimate the current

response time because network load and server load change all the time.

2.1.3 Content-based Selection

Content-based routing decisions are made at Layer 5 of the OSI protocol hierarchies.
Switch-based redirectors may operate at Layer 4 (network layer) or Layer 5 and
above (Application layer) [11]. Redirectors providing Layer 4 services use TCP or
UDP transport layer information, and can be configured to direct all traffic with
particular destination TCP ports to a particular network port. Layer 5 switches use
information found in the payload of HI'TP request header packets. In order to obtain
the HTTP request header, a Layer 5 switch sends a TCP SYN_ACK message to the
client and tricks it into believing that there is a TCP connection established between

the client and the server. The client then sends the HTTP request to the Layer 5

Chapter 2 Related Work 9

switch. A Layer 5 switch [7] makes the routing decision based on the availability at

cache servers and type of the content.

2.1.4 Workload-based Selection

Some switches can intelligently redirect HTTP requests to lightly loaded cache
servers. For example, a switch can determine which server gets the next connection
by keeping a record of how many connections each server is currently providing, then

the server with fewest connections gets the next request.

However, such switches as Cisco CSS 11000 [14] series switches, select servers
based on server load and number of connections, and are blind to network latency.

Therefore, they are only suitable for local cache clusters.

2.1.5 LB_L5 Selection

LB_LS5 [30] is a fully distributed web-caching scheme that extends the capabilities of
Layer 5 switching to improve the response time and to balance cache server
workload. In LB_L5, a Layer 5 switch selects the best server based on cache content,
cache server workload, network load and the HTTP header information. If the
network latency between a cache server that stores the object and the Layer 5 switch
is smaller than some threshold, then that cache server is considered as a candidate for
access, and the Layer 5 switch uses load balancing algorithms to choose the best
server to retrieve the object. The drawback of this approach is that it is difficult to set

the threshold value and cannot guarantee the minimum request response time.

Chapter 2 Related Work 10

2.1.6 Minimum Response Time
To improve the LB_LS5 selection algorithm, the Minimum Response Time (MRT)
algorithm [45] aims to achieve the minimum expected response time of requests. In
this scheme, cache server selection is based on the expected value of response time
for both HTTP request cache-hits and HTTP request cache-misses. MRT selects the
cache server with the minimum expected value of a HT'TP request response time by
considering three factors:
1. Py miss, the probability that a predicted cache-hit HTTP request is a cache-miss on
a cache server.
2. The delay components for a cache-miss HTTP request, T¢s_miss.,
3. The delay components for a cache-hit HTTP request, T ¢s_pi-
MRT estimates the expected response time of a request as follows:

E(RT)cs = Pesmiss * T es_miss +(1-Pes_miss)* T es_ir
MRT assumes that the size of requested objects is not significantly large and that all

requests are equivalent.

2.2 Differentiated Service

Quality of Service (QoS) [15] aims to provide better service to selected traffic,
facilitate priority by providing dedicated bandwidth, controlled jitter and latency

(required by some real-time and interactive traffic), and improved loss characteristics.

Differentiated Services (DiffServ) is a means of providing QoS [25] by enforcing the

aggregate traffic contracts between domains and ensuring that new sources of marked

Chapter 2 Related Work 11

packets;i do not cause traffic profiles to be violated. The idea behind the DiffServ
architecture is based on aggregation of flows. Service differentiation is provided
through service classes rather than providing per-flow QoS management. Core routers
do not maintain per-flow states, they forward packets based on Per Hop Behaviors
(PHB) encoded in the IP header’s DiffServ Code Point (DSCP) field, which specifies
the class of service for each packet, and can be used to provide the appropriate

expedited handling by nodes throughout the network.

2.2.1 Differentiated Service Architecture

The DiffServ architecture is based on a simple model where incoming traffic is
classified and assigned to different behavior aggregates (BA). The behavior aggregate
information is encoded in a DSCP’s. Within the core of the network, packets are

processed according to their DSCP’s.

A DiffServ structure contains one or more DiffServ Domains, as illustrated in Figure
2.2. A DiffServ domain consists of a contiguous set of DiffServ nodes that are subject
to a common service provisioning policy and a set of PHB groups implemented on
each node. The boundary of a DiffServ domain consists of DiffServ boundary nodes,
which classify and mark incoming traffic, which is handled using PHB supported
within the domain. Nodes within the DiffServ domain select the forwarding behavior

for packets based on their DSCP, and map that value to one of the supported PHBs.

" Packets are marked at the IP-layer packet using the DS field at DiffServ domain boundaries.

Chapter 2 Related Work i2

DiffServ Domain B

Boundary Node: Interior Node Boundary Node:
Ingress Node Egress Node

Figure 2.2 DiffServ Architecture [23]

DiffServ boundary nodes may perform traffic conditioning functions as defined by a
traffic conditioning agreement (TCA) between their DiffServ domains and peering

domains they connect with.

The TCA may specify packet classification and re-marking rules and may also
specify traffic profiles and actions to traffic streams, which are in- or out-of-profile.
The packet classification policy identifies the subset of traffic, which may receive a
differentiated service by being conditioned and/or mapped to one or more behavior
aggregates within the DiffServ domain. After classification, a traffic conditioner
performs metering, shaping, policing and/or re-marking to ensure that the traffic
entering the DiffServ domain conforms to the rules specified in the TCA, in

accordance with the domain’s service provisioning policy.

Chapter 2 Related Work 13

After being classified and conditioned, a packet is assigned a per-hop behavior
(PHB). A PHB is a description of the externally observable forwarding behavior of a
DiffServ node applied to a particular DiffServ behavior aggregate. A node allocates
resources to behavior aggregates according to PHB, which may be specified in terms
of their resource (e.g., buffer or bandwidth), priority relative to other PHBs, or in
terms of their relative observable traffic characteristics (e.g., delay or loss). IETF has
defined the Expedited Forwarding PHB (EF PHB) [22] and Assured Forwarding PHB
(AF PHB) [24] to implement premium service and assured services, respectively. The
premium service is a low loss, low latency, low jitter, assured bandwidth, end-to-end
service through DS domains, and strictly enforces traffic layer. The assured service
provides several classes with different layers of drop priority, but with fuzzy service

guarantees.

2.2.2 Differentiated Service in Web Caching

With the dramatic increase of web traffic on the Internet, proper web caching
schemes become crucial to providing adequate service to clients. Since caching
resources such as cache size and disk-bandwidth are not infinite, they need to be
allocated in an efficient manner. Current web caching systems that treat all client
requests alike regardless of client importance and availability of resources may not
make the best use of their finite resources in a heterogeneous environment. In the
future, Internet services will be priced and differentiated service support will be in
place. So caching policies should be able to adapt not only to clients’ access patterns

but also to the importance or DiffServ class of clients or contents. For example, an

Chapter 2 Related Work 14

ISP can have agreements with preferred content providers to give their site better
service for a negotiated price. To enable such differentiation in a web caching system,

we can consider implementing DiffServ at web servers, cache servers, or switches.

DiffServ can be achieved on the server side at either the system layer or Application
layer. In general, at the system layer, different layers of resources including CPU,
disk, network bandwidth, and physical memory are provided to different classes; at

the Application layer, scheduling algorithms are applied to requests.

One way to incorporate DiffServ at the system level is Reservation Domains [8]. A
reservation domain is a collection of processes and corresponding resource
reservations. A computer system may run several reservation domains and provide
several types of resources (e.g., CPU, disk, network, physical memory), which are
reserved and scheduled independently. The processes that belong to a particular
reservation domain are guaranteed to receive at least their reserved portions of the

domain’s associated resources.

Reservation Domains have the following benefits:
1. They provide QoS guarantees even when the system is overloaded. A reservation
domain is similar to a smaller, dedicated machine, so application programs need not

be rewritten to use real-time services for delivering QoS in a shared environment.

Chapter 2 Related Work 15

2. They allow division of resources according to a policy. For example, two
reservation domains may each reserve half the CPU, although one of them contains

more processes than the other, and all processes are CPU bound.

Service Differentiation can also be implemented at the kernel-level. A scheme
proposed by Almeida, Dabu, Manikutty and Cao [3] directly maps the user-level
request priority to a kernel-level process priority. In this approach, the Apache HTTP
server [5] is modified to have each HTTP process call the kernel to record the priority
of the current request it is handling. The kernel is responsible for mapping this
priority into the process priority and executing the Sleep policy to decide if the
process should proceed or block. When a process finishes handling a request, it calls
the kernel again to release its priority and execute the Wakeup policy. The kernel first
decides the priority level of the process to be unblocked, and then it chooses the
process that blocked the earliest and originally was running on that priority level.
When choosing a process to sleep, the kernel picks the process that started running

the latest among all of those running on the lower priority.

For multimedia service, Chandra, Ellis and Vahdat [10] propose a Transcoding
scheme that controls the consumed bandwidth for the different classes by
proportionally reducing the image quality until the consumed bandwidth equals twice
the target bandwidth, at which point further requests are denied. For preferred clients,
the server reduces the image quality factor of the images served at a rate that is

proportional to the overall target bandwidth. For the rest of the clients, the server

Chapter 2 Related Work 16

reduces the image quality factor of the images served at a rate that is proportional to

the leftover bandwidth.

At the Application layer, application specific information is maintained and utilized.
For éxample, admission control algorithms can bind application data losses below a
specified value; users can dynamically choose their level of network quality based on
the resource cost, or select a lower quality multimedia object on a slower (cheaper)

network in order to improve the access latency [10].

At a cache server, the usual approaches to providing a differentiated caching service
is to consider how to allocate cache size or how to replace objects. Zhou and Philbin
[44] propose Multi-Level LRU (ML-LRU), a replacement algorithm for performance
differentiation in web caches. A cache using this algorithm maintains multiple
queues, corresponding to different classes of objects. With service differentiation, the
expected lifetime of premium objects is increased. In this algorithm, each queue
employs simple LRU for object replacement within its own level. In addition, the
queues are interconnected such that an object evicted from higher level is inserted
into the head of the adjacent lower level. Upon a cache hit, an object is transferred

back to the head of its original level.

Lu, Saxena and Abdelzaher [31] propose a control-theoretical approach to increase
the hit rates of higher-class requests and thus increasing the client-perceived

performance of these requests. The approach assumes N classes of users/traffic, the

Chapter 2 Related Work 17

average delay of class j is Dj, and Kj is the specified weight for class j. To achieve the
objective: D1:D2: ...: DN =K1:K2: ...: KN, an error ¢f = Kj/(K1+K2 + ... +KN)-
Dj/(D1+D2 + ... + DN) for class j is measured per feedback loop. Then resource
allocation is adjusted based on the error. The approach addresses the problem as one
of controller design and leverages principles of digital control theory to achieve an
efficient solution. Results suggest that the approach results in a very good controller

design compared to manual parameter tuning approaches.

2.3 Caching Streaming Media Content

The increasing popularity of multimedia content on the Internet has stimulated the
emergence of streaming media applications. Digitization of video and audio yields a
sequence of frames or samples that are referred to as streams [21]. When media
content is transmitted in the steaming mode rather than download mode, it is played
out while parts of the content are being received and decoded. This enables the client
to initiate display of data with only small start-up latency and without waiting for the
entire file to be downloaded. Due to the real-time nature of media data, streaming
mocie typically has bandwidth, delay and loss requirements and long duration.
Caching streaming media objects becomes especially attractive due to the static
nature of the content, predictable sequential nature of accesses, and the high network

resource requirements.

2.3.1 Caching of Streaming Media Content

Chapter 2 Related Work 18

Caching streaming media [32] files has following characteristics [4]. First, real-time
multimedia has timing constraints, which means, audio and video data must be played
out continuously at a specific rate. Web caches need to reserve cache bandwidth for
each media file, so media files stored in the cache require both bandwidth and space
occupation. For this reason, only a limited number of media files can be guaranteed
QoS. Second, compared with other Internet applications such as email and web
browsing, streaming media requires high data rates and consumes significant
bandwidth over long periods of time. Third, traffic generated by streaming media
tends to be bursty and is sensitive to delay. Finally, steaming media files are very
large in size; so they require significant storage that may be tens of megabytes to tens
of gigabytes. For this reason, cached content must be stored on disks, not in memory

caches.

To meet these requirements, some streaming media caching algorithms have been
proposed and evaluated, such as Least Relative Benefit (LRB) [43], Resource-Based
Caching (RBC) [40] and Prefix Caching [39] [29]. RBC manages the heterogeneous
requirements of multiple data types by considering disk bandwidth as well as disk
storage capacity, and caches a mixture of intervals and full files that have the greatest
caching gain. LRB modifies the RBC policy to cache prefixes to facilitate further
savings on network latency. Prefix Caching considers disk-bandwidth, and caches
prefixes in cache servers. Prefix Caching is not as complicated as LRB or RBC, but

satisfies our research requirements, and hence is used in our system.

Chapter 2 Related Work 19

2.3.2 Prefix Caching

Instead of caching entire audio or video streams (which may be quite large), the
proxy stores a prefix [39][29] consisting of the initial frames of each clip. Upon
receiving a request for the stream, the proxy immediately initiates transmission to the
client, while simultaneously requesting the remaining frames from the server. In
addition to hiding the latency between the server and the proxy, storing the prefix of
the stream aids the proxy in performing work-ahead smoothing into the client
playback buffer. By transmitting large frames in advance of each burst, work-ahead
smoothing substantially reduces the peak and variability of the network resource

requirements along the path from the proxy to the client.

2.4 Summary

In this chapter, we first introduced distributed web caching and switch-based cache
selection algorithms. Switch-based selection algorithms have the following
advantages. First, a switch is optimized for examining and processing packets, so
there is minimal impact on non-Web traffic. Second, removing the packet
examination, server selection, network address translation and routing functions from
the cache server frees up CPU cycles for serving Web pages. Third, using a switch
redirector that is separate from the cache servers allows the client load to be
dynamically spread over multiple cache servers, which, in turn, can reduce response
time. Further, redundant redirectors can be deployed, eliminating any single point of
failure in the system. For above reasons, we concentrate the research effort on switch-

based web caching systems.

