IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

1389

Joint Chance-Constrained Predictive Resource
Allocation for Energy-Efficient Video Streaming

Ramy Atawia, Student Member, IEEE, Hatem Abou-zeid, Member, IEEE,
Hossam S. Hassanein, Senior Member, IEEE, and Aboelmagd Noureldin, Senior Member, IEEE

Abstract—Predictive resource allocation (PRA) techniques that
exploit knowledge of the future signal strength along roads have
recently been recognized as promising approaches to save base sta-
tion (BS) energy and improve user quality of service (QoS). Recent
studies on human mobility patterns and wireless signal strength
measurements along buses and trains have indeed supported the
practical potential of PRA. An unresolved challenge, however,
is modeling the uncertainty in the predictions, and developing
real-time robust solutions that incorporate probabilistic QoS guar-
antees. This is of paramount importance in PRA due to the predic-
tion time horizon that adds considerable complexity and increases
the rate uncertainty in the problem. With these developments in
mind, this paper addresses energy-efficient PRA applied to stored
video streaming using chance constrained programming. The pro-
posed solution incorporates: 1) uncertainty in predicted user rates;
2) a joint level of probabilistic constraint satisfaction over a
time horizon; and 3) both optimal gradient-based and real-time
guided heuristic solutions. Our framework fundamentally differs
from previous PRA work in the literature where nonstochastic
approaches with assumptions of perfect prediction were primar-
ily used to demonstrate the potential energy savings and QoS
gains. Numerical simulations based on a standard compliant long
term evolution (LTE) system are provided to examine and com-
pare the developed solution. Unlike existing energy-efficient PRA,
the proposed framework achieves the desired QoS level under
imperfect channel predictions. This robustness is attained with-
out compromising the energy-efficiency compared to opportunistic
schedulers, and thus supports PRA implementation in practice.

Index Terms—Channel state prediction, energy efficiency,
kalman filter, radio access networks, resource allocation,
robustness, video streaming.

1. INTRODUCTION

HROUGHOUT the past decade, global environmental
changes have been driving policy makers to enforce strin-
gent regulations on the wireless industry. To this end, research
in green wireless communications is gaining momentum to
reduce the electrical power consumption of wireless networks
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[1]. Among the network elements, the Radio Access Network
(RAN) accounts for more than 50% of the network energy
consumption [2]. As such, designing novel energy-efficient
RAN frameworks is paramount to reducing the network car-
bon footprint while satisfying the increasing Telecom market
demands. This includes techniques such as efficient Power
Amplifier (PA) design [1], cell switch off [3], [4], and traffic-
aware scheduling, among others. A more efficient RAN is
also beneficial for operators as it can postpone investment
in equipment installations and new spectrum. Thus, in addi-
tion to minimizing the energy-related operational expenditures
(OpEXx), the capital expenditures (CapEx) can also be reduced
since radio equipment installations can make up to 70% of
CapEx [5]. Concurrently, mobile video traffic is experienc-
ing tremendous growth and forecasted to account for about
two thirds of the consumer traffic in 2017 [6]. To address
these recent developments, this paper presents a novel approach
toward energy-efficient wireless video streaming.

Radio signal measurement studies indicate that cellular net-
work users moving along the same path will typically experi-
ence similar signal strength variations as reported in [7], [8].
Advanced navigation and channel prediction techniques [9]—
[11] will also enable accurate calculation of user traces and
future channel rates. Predictive resource allocation that exploits
these patterns of signal strength over a time horizon has recently
been recognized as a promising approach to improve video
streaming QoS [12], [13], and transmission energy [14], [15].
This is accomplished by leveraging the knowledge of the future
link capacity users are expected to experience, and then per-
forming long-term predictive Resource Allocation (RA) plans
over several seconds. By doing so, BSs can prioritize users
headed to poor channel conditions, or delay transmission until
a user reaches better channel conditions. Stored video content
such as YouTube and Netflix is well suited for such approaches
as it can be strategically prebuffered and stored on the local
cache of the User Equipment (UE).

The potential energy saving gains of PRA reported in recent
literature [12]-[16] are very encouraging, and demonstrate the
need for further investigation. The initial works on PRA pri-
marily used ideal predicted data rates, and demonstrated the
potential gains of such proactive mechanisms. However, such
formulations depend on the average value of future data rates,
and thus, are not robust to channel variations. Therefore, QoS
satisfaction is not guaranteed under uncertain channel predic-
tions. In this paper, we address this problem and developed
a robust framework that provides probabilistic QoS guaran-
tees. This enables network operators to prioritize users and
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applications by offering a mechanism to control the probability
of constraint satisfaction. Furthermore, by modeling uncer-
tainty, the framework can strike a balance between providing
high energy efficiency gains when predictions are accurate, and
minimizing the risks associated with erroneous predictions dur-
ing periods of uncertainty. The main contributions of the paper
can be summarized in the following:

e We develop a robust PRA framework that accounts for
rate uncertainties and provide QoS guarantees over a
time horizon, with the objective of minimizing energy
consumption. As recent practical and theoretical find-
ings indicate that the variations in predicted rates can
be modeled as multivariate normal random numbers
[17], we employ probabilistic Joint Chance Constrained
Programming (JCCP) to formulate the problem mathe-
matically and then obtain its deterministic closed form.

e We then show that the resultant JCCP formulation is
non-convex and apply proportional risk allocation for
joint chance constraints. The problem is decomposed
into two convex sub-problems, where the first stage
optimizes the individual risk levels at each time slot,
which are subsequently used by the second stage to solve
the robust RA problem. By applying such a non-uniform
risk allocation, we generalize the solution to achieve less
conservative (i.e, energy-efficient) and more practical
QoS aware RA decisions.

e Although the resultant two stage formulation is proven
to be convex and double differentiable, it’s solution is
accomplished at a high complexity that may not meet
real-time requirements. Thus, we develop an efficient low
complexity guided search heuristic that guarantees the
satisfaction of joint QoS levels.

e Extensive measurements in [8] indicate that the variance
in the predicted channel measurements changes with the
time of the day and geographical area. Hence, modeling
the random rates with constant variances would result in
sub-optimal results. Due to the inconsistency in the rate
variance over time and location, we adopt Kalman Filter
(KF) to accurately track such variations, providing an
additional degree of robustness to the statistical param-
eters. With such a framework, QoS guarantees can be
ensured during high variance while energy minimization
is achieved during low varying cases.

In the following section, we provide a background to JCCP
and review the related literature. Section III presents the prob-
lem statement and notations, while Section IV discusses the
JCCP formulation for the robust PRA, as applied to energy-
efficient video streaming. In Section V, we develop the solution
methods using both a gradient-based approach and a guided
heuristic for real-time allocations. The design of the Kalman
filer is thereafter presented in Section VI, and numerical results
are discussed in Section VII. Finally, we conclude the paper in
Section VIIIL.

