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Abstract—The exploding increase in the number of connected
devices and growing sizes of their generated data gave more
opportunities for distributed learning to dominate fast data
analytics in mobile edge environments. In this work, we aim
to jointly optimize the allocation of learning tasks and wireless
resources in such environments with the aim of maximizing the
number of local training cycles each device executes within a
given time constraint, which was shown to achieve a faster
convergence to the desired learning accuracy. This joint problem
is formulated as a non-linear constrained integer-linear problem,
which is proven to be NP-hard. The problem is then simplified
into a simpler form by deducing the optimal solution for some
parameters. We then employ numerical solvers to efficiently solve
this simplified problem. Simulation results show gains up to
166% and 250% compared to the task allocation only and the
resource allocation only techniques, respectively.

Index Terms—Distributed Learning, Federated learning, Par-
allelized Learning, Wireless Resource Allocation

I. INTRODUCTION

The Internet of Things (IoT) is increasingly becoming a
conventional component in our everyday lives. With more than
22 billion IoT devices already connected as of 2020, each of
which equipped with advanced sensing and storage capabil-
ities, tremendous amounts of data are being generated every
second with the aim to improve our daily lives and activities.
Yet, these gigantic data sizes are becoming more and more
expensive to transfer to central servers for processing/analytics
given the limited communication resources of such typically
wireless and mobile devices. In addition, a large portion of
this data reflect information that is deemed by its owners as
too private to share, thus exposing it to all sorts of privacy
breaches. These factors made it more appealing for the mobile
devices to keep this data locally and to the network to move
the capabilities to process and learn from this data at or close
to these devices, i.e., in the mobile edge domain.

Distributed learning (DL) arises as the paradigm that suits
these mobile edge learning settings, as it enables the training
of a global learning model from the local models that are con-
currently trained at multiple mobile edge devices. DL branches
into two major practical settings, namely the federated and
parallelized learning. Both scenarios involves the presence of
a governing node, known as the orchestrator, and a number of
helping nodes known as learners. The ochestrator aims to train
the global model by running local training cycles of the same
model at the learners and aggregating their learning outcomes.
The difference between the two scenarios lies in the location
of the data. In federated learning (FL), different datasets are
already stored at the different learners. This scenario is thus
motivated by the high cost or privacy risks of moving data
from the learners to the orchestrator. In parallelized learning
(PL), the orchestrator initially possesses the entire dataset
and decides to distributed fragments of it to learners for
learning purposes. This scenario is motivated by the limited
computational capabilities of edge IoT devices that need to
learn from own collected data. This limitation drives them to
parallelize their learning jobs on multiple near-by and usually
trusted learners (e.g., a home local network).

The theoretical aspects and optimization requirements for
DL in homogeneous computing and communication environ-
ments were extensively studied in the literature [1]–[3]. It
was until very recently that the optimization of computation
(i.e., CPU cycles) and communication (i.e., power, bandwidth)
resources for FL were optimized in heterogeneous mobile
edge environments [4], [5]. However, these works overlooked
adapting task allocations to learners (i.e., performed local
cycles and analyzed data samples by each learner per global
aggregation cycle), especially in scenarios when such global
aggregation cycles are time-constrained, a typical requirement
imposed by many wireless and mobile settings. On the other
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hand, the task allocation was optimized in [7], [8] such highly
heterogeneous edge environment, but without paying attention
to optimizing the wireless resources concurrently to achieve
the best performance.

In this paper, we consider the problem of joint task and
resource allocation for both time-constrained PL and FL.
The aim of these adaptive allocations is to maximize the
number of local updates τ within the constrained duration of a
global aggregation cycle, which was shown to achieve a faster
convergence to the desired learning accuracy. The general
problem is first formulated as a non-linear-constrained integer-
linear problem, which is clearly NP-hard. The problem is then
simplified to a more concise problem after identifying and
setting the trivial optimal parameters as inputs to the problem.
Being still very complex to analyze, we employ a numerical
solver to obtain the globally optimal solution and compare its
performance with those that optimize the tasks allocation only
or the resources only in the very recent literature.

II. SYSTEM SETTINGS

This paper considers a system consisting of one orches-
trator and K learners that perform one FL or PL job in a
mobile edge environment. We will first start by describing the
learning and data settings and parameters and then discuss the
parameters and implication of executing this learning job in
the considered mobile edge environment.

