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Abstract

Democratizing the edge by harnessing the underutilized computational resources of

end devices, also referred to as Extreme Edge Devices (EEDs), can foster a broad spec-

trum of data-intensive and/or delay-sensitive applications. However, EEDs are user-

owned devices characterized by a highly dynamic nature. In this thesis, we propose a

framework that accounts for such dynamicity and mitigates the associated risks. In

particular, we address the risk of intermittent availability of EEDs and the risk of con-

tinuous changes in their available capabilities that can lead to incongruities between

their perceived and actual performance, which can profoundly impact the Quality of

Service (QoS). To resolve the intermittent availability issue, we propose the Dynamic

Worker Availability Prediction (DWAP) scheme. DWAP predicts the availability of

EEDs (i.e., workers) and adapts to the highly dynamic nature of the computing envi-

ronment at the extreme edge. DWAP employs the Continuous-Time Markov Chain

(CTMC) model to forecast the availability of workers in the upcoming time-step. It

does so while continuously fine-tuning the model parameters to incorporate newly

available data. Towards that end, we use a dataset that consists of real-world Google

cluster workload traces. In addition, we propose the DWAP-Reputation Enhanced

(DWAP-RE) scheme to account for the reliability issues triggered by possible discrep-

ancies between the perceived and actual capabilities of workers. DWAP-RE is the
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first scheme that uses a comprehensive reputation scoring system to assess the relia-

bility of workers based on past performance. It then makes reliability-aware resource

allocation decisions by incorporating the workers’ reputation scores into the decision-

making process. Extensive evaluations show that DWAP significantly outperforms a

representative of state-of-the-art prediction schemes by up to 74% and 59% in terms

of the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), respec-

tively. Additionally, DWAP yields 97% and 48% reduction in task drop rate compared

to prominent availability-oblivious and availability-aware resource allocation schemes,

respectively. Moreover, DWAP-RE outperforms prominent reliability-oblivious and

reliability-aware resource allocation schemes by up to 43% and 16%, and 42% and

22% in terms of execution time and satisfaction ratio, respectively. Furthermore,

it outperforms prominent reliability-oblivious resource allocation schemes by 97% in

terms of task drop rate.
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Chapter 1

Introduction

1.1 Overview and Motivation

The widespread adoption of the Internet of Things (IoT) is projected to cause a signif-

icant escalation in the total number of connected devices. A Gartner report estimates

that there will be 20 billion IoT devices by 2025 [1]. Furthermore, according to the

International Data Corporation, these devices will be a primary source of the 175

ZB of global data generated by 2025 [2]. This substantial increase is anticipated to

trigger intensive demands on computational resources to meet the rigorous Quality of

Service (QoS) requirements of delay-critical and/or data-intensive IoT applications.

These applications include smart cities, Tactile Internet, autonomous vehicles, and

virtual and augmented reality [3]. Satisfying the requirements of such applications

cannot be achieved using Cloud Computing (CC). This is since CC involves trans-

mitting large amounts of data to remote data centers, which can increase latency and

traffic congestion at backhaul links [4].

Edge Computing (EC) has emerged as an auspicious paradigm that can mitigate

the aforementioned issues. In EC, data processing is performed at the network edge,
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closer to where the data is generated, drastically reducing communication latency.

However, to effectively manage the offloaded computational tasks, most existing EC

platforms rely on edge servers that are equipped with robust computational capa-

bilities. These specialized servers are typically owned and managed exclusively by

cloud service providers and/or network operators [5]. Such monopoly can be evaded

by leveraging the underutilized computational resources of Extreme Edge Devices

(EEDs), such as smartphones, connected vehicles, and PCs. This equips more play-

ers to develop and manage their own edge cloud, creating a new tech market for

businesses, enterprises, and even municipalities, enabling them to act as edge service

providers themselves and/or monetize their computing resources [3, 4, 6]. Further-

more, enabling parallel processing at multiple EEDs can amplify the computational

power and bring the computing service in much closer proximity to end users, signifi-

cantly curtailing the delay. Thus, the transformative initiative of using EED-enabled

computing to democratize the edge and establish an edge computing market that is

accessible and rewarding to all can play a pivotal role in realizing smart cities and

IoT solutions [7, 8].

The positive impact of EED-enabled computing can be hindered by the fact that

EEDs are heterogeneous and user-owned devices, which subjects them to a high

dynamicity. This can lead to intermittent availability and reliability issues, triggering

a significant increase in drop rate and latency. Such intermittent availability and

reliability issues result from various factors, such as battery exhaustion, network

disruption, and dynamic user access behavior. The latter pertains to the notion that

at any given time, users may run computationally intensive applications on their

devices, such as streaming videos or playing videogames. In such instances, an EED
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may become unavailable and refrain from performing an offloaded task to preserve

its own resources for its own convenience. Even if an EED continues executing the

offloaded task, the dynamic behavior it displays can lead to discrepancies in the

capabilities of the devices as perceived by the scheduler. Such discrepancies can also

occur due to dynamic computational load triggered by offloaded tasks. As a result of

these discrepancies, the scheduler may rely on overestimated capabilities of the EEDs,

potentially assigning more intensive tasks than the devices can proficiently manage,

which can profoundly impact the QoS and overall system performance. Consequently,

it is imperative to account for the reliability issues involving such discrepancies, as

well as the intermittent availability of EEDs, and consider their impact on resource

allocation decisions.

The intermittent availability of EEDs (i.e., workers) tends to be overlooked in

the literature. Some schemes rely on task replication [7] or task migration [9] to

ensure service continuity and mitigate the adverse impacts of intermittent availability

and unreliability of workers in EED-enhanced EC. However, task replication can

lead to poor resource utilization and increased waste of resources [10], whereas task

migration tends to address workers’ unavailability after a failure already manifests,

and can trigger increased latency and energy consumption [8]. There are also a

limited number of studies that address the intermittent availability issue by employing

probabilistic techniques [11, 12]. These techniques use static probabilistic methods to

predict resource availability by fitting traces of workers to a statistical distribution and

calculating the corresponding statistical parameters for estimating future availability

[11, 12]. However, such static availability estimation schemes fail to account for the

high dynamicity of EEDs, which can impact the prediction accuracy.
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The high dynamicity of EEDs not only makes predicting the availability of work-

ers quite challenging, but also makes it crucial to account for the reliability issues

stemming from potential discrepancies between their perceived and actual capabil-

ities. Such discrepancies have not been taken into consideration in the literature.

Some schemes account for the reliability of workers by relying on the ratio of tasks a

worker has successfully completed [13–16]. Few schemes further focus on the number

of high-priority tasks completed [11, 17]. However, these schemes overlook the fact

that it is not merely the successful execution of tasks that is essential, but their timely

execution as well, particularly in time-critical tasks.

1.2 Objectives and Contributions

Our objectives can be summarized as follows:

1. Estimating the availability of workers in a way that accurately captures the

high dynamicity of EEDs.

2. Studying the impact of worker intermittent availability-awareness on resource

allocation decisions.

3. Accounting for the reliability issues associated with possible discrepancies that

may occur due to the dynamic nature of EEDs, particularly between the compu-

tational capabilities that the scheduler perceives the workers to have and their

actual capabilities.

4. Making reliability-aware resource allocation decisions that strive to enhance the

QoS by improving the task execution time, task drop rate, and satisfaction ratio

(i.e., ratio of tasks executed within their deadline).



1.2. OBJECTIVES AND CONTRIBUTIONS 7

To achieve the objectives above, we introduce:

1. Dynamic Worker Availability Prediction (DWAP): DWAP addresses Objectives

1 and 2. DWAP predicts the availability of EEDs by employing a dynamic ap-

proach that incorporates newly available data to ensure that the forecasting is

based on the most current and relevant information, making the system adap-

tive and responsive to sudden changes. In particular, DWAP incorporates the

Continuous-Time Markov Chain (CTMC) model to predict the availability of

workers and adapt to the highly dynamic changes in the environment. CTMC

is a mathematical model that describes stochastic processes based on transition

rates, where the system transitions between states over time [18]. In DWAP, we

calculate the transition rates using the Mean Time Between Failure (MTBF)

and the Mean Time to Repair (MTTR), which represent the worker’s expected

lifespan before experiencing a failure and the repair time after failure, respec-

tively. To accurately capture the dynamic changes in the environment, we

re-calculate MTBF and MTTR as new data becomes available using a dataset

from Google’s real-world application usage traces [19]. We then incorporate the

rendered availability predictions into the resource allocation decision to study

the impact of accounting for the availability of workers. To the best of our

knowledge, DWAP is the first scheme that accounts for the dynamic availabil-

ity of workers by fostering dynamic availability prediction to allow for better

resource allocation decisions that can reduce the task drop rate.

2. DWAP-Reputation Enhanced (DWAP-RE): DWAP-RE addresses Objectives 3

and 4. DWAP-RE accounts for the reliability issues of workers and considers the

discrepancies between their perceived and actual computational capabilities by
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incorporating a comprehensive reputation scoring system. DWAP-RE assesses

and scores the reputation of workers based on their past performance in order to

make informed resource allocation decisions that account for their reliability. It

operates on the premise that workers with bad or inconsistent performance will

inevitably experience reduced credibility, which is bound to impact their future

task assignments. In DWAP-RE, the reputation score of each worker depends

on four key criteria; the average execution time of the tasks it executed in the

previous time steps, the average workload of these tasks, the satisfaction ratio,

and the task success rate. By incorporating these criteria, the reputation score

offers a comprehensive reflection of the worker’s reliability and true performance

potentials. Following each time step, the performance measurements of each

criterion for each worker are updated, ensuring they reflect the most recent

data available. To the best of our knowledge, DWAP-RE is the first scheme

that takes into account the potential differences between the perceived and

actual capabilities of workers, and uses an extensive reputation scoring system

to allow for better resource allocation decisions that improve the task execution

time, task drop rate, and satisfaction ratio.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides a literature

review of edge computing paradigms, as well as different approaches that address the

intermittent availability of workers. Additionally, it explores various schemes that

consider the reliability of workers. Chapter 3 presents DWAP, the underlying sys-

tem model, prediction methodology, problem formulation, as well as the performance
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evaluation compared to two other prominent schemes. Chapter 4 introduces DWAP-

RE and the underlying reputation scoring mechanism, and evaluates its performance

compared to DWAP and a baseline reputation-based scheme. Finally, Chapter 5

concludes our work and outlines future research directions.
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Chapter 2

Background and Literature Review

In this chapter, we discuss Edge Computing (EC), emphasizing the favorable at-

tributes of EC in comparison to Cloud Computing (CC). We present several promi-

nent infrastructure-based EC paradigms, including Cloudlets, Fog Computing (FC),

and Multi-access Edge Computing (MEC). Subsequently, we introduce the concept

of edge democratization, which is achieved by leveraging the underutilized compu-

tational resources of Extreme Edge Devices (EEDs), elucidating the advantages of

EED-enabled EC over infrastructure-based EC. Furthermore, we highlight the key

challenges associated with EED-enabled EC, namely intermittent availability and

unreliability. Additionally, we delve into existing strategies from the literature that

are designed to mitigate these obstacles.

