A Performance Comparison of Reliable Multicast Protocols
over
Mobile Ad Hoc Networks

by

LAN HUANG

A thesis submitted to the
School of Computing
in conformity with the requirements for

the degree of Master of Science

Queen’s University
Kingston, Ontario Canada

September 2004

Copyright © Lan Huang, 2004

Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 0-612-99762-6
Our file Notre référence
ISBN: 0-612-99762-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la these ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Reliable Multicast, which provides lossless delivery of a data stream from one sender to a
group of receivers, has been intensively studied by the wired network research
community in recent years. A number of reliable multicast protocols have been proposed
and developed for the wired network environment. Wireless ad hoc networks, a class of
wireless networks with no centralized entities, exhibit intrinsic characteristics that hinder
wired reliable multicast protocols from being directly applicable. Nevertheless, there is
an apparent demand for reliable multicast protocols that is amenable to wireless domains.
More specifically, it is becoming increasingly important to determine how effectively

such a protocol can improve communication reliability in wireless ad hoc networks.

In this thesis, we study the application of four known classes of wired reliable multicast
protocols on ad hoc networks. These classes are: Sender-initiated, Receiver-initiated,
Tree-based and Ring-based. Using several simulation scenarios, we observe the behavior
of three representative protocols, namely SRM, TMTP, and RMP, in reacting to various
testing stimuli in wireless ad hoc networks, and compare their performances. We
demonstrate that wired reliable multicast protocols may not always be adequate for
wireless ad hoc networks. Based on observations, we make recommendations on how the
performance of such protocols can be improved to be amenable to the wireless ad hoc

network environment.

ACKNOWLEDGMENTS

I have received enormous assistance and encouragement on this thesis, from people too

numerous to name. I gratefully give special thanks to the following, however.

I would like to thank my supervisor, Dr. Hossam Hassanein, for advising me through my
research. I also thank him for his advice, support and encouragement, and the freedom he

gave me to make my own decisions.

I would like to thank Kenan Xu, Yong Xu, Mohammed Al-Riyami, Nidal Nasser,
Tiantong You, and the rest of the Telecommunications Research group for their
friendship, advice, encouragement and shining examples. Special thanks go to

Abdelhamid Taha for his help in proofreading the thesis.

Financial support of Communications and Information Technology Ontario (CITO) is

greatly appreciated.

Thank my husband Yan Li, my parents and family for their love and constant

encouragement. This could not have been done without them.

ii

TABLE OF CONTENTS

ABSTRACT i
ACKNOWLEDGMENTS i
LIST OF FIGURES \4
LIST OF TABLES vii
LIST OF ACRONYMS viii
1 INTRODUCTION 1
2 RELATED WORK 6
2.1 MOBILE AD HOC NETWORKSuviiieiiiieeireeeieeeeanntteesesteesssseeaessseeeesansesesssessnssessseeseseesssnessanseesan 6
2.1.1 Characteristics of Mobile Ad HOC NEtWOTKScoooueeeueieeiiiiiiiiiiiiiiiiiviceiecies e 7

2.1.2 IEEE 802.11 MAGC ... eeeeeeeeeteeeeeeae e eenssaaaaessaeessssesasaesseannasesannsessassenans 8

2.1.3 Dynamic Source ROULING ProtoCol..................ccccccvviuiiiiiiiiniiiiinieiccceeeetccieneee e 9

2.1.4 On-Demand Multicast Routing ProtocCOL................ooccovcieiiiiiieiiiniiiniecereeeeceieceeee e 13

2.2 RELIABLE IMULTICAST .t eeeeeeeeetteeeeeeeeeeseeeeseeeeaeeesseaeeassssasasssaaaansssssssassssesssaeanstesasnessssnenssseessasees 17
2.3 CLASSES OF RELIABLE MULTICAST PROTOCOLS ..cceiiuuiiiiiiieenieiieeneeeeeirceeneesaesensrcesennesennneens 18
2.3.1 SeNACT-TNILIALEA PTOIOCOLS «...veeoeeoeeeeeeeceeeeeeeeeeeeeeeeeeee e e ee e e e e e e e e etee s e e eaasasseesseessennsrenen 18

2.3.2 ReceiVer-INitiQted ProtOCOLS..........cuuoeeceueeeeeeeeeeeeeeeeieeeeeeeeeecteeeteeeeeeneeessrsseescnseeneaesesennaes 21

2.3.3 Ring-BasSed ProtOCOlS...............ccooviiiiiuiiiiiniiiieeetceeeee ettt 26

2.3.4 TTEE-BASEA PTOIOCOLScocoeeeeeeeeeeeeeieeeeeeeee e eeeeeeeaeeeeeeeeeeeteaas e e e e e esesesessaseessesbeaeesenennnnes 30

2.4 RELIABLE MULTICAST FOR AD HOC NETWORKScciioutteiteeniireeennteesesnessseeseeeesneeesensesonneees 36
2.5 SUMMOARY ..eeteeeeeeeeeeteeeeeteeeeeeeeeeseeesseesesseeeesssseaaanssseaanssneeasssesaseansstesaasssansbeesasesantsesnsnaesneeenn 38

3 REPRESENTATIVE RELIABLE MULTICAST PROTOCOLS 39
3.1 SCALABLE RELIABLE MULTICAST - SRIM ..ottt ettt ettt ite e s e e s e 39
3.1.1 DAEA TTANSIISSION c.neeeeeeeeeeeeeeeeeeeeeeteeteeeeeeeseeeeesseeeeeeeeeasssseseseeseassssaeesssseaseesresessansnnaen 40

3.1.2 PACKEL LOSS RECOVETY ...ttt s 40

3.1.3 SESSION MESSAGE...oeeeeeeeeeieieeieietieeeee e e et e 43

3.1.4 Implementation DeCISIONSccccovvuevuiiuiniiiriiitiiieieee ettt s 43

32 TREE-BASED MULTICAST TRANSPORT PROTOCOL - TMTP .ottt 44
3.2.1 Control Tre€ ManQGEMENLcoueeueeereeeieeieeieeeeeiee e ciat ettt ss et sas s sassae s 44

3.2.2 DAIA TTAISHUSSION «.eoeeeeeeeeeeeeeeeeeeeee e eeeaeeeeeeeeeeaeeeeessseeenssseeesessseessssaeassenssessssnseessaeenes 46

3.2.3 PACKEE LOSS RECOVETY ..ottt asbe st et saa s 47

3.2.4 ImplementQtion DECISIONSccccccceevuiniiiiiiniiiniiiiei e e 47

33 RELIABLE MULTICAST PROTOCOL - RIMIP ..ottt ne e 49
3.3.1 Basic Delivery ALGOTItRMccccoveemercreeieeiiieietetcieetcteec e sne s 50
3.3.2 Membership Change AIGOTItIImcocoeeeevccnieiiiiiiiiictienee ettt 55

3.3.3 Reformation ALGOTitRM..........c..cccooeveeueuenuenineeeeeeseeeecteccte e 57

3.34 Implementation DECISIONSccoceueeeerueenieceeniciiiicnnet ettt e sasenea 58

34 SUMMARY ...oviinteeeteeeeietreeeeeeseesteeesseessesseessseassssaessaasessassseeesessessessssasssssassseentesaeontossassontasseesnsesn 59

4 PERFORMANCE ANALYSIS 60
4.1 IS ettt e ee et e et e st et e e et e e ete e e —eeeaa—tee e e a—nreaanreeeseseeeereeeiaateeaaseesnsesneeeasnseeanennane 60
4.2 SIMULATION IMODEL ...voeeieeetrie e eeeeeeeeeeeteeeeeeeeeeeesaeeeesssaaaassasasasssasaseseaaenseesnsesssaeessesasnsnnesansees 62
4.2.1 Simulation ASSUIMPLIONSccuvuerueriiriieienieieec ettt sre s ae e 62

4.2.2 Experimental SEItgcccccooiuiciiiiiiniiiiiiicciiie ittt 62

i

4.2.3 " MODBILIty MOAEL ...ttt st e 63

424 Traffic MOAEL..........oveoeceiiiiiciiiiiiiiiitee et 63

4.2.5 Selection of Timer VAIUES...........ccocuvvecueeueiniiiiiiiineicieie et 64

4.2.6 Performance MEITICS..........ccccciruciiiiiiniiiiiniceiietese et 66

4.3 SIMULATION RESULTS ...ttt st b bbb as s 67
4.3.1 The Effect 0f PAUSE TilMe.......c.cccccucoivuieiriiiiiiieicniteeeeste s e 68