A. Learning and Data Settings

The learning setting considered in this paper consists of
any arbitrary DL model (e.g., linear regression, support vector
machine, K-means, deep neural network) that can employ a
Stochastic Gradient Descent (SGD) approach to train the K

local models deployed by the orchestrator on the network’s
K learners. Unlike Gradient Descent (GD) approaches that
requires exhaustic iteration on all stored data samples to do
one single update of the learners’ parameter (a.k.a. weight)
vectors, SGD enables cycles of training using randomly se-
lected samples from the training set to update these vectors in
each of these cycles [9]. SGD is clearly more suitable to both
FL and PL as it allows the adaptation of allocated tasks to the
learners according to their capabilities and resources. It also
fits the PL concept as the orchestrator can distribute randomly
selected sets of data samples to each of the learners in each
cycle. Luckily, it has been proven that SGD often converges
much faster in comparison to GD, though the error function
may not be as well minimized as in the case of GD. Yet, the
close approximation obtained using SGD for the parameter
values is usually enough in most cases, and particularly in

mobile edge environments where speed is typically more
critical than absolute accuracy [10].

The learning process for each global aggregation cycle
occurs in three steps:

Step 1: The orchestrator conveys the global learning model
parameters to the learners. For PL, this step also involves send-
ing a set of dk data samples to each learner k ∈ {1, . . . ,K}.
Defining F as the number of features in the data set, and Pd

as the precision of each data feature (i.e., the number of bits
representing each feature), the total number of sent data bits
in PL can be expressed as:

Bdata
k = dkFPd (1)

note that in FL, these bits are not sent by the orchestrator, but
rather each learner k selects a random set of dk data samples
from its own stored data set to use them in the training process
explained in Step 2. Each data sample i assigned/selected by
learner k is defined by the input-output pair {xk

i , y
k
i }

dk
i=1, k ∈

{1, . . . ,K}. In addition, defining Sd and Sm as the data-size
dependent and data-size independent model parameters, and
Pm as the precision of the learning model (i.e. number of bits
representing each parameter/weight), the total number of sent
bits to convey the employed FL or PL model is:

Bmodel
k = Pm(dkSd + Sm) (2)

Step 2: Each learner starts training the received model with
the dk received (in PL) or selected (in FL) data samples for
τ local cycles. The typical goal of the training is to minimize
the global loss function of the model expressed as:

Lglobal =
K∑

k=1

dk∑
i=1

f
(
wk, x

k
i , y

k
i

)
(3)

where wk ∈ RBmodel
k is the local model parameter vector and

f(.) is a loss function in building the relationship between
an xk

i and yki through wk. To achieve this target, each learner
needs to Cm flops to execute the training calculations per data
sample in each local cycle, resulting in a total of:

Xk = dkCm (4)

flop computations per local cycle. It is important to note
here that, in a typical SGD algorithm, it has been shown
that Lglobal is a decreasing function of τ , i.e., minimizing
the loss function can be efficiently achieved by maximizing
the number of learning iterations [12], which translates in our
setting to maximizing the number of local cycles.

Step 3: At the end of each global cycle of duration T , the
orchestrator collects the local model parameter vectors from
all learners and aggregates them to build the global model
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parameter vector. One popular method for such aggregation
is the weighted averaging approach expressed as:

w =

∑K
k=1 dkwk

D
(5)

where D =
∑K

k=1 dk defines the total number of samples that
needs to be analyzed in each global cycle, usually imposed
by the orchestrator given the considered learning job.

Once these three steps are done, the orchestrator chooses
to either stop the process, typically if it converged to the
desired level of accuracy, or start another cycle. Interested
readers in the local/global loss function minimization and local
parameter aggregations are referred to [6] and [11] for more
details.

B. Mobile Edge Settings

From the mobile edge environment viewpoint, the afore-
mentioned learning steps and settings must be performed by
wireless/mobile edge devices. This physically translates into
three different time epochs to complete the above three steps
of each global update cycle. The first epoch represents the
time needed to send the model and data (in PL) to each of
the learners given their channel characteristics. If learner k is
assigned forward bandwidth BF

k and transmit power PF
k , this

epoch will take1:

tSk =
dkFPd + Pm(dkSd + Sm)

BF
k log2(1 +

PF
k hk

No
)

(6)

for learner k, where hk is the power gain of the channel
between the orchestrator and learner k. The second epoch
represents the duration taken by each learner k to finish all
its assigned computations to generate wk. If learner k has a
CPU flop speed of fk, this duration is equal to:

tCk =
τXk

fk
=

τdkCm

fk
(7)

the third and final epoch represents the time needed for each
learner to send back its wk to the orchestrator. If the assigned
reverse bandwidth and power to learner k are BR

k and PR
k ,

the duration of this epoch is:

tRk =
Pm(dkSd + Sm)

BR
k log2(1 +

PR
k hk

No
)

(8)

III. PROBLEM FORMULATION

The goal of this work is to minimize the global loss function
in each global cycle by maximizing the number of local cycle
in each global aggregation cycle, which should typically result

1This expression is for PL. For FL, the value of dk in the first term of the
numerator is simply set to zero.