2.1 Edge Computing

The National Institute of Standards and Technology (NIST) defines CC as a comput-

ing paradigm whose aim is to facilitate the widespread, ubiquitous and on-demand

network access to shared computing resources [20]. CC has significantly expanded
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computing, storage, and network capabilities through its large pools of easily ac-

cessible virtualized resources that can be dynamically reconfigured to handle varying

workloads [21]. However, with the proliferation of IoT devices and the volume of data

they generate, it becomes inefficient and impractical to transfer all the data from these

devices to remote data centers fostered by CC. Furthermore, the emergence of time-

critical and latency-sensitive applications raises concerns about the cloud’s ability to

meet ultra-low latency requirements and provide location-aware services [22].

In response to the limitations and challenges imposed by CC, a paradigm shift

has emerged to address the unique requirements of the modern computing landscape.

Edge Computing (EC) has risen as a complementary approach, strategically placing

computation and data processing closer to the data source, thereby reducing the

inefficiencies associated with data transfer and latency [21]. Unlike CC, EC leverages

distributed edge nodes, such as edge servers and local infrastructure, to process data

in proximity to where it is generated. This proximity enhances real-time decision-

making capabilities, offers significant bandwidth savings, and alleviates the strain on

network resources, especially in scenarios with massive data volumes and stringent

latency demands [23]. By bridging the gap between data generation and processing,

EC introduces a more responsive and agile ecosystem that aligns seamlessly with the

demands of IoT applications and time-sensitive services.

In the next sections, we delve deeper into the realm of Edge Computing by ex-

ploring various infrastructure-based EC paradigms that have gained prominence in

recent years, as well as EED-Enabled EC.
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2.1.1 Infrastructure-based Edge Computing

Fog Computing (FC), Cloudlets, and Multi-access Edge Computing (MEC) are promi-

nent infrastructure-based EC paradigms, each offering distinct architectural and op-

erational advantages in harnessing the potential of edge resources. FC was introduced

by Cisco [24] as a solution to address the challenges posed by high-bandwidth, low-

latency, and privacy-sensitive applications. FC involves placing fog nodes in close

proximity to IoT devices, leading to significantly reduced latency compared to tradi-

tional cloud-based approaches [21]. Compared to centralized cloud data centers, fog

nodes are distributed in less centralized locations, allowing for widespread geographic

availability. Additionally, security in fog computing is localized at the edge or specific

locations of fog nodes, as opposed to centralized security mechanisms of dedicated

buildings in cloud data centers [21]. Moreover, the decentralized nature of FC allows

devices to serve as fog computing nodes themselves or utilize fog resources as clients.

Another key distinction between CC and FC is the scale of hardware components.

In contrast to CC’s reliance on large data centers, FC leverages a diverse range of

smaller devices, such as servers, routers, switches, gateways, and access points [25].

Thus, unlike CC, where resources are concentrated in large data centers, fog nodes

are widely distributed in large numbers across different geographical locations. This

distribution enables FC to provide lower power consumption compared to CC, but

at the trade-off of lower availability [25]. The reduced hardware size in fog comput-

ing allows it to be located closer to end-users, and fog-based services can be accessed

from the edge of the network to the core, without continuous reliance on Internet con-

nectivity. In contrast, CC requires constant connection during the service delivery

[21].
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Another infrastructure-based EC paradigm was introduced by the European Telecom-

munications Standards Institute (ETSI), known as Mobile Edge Computing, provid-

ing mobile users with the ability to access computing services directly from base

stations [23]. ETSI defined Mobile Edge Computing as a platform that provides

CC capabilities within Radio Access Network (RAN) in 4G and 5G, ensuring close

proximity to mobile subscribers [26]. The Mobile Edge Computing paradigm un-

derwent expansion to encompass a broader range of network types and applications

that extend beyond the confines of mobile networks. This evolution has led to its

current nomenclature, known as the Multi-access Edge Computing (MEC) paradigm

[21]. Examples of MEC applications include connected vehicles, health monitoring,

and augmented reality. The primary objective of MEC is to extend EC capabilities

by providing compute resources near resource and energy constrained mobile devices

[26]. As a result, RAN operators can integrate EC features into existing base sta-

tions. MEC operates at the edge of the Internet and can operate effectively with

limited Internet connectivity. MEC establishes connectivity through a Wide Area

Network (WAN), WiFi, or cellular connection [21]. Moreover, MEC allows EC to be

accessible to a wide range of mobile devices with reduced latency and more efficient

mobile core networks [27]. MEC also facilitates the deployment of time-critical and

delay-sensitive applications over the mobile network [28].

A third example of an infrastructure-based EC paradigm is Cloudlets, which was

proposed by Satyanarayan et al. [29]. Cloudlets are miniature versions of cloud data

centers typically located just one network hop away from mobile devices. They are

resource-rich nodes with Internet connectivity. The concept revolves around transfer-

ring computational tasks from mobile devices to these virtual machine-based cloudlets
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at the edge of the network [30], bringing the remote cloud services closer to end users.

The concept of cloudlets was introduced as an intermediary layer within a 3-tier

continuum; the end devices, an edge cloud platform (i.e., cloudlet), and a central-

ized datacenter (i.e., cloud). The edge cloud node could reside in community places

such as shopping malls and highly populated areas such as train stations [27]. Given

that cloudlets are small, local clouds in close proximity to mobile devices, they could

be operated by cloud service providers aiming to bring their services closer to mobile

users. Network infrastructure owners, such as AT&T and Nokia could equip cloudlets

with virtualization capabilities and place them in close proximity to mobile devices,

while occupying less hardware space than the data centers associated with traditional

CC [31]. This results in lower latency and energy consumption than CC. Cloudlet

computing is designed to service devices within a localized area and requires infras-

tructure equipped with virtualization capabilities, specifically the ability to operate

virtual machines [21].

2.1.2 EED-enabled Edge Computing

Recently, there has been a growing body of literature that focuses on shifting from

infrastructure-based EC to leverage the computational resources of end devices, in-

cluding user-owned smartphones, laptops, tablets, smart appliances, connected vehi-

cles, as well as computing devices of various public, private, and educational institu-

tions (e.g., servers, workstations, and computer labs during low/non-working hours).

The concept of EED-enabled EC capitalizes on the underutilized and idle computa-

tional resources of these devices to carry out computational tasks [3, 4, 8, 32]. This

shift is primarily driven by the current state of EC platforms and models which are
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typically controlled by cloud service providers and/or network operators [32]. Chal-

lenging this monopoly by repurposing the abundant yet underutilized computational

resources of EEDs can lead to a democratized edge, creating a new market where

more entities manage their own edge cloud. Additionally, parallel processing of tasks

on computing groups of EEDs can lead to a substantial increase in the harvested

computational power, and can also bring the computing service significantly closer to

end-users, further reducing delay [3]. This approach offers the advantage of optimizing

performance without incurring the extra cost of acquiring or upgrading infrastructure,

which can be capital-intensive. Nonetheless, EED-enabled EC presents a new set of

challenges. Due to their inherent dynamicity and intermittent availability, EEDs may

not offer the same level of reliability as infrastructure-based EC [3, 7].

Other existing frameworks that share a conceptual foundation with EED-enabled

EC include Volunteer Computing [33] and Mobile Crowdsensing [34]. All three frame-

works leverage individual devices to attain a collective goal, marking a cooperative

approach to problem-solving. However, unlike in EED-enabled EC, Volunteer Com-

puting often leans towards scientific endeavors, harnessing unused computational re-

sources of volunteers’ devices for research projects, typically without offering incen-

tives or rewards for the contributors [9, 33, 35]. On the other hand, Mobile Crowd-

sensing transforms smartphones and other smart devices into dynamic sensors that

actively gather real-time data from their surroundings. This data is then transmitted

to the cloud for detailed analysis, management, and storage. In contrast to EED-

enabled EC, which often operates passively in the background, mobile crowdsensing

is a more active and engaged process, relying on the constant input from a network

of devices and their sensors [34, 36].
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2.2 Intermittent Availability Management

Several methods have been proposed to mitigate the adverse impacts of intermittent

availability of workers in EED-enhanced EC. These methods can be broadly classified

into two categories: Reactive and Proactive. Reactive approaches refer to measures

taken after a failure occurs in order to minimize the negative impact on offloaded

tasks. Proactive approaches, on the other hand, refer to measures taken to reduce

the likelihood of failure before its occurrence.

2.2.1 Reactive Approaches

Common reactive methods for recovering from failures include task checkpointing

[10], task replication [7], and task migration [9]. Checkpointing is used to regularly

save the task’s state [10]. In the event of failure, the task resumes from the last saved

state. However, determining the optimal frequency of checkpointing is a challenging

issue in such schemes. Creating checkpoints too frequently can lead to a waste of

time and resources, whereas creating infrequent checkpoints can lead to significant

data loss [10]. Typically, checkpoint creation in distributed systems involves one of

three methods [37]: coordinated checkpointing [38, 39], independent checkpointing

[40] and communication-induced checkpointing [41]. In coordinated checkpointing,

all processes in the system coordinate to create a consistent global snapshot of the

system state at the same time. While this consistent set of checkpoints provides a

reliable recovery point in case of system failures, the synchronization among all pro-

cesses introduces additional overhead [38, 39]. On the other hand, in independent

checkpointing, each process saves its state independently of others. This is more effi-

cient in terms of resource utilization and could reduce the time required for checkpoint
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creation, since processes do not need to be synchronized [40]. However, it may lead

to inconsistencies between different checkpoints. This inconsistency could make the

restoration more difficult as it may be unclear which state the system should revert

to [40]. In communication-induced checkpointing, checkpoints are created based on

communication between processes, rather than following a fixed schedule as in coor-

dinated checkpointing, or independently as in independent checkpointing [41]. This

approach reduces synchronization overhead and mitigates potential state inconsisten-

cies [41].

An alternative approach to checkpointing that tackles the problem of worker in-

termittent availability is task replication. In [7], Amer et al. allocate multiple replicas

of each task to multiple workers in order to increase the chance of continuing the task

without interruption in the event of failure at one worker. However, task replication

can lead to poor resource utilization and increased waste of resources [10]. Determin-

ing the optimal number of replicas is a difficult challenge. It is based on the resource

usage patterns, criticality of the task in terms of timely completion, and the work-

load on the system [42]. Most existing research works propose the use of a single task

replica or determine a predefined fixed number of replicas [10, 42]. In [43], Sun et

al. propose a task replication scheme to minimize the average task offloading delay.