4.3.2 The Effect of TransmiSSion FANGe.............c.ccccueireeeireeiieinenenieete e steese e eesesnesnesenes 75

4.3.3 The Effect of Packet Arrival RALE.............oouoeeeeeeiiniiiiiciiiiiieceectcsveeaeeneenss et 81

4.3.4 The Effect of NUMbBer Of NOGEs............ccccoviviviimiiiiiiiiicicieetctce st s 88

4.3.5 The Effect Of GFOUP SiZ€...c.couueuemeeieeeeeeieiricisiteie et 90

4.3.6 The Effect of Background Trafficccoeevmivercoiciiiiiiiiiiciicn et 93

4.3.7 The Effect of Cluster 0f NOAEs..............ccccouiiiiiiuiuininiininieeieie st 99

4.3.8 The Effect Of TIMEr SEItINGSccocooueueriniiiiiiiiiiiiecieteies sttt 101

44 SUMMARY ...cutvenirieatesiteseeese s es st saa s s s sb s st st b e be e s s ae e s e ae e e se s e seebesbe s ese st ebebe b s baneens 107

5 CONCLUSIONS & FUTURE WORK 111
REFERENCES 117
APPENDIX A - SRM ALGORITHM 121
APPENDIX B - TMTP ALOGRITHM 128
APPENDIX C - RMP ALOGRITHM 134
APPENDIX D - CONFIDENCE INTERVALS 144

iv

LIST OF FIGURES

Figure 1-1 An example of mobile ad hoc networks..........cccoviiiiiiii 2
Figure 2-1 Building of the route record during route diSCOVETYccccevvrieiireniiinnennene. 11
Figure 2-2 Propagation of the route reply with the route recordccocooveieiinnnin. 12
Figure 2-3 The forwarding group CONCEPLccecviiiiiiiiiniiiiiiicec s 15
Figure 2-4 An example of a JOIN REPLY forwardingcccccccoeviniiininiiiinincicne 16
Figure 2-5 Sender-initiated protOCOIScccceviiviiiviiiiiiiiiiiiiic e 20
Figure 2-6 Receiver-initiated protocolscccocviiiiiiiiiiiiniiiccce e 22
Figure 2-7 Ring-based protocolscccceviiiniiiiiniiiniiniiiicc e 28
Figure 2-8 Tree-based pProtocolscccocieciiiiiiiiiiiiiiiiiiiici s 31
Figure 3-1 TMTP CONtrol tre€cccoueoiiiiiiiiiiiiiiiciiiicce e 45
Figure 3-2 JOININZ iN @ Tccueiuiimiiiiiiicicicciccc et e 46
Figure 3-3 An example of RMP Operationcccceveviiiniininiiniiiicceeceee 54
Figure 3-4 Join request dialogue in RMP ... 56
Figure 3-5 An example of joining in @ riNgccccoueviiiiiiiiiiiicec e 56
Figure 3-6 An example of leaving aring in RMP ... 57
Figure 4-1 Effect of pause timeccccociiviiiiiiiiiiiiiiiicccccc s 77
Figure 4-2 Effect of transmission Tange...........cccocevuevuiniiiiiiecnicieiecse e 83
Figure 4-3 Effect of packet arrival 1ate...........cccocoviiiiiiiiiiiiiicicccc 87
Figure 4-4 Effect of number of nOdes..........cccocoiviiiiiiiiiiiiiiiiccc 91
Figure 4-5 Effect of Sroup SiZe.........ccccovviiiiiiiiiiiiiiiiiicccccceccee e 94
Figure 4-6 Effect of background traffic............ccccooiviinini 98
Figure 4-7 Effect of cluster of nOdesccccoevciiviiniiiiiininiicce s 102
Figure 4-8 Effect of different timers on TMTP and RMP ..., 105
Figure 4-9 Effect of half and double timers...........ccocoviiiiiiniii, 106
Figure A-1 Algorithm for source sending data packets..........cccoevvviiiiniiiiniciiiinenn, 121
Figure A-2 Algorithm for receiving packets.........cccoovviiiiiiiiiiiccce, 122
Figure A-3 Algorithm for receiving data packet........cccoooveviiiiiiiiininiiiiiiiiini, 123
Figure A-4 Algorithm for sending NACKcccoovviiiinil 123
Figure A-5 Algorithm for exponential backoff...........c.cccocoiiniin 124
Figure A-6 Algorithm for receiving NACK ..o, 125
Figure A-7 Algorithm for sending repair.........ccccooivviiiiiiiininicniceeec e 126
Figure A-8 Algorithm for reCeiving TePairoooeviiiiiiiiiiiiccc 127
Figure A-9 Algorithm for sending control MesSagecccevvveveviiiiiiiniiciieiccicice 127
Figure A-10 Algorithm for receiving control message..........ccccovveveineiiiinicicnniiinenne, 127
Figure B-1 Algorithm for joining a control treeccocociiiiiiiiiiiiiiicccccs 129
Figure B-2 Algorithm for [eaving tre€cccooiiiiiiiiiiininiicccc 130
Figure B-3 Algorithm for sending NACKccccoiiiiiiiiince 132
Figure B-4 Algorithm for sending repair..........cccocviiiiiiniiniiininccccc 133
Figure C-1 Algorithm for adding a new node to a toOKen ringccecevveveeiiicnneicninnns 135
Figure C-2 Algorithm for removing a node from token ring...........cccccevviiiniiiiiinninnnns 136
Figure C-3 Algorithm for source sending data packet...........cccoceveviiiiiininiiicnne. 137
Figure C-4 Algorithm for receiving data packet..........cccooeovviiiininiiniiiiiincici, 138

Figure C-5 Algorithm for sending an ACKcccooiiiiiiniiininniiiiiiiicecccceccccnnene 139

Figure C-6 Algorithm for receiving ACKccccooviiviiiiiiiiiiiiiiiiicicciiciciececeeceees 140
Figure C-7 Algorithm for receiving a repair........cccccevvieeiiiiiiiiiiiniiiiiececccee e 142
Figure C-8 Algorithm for ring reformationcccceevvveriiniiniiniinineerececcceaens 143

Vi

LIST OF TABLES

Table 4-1 Simulation environment parameterS.........ccceevueeivieiriiiieiieriierreneeeeeecceeneenee 65
Table 4-2 SRM PATAMELETS ...ccovirmiiiiiiiiiiiicieniciceee ettt 65
Table 4-3 TMTP PArameLETS ...cc.eeeeueerieriieriieeceteneeete e e et re et e s e et ee et s e e seeeane 65
Table 4-4 RMP parameterscccoociiuiiiiiiiiiiiiicec e 65
Table 4-5 Parameters for basic mobility eXperiment.........c.ccoeceecueecieiieniieninneniecccnene 68
Table 4-6 Parameters for mobility experiement with lower arrival rate............cccceceeuneee. 73
Table 4-7 Parameters for mobility experiment with lighter background traffic............... 74
Table 4-8 Parameters for mobility experiment with larger transmission range................ 74
Table 4-9 Parameters for basic transmission range eXperimentceecveecveevernvecneeeeeene 75
Table 4-10 Parameters for transmission range experiment with lower arrival rate.......... 80
Table 4-11 Parameters for transmission range experiment with lighter background traffic
... 81
Table 4-12 Parameters for basic packet arrival rate experiment.........ccccceeeeeervevcennene. 84

Table 4-13 Parameters for packet arrival rate experiment with lower background traffic85
Table 4-14 Parameters for packet arrival rate experiment with larger transmission range

... 85
Table 4-15 Parameters for basic number of nodes experiment.........cocceeeiervccercceneennnne. 88
Table 4-16 Parameters for number of nodes experiment with larger transmission range 90
Table 4-17 Parameters for group Size EXPETimentcocueervuerreeeiierireerieerreenescesceencenane 90
Table 4-18 Parameters for basic background traffic experiment...........cccceeviereriennncnne. 93

Table 4-19 Parameters for background traffic experiment with lower packet arrival rate96
Table 4-20 Parameters for background traffic experiment with larger transmission range

... 96
Table 4-21 Parameters for basic cluster of nodes experimentcoceeveevenccovnncecceienne 99
Table 4-22 Parameters for cluster of nodes experiment with lighter background traffic 100
Table 4-23 Parameters for timer EXPerimentcoeevevuerierueriieneriieeercerene et eroenecreeecens 101
Table 4-24 Timers for TIMTP ..ottt 101
Table 4-25 Timers for RMP.......cc.oooiiiiie ettt 101
Table 4-26 Comparison of SRM, TMTP and RMP........ccooiiiiiimiiiiiiiiiiniineccinceicene 107

vii

LIST OF ACRONYMS

A packet arrival rate

ACK positive ACKnowledgement

AG Anonymous Gossip

ALF Application Level Framework

AMRoute Adhoc Multicast Routing

AODV Ad Hoc On-Demand Distance Vector protocol
B Background traffic

CBR Constant Bit Rate

CTS Current Token Site

DCF Distributed Coordination Function

DM Domain Manager

DSR Dynamic Source Routing protocol |
DVMRP Distance Vector Multicast Routing Protocol
G Group size