Chapter 2 Related Work 20

We then introduced QoS and Differentiated Service (DiffServ) in web caching
applications. DiffServ is a trend in Internet applications. For one thing, Internet
infrastructure resources are limited; CPU, memory, disk, network bandwidth, etc. can
not be enough to satisfy the rapidly growing demand of clients and applications. For
another, Internet customers who pay more for their service need relatively better
service, and some applications themselves have DiffServ requirements. When
achieving DiffServ in web caching, we can consider locations, such as web server,
proxy, switch, or client. We can also consider different levels at which to achieve
DiffServ, such as system level, or application level. As DiffServ is a systematic task
from web server to client, it should be addressed anywhere along this data path. Up to
now, proposals have been made to achieve DiffServ at Network layer and Application
layer. Our research is to deploy DiffServ in an integrated web-based system, from
Application layer to Network layer. As the first step, we propose a DiffServ scheme

at the Application layer, which takes advantage of DiffServ at the lower two layers.

Multimedia is another major concern of our research, as it is becoming increasingly
popular and accounts for around 50% of data available on web servers. To achieve
DiffServ, we select multimedia content as one class of data requested. However, due
to the large size and real-time requirements of such content, a different caching
algorithm is required. Research shows that Prefix Caching is an effective way of
caching streaming multimedia content. In our research, we use prefix caching for

streaming media objects.

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 21

Chapter 3 Switching-based
Differentiated Service Caching
(SDSC)

In this chapter, we present a scheme for Switching-based Differentiated Service
Caching (SDSC) that uses the client request header, cache server content, cache
server disk bandwidth, cache server workload, web server workload and link delay to
effectively forward requests arriving at a switch to the most appropriate cache server
or web server. The goals of SDSC are:

1. to classify Internet requests into different classes;

2. to provide differentiated DiffServ for different classes, including streaming
multimedia content; and

3. to balance cache server workload.

3.1 Overview of SDSC

SDSC extends the LB_LS5 transparent Web Caching Scheme [30] to include DiffServ
provisions. The system structure is shown in Figure 3.1, where enterprise networks
are connected with each other to achieve cache content sharing among the networks.
Each network can be a local area network (LAN), and can belong to a same
organization. SDSC is transparent, which means that each switch (thus the enterprise
network where the switch is in) has the content information of all the cache servers it
connects with. A client cluster is connected to its local L5 switch, which in turn

connects with all cache servers and the web server. A cache server connects with all

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 22

switches and the web server. There is no direct connection between cache servers.

Cache sharing is achieved through the L5 switch.

Enterprise

Network .~ e
ol £

4 Web Server
Web Server

—

Client Cluster

Client Cluster

Bandwidth

. Broker < < SLA
DS

Domain

Figure 3.1 Structure of Switching-based DiffServ

SDSC consists of two components: client request classification and service
provisioning, both of which are achieved on switches. L5 switches check HTTP
request content, categorize requests into three classes: Streaming-object Class (SC),
Real-time Assured Class (RC) and Best-effort Class (BC). For each class, a switch
applies a corresponding routing algorithm. For SC, we introduce a new web-caching

algorithm that extends prefix caching, namely, Disk-Bandwidth Routing (DBR).

DBR determines which cache server with enough disk-bandwidth can return the first

byte of the requested SC object with minimum response time and within the specified

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 23

delay bound. It then forwards the request to that cache server. If the cache server does
not contain requested object in whole, the switch receives the remainder from the web
server. For RC, Minimum Response Time (MRT) [45], which guarantees the
minimum response time, is used. For BC, Workload Routing (WR) is used. It
chooses a cache server with the lowest workload, thus balancing the workload of all

cache servers.

DBR is significantly different from MRT and WR in three aspects:

1. aswitch considers disk-bandwidth consumption of cache servers in DBR;

2. for large streaming media objects, the cache server holds the prefix and the
remainder is transmitted directly from the web server; and finally,

3. for a request to be accepted, the first byte must be delivered within a specified

Delay Bound (DB).

When measuring performance, there are some further differences, such as:

1. SC requests are measured with the response time of the first byte of the requested
object, while RC and BC objects are measured with the response time to receive the
last byte;

2. to guarantee the response time is within DB, we measure the acceptance rate (AR)

for DBR, since requests that cannot be satisfied within this bound must be dropped.

Basically, SC has a higher priority than RC, which in turn has a higher priority than

BC. The priorities are manifested in three ways:

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 24

1. the processing time for SC objects on caches or the web server is faster that for
RC, which in turn is faster than that for BC;

2. the link latency of SC packets is lower than that of RC, which in turn is lower
than that of BC (This reflects the fact that packets carrying SC traffic have expedited
PHB);

3. the average response time of RC requests should be smaller than that of BC even

if the link delay and processing time are the same for both RC and BC.

In SDSC, we make the following assumptions:

1. the disk-bandwidth for processing a SC request at a cache server is the same and
constant for all SC objects;

2. the objective of the system is to minimize service delay. We define service delay
for SC requests to be the delay before the first byte of an object is received by the
client;

3. streaming media objects are transmitted as constant bit-rate (CBR) traffic;

4. the web server is not a bottleneck for processing requests and has sufficient

storage space and disk-bandwidth.

3.1.1 Client Request Classification

The DiffServ architecture uses the DS byte in the IP field to reflect the classification.
Six bits of the DS field are used as a codepoint (DSCP) to select the PHB a packet

experiences at each node. The DS field structure is presented in Figure 3.2:

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 25

0123456 7
1 DSCP ' cu|

DSCEP: differentiated services codepoint CU: currently unused

Figure 3.2 DS Field Structure

DS-compliant nodes select PHBs by matching against the entire 6-bit DSCP field.
The DSCP field is defined as an unstructured field to facilitate the definition of future

per-hop behaviors.

At a switch, the client request classification component classifies Internet requests
into one of SC, RC and BC and marks the DS byte of IP header accordingly, thus
providing expedited forwarding PHB for premium service and assured forwarding
PHB for assured service, as described in Chapter 2. This classification information is

then carried until the request is completed.

3.1.2 Cache Content Representation

We use a Bloom Filter [17]{34] (see Appendix A) to represent cache server content,
including SC prefixes as used in the cache digest scheme [37]. A Bloom Filter is an
array of bits. To represent an object in a Bloom Filter, a fixed number of independent
hash functions are computed from the object’s key. The number of hash functions
specifies how many bits are used to represent one object. Their hash values specify
the bit positions that should be set tol in the Bloom Filter. All the bits are initially O.
When a key a (in our case, the URL of a document) is inserted or deleted, the

counters c(hi(a)), c(hz(a)), ..., c(hi(a)) are incremented or decremented accordingly.

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 26

When a count changes from 0 to 1, the corresponding bit is turned on. When a count

changes from 1 to 0 the corresponding bit is turned off.

In SDSC, switches and caches use the same hash functions and bit arrays. Therefore,
a URL is represented in the same way in all switches and cache servers. To make
switches aware of cache content, a cache server sends its content in the form of a
Bloom Filter to the switches. A switch stores the content information for each cache
server. When a switch needs to check whether a requested object is in a cache server,
it uses the same set of hash functions for the request’s URL and examines the
corresponding bits in the cache server’s Bloom Filter. If all of the matching bits are
1’s then the requested object is assumed to be in that cache server. Otherwise the

object is assumed to be not in the cache server.

An object could be placed in different cache servers. Therefore, the way a L5 switch
chooses the best cache server to service the request is a key issue in the system. In the

next section we describe how to find the most appropriate cache server for a request.

3.1.3 Cache Server Selection Principles

Generally speaking, a switch selects the cache server that can satisfy the request with
minimum response time or the one that with minimum workload. A Layer 5 switch
uses cache server workload and network latency to estimate the request response time

for each cache.

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 27

In DBR, cache server selection for SC objects is based on the expected response time
to receive the first byte of the requested object. DBR selects the cache server with the
minimum expected response time to deliver the first byte. A switch uses 5 factors to
determine the response time:

1. cache server content: if a cache doesn’t contain the object, it will not be chosen;

2. cache server disk-bandwidth usage: if there is not enough disk-bandwidth in a
cache server to process a SC request, then the cache server is not selected;

3. the workload of the cache server for SC requests: it influences the processing
time; and

4. delay of SC link(s): link delay is part of the response time;

5. false hit probability: the probability that a predicted cache-hit HTTP request is a

cache-miss on cache server.

In MRT, which is used for RC requests, cache server selection is also based on the
expected response time in case of HTTP request cache-hit and in case of HITP
request cache-miss. MRT selects the cache server with the minimum expected request
response time. The expected response time is:

E(RT)cs = Pes_miss * T es_miss +(1-Pes_miss)™ T es_nir
where P,y miss, 1S the probability that a predicted cache-hit HTTP request is a cache-
miss on cache server; T,_miss 18 the delay component for a cache-miss HT TP request,

and 7 .,_pi 1s the delay component for a cache-hit HTTP request.

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 28

In Workload Routing, which is used for BC requests, cache server selection is based
only on the content and current workload of a cache server. The workload includes all
current requests. The LS switch selects the cache server that contains the object with

the minimum workload.

3.1.4 Processing Procedures for SC Requests

SC requests require that cache servers have enough disk-bandwidth, response time is
within a delay bound, and the requested prefixes are in the cache servers. Therefore,
in DBR, four cases exist where a SC request cannot be accepted:

1. no cache stores the requested object;

2. a cache server stores the object, but there is not enough disk-bandwidth in the
cache server to handle the request;

3. a cache server contains the requested object and has enough disk-bandwidth to
handle the request, but the minimum predicted response time for the request is larger
than the delay bound; and

4. a false hit, that is, when a request is forwarded to a cache server, the cache server

in fact does not have the object.

The protocol procedure for a cache-hit HITTP request for a SC object in DBR is
illustrated in Figure 3.3. When a switch receives a HTTP_REQ (http request
message), it uses its Bloom filters to determine the set of cache servers that
potentially have the object. The switch next determines the subset of cache servers

with enough disk-bandwidth and then selects the server from that subset with the

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 29

minimum response time. If the minimum response time is within the delay bound
(DB), then the following actions occur:

I. The switch forwards the request to the selected cache server by sending a
TCP_SYN signal for a connection. The cache server sends a TCP_ACK to accept the
connection. The time spent is the round trip time between the switch and the cache
server.

2. The switch relays a HITTP_REQ to the cache server. The time required is

estimated as half of the round trip time between the switch and the cache server.

- v P
eb Client Layer 5 Switch Cache Server Web Server
TCP_SYN
rcpack
———— HITPREQ
TCP_SYN
TCP_ACK
Time HTTP_REQ
i e Res
| ITTERES]
TCP_SYN
TCP_FIN
TCP_ACK
HTTP_REQ
HTTP_RES
TCP_FIN
oy
| : . v

Figure 3.3 Cache Hit in Disk-Bandwidth Routing

3. The cache server processes the request. If there is not enough disk-bandwidth, the

cache server returns a NULL object. If this is a true-hit and there is enough disk-

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 30

bandwidth, the cache server begins to occupy the disk-bandwidth. The time for the
processing is proportional to the cache server’s SC workload (definition and
calculation of SC workload is presented in 3.1.6).

4. The cache server relays the requested prefix to the switch (HTTP_RES). The time
spent is half of the round trip time between the cache server and the switch plus the
time to transmit the whole prefix at the cache server. After transmitting the last byte
of the prefix, the cache server releases the occupied disk-bandwidth.

5. From the perspective of the switch, the response time of the first byte of the prefix
is the sum of the above components. The switch immediately sends the prefix to the
client cluster. If the prefix is NULL or the total object size is not larger than the prefix
size, then the switch sends TCP_FIN to the client after it receives TCP_FIN from the
cache server. Otherwise, the switch initiates a connection with the web server by
sending a TCP_SYN to the web server, which in turn returns a TCP_ACK.

6. The switch sends a HTTP_REQ to the web server for the remainder of the
requested object, and the web server replies with the remainder (HTTP_RES). The
time at the web server for processing the remainder of the requested object is
proportional to the size of this remainder and the SC workload at the web server.

7. The web server sends the TCP_FIN to the switch, which in turn sends a TCP_FIN
to the client cluster and ends the request procedure for the object.

8. From the perspective of the client, the response time of the first byte is calculated
from the time the client sends a TCP_SYN until the client receives the HTTP_RES
message; while the response time of the whole object is calculated from the time the

client sends a TCP_SYN until receiving TCP_FIN.

Chapter 3 Switching-based Differentiated Service Caching (SDSC)

31

The protocol followed for a cache-miss HTTP request for a SC object in DBR i1s

illustrated in Figure 3.4. When a switch receives a HTTP_REQ from a client cluster,

if it determines that no cache server stores the prefix, it sends a HITP_RES and

TCP_FIN to the client cluster. If there are some cache servers with enough disk-

bandwidth to han

Time

TCP_SYN

TCP_ACK
HTTP_REQ

HTTP_RES

R

Layer5 Switch

TCP_SYN

TCP_FIN TCP_ACK
— R

\4

HTTP_RES
TCP_FIN

Cache Server

TCP_ACK

dle a SC request, the switch does the following:

Web Server

——TersYN

HTTP_REQ

A4

HTTP_RES
TCP_FIN

Figure 3.4 Cache Miss in Disk-Bandwidth Routing

v

1. It asks the cache server with most disk-bandwidth to get and cache the prefix from

the web server. The switch sends a TCP_SYN to the cache server, which replies with

TCP_ACK.

2. The switch sends HT'TP_REQ to the cache server for the prefix of the object;

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 32

3. The cache server processes the request, and sends HTTP_RES with a NULL
object and a TCP_FIN to the switch.

4. 1If the cache server has enough disk-bandwidth, then it sends a TCP_SYN to the
web server for the prefix (and begins to occupy the disk-bandwidth for the request).
The web server replies with TCP_ACK.

5. The cache server sends HI'TP_REQ to the web server for the prefix, and the web
server replies with HIT'TP_RES. The cache server stores a copy of the prefix. After the

cache server receives a TCP_FIN from the web server, it releases the disk-bandwidth.