A learning-based task replication algorithm based on a combinatorial multi-armed

bandit is used. However, the number of replicas is fixed. This causes a significant

degradation in performance since multiple replicas lead to poor resource utilization

and higher overall energy consumption [42]. In [42], McGough et al. propose a Rein-

forcement Learning approach to learn the best number of replicas, which is based on

the time of day and the criticality of the task. This approach is less likely to suffer
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from poor performance due to sub-optimal replica count selection in comparison to

approaches that use a fixed number. However, the risk of increased wasted resources

still manifests.

Rather than replicating the tasks, some schemes resort to task migration to al-

leviate the impact of worker intermittent availability. When a worker experiences a

failure, its allocated tasks could be migrated to another device to resume the service

[33]. In [9], Saleh et al. use service migration in peer-to-peer networks to transfer the

remaining portion of the task from an unreliable worker to a different worker within

the network. Two task migration approaches are proposed [9]. The first approach

migrates tasks to the first available worker, while the second approach waits for all

sub-peers to finish their tasks before initiating migrations. The second approach is

shown to be more reliable than the first approach. However, task migration can intro-

duce additional overhead, latency, and energy consumption due to the transmission

of the task from one worker to another.

In general, reactive approaches can often result in wasted resources, lost time, and

decreased satisfaction for end-users due to increased delays [8]. Proactive approaches

tend to render better performance results than reactive approaches [3].

2.2.2 Proactive Approaches

Several proactive techniques have been proposed to enable better decision-making

concerning resource allocation to improve QoS for end users. These methods are

often based on making predictions regarding resource availability. Some use statis-

tical analysis [12, 44] while others use machine learning (ML) [35] to make these

predictions. Some other schemes also explore stochastic modeling techniques [18].
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In [12] and [44], Javadi et al. and Nurmi et al. propose availability prediction

methods that involve fitting availability traces to a statistical distibution, such as

Gamma or Weibull. Subsequently, the derived parameters from these fitted models

are utilized to predict future resource availability. However, these methods are static

and may not account for the dynamic characteristics of the environment, such as

changes in the resource usage behavior of users. This results in a high number of

incorrect predictions, which may negatively impact resource allocation decisions.

In [35], McGough et al. utilize ML algorithms to forecast the idle periods of

workers and allocate the tasks accordingly. They train the algorithms using several

months’ worth of traces and predict the idle times for the following month. However,

a notable limitation of this approach is its lack of adaptability to dynamic environ-

ments. Making predictions a month in advance could result in inaccurate predictions

due to ongoing changes in the environment. In [45], Ramachandran et al. propose

using unsupervised ML to perform clustering analysis. They leverage historical data

of the worker’s resources to identify patterns that aid in predicting future availability,

employing Hierarchical clustering algorithms. ML techniques have also been used

to forecast resource usage. In [46], Violos et. al use a Long Short-Term Memory

and Convolutional Neural Network to predict the resource usage of workers. In the

prediction methodology, a combination of Bayesian and particle swarm optimization

is used for hyper-parameter search. The proposed method outperforms other ML

models, such as support vector regression, multiple linear regression, and XGBoost.

While ML techniques are robust predictive tools, they are computationally intensive

and suffer from long training times [3]. Additionally, as highlighted in [47], their

adaptability to rapidly and consistently shifting patterns is limited, reducing their
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efficacy in dynamic environments. These factors, combined with the fact that most

proposed ML-based models rely on a static training process, their practical applica-

tion in a dynamic setting can be limited. In [48], Deng et al. propose a predictive

task allocation mechanism by using the Exponential Moving Average (EMA). EMA

is a statistical method used in time series analysis. It calculates the weighted aver-

age of past availability observations, with more weight given to recent observations.

However, EMA may fail to capture sudden shifts. In [3], Kain et. al propose the Re-

source Usage Multi-step Prediction (RUMP) scheme, which enables multi-step ahead

prediction of the resource usage of workers. RUMP uses the Hierarchical Dirichlet

Process-Hidden Semi Markov Model(HDP-HSMM). However, RUMP does not pre-

dict the workers’ availability, it predicts their resource usage.

In [18], Umer et al. develop a Markov chain-based model to predict worker states

up to 15 days ahead. However, this scheme also fails to account for the dynamicity of

EED-enabled environments. This is since it relies on a static training process, which

involves training the model on a fixed dataset and making predictions for days in

advance. Additionally, the set of workers considered are fairly reliable, without much

dynamic activity. As a result, it remains unclear how well the model would perform

in environments with more frequent and significant changes in worker behavior.

Based on the aforementioned discussion, it can be noted that existing proactive

approaches are not entirely applicable to dynamic environments. They either fail

to predict the availability of workers or make predictions that rely on static train-

ing models that analyze historical data and provide estimations over days or even

months. These models may provide estimates spanning days or even months. How-

ever, in a dynamic environment where conditions can change rapidly, these long-term
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estimations can become unreliable.

2.3 Reliability-Aware Techniques

Numerous schemes have been proposed to enhance the reliability of dynamic EC en-

vironments. Some of the proposed approaches consider the resources and capabilities

of workers, acknowledging these elements as fundamental indicators of their depend-

ability and reliability [49]. Other methods analyze the historical performance data of

workers on previous task executions [11, 14, 17]. These performance-based approaches

focus on past outcomes as a reliable indicator for future task executions.

The majority of reliability-aware schemes that adopt a performance-based ap-

proach tend to rely solely on the task success rate (i.e., ratio of the number of suc-

cessfully completed tasks to the total number of tasks) as a measure of the worker’s

performance reliability [14]. However, the worker’s resource requirements and per-

formance sensitivity across various applications call for a more intricate approach

[11, 17]. This approach should consider not only the success rate of tasks but also

their specific attributes and the actual workload of workers.

In [17], Alsenani et. al propose a scheme for assessing worker reliability based

on their performance in past task executions. The parameters considered for the

reliability score include the number of tasks allocated to the worker, the number of

tasks it fails to complete, and its CPU and memory capabilities. These parameters

are then fed into an Artificial Neural Network, which predicts potential failures and

resource utilization. The worker’s reliability score is determined from the network’s

output, namely the failure rate and resource utilization ratio. However, a signifi-

cant oversight in this work is that it fails to consider the size of the tasks allocated
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to the workers. Workers handling larger tasks successfully should be deemed more

reliable. In addition, it neglects the time-sensitive nature of tasks, which is an es-

sential aspect to consider when assessing reliability. It is not merely completing the

tasks that is important, but also ensuring that they are completed within acceptable

time constraints. Moreover, the dynamic fluctuations in the worker’s capabilities are

completely overlooked.

In [11], another reliability-aware scheme is proposed. This scheme assesses the

reliability of workers based on the likelihood of a worker successfully executing a

task, utilizing a Beta reputation system. This system applies the standard Beta dis-

tribution, a two-parameter distribution commonly used across numerous reliability

engineering applications. To determine the worker’s reliability, the Beta reputation

system takes into account two factors: the number of tasks a worker has successfully

completed, denoted α, and the number of tasks the worker has failed to complete,

denoted β. However, in the proposed scheme, α and β are not merely the counts of

successes and failures in terms of task executions. Instead, α is calculated using a

weighted sum that takes into consideration the varying priority levels of successful

tasks. Similarly, β is calculated using a weighted sum that takes into account the

varying priority levels for unsuccessful tasks. The final worker reliability is calculated

as the expected value of a random variable following the Beta distribution. The re-

sulting value is in the range [0,1], where a score of 0.5 is considered a neutral rating.

Although this scheme considers the priority of executed tasks as an element influ-

encing the worker’s reliability score, it overlooks the crucial aspect of time-criticality.

Moreover, the proposed method is static and therefore not well-suited for dynamic

environments.
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Another reliability-aware approach involves assigning a higher reliability score to

workers who contribute more resources, thereby equating reliability with effort [33]. In

[49], Vega et. al introduce an effort-based scheme for resource sharing in collaborative

applications. In this scheme, the reliability of the worker is evaluated based on the

worker’s resource contributions, rather than the absolute value of their resources.

Specifically, it considers the proportion of a worker’s resource contribution relative

to its total resource capacity. This effort-based approach aims to create fairness

by favoring workers with limited resource capacity that still contribute a significant

portion of their resources.

Based on the aforementioned discussion, it can be noted that existing reliability

assessment methods are inadequate for highly dynamic EC environments. In particu-

lar, these schemes fail to account for the dynamic fluctuations in workers’ capabilities

and the ensuing discrepancies between their perceived and actual performance. While

existing approaches concentrate on metrics like task success rate, the proportion of

the worker’s resources contributed to tasks, CPU and memory capabilities, or the

execution of high-priority tasks, they often fall short in capturing the uncertainties

surrounding the workers’ actual capabilities and how these uncertainties influence

task execution speed and efficiency. Furthermore, these methods neglect to consider

the impact of task characteristics, such as workload intensity, on the worker’s per-

formance, and they fail to account for the time-critical nature of certain tasks. This

deficiency hampers their ability to accurately assess reliability in scenarios where

tasks vary in intensity and urgency.

In contrast to existing schemes, we propose a proactive approach that is specif-

ically tailored to dynamic EED-enabled environments and enables efficient resource
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allocation in real time. We foster dynamic prediction of worker availability for op-

timized resource allocation. Furthermore, we factor in the uncertainty in worker

capabilities and propose a comprehensive reliability assessment scheme that allows

making better resource allocation decisions.



25

Chapter 3

Dynamic Worker Availability Prediction (DWAP)

In this chapter, we introduce DWAP and provide an overview of the underlying system

model, problem formulation, and performance evaluation.

3.1 System Model and Overview

In DWAP, the system consists of three major components; workers, requesters, and

an orchestrator. User-owned devices (i.e., workers) contribute their resources to the

system in exchange for some incentives provided by the orchestrator. Requesters

send the computing tasks that need to be offloaded for execution to the orchestra-

tor. The latter plays a central role in the system by allocating the incoming tasks to

participating workers based on their capabilities and availability within certain con-

straints and limitations. The orchestrator predicts the availability of workers using the

Continuous-time Markov Chain (CTMC) model. It then makes availability-aware re-

source allocation decisions using such worker availability predictions. During resource

allocation, the orchestrator endeavors to minimize the execution time by employing

a refined optimization-based approach, akin to strategies adopted in various schemes

[4, 8]. Fig. 3.1 shows a high-level overview of the system architecture of DWAP and
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Figure 3.1: DWAP’s System Architecture

the interactions between the requesters, orchestrator and workers.