II. BACKGROUND AND RELATED WORK

In wireless channel prediction, the future rates can not
be perfectly predicted and thus typically modeled as random
variables. The traditional approach in wireless PRA strategies
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[12]-[15] is to replace each of these random variables by the
expected (average) value and solve the resulting determinis-
tic optimization problem. However, this approach results in
non-robust and suboptimal allocations as the probability of
experiencing a lower or higher data rate than the expected
values are totally ignored. In particular, experiencing a lower
rate than the average value will make the allocated resources
insufficient to deliver the future demand, causing QoS dissat-
isfaction. On the other hand, if users experience higher values
than the average, excessive resources may have been allocated
to satisfy the demand, resulting in suboptimal resource uti-
lization and energy savings. With this trade-off between QoS
satisfaction and resource utilization, handling the errors in pre-
dicted rate and the channel variations during resource allocation
is very challenging. To this end, robust stochastic optimiza-
tion techniques have been introduced in which the predicted
rate is modelled as a random variable rather than its mean
value [18]. The variance and the probability density function
(PDF) account for the cases in which the actual rate fluctuates
above or below the mean value. The formulation in this case
incorporates Chance Constrained Programming (CCP) [19]
that can guarantee the satisfaction of user QoS at a certain level
B € [0, 1]. In essence, a chance constraint can be formulated as

Pri{F(x;,n:) = Di} = B, Vied, ey

where x; is the resource allocation variable at time slot 7, and
n; denotes the random data rate. The function F (x;, ;) models
the relation between x;, n; and the demand D, for each time
slot ¢ in the time horizon 7. The above formulation guarantees
that the allocation at each time slot satisfies the correspond-
ing demand with at least probability B. This represents the
QoS level, where a higher value results in allocating more
resources (i.e., more energy consumption) to ensure demand
satisfaction.

However, such form of chance constraint can only guaran-
tee the QoS satisfaction level during each time slot, and does
not model the satisfaction over the time horizon. In partic-
ular, allocating less resources in one time slot will result in
the demand dissatisfaction in both the current and the future
instances. Thus, satisfying 8% of the demand of one time slot
will not guarantee the same satisfaction degree in the coming
time slot, since the latter does not account for the partial satis-
faction in the prior slots. This is because the demand across the
time slots is cumulative and allocation should be able to recover
from outages in the previous slots. To avoid the propagation
of such outages, allocation of all the time slots in the horizon
should be jointly considered. This is typically done using Joint
Chance Constrained Programming (JCCP) [20] and expressed
mathematically as follows

Pri{F(x;n) = Dy, VieT}z=p. 2

JCCP has been successfully adopted in the literature to solve
numerous networking problems where the decision made on
one constraint affects the satisfaction of the others. Among
these, application to routing and bandwidth assignment, and
uplink resource allocation in OFDM networks [21] where the
QoS satisfaction of one user might affect the others. In such
models, the chance constraints are found to be independent and
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their joint probability is simply the product of their individual
probabilities. However, such an independence is not applicable
in PRA since the constraints are no longer independent due to
the cumulative demand at each time slot. Due to the difficulty
of obtaining the pairs of joint probabilities, Boole’s inequal-
ity [22] can be used to bound this joint probability. However,
applying such a bound is very conservative and can result in
suboptimal allocations that deteriorate the network optimiza-
tion objective. Therefore, the individual probabilities of each
constraint should be optimized to result in less conservative
solutions. Example of applications that apply time dependent
JCCP are model predictive control [23], [24] and the unit com-
mitment in power generation systems [25] in which the demand
is cumulative among the time slots and therefore joint satis-
faction is needed. Individual probabilities of chance constraints
can be determined optimally if the RA problem with unknown
individual probabilities remains affine or convex, as in [26].
Otherwise, both individual probabilities and RA decisions are
jointly determined using simulation based or iterative search
techniques as in [25]. In summary, the joint chance constraint
solves for two decision vectors: 1) the individual probabilities
of each time slot QoS constraint, and 2) the resource allocation
among the users. The former is subjected to Boole’s inequal-
ity while the latter is subjected to user QoS satisfaction at each
time slot in order to satisfy the overall QoS level over the time
horizon.

The common challenge in both types of CCP is that the prob-
lem does not have a closed form solution when expressed in the
form in (1) or (2). As such, the problem is either solved using
simulation based approaches or analytical methods. In the for-
mer type, realizations of the random component are generated
[18] and allocation is decided to satisfy g percentile of the
scenarios. On the other hand, analytical methods replace the
chance constraints with the cumulative distribution function of
the random variable. These methods are found to provide bet-
ter accuracy when the inverse cumulative density function is
invertible, unimodal and results in affine or convex optimiza-
tion. Nevertheless, the simulation based methods remain as an
alternative to provide an acceptable solution when the analytical
approximation fails.

The previous non-robust works in PRA expressed the rate
by its average value and did not include any form of uncer-
tainty modeling or probabilistic QoS constraints [12]-[16].
Such a limitation is highlighted by recent practical studies on
channel predictions [8], [17], [27] {which indicate that the
errors associated with future rates should not be ignored and
require exclusive handling by PRA. In particular, the authors
in [28] consider maximizing the spectral efficiency while sat-
isfying minimum user demands. However, the objective of
minimizing energy consumption and ensuring joint QoS sat-
isfaction over the time horizon was not addressed. A constant
PDF was also assumed, and real-time mechanisms to track the
channel variance were not developed. An initial study on mod-
eling uncertainty for energy-efficient PRA was introduced in
our prior work in [29]. Therein, fuzzy-based optimization was
adopted which has the advantage of implementation simplic-
ity, but resulted in conservative solutions that over satisfy the
constraints at the expense of higher energy [30].
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In this paper, we present a joint chance constraint based
approach for energy-efficient PRA applied to stored video
streaming where the satisfaction of the cumulative demand at
all the time slots are jointly considered. As discussed in the
introduction, the proposed solution incorporates: 1) uncertainty
in predicted user rates, 2) a joint level of constraint satisfac-
tion over a time horizon, 3) both gradient-based optimal and
real-time guided heuristic solutions, and 4) adaptive tracking of
variations in modeled random rates. It should be noted that the
mobility-based rate prediction itself and statistical error model-
ing as reported in [8], [17], [27] are not the main objective of
this paper.

III. SYSTEM OVERVIEW
A. Preliminaries

We use the following notational conventions throughout
the paper: X denotes a set and its cardinality is denoted by
X. Matrices are denoted with subscripts, e.g. X = (x4 :a €
Zy,b € Zy), and matrix transpose and inverse are denoted as

x" and x~! respectively. Pr (ﬂs,) and Pr (Us,') denote the
v8 v8

joint and disjoint probabilities of all events in set S. The gra-
dient and Hessian of function f(-) are denoted by Vf(-) and
V2£(-) in order. 7 represents a random variable, whose prob-
ability density function follows normal distribution, while its
cumulative density function is the Q function denoted as Q.
The n'" percentile of a zero mean and unit variance normally
distributed random variable is denoted by Qf_ln. E[-] denotes
the expectation of a random variable.

B. Problem Definition

Consider a BS with an active user set M, where an arbitrary
user is denoted by i € M. Users request stored video content
from video servers. We assume that the wireless link is the bot-
tleneck and the video content is always available at the BS.
We assume that user’s mobility trace is known for the next
T seconds, called the prediction window, and at a per second
granularity. This results in a total of 7 time slots within the pre-
diction window, which we denote by the set T = {1,2, ..., T}.
At each time slot r € T, the BS resources (airtime fractions)
are shared among the active users. We define the resource allo-
cation matrix x = (x;; € [0, 1] : i € M, ¢ € T) which gives the
fraction of time slot ¢ that the BS’s bandwidth is assigned to
user i. The average available rate for user i at time slot 7 is
denoted as 7 ;, which is calculated by mapping the predicted
user traces to the Radio Environment Map (REM) at the ser-
vice provider. The main objective of the proposed predictive
resource allocation scheme is to minimize the energy consumed
by the BS in transmitting the video content to the users while
satisfying their QoS level. To achieve this, we incorporate the
following energy and QoS models.

1) Energy Minimization: Studies on BS energy consump-
tion and sleeping strategies [4], [31], reveal that the energy
consumption E is approximately linearly proportional to the
airtime fraction of the BS [15], [32]. This is commonly referred
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to as time duty-cycling. In essence, E = P x AT where P is
the total transmitted power by the BS and AT is the time dur-
ing which the BS was switched ON. The dominant part of the
power is that transmitted over the wireless channel, which is
largely constant as downlink power control is not employed in
the current LTE 3GPP standards [31], [33]. Accordingly, the
energy consumption can be expressed in terms of the airtime
AT to avoid dependencies on the constant power fraction that
varies with BS type [32]. Therefore, as in [13], [15], we mini-
mize the energy consumption by minimizing the total time air
fractions x; ; allocated to all the users.