in the maximum possible learning accuracy at the end of this
global cycle [12]. This goal will be achieved jointly optimizing
the tasks allocated to each learner (i.e., dk ∀ k) and its
assigned physical resources (i.e., fk, BF

k , BR
k , P

F
k , PR

k ∀ k) so
as to maximize τ . Thus, the general form of this optimization
problem can be expressed as follows:

max
τ,dk,fk,B

F
k ,BR

k ,

PF
k ,PR

k , ∀ k

τ (9a)

s.t. tSk + tCk + tRk ≤ T, ∀ k (9b)
K∑

k=1

dk = D (9c)

K∑
k=1

BF
k ≤ B (9d)

K∑
k=1

PF
k ≤ P (9e)

0 ≤ fk ≤ fmax
k , ∀ k (9f)

0 ≤ BR
k ≤ BR,max

k , ∀ k (9g)

0 ≤ PR
k ≤ PR,max

k , ∀ k (9h)

The constraints in (9b) guarantee that the total time of the
three process steps will not exceed the preset global cycle
duration T for any of the learners. Constraint (9c) ensures
that the total no. of samples analyzed by all learners conforms
with the bound D set by the orchestrator for each global
cycle. Constraints (9d) and (9e) assures that the total forward
bandwidths and powers used by the orchestrator to complete
Step 1 do not exceed its total bandwidth B and power budgets
(denoted by B and P , respectively). Finally, the K constraints
in (9f) ensure that each learner does not exceed its maximum
flop speed given its computational capabilities or allowance
given its other loads. Similarly, the constraints in (9g) and (9h)
ensure that each learner does not exceed its maximum reverse
bandwidth nor transmit power, respectively, when returning
its local model parameter vector to the orchestrator.

As per the above description, the considered problem is a
linear integer program with nonlinear constraints (NLCLP),
which is well known to be NP-Hard [13]. Thus, solving
this optimization problem is challenging, even when using
numerical solvers, and thus require some simplification or
reduction of variables. As in several prior works [4], [14],
the optimal values of several of the optimization parameters
can be directly obtained from the formulation. For instance,
maximizing τ is directly impacted by setting any variable so
as to minimize each of the time expressions tSk , tCk , and tRk in
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Constraints (9b). This simple fact can result in the following
determinations of the optimal values of some variables, thus
eliminating them and their constraints from the problem:

• By examining the expression of tCk in (7), we can clearly
see that it is minimized for every Learner k by setting
its fk to its maximum possible value. By looking at
the constraints in (9f), we can clearly conclude that the
optimal value for fk is to set it to fmax

k ∀ k.
• By examining the expression of tRk in (8), it can be

clearly inferred that it is minimized for every Learner
k by setting its BR

k and PR
k to their maximum possible

values, which are defined in Constraints (9g) and (9h) to
be BR,max

k and PR,max
k , respectively.

As mentioned above, the above facts enables the removal of
these parameters from the set of optimization variables of (9)
as well as the set of constraints in (9f), (9g), and (9h). This
decreases the size of the problem as follows:

max
τ,dk,B

F
k ,

PF
k ∀ k

τ (10a)

s.t. tSk + tCk + tRk ≤ T, ∀k (10b)
K∑

k=1

dk = D (10c)

K∑
k=1

BF
k ≤ B (10d)

K∑
k=1

PF
k ≤ P (10e)

clearly, Problem (10) represents the joint optimization of al-
located tasks to learners and their assigned resources from the
orchestrator to achieve the maximum possible τ . Constraints
(10b), (10c), (10d), and (10e) are the immediate equivalent to
those in (9b), (9c), (9d), and (9e), respectively.

Though this problem is simpler than the one in (9), it
is still very combinatorial in nature. Finding closed-form
expressions or approximate methods was not feasible for even
simpler version of the problem in which only resources were
optimized [5]. We thus use a numerical solver, namely the
OPTI solver [15], to find the solution of the above problem
and identify its gains compared to the two most recent related
works optimizing resources allocation only and task allocation
only.

IV. SIMULATION RESULTS

In this section, we illustrate the simulation results for
our joint task and resource allocation problem of interest in
heterogeneous mobile edge environments. We also compare

TABLE I
SIMULATION PARAMETERS

Parameter Value
System Bandwidth B 100 MHz
Node Bandwidth BR

k 5 Mhz
Maximum BF

k 5K Mhz
Device Proximity 50 m

Node Power 23 dBm
Maximum PF

k 23K dBm
Noise Power Density No -174 dBm/Hz

Attenuation Model 7+2.1log(R)dB[]
Computation Capability fk 2.4 GHz and 700 MHz

MNIST dataset size D 60,000 images
MNIST dataset Features F 784 features

its performance with the two following recent optimizations
proposed in the literature.

• Task-Only: In this scheme studied in [7], only the task
allocation to different learners is optimized to achieve
the maximum possible τ while assuming fixed resource
allocation.