Consider a set of m workers W = {w1, w2, . . . , wm} and a set of n tasks T =

{t1, t2, . . . , tn}. Each task ti ∈ T is associated with a certain computation workload

qi (in CPU cycles). Each worker wj ∈ W has a maximum CPU cycle frequency

cmax
j (in CPU cycles/sec). The maximum number of tasks that can be executed

in parallel on each worker wj is denoted β. One of the key responsibilities of the

orchestrator is to make resource allocation decisions that ensure assigning tasks to

workers that can successfully complete them. Note that the successful completion

of tasks is highly dependent on the availability of workers, which is predicted by

the orchestrator to be subsequently used in the resource allocation process. In the

latter, the orchestrator minimizes the total execution time of tasks while ensuring

their successful completion by ensuring that the execution time of each task does not
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exceed the availability duration of the worker to which it is allocated. For each task ti

allocated to worker wj, the execution time depends on both the computation workload

qi and the CPU cycle frequency, denoted cij (in CPU cycles/sec), dedicated by wj

to execute ti. To determine the CPU cycle frequency cij that worker wj dedicates

to task ti, the maximum CPU cycle frequency cmax
j of each worker is divided equally

among the maximum number of tasks that it can accommodate, as given by Eq. 3.1.

Accordingly, the execution time required to perform task ti on worker wj is denoted

γij and is given by Eq. 3.2 [4, 7, 8].

cij =
cmax
j

β
(3.1)

γij =
qi
cij

(3.2)

Each worker wj is estimated to be available for a certain duration αj. Conse-

quently, the orchestrator only assigns tasks to workers whose estimated availability

is sufficient to accommodate the entire duration of task execution. To estimate the

availability of any given worker, historical data on the worker’s availability behavior is

used and fitted into a Continuous-time Markov Chain (CTMC) model. More details

on how this estimation is performed is discussed in the following section.

3.2 Prediction Methodology

In this section, we present the dataset utilized, as well as the steps taken in pre-

processing it. In addition, we present the prediction process by providing a detailed

description of the CTMC model used.
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3.2.1 Dataset and Preprocessing

We utilize a large usage trace of real-world applications made available by Google

[19, 50]. The data set is available in Google BigQuery, which is a storage and anal-

ysis tool that utilizes a variant of Structured Query Language (SQL). The dataset

encompasses 8 Google computing clusters, also referred to as cells, collected in May

2019. Each cell comprises roughly 12k machines (i.e., workers) and provides detailed

information on various aspects, including the characteristics of individual machines,

events occurring on those machines, the jobs and tasks they perform, and the uti-

lization of resources. Each job comprises multiple tasks, each of which can be in

one of six possible states at any given time, namely Submitted, Queued, Scheduled,

Evicted, Failed, or Finished. Machines can also be in one of three possible states

indicating their operational status, namely Add (the machine is added to the clus-

ter), Remove (the machine is removed from the cluster), or Update (the machine’s

available resources are updated). Additionally, the machines in the cells exhibit a

significant level of heterogeneity. Notably, among all the cells, cell g is the most

heterogeneous [51], comprising 13 different types of machines with varying CPU and

memory capabilities. Thus, we use data obtained solely from cell g.

We sample the 100 most volatile and unreliable machines out of the total 12k

in the cluster, while ensuring representation of all 13 CPU and memory capability

combinations and proportionality to the initial population. Furthermore, the dataset

provides an element of randomness; there is no distinct pattern dictating when ma-

chines are added or removed. Machines could experience hardware or software failures

and tasks could get halted due to user intervention [52]. This aspect mirrors the un-

predictable nature of EED-enabled EC environment, where devices may join or leave
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at any time. This randomness, combined with the careful selection of the 100 most

volatile machines enhances the suitability of this dataset for our application.

We construct queries to extract the necessary data. After extracting the availabil-

ity traces of the sampled machines, we preprocess the events by categorizing the Add

and Update events as “Available” and the Remove events as “Unavailable”, since

our system is only concerned with the two states of availability and unavailability.

Moreover, we preprocess the time stamps into 15-minute intervals. More details on

the dataset and preprocessing steps is provided in Appendix B.

3.2.2 CTMC Model

Markov processes, specifically CTMC, enable modeling the system as a set of states

and transitions between states that occur probabilistically over continuous time in-

tervals, making it possible to analyze the probabilities of different system states at

various points in time [53]. The transitions between states are specified through rates

at which workers transfer from one state to another, either due to failure (i.e. leaving

the system) or due to repair (i.e. rejoining the system). The state diagram of worker

transitions is illustrated in Fig. 3.2.

Let λ denote the worker failure rate. We express the failure rate in terms of the

Mean Time Between Failure (MTBF), as given by Eq. 3.3. MTBF is a metric that

measures the expected time between component failures [54]. In our setting, MTBF

refers to the expected duration between workers leaving.

λ =
1

MTBF
(3.3)

Similarly, let µ denote the worker repair rate. We express the repair rate in terms
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Figure 3.2: State diagram of worker transitions

of the Mean Time to Repair (MTTR), as given by Eq. 3.4. MTTR is a metric that

measures the expected time to repair a component after it fails [54]. In our setting,

MTTR reflects the expected time for a worker to rejoin the system.

µ =
1

MTTR
(3.4)

The state transition rate matrix for the described Markov chain is given by Q, as

follows:

Q =

−λ λ

µ −µ

 , where λ, µ > 0

Let P(t) denote the transition probability matrix, where Pi,j(t) is the transition

probability from state i to state j within time t. The state transition probability

equations are calculated by Eq. 3.5.

d

dt
P (t) = P (t).Q (3.5)
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By considering “Available” as state 1 and “Unavailable” as state 2, and assuming

that P1,1(0) = 1, solving the differential equations as shown in Appendix A yields the

transition probabilities given by Eq. 3.6, Eq. 3.7, Eq. 3.8, and Eq. 3.9.

P1,1(t) =
λ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
(3.6)

P1,2(t) = − λ

λ+ µ
e−(λ+µ)t +

λ

λ+ µ
(3.7)

P2,2(t) =
µ

λ+ µ
e−(λ+µ)t +

λ

λ+ µ
(3.8)

P2,1(t) = − µ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
(3.9)

Using Eq. 3.6, Eq. 3.7, Eq. 3.8, and Eq. 3.9, a worker’s state is predicted for a

specified number of time steps ahead. A worker’s availability duration, αj, is calcu-

lated by aggregating the duration of consecutive time intervals when it is predicted

to be available within these time steps. For training the prediction model, we first

split the data into training and testing sets. We use this initial split to compute the

failure and repair rates of each worker up until the current time step. To further refine

the training and enhance predictions on worker availability, we employ the Expand-

ing Window Cross-Validation technique [55]. This involves gradually increasing the

size of the training data by incorporating more historical data through an expanding

window and making predictions on a fixed window of test data. Once this window

passes, the model parameters (failure and repair rates) are updated using the latest

training set, which now encompasses the data from the most recent window. This

iterative process of updating the model and forecasting continues for each subsequent
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window of test data.

3.3 Problem Formulation

Upon estimating the availability duration of workers as described in Section 3.2,

i.e., αj, the orchestrator uses such estimations to make availability-aware resource

allocation decisions. During resource allocation, the objective is to minimize the

total execution time of all tasks. The execution time of tasks is expressed in terms

of the computation workload of the task and the CPU cycle frequency dedicated by

the worker to the task, as defined by Eq. 3.2. Consideration of task deadlines will be

discussed in detail in Chapter 4. We formulate the resource allocation problem as an

Integer Linear Program (ILP) problem, where the binary decision variable xij is set

to 1 if task ti is allocated to worker wj , and 0 otherwise, as given by Eq. 4.6.

xij =


1 if task ti is allocated to worker wj

0 otherwise

(3.10)

The problem formulation is given by Eq. 3.11.

min
xij∈{0,1}

∑
j∈W

∑
i∈T

xijγij (3.11a)
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subject to:

∑
j∈W

xij = 1 ∀ i ∈ T (3.11b)

∑
i∈T

xijcij ≤ cmax
j ∀ j ∈ W (3.11c)

xijγij ≤ αj ∀ i ∈ T,∀ j ∈ W (3.11d)

The objective given by Eq. (3.11a) is subject to the constraints (3.11b)-(3.11d).

Constraint (3.11b) ensures that each task is assigned to one worker. This guarantees

that each task is assigned only once. Constraint (3.11c) guarantees that the total

CPU cycle frequency used to execute all the tasks assigned to each worker does not

exceed its maximum capacity. Constraint (3.11d) ensures that the execution time of

each task assigned to each worker does not exceed the estimated availability duration

αj of the worker. This is critical to ensure that a worker is not assigned a task that

takes longer to complete than the time it is available to work on.

3.4 Performance Evaluation

In this section, we evaluate the performance of DWAP compared to a representative

of state-of-the-art availability-oblivious resource allocation schemes [4, 8], referred to

as the Availability-unaware Resource Allocation (AURA) scheme. Note that AURA

adopts the same optimization problem used in DWAP but without considering the

worker availability constraint. In order to assess the impact of the prediction model

used in DWAP, we compare it to the prominent Exponential Moving Average (EMA)

prediction model [48]. Note that the Exponential Moving Average (EMA) operates
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by calculating the weighted average of past availability observations, with a bias to-

wards more recent data points, guided by a smoothing factor that falls between 0

and 1. This factor dictates the weight allocation, thereby determining the emphasis

placed on recent observations compared to older ones. We apply EMA to estimate the

availability duration of workers and then apply the same availability-aware resource

allocation approach used in DWAP. We refer to such a combination as the Exponen-

tial Moving Average Resource Allocation (EMARA) scheme. We use the following

performance metrics:

1. Average execution time, which is the average time taken to execute the tasks

successfully across all time steps and all workers.

2. Task drop rate, which is the ratio of the total number of tasks that fail to be

executed to the total number of tasks.

3. Mean Absolute Error (MAE), which is the average absolute difference be-

tween the predicted and actual values of worker availability.

4. Root Mean Squared Error (RMSE), which is the square root of the average

of the squared differences between the predicted and actual values of worker

availability.

3.4.1 Simulation Setup

For the prediction model, the initial training set comprises of the first 80% of the data

and the testing set comprises the remaining 20%. The window size in the Expanding

Window Cross Validation is set to 30 minutes.
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DWAP, EMARA, and AURA are all implemented using Python, which is inte-

grated with Gurobi [56] to generate the optimal solution. The total number of tasks

at every time step is set to 200 and the number of time steps is set to 150. The com-

putation workload of tasks is uniformly distributed in the range of [50,000, 70,000].

Unless otherwise specified, the maximum number of tasks that workers can execute

in parallel is set to 4. The maximum CPU cycle frequency of each worker is extracted

from the dataset. Note that in the dataset, the values provided are normalized rel-

ative to the most powerful worker. Thus, we set the maximum possible value to

600 CPU cycles/sec and scale the values accordingly. Finally, the smoothing factor

in EMARA, which determines the weight given to past observations relative to new

observations, is set to 0.1.