In the case of a false-hit, which is shown in Figure 3.5, the following events occur:

Web Client Layer 5 Switch Cache Server Web Server
TCP_SYN
TCP_ACK
HTTP_REQ

TCP_SYN

E—
Time
| ST

HTTP_REQ

HTTP_RES TCP_SYN

R JCPAK
S — HTTP_REQ

HTTP_RES

HTTP_RES
v v v v

Figure 3.5 False Hit in Disk-Bandwidth Routing

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 33

1. A switch sends a TCP_SYN to the selected cache server, which returns a
TCP_RES (TCP response message).

2. The switch sends a HTTP_REQ to the cache server, which sends a HTTP_RES
with a NULL object, followed by TCP_FIN.

3. At the same time, the cache server checks if there is enough disk-bandwidth in the
cache server. If there is not enough space, the cache server does nothing. Otherwise, it
asks the web server to send the prefix.

4. The cache server sends TCP_SYN to initiate the connection with the web server
and occupies the disk-bandwidth needed to receive the prefix. The web server replies
with TCP_ACK.

5. The cache server sends HTTP_REQ for the prefix, and the web server sends back
the prefix HI'TP_RES, and the cache server stores a copy of the prefix.

6. The web server sends TCP_FIN after finishing sending the prefix, the cache

server release the disk-bandwidth.

3.1.5 Protocols for RC Requests and for BC Requests

A switch uses MRT to forward an RC request, and uses the Workload Routing to
forward a BC request. The cache server selection algorithms, processing queues,
processing time, workload and link delays are different for the two schemes, and RC
workload influences BC workload. The message exchange of both is the same. The
cache-hit protocol is illustrated in Figure 3.6. After the switch receives TCP_ACK,

then following actions occur:

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 34

1. The switch relays the HTTP request to the cache server. The time required is
estimated to be half of the round trip time between the switch and the cache server.

2. The cache server processes the request. The time for processing is proportional to
the cache server’s workload.

3. The cache server relays the object to the switch. Again the time required is

estimated to be half of the round trip time between the cache server and the switch.

A cache-hit request response time is equal to the sum of the above components.

Web Client Layer 5 Switch Cache Server Web Server
TCP_SYN

R

TCP_ACK

TCP_SYN

Time TCP_ACK

HTTP_REQ

HTTP_RES
TTP_RES TCP_FIN

¢ TCP_FIN

v v v
Figure 3.6 Cache Hit in MRT

Cache-miss and false-hit handling procedures are illustrated in Figure 3.7. After a

switch receives a HTTP request from the Web client, it uses either MRT or Workload

Routing.

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 35

1. The switch sends a TCP_SYN to a cache server, which sends back TCP_ACK.
The time spent is the round trip time between the L5 Switch and the cache server.

2. The switch relays the HTTP request to the cache server. The time required is
estimated to be half of the round trip time between the L5 Switch and the cache
Server.

3. The cache server processes the request for a time proportional to the cache
server’s workload.

4. Since this is a cache-miss or false-hit, the cache server sends a TCP_SYN to the
web server, which sends back a TCP_ACK. The time required is the round trip time

between the cache server and the web server.

i

i
i

b 78 = L
Web Client Layer 5 Switch Cache Server Web Server
TCP_SYN

TCP_ACK

_%“RE(Q
TCP_SYN
Time TCP_ACK
l HTTP_RE TCP_SYN
TCP_ACK
HTTP_REQ
TTP_RE

HTTP_RE TCP_FIN
HTTPRES |ke——" & |
| rermn
TCP_FI

v v v v

Figure 3.7 Cache-miss and False-hit in MRT

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 36

5. The cache server relays the HI'TP request to the web server. The time required is
estimated to be half of the round trip time between the cache server and the web
server.

6. The web server processes the request for the time proportional to the web server
workload.

7. The web server sends back the requested object to the cache server. The cache
server stores a copy. The time spent is estimated to be half of the round trip time
between the cache server and the web server.

8. The cache server relays the object to the switch. The time spent is estimated to be
half of the round trip time between the cache server and the switch.

A cache-miss or false-hit request response time is equal to the sum of the above

components.

3.1.6 Queuing at cache servers

SC requests, RC requests and BC requests are placed in separate queues at a cache
server. In our DiffServ framework, resources are reserved for classes at each node
that processes requests. In SDSC, we assume that requests belonging to three classes
are in three separate queues, and the average processing time for class i, PT; is

constant.

The SC workload of a cache server is calculated as follows:

WLsc =Ns'c / MAXsc

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 37

where N, is the number of SC requests at the cache server, and MAX,. is the
maximum allowed number of concurrent SC requests at the cache server. The values

are periodically sent by the cache server to the switch.

The RC workload of a cache server is calculated as follows:
WL, =WL,. + N,./ MAX,,
where N, is the number of RC requests at the cache server, and MAX,. is the

maximum number of concurrent RC requests at the cache server.

The BC workload of a cache server is calculated as follows:
WLy =WL,. + Np./ MAX,,.
where Nj. is the number of BC requests at the cache server, and MAX,. is the

maximum number of concurrent BC requests at the cache server.

After we get the SC, RC and BC workload of a cache server, we can get the
processing time for a request of class i [36]:

T, =WL;* Max;* PT;, i€ {SC, AC, BC}
A switch can periodically get the three workloads of a cache server, and the

maximum http request numbers of the classes, hence it can calculate and predict

cache server processing time for a request.

3.2 Streaming-object Request Routing

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 38

DBR is based on a distributed architecture, where each cache server sends its SC
content and number of SC objects to all switches. A switch periodically queries the

workload of each cache server.

A Layer 5 switch in DBR makes a routing decision as follows:

If a cache server is predicted to store the requested prefix, the expected response time
of the first byte of the prefix is calculated as:

ESsi_es{ RT)=2¥RTTSswi_csj +WLS ey *MaxS s *PT Sy

where RTTS;,.; s is the round trip time from switch i to cache server j for a SC object,
WLS.; is the SC workload at cache server j, MaxS,,; is the maximum SC workload at
cache server j, and PTS,, is the average SC processing time at a cache server.

The switch selects the cache server with the minimum estimated response time.

To keep continuous and smooth transmission, the prefix size should be large enough
such that the client receives the whole object without interruption. To achieve this,
the first byte of the remainder transmitted from the web server should arrive at the
switch before the last byte of the prefix transmitted from the cache server leaves the

switch. The size of the prefix is calculated such that this condition is true.

To make the first byte of the remainder arrive from the web server before the last byte
of the prefix leaves at a switch, fromainder_arrive < prefix_leave Should be satisfied. Note that
Lremainder_arrive ANA Iprefix_teave Meet the following conditions:

tremainder_ arrive 2 mm(R TTwa_ws) *2+PTS ws * mln(WLSws) *M axSws;

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 39

tprqﬁx‘leave = Zprqﬁx_trammission
Uprefix_transmission 18 Calculated as follows:

tpreﬁx_transmi.su\'ion =S izepreﬁx / Ratezmnsmission;
Therefore, the size of a prefix is calculated as follows:

Sizeprefic 2 Rateyansmission™ (MIn(RTTS g,) *2 + PTSys* min(WLS\s)* MaxS$,,)

3.3 Real-time and Best-effort Request Routing

A LS5 switch uses MRT to make routing decisions for a RC request as follows:
If a cache server is predicted to store the requested object, the probability that the
request is a cache-miss [34] is calculated as:

Pespiss = Fp = (1- "/)"
Otherwise: Py miss = 1
The expected response time for a cache server is calculated as [45]:
ERvi esf(RT)=Pes_miss (2*RTTR gi_cijt WLR i *MaxR i *PTR s+ 2*RTTR 5 s+
WLR s *MaxR,s *PTR us) +(1- Pes_miss) ¥(2*¥RTTRswi_csi+ WLR i *MaxR i *PTR)
where P.s miss, 1S the probability that a predicted cache-hit HTTP request is a cache-
miss on cache server CS, RTTRgi s 1s the round trip time for a RC object from
switch i to cache server j, WLR,,;is the RC workload at cache server j, MaxR.; is the
maximum RC workload at cache server j, PTR,, is the average processing time of RC
requests at a cache server, WLR,, is the RC workload at the web server, MaxR,; is the
maximum RC workload at the web server, and PTR,, is the average RC processing
time at the web server. The switch selects the cache server with the minimum

estimated response time.

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 40

A L5 switch uses Workload Routing to make routing decisions for a BC request as
follows:
1. Compare the BC workload of all cache servers.

2. Select the cache server with the minimum BC workload.

3.4 Information Exchange between switches and servers

We extend ICP (Internet Cache Protocol) [42] to exchange content, workload and
disk-bandwidth information between a switch and a cache server. Similar messages

are used by Liang [30] and Zou [45] . The ICP message format is as follows:

0 1 2 4
Opcode | Version | Message Length
Request Number
Options
Option Data
Sender Host Address
Payload

Figure 3.8 ICP Message Format

The following opcodes are used by SDSC:

° Thé ICP_UPDATE_CONTENT message is used by a cache server to periodically
inform a switch about its cache content and the number of stored objects in the cache
server. The Payload field carries the information: (1) a Bloom Filter, which represents
the cache server contents, (2) the number of stored objects in the cache server.

e The ICP_QUERY_WORKLOAD_DBANDWIDTH message is used by a switch

to periodically query the workload and disk-bandwidth usage of cache servers.

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 41

e The ICP_UPDATE_WORKLOAD_DBANDWIDTH message is used by a cache
server to send its workload and disk-bandwidth information to the switch after it
receives the ICP_QUERY_WORKLOAD_DBANDWIDTH message. It is also used
by the web server to periodically send its workload information to the switches. The
content of the Payload consists of two parts: (1) workload of the cache server and (2)
disk-bandwidth usage of the cache server.

A L5 switch also needs an information table to maintain cache server information. An

entry in the table is shown in Table 3.1.

IP Address Bloom Bloom Bloom SC RC BC SC RC BC

Of cache | Filter Filter Filter Count Count Count ‘Workload Workload Workload
server For SC For RC For BC

SC RC BC Max Max Max

Network Network Network N RC BC

Latency Latency Latency Connection Connection Connection

Table 3.1 Information Table at a Switch

3.5 Summary

In this chapter, we described Switching-based Differentiated Service Caching
(SDSC) SDSC is latency-sensitive, achieves DiffServ for a number of request classes
including streaming media requests, and achieves load balancing across cache
servers. The client request classification component of SDSC classifies incoming
HTTP requests into classes SC, RC or BC, and assigns PHBs of the classified
requests at switches. The service provisioning component of SDSC uses three routing
protocols to achieve DiffServ. DBR, MRT, and WR are the request processing
protocols used for SC, RC and BC requests, respectively. DBR determines a cache
server that has enough disk-bandwidth and that can return the prefix of the requested

SC object with minimum response time and within the delay bound to forward the

Chapter 3 Switching-based Differentiated Service Caching (SDSC) 42

request. MRT, which is used for RC, chooses a cache server with minimum response
time for the RC request. WR is used for BC and intended to balance the workload of
cache servers. SDSC adjusts its routing decision dynamically based on request class,
cache server disk-bandwidth usage, the cost of network latency and the cost of the
workload to achieve minimum response time for SC and RC classes. Since SDSC
extends LB_LS, it possesses the advantages of a distributed web caching, such as
fault-tolerance (achieved by cache sharing) and routing efficiency (because a switch

integrates most control and routing-related calculation functions).

Chapter 4 Performance Evaluation 43

Chapter 4 Performance Evaluation

In this chapter, we evaluate the performance of SDSC. We examine how different
factors impact the performance of SC requests; we also study the effects of a variety
of parameters on the system as a whole. Since SC class objects have a different
caching mechanism and significantly larger content size, we do not compare DBR
with MRT or WR. However, since changes in the SC cache size influences the cache
size of RC and BC, and the workload of SC in a cache server or the web server
influences that of RC and that of BC, we show the effects of these changes. On the
other hand, RC objects and BC objects are similar in terms of caching mechanism and

object size, so we can compare MRT and WR.

Section 4.1 describes the simulation model, which includes the network model, the
network latency model, the workload model and the simulation parameter settings.
Section 4.2 describes how DBR, MRT and WR are implemented in our simulation.
Section 4.3 presents the performance metrics that we use to evaluate the performance
of the different algorithms. Section 4 investigates the effects of cache size allocation,
disk-bandwidth, delay bound, ratio of SC, RC and BC requests, client cluster request
intensity, and network latency factors on the performance of DBR, MRT and WR.

Section 4.5 summarizes the chapter.

4.1 Simulation Model

Chapter 4 Performance Evaluation 44

The simulation model consists of a system model, a network model, a network

latency model and a workload model.

4.1.1 System Model

.,

<
/

//\/* """"""""" \

Web Server

Bandwidth &
Broker

SLA

Domain

Figure 4.1 System Model of Switching-based Web Caching
The System model of SDSC is shown in Figure 4.1. The model simulates a
distributed switching-based web caching system, where a client cluster is connected
to a local L5 switch, which in turn is connected to all cache servers and the web
servers. There is no direct connection between cache servers or between a client
cluster and a cache server. Cache sharing is achieved through the L5 switch. Since we
assume the web server is not a bottleneck, we use a web server cluster (the web server)
to simulate the web server. A bandwidth broker in the DS domain is responsible for

marking and shaping requests, which is part of the switch functions.

Chapter 4 Performance Evaluation 45

4.1.2 Network Latency Model

The network latency model, which is similar to the one used by Zou et al [45], is
shown in Figure 4.2. We use a distance metric to reflect the costs of transferring data
between any two nodes. This method is introduced by M. Rabinovich [18]. The cost
of transferring data between two nodes is proportional to the distance between the
pair of nodes. Since SDSC is delay-sensitive, the cost in the system is time, that is,
the network latency between two nodes is proportional to the distance between them.
The network latency model is a symmetric architecture with n client clusters, n

switches and n cache servers, and a web server cluster. In our simulation, n is 4.