2) QoS Satisfaction: To achieve energy savings under QoS
satisfaction, the BS should use the minimum resources needed
to guarantee the video delivery at the target user quality over
a time horizon. Existing energy-efficient RA approaches reveal
that playback interruptions, due to buffer underrun, are among
the primary sources of user dissatisfaction with video delivery
services [14], [34]. In essence, video freezing occurs when the
allocated airtime up to time slot ¢ results in delivering a total
amount of video less than the corresponding cumulative stream-
ing demand. This demand can be denoted as D;; =V; x 1,
where V; is the fixed streaming rate of user i corresponding
to the requested video quality. The number of video stops can
therefore provide a sound QoS metric when modeling RA to
optimize the trade-off between energy-minimization and QoS
satisfaction.

A promising predictive green video delivery strategy was
introduced in [15] where the airtime is minimized to decrease
energy consumption, while ensuring that the total amount of
data is greater than the minimum cumulative streaming rate to
avoid video freezing. This is formulated as follows

T M
minimize Z Zx,-,t 3)
X
t=1i=1

subject to:

t
Cl: Y Fiyxip = Diy, VieMired,
t'=0
M
C2: in’, < 1, Yt € ‘J"’
i=1
C3: xi; 20 VieMreT.

The QoS constraint C1 ensures that the cumulative video
content requirement is not violated at each time slot, and C2
expresses the resource limitation at each base station. It ensures
that the sum of the airtime of all users is less than 1 s, which
is the time slot duration. Finally, C3 is the non-negativity of
airtime fraction.

The objective function in (3) refers to the minimization of
the total allocated airtime which allows the base station to use
time duty cycling and go into sleeping mode [33] and thus saves
energy. As such, the base station transmission is set to only con-
sume power either to satisfy the minimum user’s demand or to
strategically prebuffer the video during the user’s peak radio
conditions; to avoid future allocations at the cell edge. This allo-
cation is unlike the Maximum Throughput (MT) which aims to
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exploit the total resources and thus does not allow the BS to
switch to sleeping mode.

In summary, the allocation in (3) achieves both energy min-
imization and QoS satisfaction under perfect future channel
knowledge. More details of such perfect knowledge based PRA
can be found in [14], [15]. However as discussed previously,
the above formulation depends on the average value of future
data rates and thus it is not robust to any channel variations.
Consequently, QoS satisfaction cannot be guaranteed under
practical considerations.

In this paper we formulate a robust predictive allocation strat-
egy that calculates the airtime fraction x;;, for every user, at
each time slot, using JCCP in which future rates are modeled as
random numbers.

C. Framework Overview

Our framework for robust PRA is based on Joint Chance
Constrained Programming (JCCP) to provide long term QoS
satisfaction at desired level 8. By offering a mechanism to con-
trol the value of f, operators may achieve a balance between
prediction gains and the risks associated with erroneous predic-
tions. The main components of the framework are summarized
below.

1) The JCCP model presented in detail in Section IV per-
forms the robust predictive airtime allocation in two
consecutive stages:

e Risk Allocation. This stage determines the probabil-
ity of constraint satisfaction at each time slot such
that the total QoS level over the time horizon is
achieved. This step is performed once at the begin-
ning of the prediction window. The main challenge
is to distribute such probabilities in a way that opti-
mizes the allocation of the next stage in terms of
energy consumption.

e Robust PRA. Here the actual airtime fraction for
each user is allocated such that the total energy
consumption is minimized while satisfying the QoS
levels. The allocation is determined using the cal-
culated values from the previous stage, the user
demand in addition to the average and variance of
the future random rates.

2) In order to provide an additional element of robustness,
the time varying variance of the predicted user rates is also
estimated. The initial values of future variances are either
increased or decreased based on the previous channel
measurements by the user and their correlation coefficient
with the current measurements. The updated variance is
then provided to the robust PRA where QoS guaran-
tees can be achieved during high variance, and energy
minimization during low variance.

The formulation and implementation details of framework

components are presented in following three sections.

IV. ROBUST PROBLEM FORMULATION USING
CHANCE CONSTRAINTS

In this section, we first model the robust PRA framework for
video streaming using traditional individual chance constraints
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which is found to be a convex optimization problem. Thereafter,
the problem is extended to the non-convex joint chance con-
straint model to enable QoS satisfaction of the cumulative
demand over the time horizon. To provide a tractable solution,
the problem is then decomposed into two convex stages that can
be optimally solved individually.

In what follows, we adopt the Gaussian distribution error
model for the predicted rate introduced in [27], as in recent
robust RA works [28], [29]. In particular, predicting the future
rates using autoregressive filters, resulted in a Gaussian dis-
tributed error model compared to the actual set of collected data
[27]. This is supported by the same distribution attained while
applying the 3GPP correlated shadowing on the average value
of predicted rates [35]. In our model the rate is predicted at a
1 s granularity, which is generally deduced from a large num-
ber of samples due to the small feedback interval (1 ms) of the
users participating in channel prediction [31]. Such a scenario
supports the Central limit theorem (CLT) which approximates
the PDF of users’ predicted rate as a Gaussian distribution
[28]. Nevertheless, all the introduced formulations are appli-
cable for other error models with closed form and invertible
CDF.!

A. Individual Chance Constraint Programming

The robust equivalent of the PRA in (3) is attained by
replacing the QoS constraint C1 with the individual chance
constraint, where predicted rates are replaced by random
variables, and a probabilistic constraint is developed as
follows

T M
DO i )

minimize
X t=1i=1
subject to:
1
Cl: Pri) Fiyxip=Dis¢=p. YieMited,
t'=0

M
C2: ) xigi <1, VieT,

i=1
C3: x,>0 VieM,teT.

Herein, the predicted data rate 7; » is modeled as a random
variable following a normal distribution: 7; y~N (7; ;, O’l%t), and
B € [0, 1] is the QoS satisfaction level.

Accordingly, the summation of the normally distributed ran-
dom data rates in C1 of (4) is a multivariate normal distribution
whose mean is the summation of means of all single ran-
dom variables, which we denote as w. The corresponding
variance is the covariance matrix denoted by X, and can be

1t has to be noted that the total probability of negative realizations for the
normally distributed random rate has a non-significant value (= 0). This is
attributed to the high average rate values that maintain a positive distribution
under typical variances in the 3GPP models and standards [29], [35], [31], [36].

1393
evaluated as follows
2
t O'l-’() - Ui,O,t
- 2
w= i, L= o )
, 2
t'=0 0it,0 - Ui,t
~ = \N(F = 2
where  o0j,n = E[(Fiy —Fi,)(Fin —Fip)]  and o7 =
Oit.hs vVt = h.

The deterministic closed form of (4) can be expressed using
the multivariate random variables and normal cumulative dis-
tribution function as shown below.

t —_
D — Zz’:o ri ' Xit

t t 2
\/Zﬂ:o 2 h=0 XipOit b
t 13
X pOieh = Pige

t'=0 h=0

>B,VieM,teT,

(6)

t

Z FivXiy + ngl

t'=0

The independence between the realizations of random pre-
dicted channel rate at each time slot implies that o; ) =
0, Vt' # h. Accordingly, the chance constraint is represented as
follows

t

Z ’_'i,t’xi,t/ + Q,El

t
2 2 .
in,llo'i,t’ Z Dl’t’ (7)
t'=0 t'=0

VieM,teT.