• Resource-Only: In this scheme studied in [5], only the
resource allocation to different learners is optimized to
achieve the maximum possible τ while assuming fixed
allocation of tasks.

The two figures of merit that we use in our comparisons are
the maximum achievable number of local cycles per global
aggregation cycle (i.e., τ ) and the achieved model accuracy at
the end of each global aggregation cycle.

The dataset chosen to test our proposed scenarios is the
MNIST [16] dataset which consists of 60,000 images where
each image consist of 784 features. The employed neural
network consists of 3 hidden layers with the following con-
figuration [784, 300, 124, 60, 10] For this network, the model
size was calculated to be 8,974,080 bits [17] and the required
floating-points operations were 1,123,736 [18]. To ensure a
fair comparison between all three schemes, the neural network
was constructed from scratch in the simulation environment
without using any predefined functions. This guarantees our
ability to control different parameters and obtained the most
accurate results for each of the three schemes without any
impacts from any hidden settings or variables.

From the physical perspective, the edge learners were
divided into two groups, one simulating the computational
capabilities of portable computing devices and the other
simulating those of commercial micro-controllers. In addition,
random distances (with a maximum distance of 50m) and
fading conditions were generated for each of the learners with
respect to the orchestrator. The employed channel model was
chosen to emulate 802.11 links between the learners and the
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Fig. 1. Number of local cycles for all schemes against K for T = 30 and
60s.

orchestrator. Table I summarizes the simulation parameters for
both the physical resources/setup and the employed data set.

In Fig 1, τ is tested at different values of K for T=30s and
T=60s. The first observation from both sub-figures is that the
gain between the three schemes remains almost the same as
K increases. For instance, at K=10, T=30s the joint scheme
performs 5 updates, the task scheme performs 3 updates and
the resource scheme performs 2 updates, resulting in a gain
of 166% and 250% respectively for the joint scheme over the
task-only and resource-only schemes. When K was increased
to 20, the gains remained in the range of 150% and 225%,
respectively. Same gain ranges were also obtained for T=60s.
This shows the consistency of the gains of our joint scheme
for different values for K. Another interesting observation is
that the performance of the joint scheme at K=20 and T=30s
exceeds the performance for the resource scheme at K=20 and
T=60s, which means that the joint scheme can achieve better
performance at less duration than the resource-only scheme.

In Fig 2, τ is tested at different values of T for K=10
and K=20. Similar to Fig 1, the gains between the different
schemes is almost the same as T increases. One important
observation is that at K=10 and T=10, the resource-only
scheme wasn’t able to perform even one local update, while
the other two schemes were able to perform the same number
of updates. Yet, the joint scheme outperforms the task-only
scheme as T increases.

In Fig 3, the progression of learning accuracy achieved by
all three schemes at the end of each global cycle are plotted for
T=30s and K = 10 and 20. The figure shows higher accuracy
for the joint scheme especially for low global cycle indices. As

Fig. 2. Number of local cycles for all schemes against T for K = 10 and
20.

Fig. 3. Learning accuracy achieved at the end of each global cycle for T=30s
and K = 10 and 20.

the learning progresses, the accuracy of all the schemes start
to be equivalent when K=20, but not K= 10. Yet, even for
K = 20 the joint, task-only, and resource-only schemes reach
98% accuracy after 3, 4, and 7 global cycles, thus achieving
a reduction of 25% (i.e., 30s) and 58% (i.e., 120s) opposed
to the other two schemes, respectively.

Finally, Fig 4 depicts the same progression of learning
accuracy for K=20 and T = 12s and 30s. Again, the joint
scheme achieves a better accuracy than the other schemes at
low global indices for both cycle durations. It also converges
to 98% faster than the other two schemes. For T=12s, the
joint, task-only, and resource-only schemes exceeded 98%
accuracy after 4, 7, and 9 cycles, resulting in a reduction
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Fig. 4. Learning accuracy achieved at the end of each global cycle for K=20
and T = 12s and 30s.

of 43% (i.e., 36s) and 56% (i.e., 60s) for the joint scheme
over the task-only and resource-only schemes respectively.
More interestingly, the joint scheme needed 4 T=12s cycles
to reach 98% accuracy whereas the task-only and resource-
only schemes needed 4 and 7 T=30s cycles to reach the same
accuracy. Thus, the joint scheme comes in much handier when
the amount of available time for the learning is restricted.

V. CONCLUSION

In this paper, we investigated the problem of jointly allocat-
ing tasks and resources in mobile edge learning environments.
The general joint problem was formulated as a nonlinear
constrained integer-linear problem, which was then simplified
by finding the trivial optimal solutions for some variables.
Being still complex, we solved the problem numerically and
quantified its gains in maximizing the number of local cycles
and converging to a given accuracy compared to the task-only
and resource-only schemes. Through extensive experimenting,
the joint scheme was proven to outperform both schemes in
less time and with less number of learners.
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