Web Server

te {SC, RC, BC} ST
__,_ % RTT,(Cache j, web server)
o

o

o,

RTT, (Switch j, web server)

Cache i Cache j
P N RTT, (Cache 1, Switch j)
Switch 1 Switch j

| RTT,(Client j, Switch j)

Client Cluster j

Client Cluster i

Figure 4.2 Network Latency Model [45]

There are different PHBs for SC, RC and BC, namely, SC should be provided with
expedited service, RC with assured service, and BC with best-effort service.

Therefore, between any two nodes, there are three levels of link delay. Quantitatively,

Chapter 4 Performance Evaluation 46

the basic link delay for SC is shorter than that for RC, which in turn is shorter than

that for BC. The network latency between node i and node j is calculated as follows:
NetworkLatency (i, j) = Distance (i, j) * LatencyFactor, ke {SC, RC, BC}
Distance (i, j) = |i-]|

where NetworkLatency(i,j) is the time (in milliseconds) to transfer data from node 1

to node j, and LatencyFactor is the time (in milliseconds) to transfer data for one unit

of distance.

4.1.3 Workload Model

There are usually two ways of generating workload: random number generation and
traces [2][7]. We use traces for the simulation because traces can account for client
access patterns and the requested content. The trace we use to generate HTTP
requests is a publicly available proxy trace from the NLANR {28]. Each entry in the
trace has nine fields, five of which are used in the simulation. The five fields are:

1. Timestamp: specifies the time when the client generates the HTTP request. The
format is “Unix time” with millisecond resolution.

2. Client Address: The IP address of the client cluster.

3. Size: The number of bytes transferred from the proxy to the client.

4. URL: The uniform resource locator, which is a character string describing the
location and access method of a resource on the Internet.

5. Content-Type: type of requested object (used for packet marking).

The average workload of a server is calculated as follows:

Chapter 4 Performance Evaluation 47

Average Num of TCP Connections Per Second
Maximum Num of TCP Connections of the Server Per Second

AverageWorkload=

The average number of TCP connections is calculated as follows:
AvgTCPNum; = (1-W,) * AvgTCPNum;.; + W, *TCPNum,
where AvgTCPNum;, is the average number of TCP connections per second at time t,

TCPNum is the active number of TCP connections, W, is a weight factor, 0 < W, < 1.

After some initial testing, a value of Wy = 0.02 has been chosen in our simulation.
The average number of TCP connections in our simulation is therefore calculated as:

AvgTCPNum, = (1- Wy) * AvgTCPNum;; + Wy * TCPNum,

4.1.4 Simulation Parameter Setting

The parameter settings used in the simulation are summarized in tables 4.1 ~ 4.4.
Parameter settings are similar to those used in [30] and [45]. Parameter values listed
in the tables are average time. For instance, RTTS.. is the average round trip time
between a Client Cluster and a switch for SC. In simulations, the real round trip time
is related to the workload of cache servers. We don’t consider the impact of traffic on

the network latencies. Moreover, queuing is not part of processing values.

Name Meaning Value
{milliseconds)
RTTSc.ow The round trip time between a Client Cluster and a switch for | 65
SC

RTTR c.sw The round trip time between a Web client and a switch for RC | 130
RTTB c.ow The round trip time between a Client Cluster and a switch for | 156

BC

RTTSocs The round trip time between a switch and a Cache Server for | .0~200
SC

RTTR s The round trip time between a switch and a Cache Server for | 0~400
RC

RTTBg.cs The round trip time between a switch and a Cache Server for | 0~480

Chapter 4 Performance Evaluation

48

RC
RTTS .- ws The round trip time between a switch and the Web server 150
RTTR s The round trip time between a switch and the Web server 300
RTTBy.ws The round trip time between a switch and the Web server 360
RTTS s ws The round trip time between a Cache server and the Web | 150
server
RTTR sws The round trip time between a Cache server and the Web | 300
server
RTTBesws The round trip time between a Cache server and the Web | 360
server
Table 4.1 Parameters for Network Links
Name Meaning Value
(milliseconds)
QueryWorkload_Interval | The interval between two QueryWorkload msgs | 1000
TCP_Splicing The time it takes a switch port controller to | 0
translate TCP sequence number
RoutingS The time it takes for a switch to make a routing | 10
decision for SC
RoutingR The time it takes for a switch to make a routing | 10
decision for RC
RoutingB The time it takes for a switch to make a routing | 10
decision for BC
Table 4.2 Parameters for Switches
Name Meaning Value
(milliseconds)
WS_ProcessingS The time it takes for SC at the Web Server between | 75
receiving a SC request and returning the first byte of
the requested object
WS_ProcessingR The time it takes for RC at the Web Server between | 150
receiving a RC request and returning the first byte of
the requested object
WS_ProcessingB The time it takes for BC at the Web Server between | 180
receiving a BC request and returning the first byte of
the requested object
WS_ReplyS The time it takes at the Web Server to send a SC | 75
object in memory to the requesting party
WS_ReplyR The time it takes at the Web Server to send a RC | 150
object in memory to the requesting party
WS_ReplyB The time it takes at the Web Server to send a BC | 180
object in memory to the requesting party
UpdateWorkload_Interval | The interval to send the updated workload 60*1000
Table 4.3 Parameters for Web Servers
Name Meaning Value
CS_DBandwidth The total disk-bandwidth at a cache server for 64~256%1024
handling SC requests (bytes/sec)
Req_DBandwidth The disk-bandwidth required to handle a SC 8*1024

Chapter 4 Performance Evaluation

49

request at a cache server (bytes/sec)

PrefixSize The size of a SC prefix 8%1024%1024
(bytes)

CS_CacheSize The total physical size of a Cache server for all 300%1024*1024

SC, RC and BC objects (bytes)
CS_SearchS The time it takes at a Cache Server to search for a | 200

SC object in its cache (milliseconds)
CS_SearchR The time it takes at a Cache Server to search fora | 250

RC object in its cache (milliseconds)
CS_SearchB The time it takes at a Cache Server to search for a | 300

BC object in its cache (milliseconds)
CS_SearchDigestS The time it takes at a Cache Server to search for a | 80

SC object in its cache digests (milliseconds)
CS_SearchDigestR The time it takes at a Cache Server to search fora | 100

RC object in its cache digests (milliseconds)
CS_SearchDigestB The time it takes at a Cache Server to search for a | 120

BC object in its cache digests (milliseconds)
CS_DiskAccessS The time it takes at a Cache Server to retrieve a 80

cached SC object from disk to memory {milliseconds)
CS_DiskAccessR The time it takes at a Cache Server to retrieve a 100

cached RC object from disk to memory (milliseconds)
CS_DiskAccessB The time it takes at a Cache Server to retrieve a 120

cached BC object from disk to memory (milliseconds)
CS_ReplyS The time it takes at a Cache Server to send an SC | 120

object in memory to the requesting party (milliseconds)
CS_ReplyR The time it takes at a Cache Server to send an RC | 150

object in memory to the requesting party (milliseconds)
CS_ReplyB The time it takes at a Cache Server to send an BC | 180

object in memory to the requesting party {milliseconds)
CS_RelayS The time it takes at a Cache Server to relay a SC 40

response to the requesting party (milliseconds)
CS_RelayR The time it takes at a Cache Server torelaya RC | 50

response to the requesting party (milliseconds)
CS_RelayB The time it takes at a Cache Server torelaya BC | 60

response to the requesting party (milliseconds)
CS_CacheDigest_Size The Bloom Filter size of SC, RC or BC for a 32%1024

Cache Server (bytes)
(CS_CacheDigest_Interval The interval between two consecutive 1*60*1000

content_update msgs (milliseconds)

Table 4.4 Parameters for Cache Servers

4.2 DBR, MRT and WR Implementation

When a Layer 5 switch receives a HTTP response, it checks if the request is of SC,

RC or BC.

Chapter 4 Performance Evaluation 50

1. If it is the prefix of a SC object, the switch checks if there is a remainder for the
SC object. If there is, the switch forwards a request to the web server for the
remainder; if there isn’t, the switch ends processing for the request after sending the
request to the client cluster.

2. If it is an RC or BC object, the switch forwards the object to the client cluster and
ends processing for the request.

The pseudo code of the three algorithms is provided in Appendix B.

4.3 Performance Metrics

The following performance metrics are collected in our simulation experiments:

1. SCrequest acceptance rate (AR) is the percentage of SC requests that are satisfied
within the delay bound (DB). The higher the AR value is, the better service SC
requests receive.

2. Client request response time is the duration from when a client sends a TCP
connection request to the time the client receives the TCP connection finished signal.
It is affected by the workloads of cache servers and the web server, the network
latency and false prediction. A client’s perception of Web performance is based on
the response time. The shorter the average response time is, the better the
performance is.

3. Average cache server workload is the number of requests serviced during a given
time interval. Cache server workload influences object retrieval times on the cache
server, and the request response time (see Section 3.1.6). The average workload can

be used to indicate the relative balance among the cache servers.

Chapter 4 Performance Evaluation 51

AR is a specific metric and only relevant for SC requests. The average response time
is used to measure the performance for RC and BC requests. Our goal is to obtain a
satisfactory AR for SC, to get minimum response time for RC, and to balance the

workload of the cache server cluster.

4.4 Simulation Results

We begin to measure the performance metrics after all cache servers are filled up with
prefixes and objects. The cache size allocation for each class is fixed during one
simulation. We use raw NLANR traces as well as controlled traces to run the
simulations. When using the raw trace, HTTP requests are generated at the time
specified by the timestamp field in the trace file. When using controlled traces, the
time interval between two consecutive HTTP requests is controlled, and the ratio of
SC, RC and BC requests is also controlled, so as to vary the HTTP request intensity
of each class. The experiments were run at a 90% confidence level with 5%

confidence intervals.

4.4.1 Raw-trace Driven Simulations

The raw trace we use in our simulations is a NLANR trace obtained from cache
servers - bo2_20020812 over a 24-hour period. Figure 4.3 shows the HTTP request
intensity for one day, which is measured in number of HTTP requests inl10-minute
periods. The overall request intensity is relatively high from 8 am to 9 pm. Its peak
intensity is 2226 requests per 10 minutes around 4 pm, and decreases significantly

after 9 pm. The minimum intensity is 289 requests per 10 minutes around midnight.

Chapter 4 Performance Evaluation 52

The number of SC requests is lower and more uniform than the other types. It reaches
the peak value of 186 at 5 pm. The number of RC requests reaches its peak of 957 at
11 pm, and the number of BC requests reaches its peak of 1604 around 5 pm. The BC
line is most similar to the total request line since it accounts for the largest portion of
requests. The overall ratio of the number of SC requests to RC requests to that of BC

requests is 1: 4.6: 12.

Request Intensity bo2_20020812

2200 F-

1600 +

1200
1000
800 +4
600 -
400 8
200 4

6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

hour

All Requests wwamaz SC Requests - RC Requests ——— BC Requests

Figure 4.3 Request Intensity of Raw Trace

The request classification is based on the following:
1. SC requests are for audio and video objects.
2. RC requests are for e-commerce requests.

3. BC requests are for email and text files.

For the purpose of simulating cache cooperation among different network domains
we use four different network domains for four different client clusters based on
client IP addresses. The four domains are assigned to different client clusters. After 6

hours, the cache size is fully occupied and the system becomes stable. Our results are

Chapter 4 Performance Evaluation 53

obtained for the following parameter settings: the latency factors for SC, RC and BC
are 10ms, 20 ms and 24ms, respectively, DB is 800ms, DBandwidth is 80K
(byte/sec). The acceptance rate from the 6™ hour to the 24™ hour is shown in Figure
4.4. We see that SC Acceptance is roughly inversely related to the SC request
intensity in Figure 4.3, which means that when SC request intensity is high, the
acceptance rate is low. There are some exceptions, such as around 5 pm, because the
acceptance rate depends on other factors beside request intensity, including latency,
delay bound (DB) disk-bandwidth (DBandwidth) and cache size. Generally speaking,
the following is true:

1. A lower delay bound (DB) means a lower the acceptance rate (AR).

2. When disk-bandwidth is high, more SC requests can be handled simultaneously,
so the acceptance rate is high.

3. When the latency factor is high, the link delay for SC objects is high, and DB may
not be met.

4. 1If the cache size_ is large, then more prefixes can be cached. This increases the hit

rate and means a higher acceptance rate.

SC Acceptance

0.95

0.85 +-

e
0.7 +

0.65
0.6

Acceptance Rate

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

Figure 4.4 SC Acceptance Rate
DB=800ms, DBandwidth=80k, Latencyfactor=10ms, cache =80M

Chapter 4 Performance Evaluation 54

The average response time for RC and BC requests is shown in Figure 4.5. Results
show that, and as expected, the response time of each class is proportional to its
respective request intensity. Results also show that the average response time for RC
is less than that for BC. This is due to a number of factors. First, MRT attempts to
service RC requests with minimum response time. Second, in SDSC, the average
processing time for RC is shorter than that for BC, cache size in a cache server for RC
is more than that for BC, and link delay for RC is less than that for BC. Besides, BC
request intensity is higher than RC request intensity. The combined effect of these
factors leads to a lower average RC response time than that for BC. We will later

show a case comparing the MRT and the Workload schemes under the same

conditions.
Response Time
2000 B
1800 +
1600 :
(5] 4
Q
% 14004 oo f
=
1200 %
1000
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
hour
wme RC Response Time —o— BC Response Time

Figure 4.5 RC, BC Response Time
RC-latencyfactor=20ms,cache=120M;BC-latencyfactor=24ms,cache=100M

Under a higher network latency (SC Latency Factor = 40 ms, RC Latency Factor=
80ms, BC Latency Factor=96) as shown in Figures 4.6 and 4.7, the SC Acceptance

Rate decreases, and the average response time for both RC and BC requests increases.

Chapter 4 Performance Evaluation 55

Figures 4.8 and 4.9 show results when the network latency is very large (SC Latency
Factor = 60 ms, RC Latency Factor=120 ms, BC Latency Factor=144 ms, with other
parameters unchanged). From Figures 4.4, 4.6, and 4.8, we can see that, with the
increase of SC latency factor, the acceptance rate decreases more sharply with the
increase of SC request intensity. When the request intensity is high, the SC
processing time in a cache server is long, so a SC request tends to be forwarded to
remote cache servers. However, due to the increase in link latency, more requests fail
to meet the delay bound. So significantly fewer requests are accepted during high

intensity periods.