The above constraint representation is a second order cone
programming (SOCP) model which is convex for 8 > 0.5 [37]
and results in a negative value for the inverse of the Q-function.
Finally, the deterministic closed form of (4) using individ-
ual chance constraint with the preceding assumptions can be
summarized below

T M
minimize ZZx,", 3)
X

t=1 i=1

subject to:
t
Cl: Y Fpxip+ QF' > Dy,
t'=0
VieM,t €T,
M
2 Y xi <1, VieT,
=
C3: x>0 VieM,teT.

As mentioned in Section II, this type of chance constraint
formulation ensures that the QoS is satisfied each time slot at a
certain level 8. However, it does not model the cumulative sat-
isfaction for each user over the time horizon in which the per
slot demand satisfaction is dependent on the total data deliv-
ered in the preceding time slots. In order to avoid future buffer
starvation, the allocation in each time slot should compensate
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the unsatisfied previous demands. This is why the joint chance
constraint model is needed.

B. Joint Chance Constraint Programming

The joint chance constraint form for the C1 constraint in (3)
can be expressed as follows

t
Pr ﬂ Zfi,yxi,t/ > Di,t} > B, VieM. )

VteT /=0

We denote the event of individual QoS satisfaction by
A ~ - Lo

Sit = {Z;’:o FipXig > D,-,,}. Similarly, the event of individ-

ual QoS dissatisfaction is denoted by S;,. The probability

of joint satisfaction of event S;; is represented as the com-

plement of disjoint probability of the dissatisfaction event
as in (10)

Pr{ N S,,,} :1—Pr{ U S,.ﬁ[},w eM. (10

VteT VieT

According to Boole’s inequality, the disjoint probability is
tightly bounded from above by the total probability of all
individual events [22] as follows

Pr{ U S;,} < > Pr{s,}.vieMm

VieT VieT

(I

The joint probability of the QoS satisfaction event is there-
fore bounded as below

Pr{ N S,»,,} >1— > Pr{s,}.VieM,

VieT VieT

Pri S,»J} >B,Vi e M, (12)
vteT
> Pr{si}<t—BVieM
vteT

The above equation implies that the joint probability is
satisfied if the summation of individual probabilities of the
compliment event is kept below the probability of QoS dis-
satisfaction (i.e., 1 — B). Accordingly, the joint chance con-
straint in (9) can be replaced by the two constraints in (13)
and (14)

13
Pr {Zfi,,,x,-,t, < Di,,} <&GnYieMitreT. (13)
t'=0

Yt 1-B.VieM

VteT

(14)

where ¢; ; is denoted as the probability for not satisfying the
individual QoS constraint (i.e., Pr {Sl“ t]) and is called the
probability of risk [23].
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Each probabilistic constraint in (13) will have the same deter-
ministic equivalent form as the individual chance constraint but
with B replaced by ¢; ;. After incorporating (13) and (14), this
JCCP formulation becomes a function of both variables: ¢; ; and
Xi,; as summarized below

T M
minimize E E Xit
X,

(15)
t=1 i=1
subject to:
t
Cl: Z FivXiy + Qf_lz,-,, > D,
t'=0
VieM,teT,
M
€2 Y xis <1, VieT,
i=1
C3: x>0 VieM,teT,
Ca: Y Gi<1-8 Vie M.
VieT

Indeed the above formulation is no longer convex and thus

the optimal solution can not be guaranteed by traditional opti-
mization techniques. A proof of its non-convexity is provided
in Appendix A. Therefore, to provide a tractable solution, the
above formulation is split into two stages: Risk Allocation and
Robust PRA. The first stage determines the optimal values for
each risk level (i.e., solves for ¢;;), while the second stage
solves the PRA problem given the calculated QoS satisfaction
levels in the prior stage (i.e., solves for x; ;).
Stage A: Risk Allocation In this stage, the value of risk prob-
abilities for each constraint is determined such that Boole’s
inequality (14) is satisfied to guarantee the joint probability
satisfaction of (9). An initial feasible solution is to uniformly
distribute the probability of risk (1 — ) over all the time hori-
zon. In other words, assign an equal risk probability ¢; ; among
all the time slots of each user as below

1-8

i = — Vi e M. (16)

However, such equal risk allocation was proven to be very
conservative [23] and results in suboptimal resource allocation
that compromises the energy savings of the PRA obtained in
the second stage. Hence, optimal risk allocation is applied to
consider the optimality of the second stage in addition to the
Boole’s inequality constraint C4 in (15).

Note that lower risk probability ¢; ; results in higher airtime
Xit, and that x; ; is inversely proportional to its correspond-
ing average rate r;, as depicted in (3). Therefore, the risk of
each time slot is allocated proportionally to the corresponding
average rate 7, in order to minimize the energy consumption
during the resource allocation stage. In other words, time slots
with low average data rate will suffer from high airtime for
QoS satisfaction. Thus, assigning low risk probability to these
slots will result in additional airtime. To that end, the following
risk allocation optimization is introduced in (17) to achieve the
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optimality of the second stage as well

T N
minimize Y (=-)" yi, Vi € M, (17)
y — Vit
subjectto:  »  Q(yi,) < 1—B.VieM.
VieT

where: y; ; = Q;i to represent the constraint in a differentiable
form, 7; = max, fi,, and n is the risk proportionality parameter
whose value is positive. The value of n captures the trade-off
between the risk of not satisfying the QoS at a certain time
slot and the energy savings. For very small values of n, the risk
is fairly distributed among the time slots and the user will not
suffer from successive video degradations. On the other hand,
more energy savings are obtained when the value of n increases
since high risk is allowed at low data rate values. The mobile
operator then may tune »n based on the maximum allowable con-
secutive degradation, or the desired energy savings. The above
problem is convex given that 8 > 0.5, which is valid for prac-
tical considerations. A proof of this convexity is provided in
Appendix B.
Stage B: Robust PRA

After solving the first stage in (17), and determining the
risk probabilities ¢; ; for each constraint, the problem in (15)
can be solved without constraint C4. The resulting formulation
preserves the form of SOCP, which is still convex due to the
positiveness of the calculated risk probabilities.

V. GRADIENT BASED AND GUIDED HEURISTIC SOLUTION
METHODS

After decomposing the joint chance constraint programming
into two convex optimization stages, the solution methods for
each stage are introduced in this section.

A. Risk Allocation Solution

The constrained proportional risk allocation in (17) is
solved by calculating the Lagrange formulation and then using
Newton’s method to search for the saddle points that sat-
isfy the Karush—-Kuhn—Tucker (KKT) optimality conditions as
follows

T ~

Lo.m=) (:-) Vit — A (Z Qi) — (1 — ﬂ)) ,

=1 L.t vieT
(18)

VieM.

where A > 0 is the Lagrange multiplier associated with the
constraint in (17).

Since the above problem is optimized for each user sepa-
rately and performed only once at the beginning of the time
horizon, optimal path searching methods provide acceptable
performance. We therefore apply Newton’s method as summa-
rized in Algorithm 1. The algorithm starts with the uniform
risk allocation and then iteratively searches for the saddle
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Algorithm 1. Newton’s Method for Proportional Risk
Allocation

Input: Time Horizon: 7;, Average Predicted Rates: 7;, QoS
Level: B and Risk Proportionality Factor: n
Output: y;
Initialization : &, = 152y, = Q' vt € T, A = o,
€ =0.001, Ay; = Aypand £ = [y; A]”
1: while Ay; > ¢ do
2
Lo _ (AN, 1 i
2 dyi - (Fi.t) +)L«/2Tre ’
L (Yt h
PO — (Y € TQi) — (1 - )
2

—y?