P Internet Protocol

LAN Local Area Networks

MAC Medium Access Control

MANET Mobile Ad Hoc Network

N Number of nodes

viii

NACK

NS-2

NTS

ODMRP

PCF

PDA

RAILM

RMTP

SRM

TCP

TMTP

TRP

TTL

Negative Acknowledgement

Network Simulator 2

Next Token Site

On-Demand Multicast Routing Protocol
Pause time

Point Coordination Function

Personal Data Assistant

transmission Range

Reliable Adaptive Lightweight Multicast
Reliable Multicast protocol

Reliable Multicast Transport Protocol
Scalable Reliable Multicast protocol
Transfer Control Protocol

Tree-based Multicast Transport protocol
Token Ring Protocol

Time-To-Live

iX

1. Introduction

1 INTRODUCTION

Multicast is defined as a one-to-many, or many-to-many type of communication. That is,
the transmission of the same information from one or multiple senders to several
destinations [1]. Multicast provides an efficient way of disseminating data from a sender
to a group of receivers. A sender’s data stream is transmitted only once on links shared
along the paths to a set of destinations [1]. Without multicasting, a source would have to
send a separate copy of the same data to each individual receiver, and valuable bandwidth
would be unnecessarily wasted. Examples of applications making extensive use of
multicast include software distribution and video conferencing. Different multicasting
applications have different requirements. For example, video conferencing can tolerate
minor video data loss but cannot tolerate the delay of voice data associated with
retransmissions. On the other hand, data dissemination applications, such as file
distribution can afford large end-to-end delay, yet cannot sacrifice data loss, i.e., it
considers reliable delivery to all receivers as the main requirement [2]. Reliable multicast

provides a lossless multicast service that data dissemination applications require.

1. Introduction

A Mobile Ad Hoc Network (MANET) is a communication network that is formed by a

group of autonomous mobile nodes [3]. A mobile node can be any computing or
communication device with a wireless interface, such as a laptop computer with a
wireless LAN card, a mobile phone, or a Personal Data Assistant (PDA) handheld with
infrared interface. These mobile nodes connect freely and dynamically together into
arbitrary and temporary topologies via wireless links, allows people and devices to
communicate with each other without using a physical network infrastructure [4]. The
term network infrastructure refers to the facility of which the sole purpose is to carry the
data generated by each mobile node to the respective destination nodes [5]. In an ad hoc
network such as the one shown in Figure 1-1, each of the mobile nodes operates in a
distributed peer-to-peer mode and there is no central administration. Due to the limited
transmission range of wireless network interfaces, routes are often constructed in “multi-

hops” [6], i.e. a source-to-destination path could pass through several intermediate nodes.

Laptop ...
Computer 7

Laptop

... Computer

PDA

Figure 1-1 An example of mobile ad hoc networks

1. Introduction
Due to its ease of deployment, a mobile ad hoc network is an attractive choice for

scenarios where rapid deployment and dynamic reconfiguration are necessary and a
wired network is non-existent or unavailable. Some examples of where ad hoc networks
are deployed are military battlefields, emergency search and rescue sites after a hurricane
or earthquake, and conference room where participants share information dynamically
using their mobile devices. These applications lend themselves well to multicast
operation since most of them require close collaboration of teams for audio and video
message change. Multicasting is a very useful and efficient means of supporting such
group-oriented applications. This is especially the case in ad hoc networks where
bandwidth is scarce and mobile nodes have limited power. Moreover, applications in
critical situations such as disaster recovery or battlefield scenarios require reliable

multicast operation that provides errorless and timely data delivery services.

Reliable Multicast can guarantee reliable data multicast in ad hoc networks. However,
providing reliable multicast service faces several key challenges in ad hoc networks. The
network topology can change randomly and rapidly, at unpredictable times [3]. Wireless
links generally have limited bandwidth [4]; congestion is typically the norm rather than
the exception. Moreover, the majority of nodes rely on short-living batteries [3].
Therefore, we need an efficient algorithm that reduces the amount of control and
retransmission traffic while multicasting is maintained reliable. Many applications in ad
hoc networks are life-critical. Hence, the protocols should also minimize end-to-end

delay in addition to reliable delivery to meet application requirements.

1. Introduction
In recent years, reliable multicast protocols have been intensively studied by the wired

network research community. A number of reliable multicast protocols have been
proposed and developed for the wired network environment. Due to the nature and
intrinsic characteristics of wireless ad hoc networks, the reliable multicast protocols for
wired networks may not be able to be applied in ad hoc networks. The issues of which
reliable multicast protocols are more amenable to wireless domain and how effectively
they can improve communication reliability over wireless ad hoc networks are, therefore,
becoming increasingly important to be overcome. We opt to take an approach of
extending and enhancing the existing protocols to cover ad hoc networks instead of
creating new protocols that are only tailored for ad hoc networks. This is to take
advantage of the wide acceptance and stability of the current protocols. More
importantly, we can eventually obtain a unified solution that works equally well in wired
networks and wireless ad hoc networks, to achieve seamless integration of both
networking platforms. We argue that the design choices underlying wired reliable
multicast protocols are not adequate for ad hoc networks. Protocols for ad hoc networks
must handle node mobility. In addition, ad hoc networks are extremely sensitive to
network load and congestion. Generating additional control message overhead without
performing adequate congestion control will considerably degrade the performance.
While we acknowledge that wired protocols were not designed for ad hoc networks,
studying their behavior in various scenarios will definitely yield insights that will be

useful in designing new protocols for ad hoc networks.

1. Introduction
This thesis presents an overview of well known classes of reliable multicast protocols

proposed for wired networks, and evaluates the performance of three representative

protocols over wireless ad hoc networks using the network simulator NS-2 ([7]).

The remainder of this thesis is organized as follows. Chapter 2 presents an overview of
mobile ad hoc networks and four known classes of reliable multicast protocols proposed
for wired network, namely, Sender-initiated, Receiver-initiated, Tree-based, and Ring-
based. Chapter 3 describes three representative reliable multicast protocols for wired
network: Scalable Reliable Multicast protocol (SRM) [8], Tree-based Multicast Transport
protocol (TMTP) [9], and Reliable Multicast protocol (RMP) [10]. In chapter 4 we
develop a comprehensive simulation model and utilize it to observe the behavior of the
three reliable multicast protocols under various simulation scenarios. We report on the
strengths and weaknesses of each protocol and propose modifications to the protocols in
order to achieve better performance over wireless ad hoc networks. Finally chapter 5

presents conclusions and future work.

2. Related Work

2 RELATED WORK

In this chapter, we first present the characteristics of mobile ad hoc networks, in addition
to describing unicast and multicast routing protocols of mobile ad hoc networks that were
used in our simulation. We then review four classes of reliable multicast protocols for
wired networks, and briefly discuss their strengths and weaknesses. We present two

proposed reliable multicast protocols for ad hoc networks at 2.4.

2.1 Mobile Ad Hoc Networks

The concept, definition and utility of mobile ad hoc networks have been investigated for
more than two decades. Initially, ad hoc networks were primarily aimed at tactical,
military networks. In recent years, there is a growing interest in exploring the possibility
of applying ad hoc networks for civilian purposes. In this section, we discuss the
characteristics of ad hoc networks. We also discuss the unicast and multicast routing

protocols that we chose to use in our simulation.

2. Related Work

2.1.1 Characteristics of Mobile Ad Hoc Networks
Ad hoc networks have many distinguished characteristics that lend themselves to

applications like home networks, sensor networks and emergency responses network

[11]. In the following, we list the key characteristics of ad hoc network [3, 4, 6]:

(1) Mobility - Most or all nodes in ad hoc network are wireless, mobile devices. They
can freely join and leave a network, and they can arbitrarily move during

communication. Mobility brings convenience.

(2) No fixed network infrastructure - Ad hoc networks were initiated as a mean of
communicating in battlefield where network infrastructures are not always available
or infrastructure can be easily interfered or destroyed by an enemy. One important
goal of ad hoc network is not to rely on any form of infrastructure for support in
routing, network management and transmission. All nodes are equipped with packet
forwarding capabilities, i.e. each mobile node acts not only as a host but also as a
router [6]. Each node in ad hoc networks can communicate with its peers directly in
single hop or via its peers' relays, i.e. in multi-hop, without using an existing
infrastructure. Naturally, this fact significantly reduces the cost of deploying
infrastructure and the cost of maintaining and administrating network. Also, without
the physical location limitation of infrastructure, ad hoc networks can be wherever the

mobile nodes are. They can also assemble and disassemble as demand requires.

(3) Dynamic network topology - The cost of mobility is network topology changing
frequently and unpredictably. There are many reasons causing network topology to

be changed. For instance, each node in ad hoc network can arbitrarily decide to join

2. Related Work
in and leave the network. Also it is disconnected from the network when a node

accidentally moves out of wireless transmission range, or runs out of power, or gets

unexpected transmission inferences, etc.