SC Acceptance

6 7 8 9 10 1t 12 13 14 15 16 17 18 19 20 21 22 23 24

hour

Figure 4.6 SC Acceptance Rate
DB=800ms, DBandwidth=80k,latencyfactor=40ms, cache =80M

Response Time

2800
2600
2400
2200 +
2000 4
1800 +
1600 +
1400
1200 - :
1000 L RS P

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

msec

22 23 24

hour

-~ RC Response Time BC Response Time

Figure 4.7 RC, BC Response Time
RC-latencyfactor=80ms,cache=120M; BC-latencyfactor=96ms,cache=100M

Chapter 4 Performance Evaluation 56

SC Acceptance

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 A

Figure 4.8 SC Acceptance Rate
DB=800ms, DBandwidth=80k, latencyfactor=60ms, cache =80M

Response Time

= 110 OSSR —————————————

msec

6 7 8 9 10 11 12 13 14 15 16 ‘17 18 19 20 21 22 23 24

hour

e RC Response Time BC Response Time

Figure 4.9 RC, BC Response Time
RC latencyfactor=120ms,cache=120M; BC latencyfactor=144ms,cache=100M

For RC and BC requests, network latency and cache workload are the two major
factors influencing response time. When the network latency is low, the workload of
cache servers is the main factor affecting the response time. When the workload of
the cache server is light, the network latency becomes the main factor affecting the
response time. From Figures 4.5, 4.7, 4.9, we see that the increase in latency factors

means RC requests take a longer time. When the RC latency factor increases from

Chapter 4 Performance Evaluation 57

20ms to 120ms, the average RC response time increases by 6%. Similarly when the
latency factor increases from 24ms to 144ms, the average RC response time increases
by 24%. Since Workload Routing only considers the workload of each cache server, a
request could be forwarded to a remote cache server even when network latency
increases, so the average response time for BC requests increases. However, MRT
always redirects the requests to the cache server with the minimum estimated
response time, so the impact of latency factor is less on RC requests. The results also
show that MRT algorithm guarantees that RC requests are serviced with minimum

response time.

Figures 4.10 and 4.11 respectively show the acceptance rate for latency factors 10ms
and 60ms at different DB values, and same values for other parameters as in Figures
4.4 and 4.8. When DB is relaxed from 800ms to 860ms, the impact on acceptance rate
is greater at higher request intensities. This is because local processing time increases

and disk-bandwidth becomes limited, so a SC request tends to be forwarded to remote

SC Acceptance

T 1 R S A O

18 19 20 21 22 23

Hour

Figure 4.10 SC Acceptance Rate
DB=860ms, DBandwidth=80k,latencyfactor=10ms, cache =80M

Chapter 4 Performance Evaluation 58

cache servers, hence the request response time increases. The DB, which acts as a
threshold, has significant impact on long-response-time requests; so more SC requests

are dropped when DB is low.

SC Acceptance

hour

Figure 4.11 SC Acceptance Rate
DB=860ms, DBandwidth=80k, latencyfactor=60ms, cache =80M

4.4.2 Controlled-trace Simulations

We investigate the effect of the disk-bandwidth, delay bound, ratio of SC, RC and BC
requests, HTTP request intensity, ratio of cache size allocation, client cluster request
intensity, and the network latency factors. All simulations are run under the condition
that client clusters send similar numbers of HTTP requests per 10-minute periods

except when requests are explicitly unbalanced.

We study the effect of different parameters on the performance of SC, RC and BC
requests by starting with a basic configuration and then varying each parameter in
turn. The basic configuration is as follows: Delay bound (DB)=800ms,
DBandwidth=80k/sec, SC latencyfactor=10 ms, latency factor for RC & BC=20 ms,

ratio of cache allocation SC:RC:BC=8:11:11 (or 80MB:110MB:110MB), SC request

Chapter 4 Performance Evaluation 59

intensity=200 per ten minutes, RC request intensity=900 per ten minutes, BC request
intensity=900 per ten minutes. All other parameters for BC and RC are set at the same
values as those in Tables 4.1-4.4. Using these settings, we obtain the following
baseline results: average AR= 87%, average RC Response Time=981 ms, average BC

Response Time=1263 ms.

4.4.2.1 Effect of Disk-bandwidth

We vary disk-bandwidth, and run simulations under different latency factors. Figure
4.12 shows that when disk-bandwidth increases, the number of SC requests that can
be sérviced increases. Obviously, when there is more disk-bandwidth, fewer requests
will be dropped. The Figure also shows when disk-bandwidth is high enough

(DBandwidth=160 kbytes/sec), further increasing its value hardly increases AR.

SC Acceptance Rate vs. Disk-Bandwidth

Acceptance Rate

40 80 120 160 200
Disk-Bandwidth (kbv/sec)
—@— LatencyFactor=10ms ~&¥LatencyFactor=20ms - LatencyFactor=30ms
- i LatencyFactor=40ms -3~ LatencyFactor=50ms ~@ LatencyFactor=60ms

Figure 4.12 SC Acceptance Rate vs. Disk-bandwidth

4.4.2.2 Effect of Delay Bound
The effect of delay bound on SC Acceptance Rate and RC, BC response time is

shown in Figures 4.13 and 4.14.

Chapter 4 Performance Evaluation 60

SC Acceptance Rate vs.Delay Bound

L I —————..

e . ,m/u.w.wﬁwm,ww\..,WW,.W*WMMW,@,W..\mmwwwﬁcwﬁymg

S G s e e e S e L
e e el

Acceptance Rate
'S
)

20 4
delay bound
—@— SC LatencyFactor=10ms g SC LatencyFactor=20ms SC LatencyFactor=30ms
- SC LatencyFactor=40ms —3#-— SC LatencyFactor=50ms ~@-— SC LatencyFactor=60ms

Figure 4.13 SC Acceptance vs. Delay Bound

In Figure 4.13, we see that increasing the delay bound (DB) has a positive impact on
Acceptance Rate (AR) up to a certain point. DB has a more significant impact on AR
for lower latencies because lower latencies result in fewer request drops. When DB
increases to 920ms, AR for SC latency factor 10 ms doesn’t increase, and AR for SC
latency factors 20ms and 30ms changes by only 0.82% and 1.3%, respectively. This
is because when DB is high enough, few SC requests are dropped because they
cannot meet DB. On the other side, when DB is very low, such as 760ms, the
Acceptance Rate decreases sharply; when DB reaches 720ms, no SC requests are

accepted because no request can be serviced within DB.

In Figure 4.14, we find that when DB increases, RC and BC response times also
increase. As DB increases, more SC requests can be serviced by the system, which
increases the SC workload of cache servers. Since SC workload affects RC workload,

which in turn affects BC workload, it follows that an increase in DB results in an

Chapter 4 Performance Evaluation 61

increase of RC and BC workloads, hence increasing the response time of requests

from these two classes.

Response Time vs. Delay Bound Response Time vs. Delay Bound
E i
g £ 1320
= % 1200
L =
2 g, 1080
& g 960
L
& 720 760 800 B840 880 920 960
720 760 800 840 880 920 960 Delay Bound
Delay Bound .
. ciay Bou . ~—&-— RC Response Time —# - BC Resonse Time
—&— RC Response Time %~ BC Resonse Time
(a) Latency Factor=20ms (b) Latency Factor=40ms
Response Time vs. Delay Bound Response Time vs. Delay Bound
L]
E o 1680
& E 1560 4
g G 1440 &
e § 1320
2 e & 1200 -
~ S 1080 g
720 760 800 840 880 920 960 Pl 060 Yo o .
Delay Bound 720 760 800 - 840 830 920 960

. Delay Bound
—&@— RC Response Time —&-~BC Resonse Time

—&— RC Response Time —#-- BC Resonse Time

(c) Latency Factor=60 ms (d) Latency Factor=80 ms

Response Time vs. Delay Bound Response Time vs. Delay Bound

Response Time
Response Time

720 760 800 840 880 920 960 720 760 800 840 880 920 960

.)) Delay Bound
—— RC Response Time ~g#—- BC Resonse Timje RC Response Time BC Resonse Time

(e) Latency Factor =100 ms (f) Latency Factor=120 ms

Figure 4.14 RC, BC Response Time vs. SC Delay Bound

4.4.2.3 Effect of HT'TP Requests Intensity

Chapter 4 Performance Evaluation 62

Here, we keep the request intensity ratio SC: RC: BC=1:4.5:4.5 but vary the overall
request intensity from 50%, to 250% of the baseline configuration. The results of SC
acceptance rate and RC, BC response times are shown in Figures 4.15 and 4.16,

respectively.

SC Acceptance Rate vs.Request Intensity

100
90
80
70 4.
60 4.
50
40 4.
30 +

50% 100% 150% 200% 250%
Request Intenstiy

Acceptance Rate

—@— SC LatencyFactor=10ms <~ SC LatencyFactor=20ms -+ SC LatencyFactor=30ms

~i-- SC LatencyFactor=40ms ~-3— SC LatencyFactor=50ms ~—@-— SC LatencyFactor=60ms

Figure 4.15 SC Acceptance Rate vs. Request Intensity

Figure 4.15 shows that when the request intensity increases, the SC Acceptance Rate
decreases, and the rate of decrease is more significant. The average rate of decrease of
AR is 10.1%, 14.9%, 24.2% and 33.48% when the request intensity increases from
50% to 100%, 150%, 200% and 250%, respectively. When more requests atrive
during a fixed time period, the SC workload of cache servers tends to increase, so the
average SC response time increases, and less SC requests are accepted. Furthermore,
with the increase of request intensity, the disk-bandwidth becomes a bottleneck, so

less SC requests are accepted.

Simulation results show that the RC and BC response time is proportional to the
request intensity increases (see Figure 4.16) from 50% to 250% of the baseline

configuration. When RC and BC request intensity increases, more RC and BC

Chapter 4 Performance Evaluation 63

requests are dropped due to the shortage of disk-bandwidth and due to the heavy
workload at cache servers. Figure 4.16 shows that the rate of increase of RC and BC

response time also increases.

Response Time vs. Request Intensity

Response Time vs. Request Intensity

2 2180 s s g
= 1780 ;
£ 1380 g
= &
£ 980 ~ &
50% 100% 150% 200% 250% 50% 100% 150% 200% 250%

Request Intensity Request Intensity
—&— RC Response Time -~ BC Response Time

—— RC Response Time - BC Response Time

(a) Latency Factor= 20 ms (b) Latency Factor= 40 ms

Response Time vs. Request Intensity Response Time vs. Request Intensity

2180 Pt e
.

Response Time
Response Time
-
~J
2]
=)

1380 e .
980 ot , i]
50% 100% 150% . 200% ~ 250% 50% 100% 150% ~ 200% 250%
Request Intensity Request Intensity
~—&— RC Response Time 5% BC Response Time —&é— RC Response Time - BC Response Time
(c) Latency Factor= 60 ms (d) Latency Factor= 80 ms
Response Time vs. Request Intensity Response Time vs. Request Intensity

2580 s S —
2180£ -

Ak

Response Time
—_
~3
o0
=
Response Time
—
~1
o0
=3

980 s 0

980
50% 100% 150% 200% @ 250% 50% 100% 150% 200% 250%
Request Intensity Request Intensity
—&— RC Response Time & BC Response Time —&@— RC Response Time 4§~ BC Response Time
(e) Latency Factor= 100 ms (f) Latency Factor= 120 ms

Figure 4.16 RC, BC Response Time vs. Request Intenstiy

Chapter 4 Performance Evaluation 64

The increase rate for RC (BC) response time is 8.0% (5.5%), 16.5% (14.4%), 18.8%
(18.4%) and 20.1% (19.2%), when the request intensity increases from 50% to 100%,
150%, 200% and 250%, respectively. When request intensity increases, more
requested RC and BC objects are retrieved from the original web server or remote

cache servers, thus the response times increase sharply.

We also examine the SC Acceptance Rate when fixing SC request intensity, and

varying the RC and BC request intensity. The results are shown in Figure 4.17.

SC Acceptance Rate vs. RC, BC Request Intensity

i
:
1
... - . .

]
1
:

Acceptance Rate

2.5

RC, BC Request Intensity (RI)
i DB=760 —a— DB=800 ~¢-~-DB=860 —¥—— DB=920

Figure 4.17 SC Acceptance Rate vs. RC, BC Request Intensity

We can see that from the Figure that no matter how we vary the request intensity of
RC and BC, while fixing the request intensity of SC, the SC acceptance rate does not
change. This is a very important property for our system, since SC class is of the
highest priority, increasing the intensity of other requests should not influence the

performance of SC class. This then satisfies our service differentiation goal.

4.4.2.4 Effect of Ratio of Cache size Allocation

Chapter 4 Performance Evaluation 65

We assume the total cache size is fixed for a cache server at 300M. We vary the SC
cache size from 40M, 80M, 120M, 160M to 200M, and the RC and BC cache size

from 130M, 110M, 90M, 70M to 50M each. Figures 4.18 and 4.19 plot the results.

SC Acceptance Rate vs.SC Cache Space

R T A T T
. 3

9
3
i

g

Acceptance Rate
o0
(o]

e s ESE

:

40 80 120 160 200
SC Cache Space (M)

~—@— SC LatencyFactor=10ms ~&— SC LatencyFactor=20ms -—4—— SC LatencyFactor=30ms
-~ 8C LatencyFactor=40ms =3~ SC LatencyFactor=50ms —&-— SC LatencyFactor=60ms

Figure 4.18 SC Acceptance Rate vs. SC Cache size

Figure 4.18 shows that when SC cache size increases, the SC Acceptance Rate also
increases. With more cache size, more prefixes can be cached in a cache server, and
less SC requests are dropped because the prefixes cannot be found in any cache
server. In our simulations, from 40M to 80M, the increase is significant, the average
increase is 17.46%, because cache size is the bottleneck for AR up to 80M. However,
after 80M, the AR increases are insignificant, the rates of increase are 2.85%, 1.41%
and 0.65% when SC cache space increases to 120M, 160M and 200M, respectively.
This is because the factors that impede the increase of AR in this case can be disk-

bandwidth, delay bound or request intensity.