3L iy A 1 it
=L :_)\‘_ ce 2
3)’i.t2 «/2ﬂyl’t
—y2
PLYi M) _ 1,
dyi 10 27

Construct: VL (y;, 1) and V2L (y;, 1)
Calculate (V2L (y;, 1))~
AL = —(V2L(yi, A) 7'V E(yi, 1)
L=L+ AL
Ay = AL(L:T)
AL =AL(T +1)
90 yi=yi+Ay
10: A=A+ AL
11: end while
12: return y;

A A

points along the gradient while the step size is guided by
the Hessian matrix. The calculated step value AL contains
the change in both the decision vector y; and the Lagrange
multiplier A which are denoted as Ay; and AX, respectively.
In each iteration, both decision vectors are updated using
the calculated step, and the algorithm stops when the itera-
tions no longer result in a significant enhancement, denoted
by €.

B. Robust Predictive Resource Allocation

The calculated risk probabilities for each user at every time
slot are now readily available to the robust PRA stage from the
risk allocation solution. The objective of this stage is to solve
for the airtime allocation formulated in (15). The solution of
this stage is much more complex compared to the risk allo-
cation since here the airtime is determined jointly for all the
users over the total time horizon. Based on the users’ feed-
back, this stage is recomputed every t seconds according to
the received amount of data. To address the resulting impracti-
cal complexity, a guided heuristic is also introduced to provide
a real-time resource allocation solution, while the derivative
based and line search methods are used to provide benchmark
solutions.

1) Interior Point With Barrier Based Solution: The inte-
rior point method (IPM) with barrier function was proven to
satisfy the KKT optimality conditions, and thus achieves the
optimal solution for SOCP formulation [38]. The unconstrained
log-barrier formulation for the optimization problem in (15) is
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expressed below
minimize By, (x) = F(x) +y®(x) (19)
X
where:

T M
F)=Y "% xis

t=1i=1

t
)=-) ) log <Z i i

teT ieM t'=0

t
2 2

Z Xiw iy — Di;

t'=0

— Y log (1 ~ ix,-,t) :

teT i=1

+ Vit

where y is the barrier parameter that controls the convergence
of the solution method.

Path following algorithms can be applied to obtain the opti-
mal solution such as Newton’s method discussed previously in
Algorithm 1. The dimension of the Hessian matrix depends
on both the number of users and the allocation time slots
of each user. Its inverse matrix will be of high computa-
tional complexity, thereby limiting its use for real-time resource
allocation.

2) Guided Heuristic Solution: To provide a low complex

alternative solution, a guided search algorithm is introduced
that exploits the problem’s features rather than the direct gra-
dient based iterative search. The algorithm first calculates the
minimum allocation for the users to ensure constraint satisfac-
tion (i.e., satisfy C1 in (15)) given the calculated risk probabil-
ities and the requested demands. In case of radio resource limit
violations (i.e., C2 in (15)), airtime reallocation of users is done
by granting the excess user requirement in other time slots. In
order to achieve energy minimization, users are allocated the
residual airtime when they reach the peak average rate loca-
tion. Residual airtime is the remaining airtime after satisfying
the QoS constraints (first step) for all users. The heuristic is
summarized in Algorithm 2.
Minimal airtime allocation: To ensure the satisfaction of QoS
constraint, C1 in (15) is turned to equality in the quadratic
form ax? 4+ bx + ¢ = 0 and solved using (20) (Lines 4-11) of
Algorithm 2. This is achieved as follows

_bi,t’ + \/ bg,/ - 4ai,t’ci,t’ 20)

261,',,/
aiy =7y = iwoin)’
biy = —2K; yi 7,
K7y — GiwLiv)?,
t'—1

Kiy = Diy — in,x/ri,ﬂ,
h=0

t'—1

2 =2
Li,t’ = § :xi,t/ri,t/'
h=0

xi,t/ =

Where:

Ci,l’ =
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Algorithm 2. Guided Heuristic Robust Green Allocation

Input: Users: M, Time Horizon: T;, Mean of Predicted Rates:
R, Rate Variances: 3, Risk Levels: Y and Demand: D
Output: X
1: Initialization : x = {J,
ti(p ) = argmax{Ri }, Vi e M /* time slot with maximum
teT
average rate (cell center) */

2:forallr € T

3: 1, =0 /*total airtime fraction allocated in time slot ¢ */
4. foralli € Mdo
5: ifr < tl-(p) then
6: Calculate x; ; using (20) /* minimal airtime
allocation*/
7: T =T+ X
8: else
9: M := M \ i /* remove user from minimal
allocation after reaching cell center*/
10: end if
11:  end for
12: if 7, > 1 then
13: i®™ :=argmax{x;,}, /*choose the user with
ieM
maximumeairtime violating the constraint*/
14: 8xjx; = T, + x;=, — 1 [*violating airtime excess
fraction*/
15: forn:=t—1to0do
16: if 7, + 8x;=; < 1 then
17: Xixp 1= Xj* n + 8xj; /*Repair the solution*/
18: Ty 1= Ty + 8xj*
19: =1
20: end if
21: end for
22: end if
23: end for

24: for alli € M do

25:  AllocatePeaks (t;, tl-p )
26: end for

27: return X

Allocation Repair: The total allocated airtime to all users
in each time slot is calculated and the radio resource lim-
itation constraint, C2 in (15), is checked. In case of any
violations, the excess airtime is allocated in other time slots
with unused resources. Particularly, the heuristic compensates
(recovers) any time slot € T with a total allocated airtime
fractions (i.e., 7, = ZWE ;1 Xi/Vt) more than the slot duration
(1 sec.) which occurs due to 1) an increased number of users,
2) high traffic per user or, 3) high QoS level (8). The heuristic
solves this case by iteratively picking the user with the max-
imum airtime fraction in this time slot and prebuffering his
video content in advance to ensure airtime minimization under
demand satisfaction (Lines 12-21) in Algorithm 2.

Peak Average Rate Allocation: The above allocation strategy
guarantees the satisfaction of both QoS and resource con-
straints. Thus, it continues until the peak data rate time slot
is reached. The allocation strategy is then changed (Line 24)
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to allocate the demand of the future time slots in advance, to
minimize the airtime. This follows the following steps for each
user i

° Calculate the residual demand for user i: 6 D; = D; 17 —
S Dy

° Repeat the allocation strategy in step 1 until either the
total residual demand is allocated or the peak rate time
slot is full.

e In case of remaining demand while the peak rate time
slot is fully loaded, the second peak average rate with
remaining airtime is selected and the above procedure
continues.

e In each iteration, the residual demand is decremented by
Xip X (Fi.py — yiroip), which is a conservative method
since it assumes the worst case channel capacity of the
current rate.

e The algorithm terminates when all users received their
total demand denoted as D; 7.

Both the feasibility and optimality of the obtained resource
allocation solution are highly sensitive to the variance o2
Applying the second stage with low variance does not guaran-
tee the constraint satisfaction since less airtime will be allocated
to the user according to (20), especially during low data rates
when high risk probability is allowed.

On the other hand, using a large variance o~ results in a con-
servative solution that allocates too much airtime especially in
relatively high data rate time slots when low risk is applied.
Due to the fluctuation of o> with the user location and time
of the day as previously mentioned in Section I, a fixed value
of o2 becomes suboptimal. We therefore propose to adaptively
track the variance o> based on the user’s previous measure-
ments. The tracking procedure is implemented using Kalman
Filter (KF) described in detail in the following section.