(4) Bandwidth and energy constraints - Wireless links have limited bandwidth.
Moreover, since wireless links have lower capacity than hardwired links, traffic
congestion is typical rather than exceptional. Therefore, ad hoc networks’
applications must minimize various network overheads. Most nodes in an ad hoc
network are battery powered [11] in order to support mobility. Because battery life is
limited, protocols and applications need to be efficient, so that the limited battery life

can drive devices for longer period.

2.1.2 IEEE 802.11 MAC

In an ad hoc network, the medium is shared by all mobile nodes that are in the same radio
communication range, and the radio frequency bandwidth is limited. Therefore, Medium
Access Control (MAC) schemes are needed to coordinate access to the shared medium in

the network [12].

The IEEE 802.11 protocol [13], which defines the MAC and Physical Layer standards for
wireless connectivity for fixed, portable and moving stations within a local area, is the
most popular MAC for wireless LANs. It consists of Distributed Coordination Function
(DCF) and Point Coordination Function (PCF), where DCF is more commonly deployed
function. The DCEF is based on Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) mechanism. A station that has information to transmit listens to the medium

2. Related Work
before transmitting. If the medium is busy, the station will defer its transmission. This

reduces collisions and enhances performance. Details of the IEEE 802.11 specifications

can be found in [13].

2.1.3 Dynamic Source Routing Protocol

Numerous protocols have been proposed to solve the multi-hop routing problem in ad
hoc networks. Several performance analysis [6, 14, 15] have shown that Dynamic Source
Routing protocol (DSR) [16] and Ad Hoc On-Demand Distance Vector protocol (AODV)
[17] are the most prominent unicast routing protocols to date. In this section, we briefly

describe DSR, which we use as the unicast routing protocol in our simulation.

DSR is an on-demand routing protocol where routes are only created when desired by the
source node. A key difference of DSR from other on-demand protocols is the use of
source routing, where a source of a packet determines the complete route from itself to
the destination, and includes the route in the packet header. All of the intermediate nodes
along the route simply forward the packet to the next hop indicated in this predetermined
route, also called source route. No routing decision is made at intermediate nodes. The
advantage of source routing is that intermediate nodes do not need to maintain up-to-date
routing information in order to route the packets they forward, since the packets
themselves already contain all the routing decisions. The obvious disadvantage is that

data packets must carry source routes.

DSR consists of two major operations: Route Discovery and Route Maintenance. Each

node maintains a cache of source routes it has learned so far, called route cache. When a

2. Related Work
node attempts to send a data packet to a destination, it first checks its route cache to

determine whether it already has a route to the destination. If an unexpired route to the
destination is found, the node uses this route to send the packet. Otherwise, the node
initiates a Route Discovery operation to discover a route. Route Discovery works by
broadcasting the network with ROUTE REQUEST packets. A route request contains the
address of the destination as well as a ROUTE RECORD that records the nodes that the
request has passed by. Each node receiving a route request checks whether it knows a
route to the destination, i.e. the desired route is contained in its route cache, or itself is the
destination. In both cases, the complete route from the initiator to the destination is
found. A ROUTE REPLY packet with the route included is generated and then
forwarded to the initiator. Otherwise, the node appends its own address to the route
record of the route request and re-broadcasts the route request to its neighbors. Because
of the broadcasiing, a node may receive multiple copies of the same route request. To
limit the number of route request propagated, each node maintains a list of the IDs of the
recently seen requests. A node only forwards the route request if the node has not yet
seen this route request and the node’s address does not already appear in the route record
of the packet. Therefore, the node can also detect that a route request has gone through a

cycle.

Figure 2-1 illustrates the formation of the route record as the route request packet

propagates through the network.

10

2. Related Work

/ 7

<1,2>
7’ 2 § s
/ \ <1,3,5,7>
Source | 1 \ / <1,3> 8 | Destination
3

<i> <1,4,6>

<1,4>

Figure 2-1 Building of the route record during route discovery [18]

Figure 2-2 shows the route reply packet being sent by the destination. If the destination
generates the route reply packet, it places the route record from the route request packet
into the route reply packet. On the other hand, if an intermediate node generates the route
reply packet, then it appends its cached route to the route record of the route request
packet and puts that into the route reply packet. The route request builds up the path
traversed across the network. The route reply packet routes itself back to the source by
traversing this path backward. The route carried back by the route reply packet is cached

at the source for future use.

11

2. Related Work

Source | 1 \ 8 | Destination
3

<1,4,6>

<1,4,6>

<1,4,6>

Figure 2-2 Propagation of the route reply with the route record [18]

Route maintenance is invoked when a route is broken. Routes may become invalid due
to the node movement. To quickly adapt to this change, each node constantly monitors
the links it uses to forward packets. If a node in a route finds out that it cannot forward
packets to the next node in the route, it immediately sends a ROUTE ERROR packet to
the source of the route. Therefore, the source is able to quickly detect an invalid route
and stop using it any longer. The source removes any route using this link from its cache.

A new route discovery process must be initiated by the source if this route is still needed.

An advantage of DSR over some of the other on-demand protocols is that DSR does not
make use of periodic routing tables, thereby saving bandwidth and reducing power
consumption. Additionally, DSR allows nodes to keep multiple routes to a destination in
their cache. Hence, when a route is broken, the source can check its cache for another

valid route [14]. On the other hand, as the network becomes larger, control packets

12

2. Related Work
(route requests and route replies) and data packets also become larger, since they need to

carry the addresses of every node in the route. This can be a problem, since ad hoc

networks have limited available bandwidth.

2.1.4 On-Demand Multicast Routing Protocol

Various protocols have been proposed to perform multicast routing in wireless ad hoc

networks. They can be categorized to multicast tree-based and mesh-based.

Like traditional multicast routing protocols in wired networks (e.g., Distance Vector
Multicast Routing Protocol (DVMRP) [19]), in multicast tree-based routing protocols, a
shared multicast tree is established to provide connections among multicast group
members and to forward data. Ad hoc Multicast Routing (AMRoute) [20] is a multicast
tree-based routing protocol. As pointed out in [21, 22, 23], tree-based routing protocols
do not perform well in ad hoc networks because multicast tree are fragile and must be
readjusted as connectivity changes. If a single tree link breaks because of node

movement, packet collision, or congestion, destinations cannot receive packets.

To overcome these limitations, the On-Demand Multicast Routing Protocol (ODMRP)
[21] has been developed by the researchers from University of California in 2000.
ODMREP is a mesh-based, instead of a tree-based, multicast routing protocol that provides

richer connectivity among multicast members.

13

2. Related Work
The ODMRP protocol is mainly comprised of three parts, namely mesh creation, data

forwarding and mesh maintenance. In the following, we briefly introduce these three

parts.

Mesh Creation

In ODRMP, group membership and multicast routes are established and updated by the
source in an on demand fashion. Similar to on demand unicast routing protocols (e.g.
DSR), a request phase and a reply phase comprise the protocol. When a multicast source
has packets to send, it periodically broadcasts to the entire network a member advertising
packet, called JOIN QUERY. This periodic transmission refreshes the membership
information and updates the routes as follows. When a node receives a non-duplicate
JOIN QUERY, it stores the upstream node ID (for backward learning) and originating
source into its routing table and rebroadcasts the packet. The routing table provides the
next hop information when transmitting JOIN REPLIES. When the JOIN QUERY
packet reaches a multicast receiver, the receiver broadcasts a JOIN REPLY to its
neighbors. The JOIN REPLY contains all source and next node ID that the receiver gets
from its routing table. When a node receives a JOIN REPLY, it checks if the next node
ID of one of the entries matches its own ID. If it does, the node realizes that it is on the
path to the source and thus is part of the forwarding group. It then sets the FG_FLAG
(Forwarding Group Flag) and broadcasts its own JOIN REPLY built upon matched
entries. The JOIN REPLY is thus propagated by each forwarding group member until it
reaches the multicast source via the shortest path. This process constructs (or updates)

the routes from sources to receivers and builds a mesh of nodes, the “forwarding group”.

4

2. Related Work

The forwarding group is a set of nodes responsible for forwarding multicast packets [21].
It supports shortest paths between any member pairs. As shown in Figure 2-3 all nodes
inside the “bubble” forward multicast data packets. A multicast receiver also can be a
forwarding group node if it is on the path between a multicast source and another
receiver. By building a mesh and supplying multiple routes, multicast packets can be
delivered to destinations in the case of node movements and topology changes [22].

Moreover, the drawbacks of multicast trees (frequent tree reconfiguration) are avoided.

Forwarding
Group

O Multicast Member Nodes
Forwarding Group
Nodes

Figure 2-3 The forwarding group concept [21]

Figure 2-4 shows an example of a JOIN REPLY forwarding process. When receivers
send their JOIN REPLY messages to next hop nodes, an intermediate node I; sets the

FG_FLAG and builds its own JOIN REPLY since there is a next node ID entry in the

15

2. Related Work
JOIN REPLY received from R; that matches its ID. The JOIN REPLY built by I; has an

entry for sender S; but not for S, because the next node ID for S, in the received JOIN

REPLY is not I;.