3.4.2 Results and Analysis

In our experiments, we evaluate the performance of DWAP, EMARA, and AURA over

varying β (i.e., maximum number of parallel tasks) and average task computation

workload q. In addition, we evaluate the performance of the prediction models used

in DWAP and EMARA over varying time intervals. All experiments are repeated 5

times and the results are presented at a confidence level of 95%. Since the confidence

intervals are negligible, they are not explicitly depicted in the figures for clarity of

presentation.

3.4.2.1 Prediction Results

Fig. 3.3 depicts the actual and the predicted number of available workers in DWAP

and EMARA at each time interval. It can be observed that the predicted values in
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Figure 3.3: Actual and predicted number of available workers in DWAP and EMARA
at each time interval

DWAP closely follow the actual data, which shows the ability of DWAP to effectively

capture the overall trend of worker availability. In contrast, predictions made using

EMARA substantially deviate from the actual values, indicating that it is significantly

less accurate than DWAP in predicting worker availability.

Notably, DWAP is also able to capture short-term fluctuations in the data, which

EMARA is unable to do. This demonstrates that DWAP is not only more accurate,

but also more adaptable to changes. In order to provide a more comprehensive eval-

uation of the models’ performance, we assess their MAE and RMSE. As depicted

in Table 3.1, DWAP outperforms EMARA in terms of both metrics, achieving an

improvement of 74% and 59% in terms of MAE and RMSE, respectively. This can

be attributed to DWAP’s utilization of state transitions, consideration of time inter-

vals between events, and dynamic parameter adjustments, which effectively capture
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Table 3.1: MAE and RMSE of DWAP and EMARA

Scheme MAE RMSE
DWAP 0.58 1.36
EMARA 2.31 3.39

Figure 3.4: Task drop rate of DWAP, AURA, and EMARA over varying number of
parallel tasks (β)

data dynamics and temporal dependencies. EMARA, on the other hand, employs a

weighted average of previous data points, which may fall short in capturing complex

patterns or sudden shifts.

3.4.2.2 The Impact of the Maximum Number of Parallel Tasks

Fig. 3.4 shows the task drop rate of DWAP, AURA, and EMARA over varying the

maximum number of parallel tasks β. The results show that the task drop rate

generally decreases as β increases in all of the schemes. This is since as β increases,
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more tasks are assigned to the same worker, increasing the benefit gained due to

the worker’s availability for the entire duration of task execution, thus reducing the

task drop rate. However, it can be observed that at some point, this benefit can

be counteracted by the risk of assigning too many tasks to workers with shorter

availability duration than the task execution time. Note that DWAP significantly

outperforms AURA, with an improvement of up to 97%. This is because in contrast

to AURA, DWAP accounts for worker availability and only assigns tasks to workers

that are predicted to be available for the entire duration of task execution, thus

reducing the risk of tasks being dropped due to intermittent availability of workers.

In addition, DWAP significantly outperforms EMARA, yielding an improvement of

up to 48%. This is since DWAP provides more accurate estimations of workers’

availability than EMARA, thus reducing the risk of assigning tasks to workers that

are estimated to be available longer than they actually are.

Fig. 3.5 depicts the performance of DWAP, AURA, and EMARA in terms of

the average execution time over varying β. The results show that as the value of β

increases, the average execution time increases in all the schemes. This is because as β

increases, the computational capability dedicated to each individual task decreases,

resulting in a prolonged execution time. Note that the three schemes yield fairly

comparable results, with DWAP and EMARA closely approaching the performance

of AURA, wherein the latter demonstrates a marginal performance gain of up to

4% over DWAP and EMARA. This difference can be attributed to the fact that

AURA focuses solely on minimizing the execution time without considering worker

availability. In contrast, DWAP and EMARA take both factors into consideration,

which results in a more constrained selection of available resources. Consequently,
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Figure 3.5: Average execution time of DWAP, AURA, and EMARA over varying
number of parallel tasks (β)

DWAP demonstrates significant improvements in terms of task drop rate compared to

AURA, while still managing to closely approach AURA’s execution time performance,

resulting in a remarkably small gap of up to 4%.

3.4.2.3 The Impact of the Average Task Computation Workload

Fig. 3.6 depicts the drop rate of DWAP, AURA, and EMARA over varying average

computation workload (q). It can be observed that increasing the computation work-

load of tasks does not significantly impact the resource allocation decision process.

Instead, increasing q only makes the tasks more computationally intensive, which

can prolong the average execution time, but does not affect the resource allocation

decision. This is since the latter is designed to optimize task distribution based on
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Figure 3.6: Task drop rate of DWAP, AURA, and EMARA over varying task com-
putation workload (q)

the available worker pool and their characteristics, with the goal of minimizing ex-

ecution time and enhancing overall system efficiency. Since the criteria governing

worker selection remain unchanged, the resource allocation decision process remains

largely unaffected by variations in the average task computation workload. Thus, as

q increases, the task drop rate of DWAP, AURA, and EMARA remains the same.
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Chapter 4

DWAP-Reputation Enhanced (DWAP-RE)

In this chapter, we introduce DWAP-RE. While DWAP primarily focuses on pre-

dicting the availability duration of workers, DWAP-RE takes a step further by also

considering their reputation scores. DWAP, similar to existing schemes, overlooks the

potential discrepancies between the workers’ capabilities perceived by the orchestrator

and their actual capabilities. These discrepancies often emerge due to rapid changes

in the dynamic environment. As such, the real-time capabilities of a worker can be far

less than the orchestrator’s initial assessment, largely due to the device owner utiliz-

ing more resources for personal use. This dynamic access behavior introduces a layer

of unpredictability that can lead to inefficiencies in resource allocation, which can sig-

nificantly prolong task execution. Moreover, DWAP primarily emphasizes the impact

of accounting for the intermittent availability of workers on the reduction of task drop

rate, but overlooks the reliability issues associated with the aforementioned discrep-

ancies on satisfying the deadline of tasks. DWAP-RE effectively tackles these two

challenges. In DWAP-RE, the orchestrator exploits the past performance of workers

to build a reputation scoring system that evaluates their actual performance poten-

tial based on various factors. These include their time-efficiency in executing tasks
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of varying workloads, the proportion of successfully completed tasks, and the ratio

of executed tasks that satisfy their respective deadlines, providing a comprehensive

measure of the workers’ reputation. DWAP-RE relies on the fact that poor perfor-

mance of a worker decreases that worker’s credibility and reliability, subsequently

influencing the allocation of future tasks.

4.1 System Model

DWAP-RE shares the same system model as DWAP (outlined in Section 3.1), with

some additional features. These features include the fact that each task ti is associated

with a deadline di (in seconds). Note that if the orchestrator allocates a task to a

worker and the deadline is not met, the task will not be dropped but the task requester

will not be satisfied with the overall quality or level of service provided. Furthermore,

as a consequence of the discrepancy induced by the dynamic user access behavior, the

orchestrator only has access to a perception of the maximum CPU cycle frequency,

denoted as ĉmax
j (in CPU cycles/sec), as opposed to the actual maximum frequency,

cmax
j . This perceived frequency might be an overestimation. This obfuscation means

that the orchestrator might have imprecise estimation of the actual execution time of

tasks.

Imprecise estimations of the actual capabilities of workers lead to poor resource

allocation decisions and cause the workers’ performance to be unreliable. This is

since overestimating the performance of workers can make the orchestrator assign

them computationally intensive tasks that end up taking longer execution time than

anticipated, significantly impacting the delay, satisfaction ratio, and drop rate. In

order to account for these reliability issues in DWAP-RE, the orchestrator resorts
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to scoring the reputation of each worker wj, denoted sj , based on the worker’s past

performance. The reputation score acts as a reliability measure that assesses the level

of confidence in the worker’s estimated performance. High reputation scores reflect a

consistent ability to effectively execute tasks, which thereby instills a degree of trust in

the worker’s future performance. As such, these reputation scores become a crucial

tool for the orchestrator to make reliability-aware resource allocation decisions, in

the presence of inherent discrepancies. More details on the criteria included in the

reputation score and how it is calculated are discussed in the following section.

The perceived CPU cycle frequency ĉij (in CPU cycles/sec), dedicated by worker

wj to execute ti, is given by Eq. 4.1, where β is the maximum number of tasks that

wj can execute in parallel. Thus, the perceived execution time of executing task ti on

worker wj is denoted γ̂ij and is given by Eq. 4.2 [4, 7, 8], where qi is the computation

workload of the task (in CPU cycles).

ĉij =
ĉj

max

β
(4.1)

γ̂ij =
qi
ĉij

(4.2)

4.2 Reputation Scoring

In this section, we present the criteria used to assess the reputation of each worker,

as well as the mechanism adopted to calculate the reputation score.
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4.2.1 Criteria for Worker Reputation Assessment

There are four criteria that determine the worker’s overall reputation. They are

outlined as follows:

1. Task Success Rate: This criterion represents the proportion of tasks successfully

executed by a worker relative to the total tasks assigned. Note that the success

of tasks on any worker relies on the worker’s availability during the entire du-

ration needed for the task to be executed. Thus, it is crucial to consider this

criterion when determining the reputation of any given worker as it serves as

an indicator of its reliability upon task assignment. Workers demonstrating a

low task success rate are likely to receive fewer tasks in subsequent allocations,

as a low task success rate contributes to low reputation.

2. Satisfaction Ratio: This criterion represents the ratio of the tasks that the

worker has executed within their corresponding deadline to the total number of

assigned tasks in previous allocations. It serves as an indicator of the worker’s

ability to consistently provide a certain QoS demanded by the requesters to

maintain their satisfaction. Note that determining how fast the workers tend to

execute their allocated tasks can also provide further insights, which necessitates

the use of the average execution time criterion (explained below).

3. Average Execution Time: This criterion represents the average execution time

of all the tasks that have been successfully executed by the worker in previous

allocations. Its significance in the reputation assessment process stems from the

fact that it can indicate the worker’s consistent ability to sustain low latency. A

low average execution time serves as a strong indicator of a reliable performance,
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particularly when combined with the other relevant criteria.

4. Average Task Computation Workload : This criterion represents the average

computation workload of all the tasks that have been successfully executed by

the worker in previous allocations. It provides key insights into the worker’s

ability to handle tasks of various workloads, particularly computationally in-

tensive tasks. This criterion can complement the other criteria. For example,

together with the average execution time criterion, it can provide a more insight-

ful indicator of how fast a worker executes tasks relevant to their computation

workload. The pertinence of the average task computation workload criterion

can be elaborated further using the following examples:

• Consider two workers A and B. Both workers exhibit equally low aver-

age execution time. However, Worker A demonstrates a higher average

task computation workload than Worker B. This indicates that Worker A

possesses greater performance as it successfully handles larger and more

demanding tasks within the same time frame as Worker B.