2

VI. KALMAN FILTER BASED VARIANCE ESTIMATION

The variance of the random predicted rates are updated using
the channel measurements by the user in the previous time slot.
The measured rate variance by user i during the previous time

slot r — 1 is denoted as 51‘21—1 and calculated as follows

=2

&5y = (Fra—1 — Figm1)’, 1)

where T, ;_; is the average measured data rate by user i dur-
ing the previous time slot t — 1. We then denote 80 as the
ratio between the measured and the initial theoretlcal vari-
ances denoted as 02 _; and a _» respectively. Although the
variance ratio represents the actual deviations from the initial
variance, the former still varies from one time slot to another.
Accordingly, the change in the variance over time is modeled as
a Gaussian process and thus can be accurately estimated using
Kalman Filter, which is known to be the optimal linear estima-
tor in the mean square error sense. It is composed of two stages
as summarized below [39]:

Prediction Phase:

Xy = Qfxttl
P = d),fP:’_ICDQ + Q.

(22)
(23)
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Measurement Phase:

K, =P, H (HP H +R)~". (24)
X=X, + K (ze — HX). (25)
Pt =P — K HP; . (26)

where X, and X are the priori and posterior state vectors
respectively. P; and P, are the priori and posterior state
estimation covariance matrices respectively. H and ® are the
observation (design) and state transition matrices respectively,
while K is the KF gain. Q and R are the process and the
measurement noise covariance matrices respectively.

The Kalman filter performs state vector estimation using
two phases: Prediction and Measurement. In the first phase,
the predicted state value X, is calculated using the previously
estimated value f)Cttl in time slot r — 1 as indicated in (22).
In the measurement phase, the new state is calculated using a
weighted difference between the observed measurements z; and
the predicted state (25). This weighting is done using Kalman
gain K, calculated in (24), that is dependent on both the mea-
surement noise covariance R and the predicted state estimation
covariance P, in (24).

In our problem, the priori state X, represents the variance
ratio 8651 and equals the corrected state of the previous time
epoch 3C+ | by setting the state transition to unity. The obser-
vation z; represents the measured variance ratio 50 shown
in (21). The observed measurements z; and the predlcted state
X, represent different values for the same quantity (i.e., vari-
ance ratio), and therefore the state observation matrix H is set
to unity. The updated ratio 8(7 * will be then used to update
the predlcted variances in the remammg time slots, denoted
as olzt " & , while simultaneously considering their correlation
with the current measurement as follows

+
Uiz,z+5z = <1+,01,r+8:(50,-2,,+5, 1)) ,,+5,,V8te[1 T —t],
(27

where p; s+ is the channel correlation coefficient between the
channel fading at time ¢ and ¢ + §t.

According to (27), in case of high correlation (i.e., ps ;45 ~
1), the future variance will be multiplied by the value of cur-
rent updated ratio and the term in the brackets becomes 1. On
the other hand, very low correlation results in no updates of
the future variance. In our model, we calculate the correlation
coefficient using an exponentially decaying function with the
correlation distance d.,, according to the 3GPP slow fading
model [35].

VII. PERFORMANCE EVALUATION
A. Simulation Set-up

The presented robust PRA techniques are simulated for an
LTE network using the Network Simulator (ns-3) and Gurobi
optimizer based environment in [40], with model parameters
and KF initial values (i.e., Pp, Q, R and dop) as indicated
in Table I. The 3GPP correlated slow fading model and its
parameters [35] are incorporated in the received UE power and

Authorized licensed use limited to: Queen's University. Downloaded on December 15,2021 at 19:10:05 UTC from IEEE Xplore. Restrictions apply.



SUMMARY OF MODEL PARAMETERS

Parameter Value

BS transmit power 43 dBm
Bandwidth 5MHz

Time Horizon T 60s

Streaming rate V 0.5, 1, 1.5 [Mbps]
Bit Error Rate 5% 1079

Shadow correlation distance(dcor) [35]  50m

Shadow standard deviation(o) [35] 6dB

Velocity From 25 km/h to
60 km/h

Py 1

0 0.1

R 1

dop 1

Risk Proportionality Factor n 4

Feedback interval 7 5s.

Packet size 103 [bytes]
Packet rate (from core network to BS) 10351
Total number of packets 7.5 % 103

Buffer size 10° [bits]

thus provide predicted rate variations. Simulation results are
averaged over 50 runs for statistical validation. Users follow
different predefined paths within the cell at varying velocities
from 25 to 60 Km/h and request a video stream at a fixed
quality. Although the allocation is done at each base station
separately, neighbouring BSs are placed at an inter-cell dis-
tance of 600 m for practical calculation of SINR and channel
rates. The actual transmission rate by the network (i.e., trans-
port block size) during the allocated airtime varies according to
the selected Modulation and Coding Scheme (MCS) which is
based on the reported CQI, after SINR mapping, by the users
[31], [41].

B. Evaluation Metrics and Scheme Notations

In order to assess the introduced Robust Predictive Resource
Allocation (R-PRA) framework, we use the two metrics pre-
viously discussed in Section III. The first is the percentage of
videos stops which reflects the user QoS level. Mathematically,
it is calculated as the percentage of time slots in which con-
straint C1 in (3) is violated. A maximum allowable degradation
level is defined as the boundary for the metric, and is equal to
(1 — B) x 100%. The second metric is the average BS airtime
which is used to measure the energy consumption in the net-
work. During resource allocation, both the BS and UE consume
energy in transmission and reception of data. Therefore, mini-
mizing airtime reduces the energy consumption proportionally
[32]. The objective function in (3) is used to quantitatively
measure this metric.

In this evaluation study, we denote the proposed optimal
ICCP and JCCP, and their corresponding heuristics with the
following abbreviations:

e Optimal-ICCP: refers to formulation in (8) whose solu-
tion is obtained using the IPM of Section V implemented
in Gurobi.

e Heuristic-ICCP: refers to formulation in (8) whose solu-
tion is obtained using the guided heuristic in Algorithm 2.

e Optimal-JCCP: based on the original non-convex JCCP
formulation in (15) and solved using the sequential
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quadratic programming in MATLAB for a global optimal
risk and airtime allocations.

e Optimal-ERA-JCCP: uses the two stage JCCP in which
the first stage solution is obtained with equal risk values
(16) and the second stage (8) is solved using the IPM
implemented in Gurobi.

e Heuristic-ERA-JCCP: similar to the Optimal-ERA-
JCCP but the second stage is solved using the guided
heuristic in Algorithm 2.

e Optimal-PRA-JCCP: similar to the Optimal-ERA-
JCCP with first stage formulated as in (17) and solved
with Lagrangian Newton in Algorithm 1.

e Heuristic-PRA-JCCP: similar to the Heuristic-ERA-
JCCP with the first stage formulated as in (17) and solved
with Lagrangian Newton in Algorithm 1.

The optimal techniques are used to 1) evaluate the robustness
of the introduced framework, and 2) assess the developed real-
time guided heuristic in Algorithm 2. The non-convex Optimal-
JCCP is used to evaluate the feasibility of the decomposed two-
stage JCCP.

C. Simulation Results

1) Comparison With Existing Non-Predictive and Non-
Robust RA: The first simulated scenario is for one user moving
across the cell from one edge to the other. Both the predicted
average and the actual experienced rates are shown in Fig. 1(a).
We consider three typical classes of RA:

e NP-RA: refers to opportunistic Non-predictive Resource
Allocation and the widely used Proportional Fairness will
be adopted as a type of this class.

e NR-PRA: refers to the existing energy-efficient Non-
Robust Predictive Resource Allocation in [15], which
assumed perfect prediction and represented the future rate
by its average value.

e R-PRA: refers to the energy-efficient Robust Predictive
Resource Allocation introduced in this paper in its two
main forms (ICCP and JCCP).