Join Reply of Node R,

Sender | Next Node
S, I,

S |

N

2 2

NN

N

Join Reply of Node I,

Sender | Next Node
3 S S

/

1 1

Figure 2-4 An example of a JOIN REPLY forwarding [21]

Data Forwarding

After the group establishment and route construction process, a multicast source can
transmit packets to receivers via selected routes and forwarding groups. When a node
receives a multicast data packet, it checks the setting of its FG_FLAG. If the flag is set
and the data packet is not a duplicate, the node then forwards the data packet to its

neighbors.

Mesh Maintenance

In ODMRP, no explicit control packets need to be sent to join in or leave the group. If a

multicast source wants to leave the group, it simply stops sending JOIN QUERY packets

16

2. Related Work
since it does not have any multicast data to send to the group. If a receiver no longer

wants to receive from a particular multicast group, it does not send the JOIN REPLY for
that group. Nodes in the forwarding group are demoted to non-forwarding nodes if not

refreshed (no JOIN REPLIES received) before they timeout.

Existing studies ([21, 22, 23]) show that in a harsh environment, where the network
topology change frequently, mesh-based protocols outperform tree-based protocols. The
availability of alternate routes provides robustness to mobility. We chose ODMRP as

underlying multicast routing protocol in our simulation.

2.2 Reliable Multicast

Multicast is defined as transmission of a message from a sender to a group of specific
receivers. It is different from unicast, where a message is sent from one source to one
destination; or broadcast, in which a message is sent from a source to the whole network.
At internet layer of TCP/IP model, IP multicast provides a service of transmission of IP
datagrams from a source to a set of zero or more hosts identified by a single IP
destination address [24]. With IP multicast, datagrams are delivered to all members of its
destination host group. IP multicast delivers datagrams with “best-effort” reliability, i.e.,
it attempts to send datagrams to the group, but does not guarantee that the datagrams will
arrive at all members. Therefore, just as unicast applications require TCP ([25]) on top of
IP unicast, a multicast application requires a reliable multicast transport layer protocol on
top of IP multicast to guarantee lossless delivery of a data stream to a group of receivers.
Reliable multicast is one prime requirement of many applications, such as file or data

distribution, financial information, medical images, etc. Reliable multicast transport

17

2. Related Work
layer protocols can employ sequence numbers, positive acknowledgements (ACKs)

and/or negative acknowledgements (NACKSs) to achieve reliability [26]. Throughout the
rest of this thesis, we will simply use “reliable multicast protocols” in reference to

reliable multicast transport layers protocols.

2.3 Classes of Reliable Multicast Protocols

Recently, research has been very active on reliable multicast in wired networks. Many
reliable multicast protocols have been proposed [8, 9, 10, 27]. A summary of these
protocols can be found in [28]. The reliable multicast protocols for wired networks can
be classified into the following four types: Sender-initiated [27], where all receivers send
ACKs for each packet that they receive; Receiver-initiated [8], where the receivers send
NACKSs on detection of transmission error or packet loss; Tree-based [9, 29], where
receivers are organized into subgroups to relieve the sender from processing all control
messages from all receivers; and Ring-based [10, 30], where receivers are organized in a
logical ring and receivers take turns to acknowledge the packets received to ensure
reliability. In the following sections, we will describe these four types of reliable

multicast protocols.

2.3.1 Sender-Initiated Protocols

Sender-initiated protocols are an extension of reliable unicast protocols [31]. The most
traditional reliable unicast protocols (e.g. TCP) and many earlier reliable multicast
protocols (e.g. Negative Acknowledgements with Periodic Polling protocol [27]) are

based on this approach. In sender-initiated protocols, each packet sent by a sender is

18

2. Related Work
acknowledged by each receiver to ensure reliability. The sender takes the responsibility

for reliable data delivery by maintaining the state information of each receiver, i.e., to
whom it should send data packets and from whom it should receive feedback, and
processing the feedback from receivers. The sender uses an ACK list to keep track of
receivers’ feedback on each packet multicast. Upon reception of an ACK from a
receiver, the sender updates the ACK list for the corresponding packet and the
corresponding receiver. The sender uses transmission timers to detect packet loss and
transmission error. The sender starts a timer at the time of a packet being transmitted. If
the timer expires prior to the sender having received either ACKs or NACKs for the
packet from receivers, then the sender considers the packet is either lost or that a
transmission error has occurred. The sender retransmits the packets and restarts the

timer.

Figure 2-5 depicts a simple example of sender-initiated protocols. The basic mechanism
of sender-initiated protocol is summarized as follows:
= The sender multicasts a data packet to all receivers and starts a transmission timer.
= Each receiver uses unicast to transmit ACK to the sender to confirm the data
packet received correctly or NACKs when they detect transmission error or
packet loss.
= When receiving a NACK or the transmission timer expires, the sender retransmits
(by multicasting) the corresponding packet to all receivers and resets the timer.
= Upon receiving an ACK from a receiver, the sender updates the ACK list for the

corresponding packet and the corresponding receiver.

19

2. Related Work

Source

A
<
Oeee O
Receiver

Set

Figure 2-5 Sender-initiated protocols [28]

Sender-initiated protocols have the following drawbacks:

Not scalable: A sender must process all ACKs or NACKs from receivers. In
order to be capable of processing all ACKs and NACKSs, the sender has to have
sufficiently high processing capability. How much capability is sufficient
depends on the number of the receivers the sender is to manage. The more the
receivers, the higher processing capability the sender has to have. Also, the
sender must know the receiver set [28]. The sender must continuously track the
changing set of active receivers and the reception state of each. These processing
overheads can overwhelm a sender with limited processing capability if the
multicast group has large number of members.

ACK-implosion problem: When there is a larger number of receivers returning
ACKs to the sender over a short interval, and a significant overhead is incurred by
the sender, an ACK-Implosion problem is said to have taken place [8]. If the

sender is not capable of processing all ACKs quickly enough, it can lead to severe

20

2. Related Work
bottlenecks at the sender and the performance of the network is significantly

reduced.

Because sender-initiated type protocols are not scalable and have ACK-implosion
problem, their implementation in mobile ad hoc networks would not be practical. We
hence omitted such class from comparison with other types of reliable multicast protocols

in this thesis.

2.3.2 Receiver-Initiated Protocols

To alleviate the poor scalability and ACK-implosion problems exhibited in sender-
initiated protocols, receiver-initiated protocols reduce the processing burden for reliable
delivery on the sender’s part [8]. In receiver-initiated protocols, each receiver is
responsible for detecting transmission error and packet loss. A receiver detects a packet
loss when it finds a gap in sequence number of received packets. As seen in Figure 2-6,
receivers inform the sender via NACKs whenever they request retransmission of a
packet, and they do not send ACKs to confirm correct reception. Receivers use
retransmission timers to detect either loss of NACKs or subsequent packet

retransmission.

21

2. Related Work

Receiver
Set

Figure 2-6 Receiver-initiated protocols [28]

There are three variations of receiver-initiated protocols [32].
(1) Unicast NACK
The basic mechanism of the receiver-initiated protocol with unicast NACK is
summarized as follows:
= The sender multicasts data packets to all receivers
= Whenever a receiver detects a packet loss, it unicasts a NACK to the sender and
starts a retransmission timer
= Only the sender is involved in issuing retransmission packets. Upon receiving a
NACK, the sender retransmits (by multicasting) the corresponding packet to all
receivers
= The expiration of a timer without receiving the corresponding retransmitted

packet serves as a detection of loss of NACK or retransmitted packet

22

2. Related Work
One problem caused by unicast NACK is that when many receivers detect

transmission error or packet loss, the sender has to deal with flood of NACKSs
returned from the receivers within a very short period of time. In this case, the
NACK-implosion problem occurs [28]. Similar to the abovementioned ACK-
implosion problem, the NACK-implosion pfoblem can seriously reduce the network
performance, especially when transmission error occur frequently to many receivers.
To alleviate NACK-implosion, receiver-initiated protocol with NACK suppression

scheme is developed.

(2) Multicast NACK with NACK suppression scheme

The basic mechanism of the receiver-initiated protocol with NACK suppression

scheme is summarized as follows:

= The sender multicasts data packets to all receivers

= NACK suppression scheme [31]: whenever a receiver detects a transmission error
or packet loss, it first sets a NACK timer to wait for a random period of time then
multicasts a NACK to the sender and other receivers when NACK timer expires.
Upon hearing this first NACK message, other receivers that lost the same packet
and intended to send the same NACK reset their timers (exponential backoff), and
behave as if they had actually sent the NACK. This way, receivers suppress their
NACKSs and sending duplicate NACKs to the sender is avoided. It is claimed
that, with the NACK suppression scheme engaged, ideally only one NACK

arrives at the sender for any packet lost.