Figure 4.19 shows when RC and BC cache size decreases, the average response time

for both classes increases. Less cache size means less RC and BC objects are stored in

Chapter 4 Performance Evaluation 66

cache servers, so more RC and BC requests need to be forwarded to the original web
server. When the web server has more workload, its processing time increases

significantly, which results in the increase of response time of RC and BC requests.

Response Time vs. Cache Space Response Time vs. Cache Space

50 70 90 110 130 50 70 90 110 130

Cache Space
Cache Space
—&— RC Response Time ~i&- BC Resonse Time ~§—RC Response Time ~§-BC Resonse Time
(a) Latency Factor =20 ms (b) Latency Factor =40 ms
Response Time vs. Cache Space Response Time vs. Cache Space

Response Time

Response Time
i

50 70 90 110 130

Cache Space

Cache Space

—&— RC Response Time ~~4%~ BC Resonse Time RC Response Time BC Resonse Time

(c) Latency Factor =60 ms (d) Latency Factor = 80 ms
Response Time vs. Cache Space Response Time vs. Cache Space

g = £
[=
2 3
] =
2 &
3 4
~4 =4

50 70 90 110 130 50 70 90 110 130

Cache Space Cache Space
—#— RC Response Time ~&- BC Re: Ti
ponse T ume souse Time —&— RC Response Time —&— BC Resonse Time

(e) Latency Factor =100 ms (f) Latency Factor =120 ms

Figure 4.19 RC, BC Response Time vs. Cache size

Chapter 4 Performance Evaluation 67

Beyond the value 110, the response times decrease sharply, because when the size
reaches 110, a significant larger number of requests can be cached at cache servers,

rather than from the web server.

4.4.2.5 Effect of Unbalanced Requests

In this set of experiments client clusters 1 and 3 produce 50% of the original HTTP
request intensity and client clusters 2 and 4 produce 150% of the original HTTP
request intensity. We present the results in Figures 4.20, 4.21 and 4.22, which show
the effect on SC Acceptance Rate, RC and BC response time, and cache server

workload, respectively.

SC Acceptance Rate Under Unbalanced Request Intensity

100 e resemms———————

... _ . _ _ __ __ ____ @ @ OO

Acceptance Rate

SC Latency Factor (msec)

—@— Unbalanced Request Intensity &~ Balanced Request Intensity

Figure 4.20 SC Acceptance Rate Under Unbalanced Request Intensity

Response Time Under Unbalanced Request Intensity

Response Time

AC BC Latency Factor
~—€— RC-- Unbalanced Request Intensity ~~#--BC - Unbalanced Request Intensity
— =—RC -- Balanced Request Intensity =~ BC -- Balanced Request Intensity

Figure 4.21 RC, BC Response Time Under Unbalanced Request Intensity

Chapter 4 Performance Evaluation 68

We see from Figure 4.20 that an unbalanced request intensity causes AR to be less
than that of balanced request intensity. With unbalanced request intensity, more SC
requests tend to be forwarded to remote cache servers and the heavily loaded cache

servers take longer time to process requests, so the response time increases.

Cache Workload Under Unbalanced Request Intensity

Workload

RC, BC Latency Factor

Cache 1 g Cache 2 [Cache 3 O Cache 4

Figure 4.22 Cache Server Workload Under Unbalanced Request Intensity

We also see in Figure 4.21 that an unbalanced workload causes RC and BC response
times to increase. For RC, heavily loaded cache servers take longer to process a
request; so more requests are forwarded to remote cache servers. The overall average
response time is therefore increased. For BC, a switch whose cache server is heavily
loaded forwards more requests to remote cache servers with less workload, so its
average response time increases as well. Workload routing for BC requests, however,
moves the extra load from the heavily loaded cache servers to the lightly loaded cache
servers so that the workload on all cache servers is balanced, as shown in Figure 4.22.
When the workload is balanced, the average processing time in cache servers is

reduced.

4.4.2.6 Effect of Unbalanced Cache Size

Chapter 4 Performance Evaluation 69

The cache sizes of the four cache servers are different in this experiment. We fix the
overall cache size to be 1200M, assign 50% of basic cache size, or 150M to cache
server 1 and 3 each, and assign 150% of basic cache size, or 450M to cache server 2
and 4 each. Within each cache server, the ratio of cache size allocated to SC to that
allocated to RC to that allocated to BC is the same for all four cache servers, which is
8:11:11, the same as the basic configuration. Thus, in cache servers 1 and 3, 40M is
allocated to SC, and 55M is allocated to each of RC and BC; in cache servers 2 and 4,
120M is allocated to SC, and 165M is allocated to each of RC and BC. We also let
client clusters 1 and 3 have 50% of basic HTTP request intensity, and client clusters 2
and 4 have 150% of basic HI'TP request intensity. Figures 4.23, 4.24 and 4.25,
respectively show the acceptance rate of SC, response times of RC and BC, and cache

server workload.

SC Acceptance Rate Under Unbalanced Cache Size
100 IMWMMNWM@WN,WMWWWWMWWWWWWM

90

e s oA SR8 . s S5 s S

M

80
TO e

Acceptance Rate

10 20 30 40 50 60
SC Latency Factor (msec)

—e—balanced cache size and unbalanced request intensity
——unbalanced cache size and unbalanced request intensity
- ~~halanced cache size and request intensity

Figure 4.23 SC Acceptance Rate Under Unbalanced Cache Size and
Unbalanced Request Intensity
Figure 4.23 shows the performance of the unbalanced cache size and unbalanced
request intensity case outperforms the case of unbalanced request intensity, but

balanced cache size. Compared with balanced cache size with unbalanced request

Chapter 4 Performance Evaluation 70

intensity, unbalanced cache size with unbalanced request intensity produces most
requests in client clusters closer to the larger cache servers, thus more requests can be
served locally instead of being forwarded to remote cache servers, so less requests
tend to be dropped because the estimated response time is greater than the delay
bound. Compared with balanced cache size and balanced request intensity, although a
large cache server could cache more objects, the limited disk-bandwidth allows only a
limited number of requests to be handled simultaneously, so a large number of

requests forwarded to a cache server lead to less acceptance rate.

RC, BC Response Time Under Unbalanced Cache Size

7L O S —

Response Time

20 40 60 80 100 120

—— RC Unbalanced Request Intensity with Balanced Cache Size
g~ BC Unbalanced Request Intensity with Balanced Cache Size
—3#— RC Unbalanced Cache Size with Unbalanced Request Intensity
—&— BC Unbalanced Cache Size with Unbalanced Request Intensity

RC, BC Latency Factor

Figure 4.24 RC, BC Response Time Under Unbalanced Cache Size and
Unbalanced Request Intensity

From Figure 4.24, we see that the response time for RC and that for BC under
unbalanced cache size with unbalanced request intensity is worse than that for RC
and that for BC under balanced cache size with unbalanced request intensity. The
reason is that more RC‘and BC requests come to larger local cache servers, and so

more requests are serviced locally instead of remotely.

Chapter 4 Performance Evaluation 71

Cache Workload Under Unbalanced Cache Size

Workload

20 40 60 80 100 120
RC, BC Latency Factor
Cache 1 B Cache 2 O Cache 3 @ Cache 4

Figure 4.25 Cache Server Workload Under Unbalanced Cache Size

From Figure 4.25, we see that Workload routing for BC traffic can still balance the
workload on the different cache servers, even if more SC and RC requests are

directed to the larger cache servers.

4.5 Summary

In this chapter we studied the performance of the proposed SDSC, which evaluates
the AR of SC, compares the response times for RC and BC. The system model, the
network latency model, the workload model and the simulation parameter settings
have been described. Implementation methods of DBR, MRT and web server are
presented. Two types of simulation experiment - raw trace and controlled-trace
simulation are presented to show the effects of the disk-bandwidth, delay bound,
HTTP request intensity, cache size, network latency factors and unbalanced requests

on the performance of SDSC.

The simulator we developed to observe and evaluate the performance of SDSC is

trace-driven. We used the original NLANR log traces as input; also we modified the

Chapter 4 Performance Evaluation 72

traces to obtain different request intensity and request distribution among the three
classes, and observed performance of SDSC under these circumstances. Generally,
the acceptance rate of SC increases when disk-bandwidth increases, delay bound is
relaxed, request intensity decreases, or more cache space is allocated to SC objects.
RC requests always have lower response times than BC requests given that all
parameter setting for the two classes are the same. The workload of cache servers is
well balanced under any circumstances. The results satisfy our system requirement
that RC requests have a higher priority than BC requests in terms of response time in

the system.

Chapter 5 Conclusion 73

Chapter 5 Conclusion

The objective of our research is to study how differentiated service can be facilitated
with a switching-based web caching system. We proposed the deployment of
Switching-based Differentiated Service Caching (SDSC) that classifies incoming
requests into three classes - streaming class (SC), real-time assured class (RC), and
best-effort class (BC), based on the type of HTTP requests. SDSC uses a different
routing algorithm for each class, namely Disk-Bandwidth Routing (DBR), minimum
response time (MRT), and Workload Routing (WR) for the SC, RC and BC classes,
respectively. DBR guarantees that accepted SC requests are served with minimum
response time. However, only requests that are expected to be serviced within a
specified delay bound (DB), and for which there is a prefix in a cache with enough

disk-bandwidth, can be accepted.

Our simulations show that no matter how request intensity patterns change for RC
and BC, they do not influence the acceptance rate (AR) of SC, which achieves higher
priority for SC requests. AR of SC depends on the disk-bandwidth consumption of
cache servers, delay bound of SC, network latency, the request intensity of SC, SC
workload at cache servers, and so on. Adjusting any of these factors within a certain
limit while fixing others influences AR, beyond this limit the adjustment has minimal

impact or no impact on AR.

Chapter 5 Conclusion 74

We also compared the performance of RC and BC. RC requests are redirected to the
cache server with the minimum estimated HTTP request response time by MRT,
which estimates the time based on cache server content, cache server workload, the
web server workload and network latency. BC requests are redirected to the cache
server with the minimum workload; hence balancing the workload of cache severs,
which in turn can improve the performance of SC and RC. The response time of RC
requests is shorter than that of BC given the same parameter settings for both classes.

Because of WR, the workload of cache servers is well balanced under all conditions.

5.1 Contributions

The contributions of the research are summarized as follows:

1. We studied service differentiation in web caching systems, and proposed SDSC to
classify HTTP requests and achieve DiffServ for the classified requests. SDSC
considers disk-bandwidth, delay bound, cache server content, cache server workload
and link delay to make acceptance and routing decisions. SDSC guarantees SC
requests to be serviced with minimum response time and within a delay bound, RC
requests with the minimum possible response time. SDSC balances the workload of
all cache servers.

2. A comprehensive simulation was developed to evaluate the performance of
SDSC. We evaluated how factors such as delay bound, disk-bandwidth, and latency
factor influence the acceptance rate of SC requests. We compared the performance of

RC requests with that of BC requests. Simulation results show that RC requests

Chapter 5 Conclusion 75

always have lower response times than BC requests, SC is of higher priority than RC

and BC, and workload of cache servers is always balanced.

5.2 Future Work

The following aspects of our research need further investigation:

1. DiffServ at Transport layer: In this thesis, we propose to achieve DiffServ at the
Application layer, which utilizes DiffServ at Network layer and Transport layer.
DiffServ at the Network layer has already been proposed and can be used directly in
SDSC, but DiffServ at the Transport layer in SDSC needs further study.

2. Cache Server DiffServ: Further investigation is needed to achieve DiffServ at
cache servers, in terms of serving different classes with different processing rates and
priorities.

3. Dynamic Content: Dynamic content is one of the classes of content on the Web.
Dynamic content is different from the content we have classified in the research in
that it is user-driven, so if a dynamic page is retrieved‘from the originating server and
stored in a cache, when a user retrieves it from the cache later, the fetched page may
not desirable anymore, since the information is no longer current, or it does not
satisfy the tailored requests of customers [9].

4. Extending DiffServ Metrics: To better achieve DiffServ, we need consider more
DiffServ metrics such as jitter for streaming class, drop rate of assured class and best-

effort class [19], etc.

References 76

References

{1] Tarek F. Abdelzaher, Kang G. Shin, Nina Bhatti, “Performance Guarantees for Web Server End-
Systems: A Control-Theoretical Approach” http://computer.org/tpds/td2002/10080abs.htm, 2002

[2] J. Almeida and P.Cao, “Measuring Proxy Performance with the Wisconsin Prxoy Benchmark”. In
Proceedings of the Third International Caching Workshop, June 1998

[3] Jussara Almeida, Mihaela Dabu, Anand Manikutty and Pei Cao, University of Wisconsin-Madison,
“Providing Differentiated Levels of Service in Web Content Hosting”,
http://www.cs.wisc.edu/~cao/papers/diff-QoS.html

[4] Michael J. Andrews and David Cyganski, Convergent Technology Center, WPI Worcester, MA,
“Characteristics of Multimedia Data”, http:./fwww.gweep.net/~rocko/XUDP Paper/node2.html

[5] Apache HTTP Server Project, http://httpd.apache.org/

[6] G. Apostolopoulos, V. Peris, P. Pradhan, , IBM Research Division, “IBM Research Report L5: A
Self Learning Layer-5 Switch”,
http://citeseer.nj.nec.com/cache/papers/cs/14107/http:zSzzSzwww.research.ibm.comzSzpeoplezSz
dzSzdebanjanzSzpaperszSzlS.pdf/l-a-self-learning.pdf

[71 P. Barford and M. Crovella, “Generating Representative Web Workloads for Network and Server
Performance Evaluation”, In Proceedings of the 1998 RCM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, July 1998

[8] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz, Bell Laboratories, Lucent Technologies, “The
Eclipse Operating System: Providing Quality of Service via Reservation Domains”,
hitp:/iwww. cs. washington. edu/sosp 1 6/bruno. hitml

[9] Pei Cao, Jin Zhang and Kevin Beach Computer Sciences Department, University of Wisconsin-
Madison, “Active Cache: Caching Dynamic Contents on the Web”,
http://www.cs. wisc.edu/~cao/papers/active-cache html, 1998

{10] Surendar Chandra, Carla Schlatter Ellis and Amin Vahdat, “Differentiated Multimedia Web
Services Using Quality Aware Transcoding”, INFOCOM 2000 - Nineteenth Annual Joint
Conference of the IEEE Computer And Communications Societies, Mar 2000

[11] Wu-chang, Feng, Puma Technology, “Building Scalable Internet Services”,
http://www.thefengs.com/wuchang/work/cs444i.ppt

[12] ArrowPoint Communications, “Content Smart Cache Switching”, White paper.