The NR-PRA assumes perfect prediction of the future chan-
nel rates and results in the minimum energy consumption
compared to both the NP-RA and the R-PRA as illustrated in
Fig. 2(a). This is because, NR-PRA strategically allocates the
minimal airtime that satisfies the demand based on the average
predicted rate until the user reaches the cell center. On the other
hand, the introduced R-PRA conservatively allocates more air-
time than the NR-PRA to guarantee QoS satisfaction under rate
variations. The NP-RA, however, greedily assigns all the avail-
able resources and thus delivers the video to the user during
the initial low rates regardless of the future high rates as shown
in Fig. 1(b). On the other hand, Fig. 2(b) shows that the low-
energy NR-PRA failed to satisfy the QoS demand as we can see
that the user suffered from a large percentage of video stops. On
the contrary, the proposed R-PRA (ICCP and JCCP) was able
to compensate the variations by strategically allocating more
airtime and the result is much fewer video stops. The tradi-
tional non-energy aware NP-RA filled the buffer of the user in
the first few seconds, resulting in the highest QoS satisfaction
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Fig. 1. Illustrative allocation and rate variations examples for the considered techniques.
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Fig. 2. Percentage of video stops and average BS airtime for varying QoS degrees S for 1 user experiencing rate variations.

with a negligible number of stops, but at the cost of high energy
consumption.

To summarize, the NR-PRA previously introduced in [15]
provides large energy savings, denoted as the Prediction Gain,
compared to the NP-RA. However, this gain was achieved with
unacceptable QoS violations under imperfect predictions. To
overcome this limitation, the introduced R-PRA is designed
to simultaneously satisfy the QoS requirements and energy
minimization. This comes at the cost of slightly decreasing
the prediction gain by an amount referred to as the Price of
Robustness that accounts for rate variations. The above con-
clusions can also be drawn from the higher load scenario in
Fig. 4, and indicate that robust PRA can provide significant
gains under practical considerations of imperfect predictions.
These results are obtained for the optimal forms of the intro-
duced R-PRA (i.e., Optimal-ICCP and Optimal-JCCP) to assess

their performance bounds, and the developed real-time heuris-
tic which will be assessed separately. We first compare the
performance of the optimal ICCP and JCCP.

2) Performance of R-PRA: ICCP and JCCP: Under the
aforementioned low load scenario, the Optimal-ICCP violates
the maximum allowable video degradation in case of large QoS
levels (i.e., B > 0.9) as shown in Fig. 2(b). This is attributed
to the ignored dependency between the allocations in the time
slots. More specifically, the demand violation occurred at t =
20 s in Fig. 1(b) due to the low rate (shown in Fig. 1(a)), result-
ing in cumulative degradations in the following time slots. This
is because the potential outage was not accounted for before
hand. We can see that the buffer occupancy remained below
the demand from 7 = 20 s to + = 25 s in Fig. 1(b) until the
reallocation is done and the unmet demand is compensated.
This violation was avoided for lower values of B8 due to the
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Fig. 3. Percentage of video stops and average BS airtime for varying QoS degrees f for 4 Users experiencing slow fading with imperfect predictions.
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Fig. 4. Performance of Robust PRA for different simulation scenarios.

continuous feedback from the user every t seconds that enabled
the network to recover video outages.

On the other hand, all the JCCP forms: Optimal-JCCP,
Optimal-ERA-JCCP and Optimal-PRA-JCCP were able to
avoid the above propagation of video stops and thus did not
violate the maximum allowed degradation at all QoS levels as
shown in Fig. 2(b). This was done at the expense of energy sav-
ings (i.e., a higher price of robustness) compared to ICCP as
depicted in Fig. 2(a). The results also demonstrate the ability of
the decomposed convex forms of JCCP (Optimal-ERA-JCCP
and Optimal-PRA-JCCP) to obtain a solution that satisfies the
QoS level. However, compared to the global optimal solution,
the Optimal-PRA-JCCP was able to satisfy the QoS level with
less energy compared to the Optimal-ERA-JCCP. This result
emphasizes the importance of optimizing the risk values over
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—7~Optimal-ICCP
——Optimal-JCCP -
—>—Optimal-PRA-JCCP
—&-Optimal-ERA-JCCP

551

Average Airtime/User/Byte [1s.]

0.5 1 1.5
Steaming Rate V [Mbps]

(b) 8 users experiencing imperfect predictions and 8 = 0.95

TABLE I1
OPTIMALITY GAP OF HEURISTIC ALGORITHMS

Technique Optimality Gap

1 User 4 Users 8 Users 12 Users
Heuristic-ICCP 0.1 % 015% 025% 03 %
Heuristic-ERA-JCCP 0.1 % 0.2 % 0.5 % 1.2 %
Heuristic-PRA-JCCP 0.1 % 0.15% 032% 045 %

the time horizon to control the conservatism of JCCP, especially
when the user is located near the cell edge.

The performance results also indicates that the energy saving
gap between the Optimal-PRA-JCCP and Optimal-ERA-JCCP
increases with higher QoS levels (8), number of users and
higher streaming rates as shown in Fig. 3(a), Fig. 4(a) and
Fig. 4(b), respectively. In particular, as B increases, lower risk
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TABLE III
COMPLEXITY MEASURES FOR INTRODUCED ROBUST TECHNIQUES

Execution Time

Technique Order of Magnitude 1 User 12 Users
Optimal-ICCP O(W2TM +T(MT)2(MT (T + 1)/2+ M + 1)) ~ O(VMT (M3T%)) 90 s. 980 s.
Heuristic-ICCP OMT +T?) < lms. < lms.
Optimal JCCP O(W2TM +2T@MT)>(MT(T + 1)/24+ M + 1 + T)) ~ O(VMT (M3T*)) 140s. 1560s.

Optimal-ERA-JCCP OW2TM + T(MT)2(MT(T + 1)/2 + M + 1)) ~ O(WVMT (M3T*)) 90s. 980s.
Heuristic-ERA-JCCP OMT +T?) < 1ms. < lms.
Optimal-PRA-JCCP  O(v2TM + T(MT)*>(MT(T + 1)/2+ M + 1) + M(T + 1)3) ~ O(vVMT (M3T*%)) 90s. 980s.
Heuristic-PRA-JCCP OMT +T% + M(T + 1)) ~ 0(M(T)?) < lms. < lms.

30 T -
— Constant High o

—6-Constant Low o
251 . -x-Adaptive o
S | Maximum Allowable Degradation

Percentage of Video Stops

0 1 1
0.7 0.75 0.8 0.85 0.9
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(a) Average Percentage of video stops.

6150 T r r
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-x- Adaptive o

6100

6050

6000

Average Airtime [ms]

5950

5900 1 1 1 1
0.7 0.75 0.8 0.85 0.9

Qos Degree ()

0.95 1

(b) Average BS airtime.

Fig. 5. Percentage of video stops and average BS airtime for varying QoS degrees f for 4 Users rate variations. Allocation is done using Heuristic-PRA-JCCP.

values are attained and the value of the inverse Q-function
decreases exponentially which results in more airtime to sat-
isfy CI in (15). Similarly, increasing the number of users or
streaming rate will result in more conservative RA for the cell
edge users which decreases the BS airtime available for the cell
center users to pre-buffer the video. It should be noted that the
range of airtime varies across the scenarios since users follow
different paths and velocities in each case.

3) Optimality and Complexity Analysis: In order to eval-
uate the introduced guided heuristic, the optimality gap Z is
measured between the heuristic based solutions and the optimal
results as Z = % x 100, where M (x) and M (x*) are
the values of objective functions corresponding to the heuris-
tic and optimal solutions, respectively. A small optimality gap
indicates that the heuristic solution is very close to the optimal
one.