23

2. Related Work
= Only the sender is involved in issuing retransmission packets. Upon receiving a

NACK, the sender multicasts the corresponding packet to all receivers.
= The expiration of a NACK timer without receiving the corresponding
retransmitted packet serves as a detection of a loss of NACK or retransmitted

packet.

It was shown in [33] that the unicast NACK approach and multicast NACK with
NACK-suppression approach have similar performances when dealing with a small
number of receivers and the network has low packet loss rate. As the number of
receivers and the packet loss rate increase, the multicast with NACK-suppression
approach outperforms the unicast NACK. This is because in unicast NACK
approach, the sender has to process possibly more than one NACK from each affected
receiver, while in the multicast with NACK-suppression approach, the sender
(ideally) only needs to deal with one NACK for each lost packet. Although the
multicast with NACK-suppression approach creates more traffic and overhead at the
receivers, it has the advantage of reduced processing at sender — thus, it has higher

scalability.

(3) Multicast NACK with NACK / Repair suppression scheme
This approach is similar to (2), with the exception that any receiver having a copy of
the requested data can issue a repair (retransmission) [8]. Upon receiving a NACK,
receivers who have correctly received and cached the missing packet set their repair

timers to wait for a random period of time. When one receiver’s timer expires and a

24

2. Related Work
repair has not been received from any other node, the receiver then multicasts the

repair to the rest of group. Other receivers who have the same data packet and have
scheduled to multicast the repair cancel their repair timers when they hear the

retransmission. This way duplicated repairs are suppressed [8].

The multicast NACK with NACK / Repair suppression scheme approach can support
a similar number of receivers as that of the multicast NACK with NACK suppression
scheme approach. Fast error recovery is one advantage of multicast NACK with
NACK / Repair suppression‘scheme approach. If a receiver is located far away from
the sender, it does not have to wait for a long end-to-end delay for a retransmission
from the distant sender [32]. Rather, it can quickly obtain a repair from a nearby
node. On the other hand, the drawbacks of this approach are as follows. Firstly,
receivers have to allocate a certain amount of memory for caching data. In ad hoc
networks, this can greatly reduce the performance of mobile nodes with limited
memory capabilities. Secondly, repair-suppression creates additional process burden

for each node and consumes additional bandwidth of network.

In summary, receiver-initiated protocols reduce the processing burden at the sender, and

free the sender from the responsibility of maintaining the state of each receiver. Since

there are no ACK messages relayed, the ACK-implosion problem is completely avoided.

Therefore, senders are able to deal with a larger number of receivers without reducing the

network performance, i.e., receiver-initiated protocols have better scalability. It was

25

2. Related Work
shown in [33] that receiver-initiated protocols have better throughput than sender-

initiated protocols.

There are, however, several drawbacks that should be mentioned. First, a sender cannot
ascertain when it can release the cache of a transmitted packet. This is because a sender
receives only NACK messages and does not receive positive confirmation on reception of
packets from all the receivers. A polling mechanism can be incorporated into receiver-
initiated protocols, allowing a sender to periodically check each receiver for correct
receptions. If confirmed, sender would release the packet from its buffer, making more
efficient use of an already limited memory [31]. However, in addition to their
implementation complexities, such polling mechanisms would increase the processing
burden at the senders. Obviously, this makes readily applying received-initiated
protocols to ad hoc networks an inefficient and impractical solution. The second
drawback of receiver initiated protocols is that implementing NACK/Repair suppression
consumes additional bandwidth and increases processing burdens to multicast NACKs
and repairs. In certain cases, this can result in wasting valuable bandwidth on
unnecessary multicast traffic over a large area, even if the packet loss and recovery are

restricted to a small area.

2.3.3 Ring-Based Protocols

Ring-based reliable multicast protocols were originally developed to provide support for
applications that require an atomic and total ordering of transmission to all receivers [28].
Total ordering means that all messages multicast to a group are guaranteed to be

delivered to all members in the exact same order [30]. A reliable and total order

26

2. Related Work
multicast is called an atomic multicast [34]. For example, if a node N1 multicasts a

packet m1, and a node N2 multicasts a packet m2 later in time, then an atomic system

would guaranty that all receivers receive m1 before m2.

Ring-based protocols are based on the token-ring technique. The Token Ring Protocol
(TRP) [35] was the first protocol using the token-ring technique for reliable multicast. In
addition to guaranteeing that all receivers can receive every message without error or
loss, TRP also guarantees that every receiver places the received messages in the same
sequence in that they are transmitted. TRP was originally used to build a distributed
database on Ethernet [29]. In the early 1990’s, this protocol was adapted to operate on a
multicast network over the Internet and was later renamed Reliable Multicast Protocol

(RMP) [10]. We will discuss the details of RMP in next chapter.

Figure 2-7 depicts an example of ring-based protocols. Receivers are organized as a
logical token ring, and one receiver is selected as the token site. The token site is the
only node that is responsible for sending ACKs to the source. Each ACK contains a
sequence number, called a timestamp [10]. All receivers place packets in the order
indicated by the sequence number. When a node detects a gap in the sequence number, it
sends a NACK to the token site to request a selective packet retransmission. This way,
all nodes have a global ordering of the packets for delivery to application layer [28].
Total ordering of packet transmission is a unique advantage that ring-based protocols

have over other protocols.

27

2. Related Work

Source

Receiver Set

Figure 2-7 Ring-based protocols [28]

Receivers take turns to become the token site and acknowledge the packets sent from the
source to ensure reliability. The ACK that is multicast to the source and other receivers
also serves as a token passing mechanism [35]. A receiver is qualified to become a token
site only if it has received all packets until the current one. When the next token site
node receives the ACK, it will check if it has received all the packets until the current
one. If true, the next token site will replace the current token site. Otherwise, the next
token site node will request the missing packet from the current token site. In this
manner, when a token site multicasts an ACK, it implicitly acknowledges that it has
received all packets up to the current one. For example, when a token site multicasts an
ACK for packet 3, it is implicitly acknowledging correct reception of packet 0, 1, 2 as

well (assume sequence number of packets starts from 0).

The basic mechanism of ring-based protocols is summarized as follows [10]:

= The source multicasts packets to all receivers and starts a transmission timer.

28

2. Related Work
= When the token site receives a packet correctly, it informs the source by multicasting

an ACK to the source and other receivers.

= If the source does not receive an ACK for a transmitted packet from the token site
before the timer expires, the source considers the packet is lost and retransmits it.

= Whenever a receiver along the token ring detects a packet loss or transmission error,
the receiver unicasts a NACK to the token site to request packet retransmission.

= Upon receiving the NACK, the token site uses unicast to send the requested packet to

the requestor.

The above summary shows that ring-based protocols are a combination of sender-
initiated protocols and receiver-initiated protocols. Ring-based protocols operate as
sender-initiated protocol between the source and the token site and as receiver-initiated
protocols between the token site and receivers. This combines the throughput advantage

of receiver-initiated protocols with the reliability of sender-initiated protocols [31].

Ring-based protocols have the following advantages: First of all, the source only needs to
process the ACKs returned from the token site. When there is no transmission error, the
sender only need to process one control message (i.e. ACK) per packet transmission,
independent of the number of receivers. This significantly reduces the processing
overhead at sender. Secondly, ring-based protocols guarantee consistent ordering of
packet delivery. On the other hand, ring-based protocols have several drawbacks: Firstly,
the process to setup and maintain a logical token ring is complicated. This translates to

significant overhead when a ring is large and requires nodes to be equipped with high and

29

2. Related Work
efficient processing powers. Therefore, it is not suitable for mobile ad hoc networks in

that not every device has a high processing capability. Secondly, it has been shown that
the throughput of ring-based protocol is just slightly better than that of sender-initiated
protocols, but worse than that of receiver-initiated protocols and tree-based protocols
[28]. It is also claimed that the low throughput is caused by unicast retransmissions in
error recovery. Thirdly, ring-based protocols only guarantee that all receivers
“eventually” receive a packet [36]. They do not guarantee end—to—end packet

transmission delay, i.e., a packet might take long time to reach a receiver.

2.3.4 Tree-Based Protocols

One main characteristic of tree-based protocol is that it divides receivers into subgroups
with each subgroup having a group leader, and distributes the responsibility of error

recovery over group leaders [28].

Figure 2-8 depicts a simple example of tree-based protocols. Receivers and the source
form a tree with the source as the root of the tree. Receivers are divided into groups
where each group has a group leader and one or more children. A group leader may also
be a child of another local group. Children without children are at the bottom of the tree

and are called leaves.

As with other multicast protocols, the source multicasts every packet to all receivers.
However, only the source’s direct children, i.e. group leaders, can send feedback to the
source indicating which packets are received either correctly or incorrectly. When a child

of a subgroup detects a packet loss or transmission error, it sends a NACK to its group

30

2. Related Work
leader, where the latter is in charge of retransmission within the local group. The ACKs

or NACKs the children of a subgroup send to their group leader are referred to as local

ACKSs or local NACKS [28], and are meaningful only within their own group.