• Consider two workers C and D. Both workers display a high task success

rate, meaning that they complete most tasks assigned to them successfully.

However, Worker C has a higher average task computation workload than

Worker D. This means that while both workers are equally successful at

completing tasks, Worker C is more reliable since it is able to handle tasks

with larger workloads while having the same success rate as Worker D.

• Consider two workers E and F. Both workers demonstrate a high satis-

faction ratio, implying that they complete most tasks assigned to them
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within the specified deadline. However, Worker E has a higher average

task computation workload than Worker F. Typically, larger workloads

correspond to more complex or demanding tasks. Hence, Worker E’s abil-

ity to handle computationally demanding tasks while maintaining a high

satisfaction ratio indicates greater reliability in managing demanding tasks

within specified deadlines.

4.2.2 Reputation Score Calculation

The criteria outlined in the previous section are measured on different scales. Con-

sequently, normalization is applied before calculating the overall reputation score.

To do that, it is first important to note that the criteria can be classified into the

following two categories [57]:

1. Beneficial Criteria: These represent the criteria for which a higher value is fa-

vorable. The satisfaction ratio, task success rate, and average task computation

workload are classified under this category.

2. Non-beneficial Criteria: Conversely, these encompass the criteria for which a

lower value is preferable. In the context of this study, the average execution

time is included in this category.

Let K = {k1, k2, k3, k4} be the set of the 4 aforementioned criteria, where the

value of criterion kr for each worker wj is denoted vrj. To normalize the criteria, the

Min-Max method [58] is employed. For beneficial criteria, the normalization equation

is given by Eq. 4.3, whereas for non-beneficial criteria, the normalization equation

is given by Eq. 4.4. Note that the task success rate and satisfaction ratio are not

normalized, since their values are already within the range of [0,1].
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v′rj =
vrj −minj(vrj)

maxj(vrj)−minj(vrj)
(4.3)

v′rj =
maxj(vrj)− vrj

maxj(vrj)−minj(vrj)
(4.4)

Following the aforementioned normalization, the reputation score of worker wj,

denoted sj, can then be calculated as given by Eq. 4.5.

sj =
4∑

r=1

v′rj (4.5)

In calculating the reputation score, the utilization of an aggregation method nat-

urally leads to a scenario where all criteria hold equal weight, fostering balanced

performance across all metrics. This ensures fairness, preventing potential imbal-

ances that can occur with unequal weighting. For instance, consider a scenario where

one worker showcases a very high success rate but registers a low satisfaction ratio.

In a system where the satisfaction ratio carries lower weight, this worker could be

deemed superior to another worker that maintains a slightly lower success rate yet

excels in satisfaction ratio. By sustaining an equal weight approach, we promote a

more comprehensive and equitable evaluation, encouraging workers to maintain con-

sistent performance in all criteria, rather than overemphasizing a single criterion to

increase their score. To validate our methodological approach, we also explored us-

ing the Weighted Sum Method (WSM) to calculate the reputation score sj. In this

method, individual criteria are allocated specific weights, and the final reputation

score is derived by summing up these weighted values. To determine the weights, the

Analytic Hierarchy Process (AHP) [59] was used. Experimental evaluations confirmed
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that assigning equal weights to all four criteria yields the most optimal results.

4.3 Problem Formulation

Upon assessing the workers’ reputation scores, the orchestrator incorporates them to

make reliability-aware resource allocation decisions. During resource allocation, we

strive to minimize the total execution time of all tasks. However, the orchestrator

makes resource allocation decisions based on its perceived estimation of the work-

ers capabilities and performance potential. To account for possible discrepancies,

the orchestrator relies on workers’ reputation scores to evaluate their dependability

and the level of confidence in their performance. This evaluation takes into account

the workers’ previous track record, contributing to a more reliable and efficient task

execution process. A higher worker reputation correlates with a reduced disparity

between its perceived and actual performance. The worker’s reputation score is in-

corporated into the resource allocation process. The main objective of the latter is to

minimize the total task execution time and the unreliability of the workers to which

the tasks are allocated. In this context, the time required for task execution is divided

by the worker’s reputation score, addressing performance variations based on their

historical reliability. This approach fosters a non-linear relationship, enabling a more

precise depiction of the dynamics between execution time and reliability of workers.

Moreover, by incorporating the reputation score in this manner, we underscore its

substantial and multiplier effect on the process. Toward that end, we formulate the

resource allocation problem as an ILP, where the binary decision variable xij is set

to 1 if task ti is allocated to worker wj , and 0 otherwise, as given by Eq. 4.6.
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xij =


1 if task ti is allocated to worker wj

0 otherwise

(4.6)

The problem formulation is given by Eq. 4.7.

min
xij∈{0,1}

∑
j∈W

∑
i∈T

xij
γ̂ij
sj

(4.7a)

subject to:

∑
j∈W

xij = 1 ∀ i ∈ T (4.7b)

∑
i∈T

xij ĉij ≤ ĉmax
j ∀ j ∈ W (4.7c)

xij
γ̂ij
sj

≤ αj ∀ i ∈ T,∀ j ∈ W (4.7d)

The objective given by Eq. (4.7a) is subject to the constraints (4.7b)-(4.7d).

Constraint (4.7b) ensures that each task is assigned to one worker. Constraint (4.7c)

guarantees that the total perceived CPU cycle frequency used to execute all the tasks

assigned to each worker does not exceed its perceived maximum capacity. Constraint

(4.7d) ensures that the perceived execution time of each task assigned to each worker

does not exceed the estimated availability duration αj of the worker.

4.4 Performance Evaluation

In this section, we evaluate the performance of DWAP-RE compared to DWAP and

a representative of state-of-the-art reliability-aware schemes that rely solely on the

task success rate to assess the reliability of workers [13, 14]. We refer to the latter
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as the Conventional Evaluation for Reputation-based Resource Allocation (CERRA)

scheme. Note that in contrast to DWAP and DWAP-RE, CERRA does not apply

any availability prediction. Thus, to ensure a fair comparison and to solely and

explicitly evaluate the impact of the reputation scoring system, we tweak CERRA

by implementing the same availability prediction-based approach used in DWAP-RE.

Note that DWAP, DWAP-RE, and CERRA are all evaluated within the context of

discrepancies between the perceived and actual capabilities of workers. We use the

following performance metrics:

1. Average execution time, which is the average time taken to execute tasks

successfully.

2. Task drop rate, which is the ratio of the total number of tasks that fail to be

executed to the total number of tasks.

3. Satisfaction Ratio, which is the ratio of the number of tasks that are success-

fully executed within the deadline to the total number of tasks.

4.4.1 Simulation Setup

DWAP, DWAP-RE, and CERRA are all implemented using Python, which is inte-

grated with Gurobi [56] to generate the optimal solution. We set the number of time

steps to 150 and the number of tasks in each time step to 200. Unless otherwise

specified, the computation intensity of tasks is uniformly distributed in the range of

[70,000, 90,000], the maximum number of tasks that workers can execute in parallel

is set to 4, and the deadline of tasks is uniformly distributed in the range of [900,

1200]. We use the same set of 100 workers as in DWAP. The maximum CPU cycle
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frequency of each worker is extracted from the Google dataset[19, 50]. Note that in

the dataset, the values provided are normalized relative to the most powerful worker.

Thus, we set the maximum possible value to 600 CPU cycles/sec and scale the values

accordingly.

4.4.2 Results and Analysis

In our experiments, we evaluate the performance of DWAP, DWAP-RE, and CERRA

over varying β (i.e., maximum number of parallel tasks), average task deadline d,

and average computation workload q. All experiments are repeated 5 times. The

results are presented at a confidence level of 95%. Note that the rendered confidence

intervals are shown in Fig. 4.2. Since the confidence intervals are negligible, they are

not explicitly depicted in the other figures for clarity of presentation.

4.4.2.1 The Impact of the Maximum Number of Parallel Tasks

Fig. 4.1 shows the effect of varying the maximum number of parallel tasks, β, on

the average execution time of tasks for DWAP, DWAP-RE, and CERRA. It can be

observed that the average execution time increases in all schemes as β increases. This

can be attributed to the fact that as the number of tasks that are executed con-

currently by the worker increases, the worker’s computational capacity available for

each individual task decreases. Consequently, the time required to complete each

task increases, leading to an increase in the overall average execution time. Note that

DWAP-RE yields the best results among all schemes. It outperforms DWAP by up to

43%. This is since unlike DWAP, DWAP-RE accounts for the reliability issues that

ensue from the presence of disparities between the workers’ capabilities perceived by
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Figure 4.1: Average execution time of DWAP, DWAP-RE, and CERRA over varying
number of parallel tasks (β)

the orchestrator and their actual capabilities. DWAP-RE assesses the reputation of

workers based on their past performance and leverages the use of reputation scores

to provide valuable insights on the proficiency and consistency of their performance.

This reduces the risk of prolonging the execution time by assigning computationally

intensive tasks to poor workers that are perceived to be more capable than they ac-

tually are. Moreover, DWAP-RE outperforms CERRA by 10%. This is because in

contrast to CERRA, which relies solely on the task drop rate to address the reliability

issues of workers, DWAP-RE implements a comprehensive reputation scoring system.

This system assesses the quality and consistency of the performance of workers based

on a number of metrics. Along with the task drop rate, these metrics include the aver-

age time that the worker takes to execute its allocated tasks, the average computation

intensity of the tasks that it executes, and its ability to satisfy the deadline of those
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Figure 4.2: Satisfaction ratio of DWAP, DWAP-RE, and CERRA over varying num-
ber of parallel tasks (β)

tasks. The collective use of those metrics provides much more valuable insights into

the performance of workers and enables the orchestrator to make more dependable

resource allocation decisions. This increases the chance of assigning computationally

intensive tasks to consistently high-performing workers, thus reducing the average

execution time.

Fig. 4.2 shows the effect of varying the maximum number of parallel tasks, β,

on the satisfaction ratio of DWAP, DWAP-RE, and CERRA. The results show that

the overall satisfaction ratio decreases for all schemes as β increases. This is since

workers are able to dedicate less of their resources to each of the concurrent tasks.

Consequently, this increases the execution time of each task, which subsequently

leads to a higher likelihood of missing the set deadlines. Additionally, DWAP-RE
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significantly outperforms DWAP and CERRA by up to 42% and 22%, respectively.

This is since DWAP-RE leverages the past performance of workers to determine

their reputation, and one of the metrics it uses is the satisfaction ratio of previously

executed tasks. This metric, combined with others, enable the orchestrator to make

allocation decisions that increase the likelihood of meeting the task deadline. In

contrast, DWAP overlooks the reliability issues stemming from workers’ capability

discrepancies. As a result, it fails to account for the risks of assigning tasks to

overestimated workers that may be too slow to meet the deadline of the tasks, thus

reducing the satisfaction ratio. While CERRA does consider such discrepancies, its

assessment of worker reliability relies solely on the task drop rate. This approach

falls short in providing insights into the worker’s time efficiency and consistency in

meeting the deadline of tasks.