From Table II we observe that the heuristic solutions can
provide the energy savings with small optimality gaps. This
performance degrades with an increased competition at the cell
center due to either a large number of users located in the cell
peak during the same slot or few residual airtime due to con-
servative allocation of cell edge users (the case of ERA-JCCP).
In particular, increasing the number of users at the cell peak
will increase the optimality gap since the residual resources

(after allocating the cell edge users) need to be proportionally
allocated while considering the future rates. This was not han-
dled by the heuristic algorithm to maintain its low complexity.
Instead, the heuristic performs a greedy allocation to the users
with the maximum rates. As for QoS satisfaction, the guided
heuristic solutions follow the same performance trends as their
corresponding optimal counterparts, i.e., the ICCP forms fail to
satisfy the maximum degradation at high QoS levels while the
JCCP succeed for all values.

We next analyze the computational complexity of the differ-
ent allocation strategies. For SOCP formulations, the optimal
solution, using interior point method, require a maximum of
O (¥/K) iterations [37] where K is the number of constraints.
Each iteration has a complexity of O (m? Zle 1 1) [42], where
m denotes the total number of decision variables and n; is the
dimension of the i’ constraint. For the Newton’s method, the
main complexity lies in the calculation of the Hessian matrix
inverse with a dimension m x m. This gives a complexity of
O (m?) for each step in Newton’s method. Table IIT summarizes
the two complexity measures for all the considered techniques
as a function of the problem dimensions, i.e., number users M
and time slots 7. For the heuristic in Algorithm 2, the QoS sat-
isfaction has a complexity of O(MT). The peak allocations
and solution repairing have complexities of O(M(T —tp))
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and O(MT), respectively. We also report the execution time
measured within the simulation environment on a Quad Core
i7-Processor, 3.2 GHz machine. These results highlight the
incapability of the optimal solution methods to facilitate real-
time implementation. It should be noted that increasing the
number of users does not result in a proportional increase in
execution time since the algorithms can be executed on multiple
threads when there are multiple users. Moreover, the complex-
ity of Newton’s method which was executed for each user
individually completes in less than 1 ms.

4) Adaptive Variance Estimation: The simulations were
extended to test the robustness of the PRA framework to the
variations in the channel variance. Such variations in the rate
variance are typically observed in practical measurements due
to the different landscapes and degrees of urbanization [8]. A
conservative approach to tackle such variabilities is to optimize
with a constantly large value (highest value revealed in simula-
tions) for the rate variance. This will ensure meeting the QoS
satisfaction level using JCCP as in Fig. 5(a). However, it com-
promises the energy efficiency as shown in Fig. 5(b). On the
other hand, starting with a fixed lower value (smallest value
revealed in simulations) of variance will result in less energy
consumption but at the expense of QoS degradation even when
JCCP is applied. The KF based tracking algorithm starts with
an arbitrary value of variance, and then continuously adapts its
value based on the error between the channel measurements and
initial values. It is therefore able to satisfy the QoS for all val-
ues of B, and with a lower airtime compared to the high variance
case. In this scenario, the evaluation is based on the Heuristic-
PRA-JCCP since it has a practical complexity and results in
more energy savings compared to the Heuristic-ERA-JCCP as
highlighted previously.

VIII. CONCLUSION

In this paper, we addressed the problem of predictive
resource allocation for energy efficient video streaming. In con-
trast to previous efforts [12]-[16], we developed a robust-PRA
framework with uncertainty in mind that provides joint prob-
abilistic QoS guarantees. By offering a mechanism to control
the probability constraint satisfaction, operators may control the
trade-off between energy savings and the risks associated with
erroneous predictions. Furthermore, in order to facilitate practi-
cal deployment, near-optimal real-time solutions coupled with
a channel variation tracking technique were developed.

The performance evaluation results demonstrated the strong
ability of the R-PRA to avoid the QoS violations exhibited
by existing non-robust PRA approaches, which do not con-
sider the impact of imperfect predictions. This QoS satisfaction
was achieved while still providing significant energy savings
compared to non-predictive RA. With regards to user satisfac-
tion at low QoS levels, both the ICCP and JCCP were able to
maintain the percentage of video stops below the maximum
allowed value. However, the ICCP dominates the energy sav-
ing of JCCP as the latter appeared to be more conservative than
needed. On the other hand, at high QoS levels, the demand
accumulation over time slots hinders the user satisfaction by
the low-energy ICCP, and the JCCP is the only feasible strategy.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

The increased conservatism of JCCP necessitated optimal allo-
cation of the QoS-risk over the time horizon to limit the excess
energy consumptions. This robustness was at the expense of
a slight increase in the complexity needed for calculating the
risk of each time slot. The computational complexity was han-
dled through guided heuristic which resulted in the same QoS
performance without significant increase in complexity espe-
cially in case of conservative JCCP and high load scenarios. As
PRA is an emerging resource allocation paradigm there are sev-
eral directions for future work. This includes 1) extending the
framework to solve non-invertible cumulative density functions
that model rate uncertainty with irregular probability density
functions, 2) cooperative channel variance estimation between
the users to achieve a faster convergence to the optimal value,
and 3) joint optimization of video quality and energy-efficiency.

APPENDIX A

The objective function and all constraints in (15) are linear
except the QoS one. The convexity of this first constraint will
be checked using the Hessian matrix, which should be positive
semidefinite [37]. Let the QoS constraint for the first user (i =
0) at time t = 1 be denoted as f (xo,0, X0,1, £o,1). In the standard
form, the constraint is represented as follows

1
. -1
f(x00, %01, 80.1) = — Y Fo.rxor — Q1

t'=0

1
2 2
Z xO,t’UO,z’
t'=0
(28)

For the ease of representation, let f(xo.0,X0,1,%0.1), X0.0
x0,1 and gp,1 be denoted as JF, xo, x; and ¢ respectively. The
Hessian matrix H can then be defined as follows
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The function (J) is convex if the Hessian matrix is positive
semidefinite. In particular, all the principle minors should be
positive or zero. The value of satisfaction degree of individ-
ual chance constraint (i.e., ¢) should be less than 0.5 to satisfy
the constraint (summation of ¢) for 8 > 0.5. Accordingly, the
inverse of Q function Ql_j ¢ is less than 0. Thus, all the first
order principle minors are positive. The first second-order prin-
ciple minor (constructed by deleting the third row and column)
is always positive for all the values of xo and x1, 09,0 and o9 0.
However, this is not the case for the other second order prin-
ciple minors whose positiveness depend on the actual values
of xp and x1, 09,0 and o, o. For illustration, the value of a sec-
ond order principle (constructed by deleting the second row and
column) is calculated as follows

2.2
X190,1

1 2.2 3
(1 [ o xt/oo’t/)

A5 =

-1 2
—0,_,90

2
- — (36)
2 2
ZI’ZO X0,090,¢'

It can be observed that As is only positive for specific val-
ues of allocation decisions and the variance. For instance, by
assuming the variance o is greater than the variance o1, the
second term will be greater than the first term, and thus A5 < 0.
Accordingly, the Hessian matrix is neither positive nor negative
semidefinite and hence the problem is non-convex.

APPENDIX B

All the equations in (17) are linear and thus convex except
the second constraint whose convexity is checked as follows

F.p)=)Y Qi) —1+8
VteT
2

1 it
— Ve 2 .
m}’z,t

Since we assume S > 0.5 for practical QoS levels, the
constraint holds iff ) v, 4 Q(yi;) < 0.5. This implies that
Q(yi1) < 0.5 which occurs when y; ; > 0. The Hessian matrix
is a diagonal matrix of positive entries that represents its eigen-
values. Accordingly, the Hessian matrix is positive semidefinite
and this proves the convexity of function.

VIF(y, B) = Q" (is) =
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