Figure 2-8 Tree-based protocols [28]

Tree-based protocols have three variations:

(1) ACK-based scheme
The ACK-based scheme is similar to sender-initiated protocols as receivers, including
leaf nodes or the group leader other than the root, send ACKs to their group leaders to
indicate correct reception of packets. If ACK timer expirations occur at group leaders
or the root, multicast retransmissions are invoked. Reliable Multicast Transport
Protocol (RMTP) is an example of this approach [37]. The basic mechanisms of
RMTP are summarized as follows [37]:
= The sender multicasts data packets to all receivers.
= Each direct child of the source unicast its own ACKs/NACKSs to the source at

periodic intervals. Based on the feedback, the source determines which packets

31

2. Related Work
have been received correctly and which need to be retransmitted. Notice that the

source usually uses unicast to retransmit the request packets. If the number of
NACK:Ss for a packet exceeds certain threshold, the sender multicast the packet to
the entire tree.

= QOther receivers that are not the direct children of the source send their ACKs or
NACKSs to their group leaders at regular intervals. Group leaders usually use
unicast to retransmit packets. If the number of NACKs for a packet exceeds

certain threshold, the group leader locally multicasts the packet.

In this scheme, a group leader does not consolidate ACKs of the receivers in its
group, but uses these messages to perform local retransmissions to the receivers.
Two reasons make RMTP impractical to be implemented in mobile ad hoc networks.
Firstly, RMTP assumes that a multicast tree, rooted at the source and spanning over
all receivers, is set up at network layer. The receivers are then grouped based on this
tree. However in ad hoc networks, it requires intensive processing from mobile nodes
to maintain a tree network structure since the topology in ad hoc network is
frequently changing. Secondly, RMTP assumes that there is information about the
approximate location of receivers and based on that information, some receivers are
chosen as group leader candidates, i.e. group leader candidates are pre-assigned. In
mobile ad hoc networks, it creates too many processing burdens for each node to
select group leader candidates based on nodes approximate locations since mobile

nodes can move arbitrarily.

32

2. Related Work

(2) NACK-based with NACK suppression scheme

The NACK-based with NACK suppression scheme approach is similar to the
receiver-initiated protocols with NACK suppression scheme. Tree-based Multicast
Transport Protocol (TMTP) [9] is an example of this scheme. To limit the scope of
the NACK multicasts and packet retransmissions, TMTP uses the Time-To-Live
(TTL) field to restrict packet transmission radius. When TTL value is small, error
recovery is completely local. By increasing the TTL value, besides a child’s parent,
other group leaders or receivers near by who can hear a NACK can answer the
retransmission request. In another words, each group leader not only provides error
recovery to receivers in its local region but also for other receivers in its vicinity [9].
This ensures fast error recovery. Another advantage of TMTP is that a tree is self-
organized and does not rely on any centralized coordinator [9]. The tree is built
completely at the transport layer and, thus, does not require any explicit support from
or modification to IP multicast routing protocols. The basic mechanisms of TMTP
are summarized as follows [9]:

= The sender multicasts data packets to all receivers.

= When a child detects transmission error or packet loss, the child multicasts a

limited scope NACK. NACK suppression scheme is also applied.
= When a node receives the NACK and has the requested packet, it multicasts the

requested packet to the local domain.

(3) Aggregate ACK-based scheme

33

2. Related Work
In this scheme, a group leader sends an aggregate ACK to its parent after all of its

children have acknowledged correct reception. Aggregate ACKs start from the leaves
of a tree, and propagate toward the source. The use of aggregate ACKs is to let group
leaders decide when to safely delete packets from memory [28]. After a group leader
or the source has received an aggregate ACK for a packet, it can safely remove the
corresponding packet from its buffer since all members in this sub-hierarchy have

already received it correctly. Lorax [38] is an example of this scheme.

Using aggregate ACKs can ensure the protocol operates correctly even if group
leaders fail [28]. For example, without using aggregate ACKs, a group leader B fails
after it has acknowledged correct reception of a packet to its group leader, the source
A. If a member of B’s local group needs a retransmission, neither A nor B can
retransmit the data packet since B is not functioning and A has removed the packet
from its memory after receiving ACKs from all its immediate children. With
aggregate ACKs, the data in the memory are removed only when all hierarchical
members under this group leader have received it correctly. Even if B fails, without
receiving aggregate ACKs for the packet, B’s leader A does not release this packet
from its memory. On the other hand, comparing with local ACKs and local NACKs,
aggregate ACK has a relatively lower throughput. In some cases, if the source is to
schedule retransmission based on aggregate ACKs, it would have to pace based on
the slowest path in the tree, whereas with local ACKs or NACK, retransmission can

be scheduled within a local group, which is within relatively smaller range.

34

2. Related Work
The basic mechanism of aggregate ACK-based tree scheme is summarized as follows

[39]:

= The source multicasts packets to all receivers.

= Upon correctly receiving a packet, leaf nodes send aggregate ACKs to their group
leaders.

= Upon receiving a data packet correctly, group leaders send an ACK to their
parents.

= Group leaders wait for a certain period of time to receive ACKs from their
children. If timeouts occur, packets are retransmitted.

= Group leaders wait to receive aggregate ACKs from their children. Upon
reception of all aggregate ACKs, the group leaders release the corresponding

packet from the memory and send an aggregate ACK to its parent.

In tree-based protocols, the source interacts only with its immediate children and does not
deal with all its hierarchical children directly. Hence, the source does not have to
maintain the state information of all children, and is not responsible for error recovery for
all of them. The relative processing overheads are distributed among the entire tree
instead of only over the source, which makes tree-based protocols very scalable. In [28],
it is shown that a tree-based reliable multicast protocol is the most scalable way of
achieving reliability. Another advantage of tree-based protocols is the parallel processing
in sub-trees. Packet retransmission can be carried out in different sub-trees
simultaneously. This significantly reduces network congestion and improves network

throughputs. For example, in a wide area network, if we organize the tree by geographic

35

2. Related Work
domain (e.g., the receivers in Ontario and Alberta are in different sub-trees), the error

recovery in a region can proceed independently without causing additional traffic in other
regions [9]. The third advantage is that end-to-end delay is significantly reduced since
lost packets are recovered by local retransmissions as opposed to retransmissions from

the original sender, i.e., the source [9, 37].

2.4 Reliable Multicast for Ad Hoc Networks

Reliable multicast is vital to the success of mission critical applications in ad hoc
networks. Some reliable multicast protocols have been proposed for ad hoc networks in
recent years, such as Anonymous Gossip (AG) and Reliable Adaptive Lightweight

Multicast (RALM) protocols.

AG protocol [40] is a reliable multicast protocol that does not require a group member to
have any knowledge of the other group members. AG proceeds in two phases. In the first
phase, packets are multicast to the group using any unreliable multicast protocol. In the
second phase, periodical anonymous gossip takes place in the background as each group
member recovers any lost data packet from other members of the group that might have
received it. The second phase consists of periodical rounds of the following steps:

e Node A randomly chooses another member of the group, say B.

e A sends B the information about messages it has received or not received.

e B checks to see if it has received any of the messages listed by A.

e Then A and B could exchange messages which are not part of each other’s message

history.

36

. 2. Related Work
RALM protocol [41] is a reliable, congestion-controlled protocol designed for the ad hoc

network. The basic mechanism of RALM is as follows:

Each multicast source maintains a Receiver List. The source selects a feedback

receiver from the Receiver List and multicasts data packets.

e The feedback receiver replies the source with either ACK to indicate successful
reception or NACK to request retransmissions. ACK or NACK are sent by unicast.
Lost packets are requested one at a time until the feedback receiver has all up-to-date
packets. Retransmitting one packet at a time slows down the transmission of the
source when congestion is detected.

e Upon reception of a NACK, the source retransmits packet by multicast. If the sender
of NACK is not in the Receiver List, that node is added to the list. Once the feedback
receiver obtains all the packets, it unicasts an ACK to the source.

e Upon reception of an ACK, the source removes the feedback receiver from the

Receiver List, chooses a new feedback receiver in a round robin fashion from the

Receiver List, and repeats this process until the list is empty.

e When the Receiver List is empty, the source reverts to the application sending rate.

The main contribution of RALM is the introduction of TCP-like window-based

congestion control mechanism used to reduce overhead and increase efficiency. When

losses are detected, the congestion window is halved; otherwise, it increases linearly.

37

2. Related Work

2.5 Summary

This chapter describes the related work on reliable multicast and wireless ad hoc
networks. First, we discussed the characteristics of mobilé ad . hoc networks, and
presented the unicast and multicast routing protocols that we chose to use in our
simulation. Second, we described four known classes of reliable multicast protocols for
wired networks and discussed their advantages and limitations. Sender-initiated
protocols are simple but suffer from the ACK implosion problem. Receiver-initiated
protocols with NACK suppression scheme overcome the problem of ACK/NACK
implosion. However, they require the sender to have large memory buffers. Ring-based
protocols provide total ordering reliable multicast service. Nevertheless, they are
complicated to be implemented and packets end-to-end delay can be long. Tree-based
protocols are most scalable compared to other protocols. Finally, we discussed reliable

multicast protocols proposed for ad hoc networks.