[13] Brian D. Davison, “Web Caching”, hitp://www.web-
caching.com/mnot_tutorial/intro.html#PROXY, 2001

[14] Cisco “CSS-11150 Content Services Switch”, http://www.cisco.com/univercd/cc/td/doc/pcat/
11150.btm

[15] Cisco, “Quality of Service Networking”,
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/qos.htm#xtocidl

[16] Distributed Web Caching project. Available at: http:/ringer.cs.utsa.edu/research/
proxy/proxy.html

[17] Pei Cao, “Bloom Filters - the math”, http://www.cs.wisc.edu/~cao/papers/summary-
cache/node8.html, July, 1998

[18] C. Faloutsos and S. Christodoulakis, “Design of a Signature File Method that Accounts for Non-
Uniform Occurrence and Query Frequencies”. In Proceedings of 1/ ™ International Conference on
VLDB, pp. 165-170, Stockholm, Sweden, August 1985

[19] Mark Fishburn, “Benchmarking Differentiated Service”,
http://www.ietf.org/proceedings/00dec/slidessBMWG-2/, August 2001

[20] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance”.
ITTT/RCM Transactions on Networking, August 1993

[21]1 HCL Technologies Ltd., “Streaming Media”, http://cdn.hcltech.com/StreamingMedia.htm

References 77

[22] IETF, “An Expedited Forwarding PHB”, http://www.ietf.org/rfc/rfc2598.txt, 1999

[23] IETF, “An Informal Management Model for Diffserv Routers”,
http:/fwww.ietf.org/rfe/rfc3290.txt, 2002

[24] IETF, “Assured Forwarding PHB Group”, http://www.ietf.org/rfc/rfc2597, 1999

[25] IETF Network Working Group, “An Architecture for Differentiated Services”,
http://www.fags.org/rfes/rfc2475 himl, December 1998

[26] IETF Network Working Group, “Differentiated Services”,
http://www.ietf.org/proceedings/98dec/43rd-ietf-98dec-121.html, November, 1998

[27] IETF Networking Group, “Internet Control Message Protocol”, http://www.fags.org/rfcs/
rfc792.himl

[28] “IRCache FAQ and Users Guide”, http://www.ircache.net/FAQ/#ss1

[29] Chung-Ta King , National Tsing-Hua University, “Proxy Prefetch and Prefix Caching”,
http://www.computer.org/proceedings/icpp/1257/12570095abs.htm, 2001

[30] Zhengang Liang, Hossam Hassanein, Patrick Martin, “Transparent Distributed Web Caching”,
Proceedings of the IEEE Local Computer Network Conference, pp225-233, Nov 2001

[31] Y. Lu, A. Saxena and T. F. Abdelzaher, University of Virginia, “Differentiated Caching Service;
A Control-Theoretical Approach”, In the 21st International Conference on Distributed Computing
Systems, Phoenix, Arizona, April 2001.

{32} Theresa-Marie Rhyne, RCM SIGGRAPH Carto Project Director, “Exploring the Concept of
Streaming Media for Geographic Visualization”, http:/www.siggraph.org/~rhyne/carto/ica-3.htm

[33] M. Rabinovich, “Not All Hits Are Created Equal: Cooperative Proxy Caching Over a Wide-Area
Network”. In Computer Networks And ISDN Systems, 30, 22-23, pp.2253-2259, Nov 1998

[34] M. Ripeanu, A. Tamnitchi, “Bloom Filters - Short Tutorial”,
http://www.flipcode.com/tutorials/tut_bloomfilter.shtml

[35] P. Rodriguez, C. Spanner, and E. biersack, “Web caching architectures: Hierarchical and
distributed caching”. In Proceedings of the 4" International Web Caching Workshop, April 1999.

[36] A. Rousskov and V.Soloviev, “On performance of caching Proxies”. In Proceedings of the Joint
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’98/PERFORMANCE ’98), pp. 272-273, Madison, W1, June 1998

[37] A. Rousskov and D. Wessels, “Cache digests”, Proceedings of the Third International WWW
Caching Workshop, Manchester, England, June 1998.

[38] M.Sayal, Y.Breitbart, P.Scheuermann, and R. Vingralek, “Selection algorithms for replicated web
servers”. In Performance Evaluation Review, vol.26, no.3, pp.44-50, Dec.1998.

[39] S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix Caching for Multimedia Streams”,
http://citeseer.nj.nec.com/cache/papers/cs/3549/ftp:zSzzSzgaia.cs.umass.eduzSzpubzSzsenzSzSen

ProxyPrefix _Infocom99.pdf/sen99proxy.pdf, 1999

[40] R.Tewari, H.Vin, A.Dan, and D.Sitaram, “Resource-Based Caching for Web Servers”, in Proc. Of
SPIE/ACM Conference on Multimedia Computing and Networking, San Jose, USA, Jan. 1998,
pp-191-204

[41} X. Tang, F. Zhang, S. T. Chanson , Hong Kong University of Science and Technology,
“Streaming Media Caching Algorithms for Transcoding Proxies”, in 2002 International
Conference on Parallel Processing (ICPP'02)
http://www.computer.org/proceedings/icpp/1677/16770287abs.htm, August 2002

[42] D. Wessels and K. Claffy, “Internet Cache Protocol (ICP), version2”. RFC 2186, Sep 1997

[43] Haoming Wu, “Least Relative Benefit Algorithm for Caching Continuous Media Data at the Web
Proxy”, master thesis, 2001

[44] Y. Zhou and J. F. Philbin, NEC Research Institute, “The Multi-Queue Replacement Algorithm for
Second Level Buffer Caches”
hitp://www.usenix.org/events/usenix01/full papers/zhou/zhou html/index.html

[45] Qing Zou, Patrick Martin, Hossam Hassanein, ‘‘Transparent Web Caching with Minimum
Response Time”, Proc. Of IEEE IPCCC, April 2003

Appendices 78

Appendix A Bloom Filter

The difference between a weighted Bloom Filter and a Bloom Filter is that in a
weighted Bloom Filter the objects with high frequency are represented by more bits
while the objects with low frequency are represented by fewer bits. In a regular

Bloom Filter, all objects in a cache server are represented by the same number of bits.

In a weighted Bloom Filter, we assume that, according to some conditions such as
frequency the set S of all objects in a cache can be partitioned into n subsets Sy,
S»...Sy, which are disjoint and whose union is S, that is,

S=5US,..US,
And

Si[) Si=@.where1<i<n, 1<j<n,andi#]j

We define the following variables:

D;: The number of objects in subset S;, D = D; + D; +...+ Dn is the total number of
objects in the cache.

P;: The access probability for objects in S;. It is the possibility that any object in
subset S; will be accessed.

Wi: The weight for subset S; It is the number of hash functions for subset S;

F: The Bloom Filter size

In a weighted Bloom Filter representing D objects, the probability that a particular bit

is 0 is:

Appendices 79

_1 * % + * ES ES + *
Ro = (FF JWI DI +W2%D2 +...+ Wa *Dn =(1_;) WIDL+ W2*D2+. 4+ Wa*Dn (3 1

We know that (1 - l) b= when X -> o
X

Equation (1) can be approximated as:
Hence the probability that a particular bit is 1 is:

Ri= 1 —Rp= 1 - ¢ WIDL+W2D2+.. WniDnyF (A3)
The false prediction probability is:

Fp = PR, Y PyR™ 4. +Pn*RI™ (A.4)
To find the optimum W; for each subset S; such that the false prediction F, is

minimized, we differentiate F, with respect to W;:

JF _
L. =0, where 1<i <n
oW,
an R F W, < W .
=———PR"InR+) PW,R" =0, 1<i<n (A.5)
oW, 1-R D, —

Equation above is equivalent to:

RR" _ RR" _

_BR" _F,
D, p, = D, D

= (A.6)

K is a constant independent of i.

Substituting equation (A.6) into (A.5), then

I{F1 RRlnR+ZWij}=O

j=l

or

Appendices 80

. ZW]. D,
=2 (A7)
1-R FInR
From equations (A.6) and (A.7),
R _Ind=8 p-1 (A.8)
1-R InR 2
Substituting equation (A.8) into (A.7), (A.8)
Y WD, =F In2 (A.9)
j=1
Substituting equation (A.8) to (A.6),
W= —|mli_mk (A.10)
In2| D,
Substituting equation (A.10) to (A.9),
SO 5 P
~F(n2)’+) D, 1n-5—
InK= = " (A.11)
D
Substituting equation (A.11) to (A.10), the optimum values for W; is:
2 P
Fm2 1] p 2P
Wi= | In =t — 22 ‘|, 1<i <n (A.12)

D In2| D D

i

Appendices 81

Appendix B Simulator Structure

The simulator simulates ICP, Cache Digest, Layer 5 switch, and SDSC. It is object-
oriented, event-driven, developed in C++ and runs on Linux system. It mainly
consists of five types of objects, namely Client Cluster, L5 Switch, Cache Server and
Web Server, each of which has an event handler to process incoming events and
generate events until all requests have been processed or the time we set is up. All
generated events are sent to and queued at the object EventManager, which schedules

to handle events based on time ordering.

The main classes involve ClientCluster, Switch, CacheServer, WebServer, Link,
EventManager, SimuObject, SimuEvent, LRUCache. Other classes such as MDS5,
SimuStat, SimuParam, LogEntry, LinkReg, LinkedList, LinkedListEnumerator,
ICPEntry are supporting classes. The functions of the main classes are described as
follows:

1. ClientCluster. It generates requests by reading log entries in log traces. It sends
requests to its local link connected to local switch. When a requested object is
returned or dropped, it triggers SimuStat to record related information.

2. Switch. It maintains information of cache servers such as content, workload, disk-
bandwidth unused in its table called Cachelnfo. It also measures and saves
information such as link delay. In this class, function requestClassification
categorizes incoming requests into one of the three classes, namely SC, RC and BC;

DBURouting handles SC requests, MRTRouting handles RC requests, and

Appendices 82

WorkloadRouting handles BC classes. It also schedules the web server to return the
remainder of a SC object after the prefix is sent by a cache server.

3. CacheServer. It periodically informs switches of its content, SC, RC and BC
workload. Objects are cached in its LRUCache. It receives forwarded requests from
links connected to switches, and returns a cached object or a prefix that satisfies the
request. It asks the web server for the object or the prefix if the latter is not cached
and if there is disk-bandwidth requirement is met.

4. WebServer. It receives events from links connected to cache severs or switches,
and generates corresponding events. It sends the remainder of a SC object to the
switch. It also sends the SC prefix or RC or BC objects to cache servers.

5. Link. It receives an event from a connected object, and generates a new event to
be handled by the other connected object.

6. EventManger. It uses LinkedList to queue all events generated by all objects, and
dispatches events according to time order.

7. SimuObject. It defines a virtual function eventHandle, which is inherited by all
inherited classes such as WebServer, CacheServer.

8. SimuEvent. It contains information of events, such as generator, handler,
timeArrival, and so on.

9. LRUCache. It contains a cache database, and functions to operate on the database

such as addToCache, discard.

Appendices 83

Appendix C Pseudo Code

/*Pseudo code for switch*/

/*A switch classifies incoming requests into classes, makes routing decision. It
*receives TCP messages, HTTP messages, ICP messages. It queries workload and
disk bandwidth usage periodically./

/* On receipt of TCP messages*/

Procedure onReceiveTCPMessages (msg:TCP, se:SimulationEvent){
if (msg.type==TCP_SYN) /from client

sendTCP_ACK (clientAddress);

if (msg.type==TCP_ACK) /from CS or web server {
SimulationEvent newse;
if (se.from=WS)
newse. ObjSize=EntrySize-SizeOfPrefix; //only the left part needed from WS
else //from CS
newse. ObjSize=SizeOfPrefix;
sendHTTP_REQ (WsorCacheAddress, newse),

}

if (msg.type==TCP_FIN) /ffrom CS or WS
if (se.objType==SC) {
if (se.from==CS) {}
if (se.from==WS) sendTCP_FIN (clientAddress);
}
else if (se.objType==RC || se.objType==BC) sendTCP_FIN(clientAddress);
}

/*onReceipt of HTTP messages*/

Procedure onReceiveHTTPMessage (msg:HTTP, se:SimulationEvent) {
J//HTTP_REQ only from client. Switch classifies requests into SC, RC or BC.
/Then DBR, MRT or Workload algorithm is applied to forward the request.
se.objType:=RequestClassification(se);
if (msg.type==HTTP_REQ) {

if (se.objType==SC) DBURouting(se);

if (se.objType==RC} MRTRouting(se);

if (se.objType==BC) WorkloadRouting(se);
}

if (msg.type == HI'TP_RES) //it could be from CS or SW {
if {(se.objType==SC)
if (se.from==CS)
if (gotPrefix==false) {
sendHTTP_RES (clientAddress, null);
sendTCP_FIN (clientAddress);

else // (gotPrefix==true) {
sendHTTP_RES (clientAddress, prefix);
if (objSize>prefix)
sendTCP_SYN (WSAddress),
clse // objSize<=prefix
sendTCP_FIN (clientAddress);
1
else // se.from==WS {}
else // (se.objType==RC]| se.objType==BC) sendHTTP_RES (clientAddress, obj);
i

/*on receipt of ICP messages*/
// ICP messages are those for content update,
/Iworkload and disk bandwidth update