Fig. 4.3 shows the effect of varying the maximum number of parallel tasks, β, on

the task drop rate of DWAP, DWAP-RE, and CERRA. It can be observed that as β

increases, the task drop rate increases in all schemes. This is because as β increases,

more tasks are assigned to the same worker, elevating the risk of workers with deteri-

orating availability and reliability issues handling more tasks. Note that DWAP-RE

significantly outperforms DWAP by up to 97%. This is markedly different from the

scenario presented in Fig. 3.4, where DWAP demonstrates superior performance in a

setting where there are no discrepancies or uncertainties regarding the workers’ capa-

bilities. In contrast, under the present conditions where the orchestrator lacks precise

knowledge of the individual workers’ capabilities, DWAP’s performance significantly

deteriorates. On the other hand, DWAP-RE effectively addresses the discrepancy

between the perceived and actual worker performance. Unlike DWAP, DWAP-RE
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Figure 4.3: Task drop rate of DWAP, DWAP-RE, and CERRA over varying number
of parallel tasks (β)

incorporates a reputation scoring system that accounts for the incongruity between

the worker anticipated and actual task execution capabilities. By leveraging this

reputation-based approach, DWAP-RE mitigates the risk of assigning tasks to work-

ers who might be overestimated, potentially leading to tasks taking longer to execute

than the workers’ availability window. This risk mitigation significantly decreases

the task drop rate. Interestingly, CERRA slightly surpasses DWAP-RE. This is since

CERRA assesses the reliability of workers based solely on the task success rate, thus

assigning tasks to workers with the lowest record in terms of task drop rate. In con-

trast, DWAP-RE employs a more holistic reputation scoring system, encompassing a

broader range of criteria beyond just the task success rate. While CERRA achieves a

marginal reduction in task drop rate compared to DWAP-RE, it is worth highlighting
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Figure 4.4: Average execution time of DWAP, DWAP-RE, and CERRA over varying
task deadline (d)

that the drop rate of DWAP-RE remains consistently below 1%. This underscores the

effectiveness of DWAP-RE in maintaining a remarkably low task drop rate, despite

CERRA’s marginal advantage in this aspect.

4.4.2.2 The Impact of the Average Task Deadline

Fig. 4.4 shows the effect of varying the average task deadline, d, on the average

execution time of DWAP, DWAP-RE, and CERRA. The results indicate that the

increase in task deadline has no impact on the average execution time in all schemes.

This is since the task deadline is not considered in the orchestrator’s resource allo-

cation decision. Instead, the decision is primarily focused on efficiently utilizing the

available resources to complete tasks as quickly as possible. It can be observed that

DWAP-RE outperforms DWAP and CERRA by up to 39% and 10%, respectively.
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Figure 4.5: Satisfaction ratio of DWAP, DWAP-RE, and CERRA over varying task
deadline (d)

This is due to the same reasons mentioned earlier.

Fig. 4.5 shows the effect of varying the average task deadline, d, on the satisfaction

ratio of DWAP, DWAP-RE, and CERRA. It can be observed that as the deadline

increases, the satisfaction ratio increases in all schemes. This is due to the increased

flexibility provided by longer deadlines, which affords a more lenient temporal en-

velope for task execution. In addition, longer task deadlines act as buffers against

unforeseen delays that result from the disparity between the worker’s perceived and

actual performance, allowing a greater proportion of tasks to be completed within

their allotted deadline. Note that DWAP-RE outperforms DWAP and CERRA by

up to 35% and 17%, respectively. It can be observed that the leverage of DWAP-RE
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Figure 4.6: Task drop rate of DWAP, DWAP-RE, and CERRA over varying task
deadline (d)

compared to DWAP and CERRA significantly manifests as the task deadlines be-

come more strict. This is since as task deadlines become more stringent, the pressure

to efficiently allocate resources intensifies. DWAP-RE’s advanced reputation-based

resource allocation mechanism excels in such scenarios. By factoring in workers’ his-

torical satisfaction ratio, execution time, task computation workload, and success

rate, DWAP-RE makes more reliable resource allocation decisions, ensuring a higher

probability of timely and successful task completion. In contrast, DWAP, which fails

to account for the reliability of workers, and CERRA, which is not as adept as DWAP-

RE at considering these intricate factors, might encounter challenges in maintaining

efficient resource allocation under stricter deadlines.

Fig. 4.6 shows the effect of varying the average task deadline, d, on the task
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drop rate of DWAP, DWAP-RE, and CERRA. It can be noted that augmenting

the task deadline does not exert a discernible impact on the task drop rate. This

observation is rooted in the fact that the orchestrator’s resource allocation strategy

remains indifferent to the deadline variations. Moreover, it is noteworthy that even

if a deadline is exceeded, the task continues to be executed without getting dropped.

4.4.2.3 The Impact of the Average Task Computation Workload

Fig. 4.7 shows the effect of varying the average task computation workload, q, on the

average execution time of DWAP, DWAP-RE, and CERRA. It can be observed that

as the task computation workload increases, the average execution time increases in

all schemes. This is attributed to the fact that more intensive tasks are inherently

more demanding and thus require longer completion time. Note that DWAP-RE sig-

nificantly outperforms DWAP and CERRA by up to 41% and 16%, respectively. This

can be attributed to the fact that DWAP-RE includes task computation workload as

one of the factors in the worker reputation evaluation process. Workers who consis-

tently and reliably handle computationally intensive tasks, while achieving proficiency

in other criteria, are likely to receive a high reputation score. Consequently, these

skilled workers are more likely to be selected for executing intensive tasks, thereby

enhancing the overall efficiency of the system.

Fig. 4.8 shows the effect of varying the average task computation workload, q,

on the satisfaction ratio of DWAP, DWAP-RE, and CERRA. The results illustrate

that as the task computation workload increases, the satisfaction ratio decreases in all

schemes. This is since tasks with higher intensity require more time to be completed,

subsequently increasing the risk of missing their deadline. It can be observed that



4.4. PERFORMANCE EVALUATION 60

Figure 4.7: Average execution time of DWAP, DWAP-RE, and CERRA over varying
task computation workload (q)

DWAP-RE outperforms DWAP and CERRA by up to 36% and 18%, respectively.

This is due to the same reasons previously discussed pertaining to DWAP-RE’s con-

sideration of the average task computation workload of previously allocated tasks,

along with other criteria, in the reputation scoring system.

Fig. 4.9 shows the effect of varying the average task computation workload, q,

on the task drop rate of DWAP, DWAP-RE and CERRA. Note that as the task

computation workload increases, the task drop rate increases in all schemes. This is

since more computationally intensive tasks are associated with a higher risk of ex-

ceeding the worker’s availability duration due to their longer execution time. Note

that DWAP-RE significantly outperforms DWAP by up to 97%. This is due to the

same reasons previously discussed pertaining to DWAP-RE’s ability to address the
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Figure 4.8: Satisfaction ratio of DWAP, DWAP-RE, and CERRA over varying task
computation workload (q)

discrepancy between the perceived and actual worker performance. It can be particu-

larly observed that the performance improvement rendered by DWAP-RE compared

to DWAP increases as q increases. This is since unlike DWAP, DWAP-RE signifi-

cantly alleviates the risk of assigning computationally intensive tasks to overestimated

workers that end up prolonging the execution time beyond the worker’s availability

window. It can also be observed that CERRA achieves a marginal reduction in task

drop rate compared to DWAP-RE, due to the fact that CERRA asesses the relia-

bility of workers based solely on the task success rate, whereas DWAP-RE considers

multiple other criteria along with the latter. However, it is worth highlighting that

the drop rate of DWAP-RE remains consistently below 1%. This accentuates DWAP-

RE’s outstanding performance in upholding an exceptionally low task drop rate, even
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Figure 4.9: Task drop rate of DWAP, DWAP-RE, and CERRA varying task compu-
tation workload (q)

in light of CERRA’s slight advantage in this respect.
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Chapter 5

Conclusion and Future Work

5.1 Summary and Conclusion

Democratizing edge computing can revolutionarily transform the prolific yet underuti-

lized computational resources of end devices, also referred to as Extreme Edge Devices

(EEDs), into on-demand computing groups of distributed workers. This can speed up

the feasible deployment of pervasive IoT applications. However, such transformative

potential can be impeded by the challenging issues imposed by the highly dynamic

nature of EEDs and the impact of such dynamicity on the Quality of Service (QoS).

In this thesis, we have proposed a framework that accounts for the high dynamicity of

EEDs and the resulting repercussions pertaining to their intermittent availability and

the continuous fluctuations in their capabilities. To counteract the high risk of inter-

mittent availability, we have proposed the Dynamic Worker Availability Prediction

(DWAP) scheme. DWAP is the first scheme that predicts the availability of EEDs

in a way that captures the high volatility of EED-enabled computing environments.

DWAP uses the Continuous-Time Markov Chain (CTMC) model to predict worker

availability while continually refining its parameters to incorporate new incoming
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data. To generate such predictions, we have utilized a dataset based on real-world

Google cluster workload traces. We have then used the predicted availability of work-

ers to make availability-aware resource allocation decisions.

In addition to accounting for the intermittent availability of workers, we have

addressed the reliability issues associated with the dynamic fluctuations in workers’

capabilities. For that purpose, we have extended DWAP and proposed the DWAP-

Reputation Enhanced (DWAP-RE) scheme. DWAP-RE accounts for potential dis-

crepancies between the orchestrator’s perception of the capabilities of workers and

their actual performance. This is of paramount importance given the intrinsic dy-

namic user access behavior and computation load in EED-enabled computing envi-

ronments. To mitigate the effects of such dynamicity, DWAP-RE not only predicts

the availability duration of workers but also evaluates their reputation scores, provid-

ing insights into the historical reliability of workers based on previous task executions.

Moreover, DWAP-RE acknowledges the fact that executing tasks in a timely man-

ner is as important as successfully executing them, specially for time-critical tasks.

To capture that importance, DWAP-RE employs a comprehensive reputation scoring

system that is based on multiple criteria. Subsequently, DWAP-RE uses the reputa-

tion scores of workers to make reliability-aware resource allocation decisions, further

improving the QoS.