Appendices 84

Procedure onReceivelCPMessage (msg: ICPMsg) {
if (msg.OPCode==ICP_UPDATE_CONTENT)
for ir=1 to NumOfCSs

if (CacheArrayTable[i].SenderAddress==msg.SenderAddress) &&
(msg. TS>CacheArrayTable[i].Last_Content_UpdateMsg TS) {
CacheArrayTable([i].Content:=msg.Content;
CacheArrayTable[i].Count:=msg. Num;

CacheArrayTable[i]. Last_Content_UpdateMsg_TS:=msg. TS;
sendMsg (ICP_UPDATE_CONTENT_RCK, mySwitch.IPAddress,
msg. TS, CacheArrayTable[i]. SenderAddress)

}

if (msg. OPCode==ICP_UPDATE_WORKI.OAD) //from WS
WS. Workload=msg. Workload;

if (msg. OPCode==ICP_UPDATE_WORKLOAD_DBANDWIDTH)
for i:=1 to NumOfCSs
if CacheArrayTable[i].SenderAddress==msg.SenderAddress) && (msg.TS>
CacheArrayTable[i]. Last_Workload_DBandwidth_UpdateMsg_TS)
{
CacheArrayTable[i]. WorkloadOfSC:=msg. Workload;
CacheArrayTable[i]. DBandwidth:=msg.Dbandwidth;
CacheArrayTable[i]. Last_Workload_DBandwidth_UpdateMsg_TS:=msg.TS;
CacheArrayTable[i]. Workload_DBandwidth_QueryRes_Time:=getCurrentTime();

//roundtrip time is calculated

if (msg. TS==CacheArrayTable[i]. Workload_Query_TS)
CacheArrayTable[i].netwokLatencyOfSC:=
CacheArrayTable[i]. Workload_DBandwidth_QueryRes_Time-
CacheArrayTable[i]. Workload_Query_Time;

}

if (msg.OPCode==ICP_UPDATE_WORKLOAD_RC)
if (msg.SenderAddress==WS.IPAddress) WS.Workload=msg. Workload;
else
{
for i:=1 to NumOfCSs

if CacheArrayTable[i].SenderAddress==msg.SenderAddress) &&

(msg. TS>CacheArrayTable[i].Last_Workload_RC_UpdateMsg_TS) {
CacheArrayTable[i]. WorkloadOfRC:=msg. Workload,
CacheArrayTable[i]. Last_Workload_RC_UpdateMsg_TS:=msg.TS;
CacheArrayTable[i]. Workload_RC_QueryRes_Time:=getCurrentTime();

//roundtrip time is calculated
if (msg. TS==CacheArrayTable[i]. Workload _Query_TS)
CacheArrayTable[i].netwokLatencyOfRC:=
CacheArrayTable[i]. Workload_RC_QueryRes_Time-
CacheArrayTableli]. Workload_Query_Time;
H
}

if (msg.OPCode==ICP_UPDATE_WORKLOAD_BC)
if (msg.SenderAddress==WS.IPAddress) WS.Workload=msg. Workload;
else
{
for i:=1 to NumOfCSs

if CacheArrayTablefi].SenderAddress==msg.SenderAddress) &&

(msg. TS>CacheArrayTable[i].Last_Workload BC_UpdateMsg_TS8) {
CacheArrayTable[i]. WorkloadOfBC:=msg. Workload;
CacheArrayTable[i]. Last_Workload_BC_UpdateMsg_TS:=msg.TS;
CacheArrayTable[i]. Workload_BC_QueryRes_Time:=getCurrentTime();

Appendices 85

/froundtrip time is calculated

if (msg. TS==CacheArrayTable[i]. Workload_Query_TS)
CacheArrayTable[i].netwokLatencyOfBC:=
CacheArrayTable[i]. Workload_BC_QueryRes_Time-
CacheArrayTable[i]. Workload_Query_Time;

}
}
i

Procedure Query_WorkloadAndDBandwidth (Query_Workload_Interval) {
//send query messages to all CSs periodically
for i:= 1 to NumOfCSs
{
CacheArrayTable[i]. WorkloadAndDBandwidth_Query_TS+=1;
CacheArrayTable[i]. Workload AndDBandwidth._QueryTime=getCurrentTime();
SendMsg (ICP_QUERY_WORKI.OADANDDBANDWIDTH,
mySwitch.JPAddress,
CacheArrayTable[i]. WorkloadAndDBandwidth_Query_TS,
CacheArrayTable[i]. IPAddress)
}
/iif query message lost or no response, workload set to infinity, dBandwidth set to 0.
wait until (getCurrntTime()>send Time+Timeout)
for i:=1 to NumOfCSs {
if (CacheArrayTable[i]. Workload_DBandwidth_QueryResponseTime<
CacheArrayTable[i]. Workload AndDBandwidth_QueryTime)

CacheArrayTable[i]. Workload OfSC=INFINITY;
CacheArrayTable[i]. DBandwidth=0;
}
if (CacheArrayTable[i]. Workload_RC_QueryResponseTime<
CacheArrayTable[i]. WorkloadAndDBandwidth_QueryTime)
CacheArrayTable[i]. Workload OfRC=INFINITY;
if (CacheArrayTableli]. Workload_RC_QueryResponseTime<
CacheArrayTable[i). Workload AndDBandwidth_QueryTime)
CacheArrayTable[i]. WorkloadOfBC=INFINITY;

}
}

Procedure RequestClassification (se: SimulationEvent) {
if (logEntry.content Type==audio || logEntry.contentType==video) se. objType==SC;
if (logEntry.contentType==E-Commerce) se.objType==RC;
if (logEntry.contentType==email || logEntry.contentType==textual ||
logEntry.contentType==image) se.objType==BC;
1

Procedure DBURouting (se: SimulationEvent) {
Boolean hit=false;
for (i:= 1 to NumOfCSs)
Hcache hit--the prefix of the requested object cached in CS;
if (CacheArrayTable[i].Content D req.Content) {
hit:= true;
/ldisk bandwidth left of CS; is greater than a prefix space?
if (CacheArrayTable[i]. DBandwidthUnused>= SpaceOfaPrefix)
/Iplace CSi to CandidateCSArray which contains CS with enough space
CS;->CandidateCS Array;

}

if (hit==true)
if (sizeOf (CandidateCSArray)>0) //some CSs have enough DBandwidth
{
for (i:= 1 to sizeOf (CandidateCSArray)) {
ResponseTimeArray[i] ResTime := (CacheArrayTable[i].networklatencyOfSC

Appendices

86

+ processTimeOfSC,, (CacheArrayTable[i]. WorkloadOfSC);

if (ResponseTimeArray{i].ResTime < MinResTime) {
MinResTime := ResponseTimeArray[i].ResTime;
destinationAddress: = ResponseTimeArray[i]. IPAddress;

}

sendTCP_SYN (destinationAddress);

}
else //no CSs have enough DBandwidth

{
se.requestedObject:=null;
sendHTTP_RES (clientAddress),
sendTCP_FIN (clientAddress);

}

else //cache-miss

{
for (i:= 1 to NumOfCSs)
if (CacheArrayTable[i]. DBandwidthUnused> MaxDBandwidthUnused) {
MaxDBandwidthUnused := CacheArrayTableli]. DBandwidthUnused;
DestinationAddress:= CacheArrayTable[i]. IPAddress;

}

se.requestedObject:=null;
sendHTTP_RES (clientAddress);
sendTCP_FIN (clientAddress);

if (MaxDBandwidthUnused>=Space4aPrefix) sendTCP_SYN (DestinationAddress);
H/end cache-miss

}

Procedure MRTRouting (se: SimulationEvent) {

fori:= 1 to NumOfCSs

{
if (CacheArrayTable[i].Content D req.Content) K, = cal F, ();
else F,=1;
ResponseTimeArray [i]. ResTime=F, * (CacheArrayTable [i].networkLatencyOfRC
+ processTime * (CacheArrayTable {i]. WorkloadOfRC)
+ 2*RTTA_ws + processTime (WebServer. Workload))
+ (I- F,)*(CacheArrayTable [i].networkLatencyOfRC
+processTime*(CacheArrayTable [i]. Workload));

/Ipick the cache server with the minimum response time
for (i:= 1 to NumOfCSs)
if (ResponseTimeArray[i]. ResTime<MinResTime) {
MinResTime=ResponseTimeArray[i].ResTime;
destinationAddress= ResponseTimeArray[i]. IPAddress;

}
sendTCP_SYN (destinationAddress);
!

Procedure WorkloadRouting (se: SimulaitonEvent) {
//pick the cache server with the minimum workload
for (i:= 1 to NumOfCSs)
if (CacheArrayTable {i]. Workload <MinWorkload) {
MinWorkload = CacheArrayTable [i]. Workload;
destinationAddress= CacheArrayTable [i].IPAddress;

1
sendTCP_SYN (destinationAddress);
H

/#*Pseudo code for CS*/

Appendices 87

/* a CS receives TCP_SYN, HTTP_REQ from switch, sends TCP_ACK, HTTP_RES, TCP_FIN to switch; a CS
sends TCP_SYN, HTTP_REQ to WS, and receives TCP_ACK, TCP_FIN, HTTP_RES from WS a CS sends
content, workload, and dbandwidth update message to switch, receives query_workload, query_dbandwidth,
update_content_ack from switch*/

/* On receipt of TCP messages*/
Procedure onReceiveTCPMessages (msg:TCP, se:SimulationEvent) {
if (msg.type==TCP_SYN) {//from switch
sendTCP_ACK (switchAddress);
if (msg.type==TCP_ACK) //from WS
sendHTTP_REQ (WS, ObjType);
if (msg.type==TCP_FIN) //from WS
if (se.obj Type==SC) {}
else // (se.objType==RC || se.objType==BC) sendTCP_FIN(switchAddress);
}

/*onReceipt of HFTP messages™/
Procedure onReceiveHTTPMessage (msg:HTTP, se:SimulationEvent) {
/HTTP_REQ from switch, for CS, RC or BC.
if (msg.type==HTTP_REQ) {
if (se.objType==SC) {
if (DBandwidthUnused>=SizeOfPrefix) {
DBandwidthUnused:= DBandwidthUnused-SizeOfPrefix;
if (requestedObj in CS) {
gotPrefix:=true;
sendHTTP_RES(switchAddress, prefix);
} .
else {
gotPrefix:=false;
sendHTTP_RES(switchAddress, null);

}
DBandwidthUnused:= DBandwidthUnused+SizeOfPrefix;

!

else //mot enough DBandwidth {
gotPrefix:=false;
sendHTTP_RES (switchAddress, null);

}
sendTCP_FIN();
}/ end if (se.objType==SC)
M/ end if (msg.type==HTTP_REQ)

if (msg.type == HTTP_RES) // from WS {
if (se.objType==SC) { add prefix to CS; }
else // (se.objType==RC || se.objType==BC) {
add object to CS;
sendHTTP_RES (switchAddress, obj);
sendTCP_FIN (switchAddress);
1
Wlend if (msg.type == HTTP_RES) // from WS
} / end procedure

// send content info to switches periodically
Procedure distributeContent (content: BLOOM_FILTER, num: int) {
for i := 1 to NumOfSwitches {
SwitchArray [i]. Content_Update_TS +:=1;
SendMsg (ICP_UPDATE._CONTENT, myCache.IPAddress, content, num,
SwitchArrayl[i].Content_Update_TS, SwitchArray[i]. IPAddress);
}
sendTime:= getCuarrent Time();
wait until (getCurrentTime()>sendTime+TimeOut)
for i:=1 to NumOfSwitches do {
if (SwitchArray[i]. Content_Update_TS

Appendices

88

I=SwitchArray[i].Content_Update_RCK_TS)
SendMsg (ICP_UPDATE_CONTENT, myCache.IPAddress, content, num,
SwitchArray[i].Content_Update_TS, SwitchArray[i]. IPAddress);
}

}

Procedure onReceiveMessage (msg:ICPMessage) {
switch (msg.OPCode)
case ICP_UPDATE_CONTENT_RCK:
for i =1 to NumOfSwitches
if (SwitchArray[i]. IPAddress==msg.SenderAddress)
SwitchArray[i].Content_Update RCK_TS:=msg.TS;
break;

case ICP_QUERY_WORKI.OADANDDBANDWIDTH:
for (i:= 1 to NumOfSwitch)
if (SwitchArray[i] IPAddress == msg. SenderAddress) {
sendMsg (ICP_UPDATE_WORKLOAD_DBANDWIDTH, myCache.IPAddress,
myWorkloadOfSC, msg. TS, SwitchArray[i]. IPAddress),
sendMsg (ICP_UPDATE_WORKLOAD_RC, myCache.[PAddress,
myWorkloadOfRC, msg. TS, SwitchArray[i].IPAddress);
sendMsg (ICP_UPDATE_WORKILOAD_BC, myCache.IPAddress,
myWorkloadOfBC, msg. TS, SwitchArray{i]. IPAddress);
1
1

/* WS receives TCP_SYN, HTTP_REQ from switch or CS, sends TCP_ACK,
* HTTP_RES, TCP_FIN to switch or CS
£ /
/* On receipt of TCP messages*/
Procedure onReceive TCPMessages (msg:TCP, se:SimulationEvent) {
if (msg.type==TCP_SYN) //from switch or CS
sendTCP_ACK (senderAddress);
}

Procedure onReceiveHTTPMessages (msg:HTTP, se:SimulationEvent) {
if (msg.type==HTTP_REQ) {
if (se.from==switch) //SC request for left part
sendHTTP_RES (switchAddress, leftPartOfSC);
if (se.from==CS) //SC request for prefix or RC, BC request for object {
if (se.classType==SC) sendHTTP_RES (CSAddress, prefix);
if (se.classType==RC || se.classType==BC) sendHTTP_RES (CSAddress, object);

}
sendTCP_FIN (senderAddress);
H/end if (msg.type==HTTP_REQ)
}

Procedure OnUpdateWorkloadTimeOut () {
myWorkload:= getWorkload ();
for (i:=1 to NumOfSwitches)
sendMsg (ICP_UPDATE_WORKILOAD, myIPAddress, myWorkload,
SwitchArray [i]. IPAddress)