Extensive experiments have shown that DWAP yields significant improvements of

74% and 59% in terms of the Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE), respectively, compared to a representative of state-of-the-art predic-

tion schemes. Furthermore, DWAP yields 97% and 48% reduction in task drop rate
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compared to prominent availability-oblivious and availability-aware resource alloca-

tion schemes, respectively. This is attributed to DWAP’s superior capability to pre-

cisely predict the availability duration of workers. Moreover, DWAP-RE significantly

outperforms prominent reliability-oblivious and reliability-aware resource allocation

schemes by up to 43% and 16%, and 42% and 22% in terms of execution time and satis-

faction ratio, respectively. In addition, it outperforms prominent reliability-oblivious

resource allocation schemes by 97% in terms of task drop rate. Such performance

underscores DWAP-RE’s proficiency in addressing the discrepancies between the or-

chestrator’s perception of the capabilities of workers and their actual performance

and making resource allocation decisions that reduce delay and task drop rate, while

ensuring timely completion of tasks.

5.2 Future Work

In the future, we plan to implement Deep Learning algorithms, such as Long Short-

Term Memory (LSTM) [60], to discern patterns within user access behavior and

computation load. LSTM, renowned for its aptitude in learning from temporal se-

quence data over time, will be harnessed to uncover intricate patterns inherent in user

access behavior and computation load. However, one of the key challenges we antici-

pate involves dealing with data that falls Out-of-Distribution (OoD). This represents

scenarios and data points that deviate significantly from the patterns the model is

trained on. Given the highly volatile and dynamic nature of user access behavior and

computational loads, encountering OoD data is not a rare exception—it is often the

norm. Thus, LSTMs may encounter difficulties when attempting to make predictions

on such OoD data. To counteract this concern, we plan to integrate Uncertainty
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Quantification (UQ) techniques [61–63] into the prediction model. By utilizing UQ,

we can provide a probabilistic interpretation to predictions on OoD data, thereby im-

proving the orchestrator’s ability to deal with uncertain scenarios, while maintaining

desirable QoS.

To leverage the aforementioned potential of UQ, we intend to adopt Deep Evi-

dential Regression (DER) [64], which is a recent approach that uses the concept of

evidential theory in Deep Learning to manage and quantify uncertainty in predic-

tions. Unlike traditional methods that require training multiple versions of a model

(like ensembles) [62] or applying techniques such as dropout to estimate uncertainty

[63], DER modifies the output layer of a single deep learning model to produce the

parameters of an evidential distribution. In doing so, this single model not only de-

livers predictions but also quantifies the associated uncertainty level. This approach

conserves computational resources while providing a nuanced comprehension of model

uncertainty. The proficiency of DER in producing evidential distributions from a sin-

gle model pass, along with its capability to handle OoD data and quantify predictive

uncertainty, positions it as an efficient tool for our dynamic and volatile environment.

Furthermore, given the inherent uncertainties in the environment, the orchestrator

might make suboptimal resource allocation decisions. Such decisions, which involve

assigning tasks to workers who are not ideally suited for them, culminate in an op-

portunity loss: a better-suited worker might have handled the task more efficiently,

optimizing the overall outcome. To address this, we plan to incorporate the output

from the UQ in the resource allocation framework, with the objective of minimizing

the expected opportunity loss.
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Appendix A

Derivation of the State Transition Probabilities

The state transition probability matrix for the state diagram shown in Fig. 3.2 is

given as follows:

P (t) =

P1,1(t) P1,2(t)

P2,1(t) P2,2(t)


Thus, Eq.3.5 becomes:

P ′
1,1(t) P ′

1,2(t)

P ′
2,1(t) P ′

2,2(t)

 =

P1,1(t) P1,2(t)

P2,1(t) P2,2(t)


−λ λ

µ −µ


Multiplying the matrices leads to the following equations:

P ′
1,1(t) = P1,1(t)(−λ) + P1,2(t)(µ) = P1,1(t)(−λ− µ) + µ (A.1)

P ′
2,2(t) = P2,1(t)(λ) + P2,2(t)(−µ) = P2,2(t)(−λ− µ) + λ (A.2)
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While Pi,j(t) needs to be computed for each pair i, j ∈ {1, 2}, we know that

P1,2(t) + P1,1(t) = P2,1(t) + P2,2(t) = 1, ∀t ≥ 0 (A.3)

Thus, it is sufficient to solve just for P1,1(t) and P2,2(t). Furthermore, since the

system is symmetric, it is sufficient to solve for P1,1(t) and interchange λ to µ and

vice versa to obtain P2,2(t).

In Eq. (A.1), the homogeneous part adopts the differential equation form y′ = ay.

The solution, which can be obtained by employing the method of integrating factors

or separation of variables, is given as:

P h
1,1(t) = Ce−(λ+µ)t, C ∈ R (A.4)

The particular solution of Eq. (A.1), obtained by setting the derivative of P p
1,1(t)

to zero, results in a constant value:

d

dt
P p
1,1(t) = 0 = −(λ+ µ)P p

1,1(t) + µ

P p
1,1(t) =

µ

λ+ µ
(A.5)

Summing the homogeneous (A.4) and particular (A.5) solutions yields P1,1(t):

P1,1(t) = P h
1,1(t) + P p

1,1(t) = Ce−(λ+µ)t +
µ

λ+ µ
(A.6)

The constant C can be determined by applying the initial condition P1,1(0) = 1,

which gives:
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P1,1(0) = 1 = C +
µ

λ+ µ

Solving for C subsequently yields:

C =
λ

λ+ µ

Substituting the value of C in Eq. (A.6) results in the final expression of P1,1(t)

as follows:

P1,1(t) =
λ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
(A.7)

Deriving P1,2(t) from the equation P1,2(t) = 1 - P1,1(t) yields:

P1,2(t) = − λ

λ+ µ
e−(λ+µ)t +

λ

λ+ µ
(A.8)

Leveraging the symmetry of the system, P2,2(t) can be obtained from P1,1(t):

P2,2(t) =
µ

λ+ µ
e−(λ+µ)t +

λ

λ+ µ
(A.9)

Subsequently, deriving P2,1(t) from the equation P2,1(t) = 1 - P2,2(t) yields:

P2,1(t) = − µ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
(A.10)
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Appendix B

Dataset Description and Preprocessing Details

B.1 Dataset Description

In 2011, Google published a 1-month trace of its Borg cluster management system

which includes 12.6k machines in one cell. In 2019, Google updated and expanded

this dataset. The new version covers a larger scale, including 96.4k machines spread

across 8 cells, with each cell comprising around 12k machines [19, 50].

Google’s Borg system is a cluster management tool that operates hundreds of

thousands of jobs. These jobs come from several thousands of distinct applications

and are executed across multiple cells, each comprising up to tens of thousands of

machines. Each cell has a central controller called the Borgmaster and an agent, the

Borglet, on every machine. The Borgmaster manages tasks by communicating with

Borglets, handling user requests, allocating resources, scheduling tasks, and monitor-

ing the system’s health. Meanwhile, each Borglet starts or stops tasks on its machine

and keeps the Borgmaster updated about its status. Users of Borg are typically

Google developers and system administrators/site reliability engineers (SREs) that

run Google’s applications and services. When these developers and SREs want to run
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an application or service, they submit a job to the Borg system. Each job consists of

one or more tasks, and each task is a running instance of the program that the devel-

oper or SRE wants to run. Tasks could fail due to reasons such as hardware failures,

software errors, resource exhaustion, user intervention and preemption. Furthermore,

not all resources of a machine are typically dedicated to processing tasks. For in-

stance, a portion of the machine’s resources are used to run the operating system and

various background services that are necessary for the operation of the machine and

the network.

The dataset is accessible only through Google’s BigQuery due to its size (2.4TiB).

BigQuery is a fully-managed, serverless data warehouse solution offered by Google

Cloud. It is designed to handle large datasets, providing fast SQL analytics. This

allows formulating queries to obtain specific data, rather than downloading the en-

tire dataset. The dataset comprises 5 tables. These tables encompass information

on machine attributes (i.e., capacities), machine states, executed tasks, task states,

and resource utilization. Machines are identified by unique IDs, which serve as a

reference for all machine-related operations and queries. Each machine is associated

with specific CPU and memory capacities. Additionally, a machine could have three

possible events: Add (the machine is added to the cluster), Remove (the machine is

removed from the cluster), or Update (the machine’s available resources are updated).

Tasks are also identified by unique IDs, ensuring that each task can be tracked and

referenced independently. Tasks could be in the following possible states: Submitted,

Queued, Scheduled, Evicted, Failed, or Finished. Additionally, the resource usage of

each task is also recorded.

Some of the information in the dataset (such as the CPU and memory capacities
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CPU Capacity Memory Capacity Number of Machines
0.591796875 0.333496094 1560
0.259277344 0.166748047 2643
0.708984375 0.333496094 1332

1 0.5 2103
0.259277344 0.333496094 343
0.38671875 0.166748047 967
0.38671875 0.333496094 808
0.591796875 0.166748047 530
0.958984375 0.5 956
0.958984375 1 161

1 0.25 474
0.708984375 0.666992188 845

1 1 74

Table B.1: Machine Distribution by CPU and Memory Capacity in Google Dataset

of machines) is obfuscated for confidentiality reasons. Google achieves this by using

a normalization approach: both CPU and memory sizes are divided by the maximum

size observed throughout the entire trace. Consequently, the memory capacity of the

machine with the highest memory is represented as 1.0. Similarly, the CPU capacity

of the machine with the most highest CPU is also represented as 1.0. This ensures

that the relative capacities of machines can be analyzed and the exact specifications

remain confidential.

Table B.1 shows the distribution of the approximately 12k machines based on their

CPU and memory capacities from Cluster g. A noteworthy observation derived from

the data is the heterogeneous composition of the cluster, indicating a considerable

variety in the capabilities of the individual machines.
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B.2 Preprocessing Details

Among all 8 cells, cell g is the most heterogeneous [51], comprising 13 different types

of machines with varying CPU and memory capacities. Thus, we use data obtained

solely from cell g. This cell comprises roughly 12k machines.

For our model, which focuses on the general states of machine availability, we pre-

process the machine events as follows: both ‘Add’ and ‘Update’ events are categorized

as ‘Available’, while ’Remove’ events are categorized as ‘Unavailable’. To preserve

the heterogeneous nature and volatility of the environment, we select the 100 most

volatile machines from the available pool of 12k. We employ a stratified sampling

technique to ensure this selection is representative. In this method, machines are

divided into distinct strata (i.e., categories) based on their CPU and memory capac-

ities. From each category, we sample the most volatile machines while also ensuring

that our sample retains proportionality with the larger population of 12k machines.

Furthermore, the traces provide timestamps indicating when specific events occur,

without detailing the total operational or repair times of the machines. Moreover,

the counts for ‘leave’ events (i.e., ‘failures’), or ‘add’ events (i.e., ’repairs’) are not

explicitly provided either. These metrics are vital for determining the Mean Time

Between Failure (MTBF) and Mean Time to Repair (MTTR) necessary for our CTMC

model. Thus, using the raw timestamp data paired with the associated machine

events, we construct queries to deduce these four metrics.
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