38

3. Representative Reliable Multicast Protocols

3 REPRESENTATIVE RELIABLE MULTICAST PROTOCOLS

In this chapter we describe the three representative reliable multicast protocols that we
select to evaluate their performance in mobile ad hoc networks. The three protocols are
SRM, TMTP, and RMP. They respectively represent receiver-initiated type of protocols
with NACK / Repair suppression scheme, tree-based type protocols, and ring-based type
protocols. We implement simulation models for these protocols according to their basic
mechanisms with certain limitations, which are elaborated on after analyzing the results
of early stage debugging simulation. We modify certain portions of the algorithms in
order to improve performance and eliminate certain features to cope with lack of support

from the underlying routing protocols.

3.1 Scalable Reliable Multicast - SRM

SRM [8] is a receiver-initiated type protocol with NACK / Repair suppression. SRM is
based on Application Level Framework (ALF) protocol model [42] that has been

proposed to help adapt transport-level services, such as reliability, to the needs of specific

39

3. Representative Reliable Multicast Protocols
applications. To meet diverse application requirements, ALF-based protocols normally

leave as much functionality and flexibility as possible to the application. Therefore,
SRM is designed to meet only the minimal definition of reliable multicast, i.e. eventual
delivery of data to all the group members, without enforcing any particular delivery
order. Shifting the difficulty of coping with unordered packets to the applications also
relieves the protocol from the overhead of reordering packets. The design of SRM design

aims at quick packet loss recovery.

3.1.1 Data Transmission

A sender divides the message to be transmitted into fixed-size packets, and assigns each
data packet a sequence number, starting from 0. The sender multicasts packets at a
regular interval to an IP multicast address, with an associated port number, representing a
multicast group. SRM does not enforce any particular delivery order. The packet
sequence number is used only for the purpose of detecting packet loss. SRM shifts the
packet reordering responsibility to the upper layer applications for the purpose of

minimizing constraints and maximizing flexibility of implementation.

3.1.2 Packet Loss Recovery

Packet loss is detected when a receiver finds a gap in packet sequence numbers.
Receivers only send NACKs when detecting packet loss and do not return ACKs to
confirm on correct receptions. To perform loss recovery, SRM relies on NACK with
NACK / Repair suppression scheme, of which the basic mechanism has been discussed in
Section 2.2.2. For illustration, we give an example of SRM’s loss recovery mechanism.

In particular, we show how SRM configures its NACK timers and Repair timers, i.e., the

40

3. Representative Reliable Multicast Protocols
manner in which SRM makes a decision on how long to delay a request packet or repair

packet before eventually sending it.

Assume receiver A is one participant of a SRM based multicast group. When A detects a
packet loss by finding a gap in packet sequence numbers, it sets a NACK timer, called a
repair request timer in SRM. When the repair request timer expires and A has not heard
the same repair request (i.e., NACK) from any other receiver, it then multicasts the repair
request to the whole group, and doubles the request timer to wait for the repair packet.
The repair request timer is a function of the estimated delay from A to the source of the
packet. The request timer value is randomly selected from the uniform distribution on
[Ci ds 4, (C1+C2) - ds, Al
where C; and C, are repair request timer parameters (C; and C, are 2 in our simulation).

ds, A is the estimate of one-way delay between A and the source of packet.

If A receives the same repair request before its own repair request timer expires, then A
does a random exponential backoff, and resets its repair request timer. This is called
NACK or request suppression. In another word, if a receiver sees a repair request with
the same information as its scheduled request, it then reschedules the request with a new
delay. On average, the new delay is double the current delay. If the current request timer
value is chosen from interval
2'-[Crds.a, (C1+ C) - s al,

where i indicates the number of backoffs, starting with 0, then the backoff timer value is

randomly selected from interval

41

3. Representative Reliable Multicast Protocols

2% [Cy- dg, a, (C1+ C) - ds, Al

For every backoff, the parameter i is increased. This means that the node will be waiting
longer periods of time before sending a new request. In this thesis, the upper limit for the
i parameter is denoted as requestBackoffLimit_. In our simulation, the value of

requestBackoffLimit_ is 5.

Any receiver that has a copy of the requested data, i.e. a responder, can issue
retransmitted packets, called repairs in SRM. When responder B receives a NACK from
A, B sets a repair timer. The repair timer is set to a value randomly selected from the
interval
[D1-da B, (D1+D2) - da Bl

where D; and D, are repair timer parameters (D; and D, are 1 in our simulation). The
symbol da p denotes the estimated one-way delay between responder B and A. When
B’s repair timer expires and B has not heard the same repair from any other receiver, B
multicasts the repair to the whole group. If B hears the repair from a receiver before its
own repair timer expires, it avoids sending the same repair by canceling its own repair

timer (Repair suppression).

There are cases in which multiple receivers may detect the same packet loss, or multiple
receivers may attempt to respond to the same repair request. This can cause duplicate
requests and repairs to be sent and may very well reduce the overall network throughput.

SRM Request / Repair timer algorithm effectively addresses this issue by randomly

42

3. Representative Reliable Multicast Protocols
selecting timer values to de-synchronize node action. The number of duplicate requests

or repairs is thus maintained at a low value. Moreover, the algorithm lets a node close to
the request node to timeout first and multicast the repair. This latter feature ensures fast

“loss recovery.

3.1.3 Session Message

In SRM, lost packets are detected when gaps in the sequence number space occur.
However, if the last packet or the last train of packets are lost, receivers can never detect
the packet loss, because no more packets with higher sequence number are received. To
solve this problem, SRM has all members in a group periodically multicast low-rate
session messages. Each session message contains the sender’s own highest sequence
number sent so far and the highest sequence number received from every receiver.
Receivers can use session messages to find sequence number gap if they miss the last one

or more packets.

Session messages are also used to estimate one-way delays between nodes, which are
needed in setting request and repair timers. All packets, including session packets, carry
a source-ID and a timestamp. The session packet timestamps are used to estimate the

node-to-node delays.

3.1.4 Implementation Decisions

We strictly followed the specification of SRM and did not make any major modifications

in our implementation.

43

3. Representative Reliable Multicast Protocols

3.2 Tree-based Multicast Transport Protocol - TMTP

TMTP [9] is a tree-based receiver-initiated protocol with NACK suppression scheme. It
provides reliable multicast communication for one-to-many bulk data dissemination

applications. The following are the essential features of TMTP.

3.2.1 Control Tree Management

In TMTP, nodes use the expanding ring search method to dynamically self-organize into
a hierarchical control tree as nodes join in and leave a group. Control tree management
does not rely on any centralized coordinator. A control tree is built solely at the transport
layer. It does not require any assistance from, or modification to, the underlying IP
multicast infrastructure. It is easier for model implementation and offers flexible controls
than RMTP in that tree is structured at the IP layer. This is the main reason why we

chose the TMTP type model in our simulation.

TMTP organizes receivers into hierarchy of domains where a domain manager (DM) is
the representative of each domain and is responsible for handling retransmissions within

its domain.

Figure 3-1 shows a TMTP control tree with the source as the root of the entire tree. In
TMTP, each domain manager can have a maximum of K children. That is, the source
can have maximum K (K = 3 in our simulation) immediate children. Each of these

children themselves can have maximum K receivers as their immediate children.

44

3. Representative Reliable Multicast Protocols

Source

/ K nodes
Domain 000
Manager

Local ACK

N

K nodes
00

Figure 3-1 TMTP control tree [9]

Over the lifetime of a group, the control tree grows or shrinks dynamically in response to
additions to and deletions from group membership. There are two operations associated
with control tree management: JoinTree and LeaveTree. When a new node attempts to
join in a group, it executes JoinTree operation to become a member of a control tree.

When a node leaves a group, it executes LeaveTree operation.

Joining in a control tree starts with using the expanding ring search method to locate the
nearest domain manager. Figure 3-2 presents a process of a new node joining a control
tree. A new node begins the expanding ring search by multicasting a
SEARCH_FOR_PARENT request packet with a small time-to-live (TTL) value in its IP
packet header, and starts a search request timer. The small TTL value restricts the scope
of searching for nearby nodes by limiting the transmission radius of the search request
packet. Using a small TTL value to restrict the scope of a multicast message is called
limited scope multicast. If the new node does not receive a response within the timeout
period of its search request timer, it re-multicasts a SEARCH_FOR_PARENT request

packet with a larger TTL value. Any existing node in the control tree that receives the

45

3. Representative Reliable Multicast Protocols

SEARCH_FOR_PARENT request packet can respond with a

WILLING_TO_BE_PARENT packet if it does not already have the maximum K ‘
children. The new node selects the node that responds first as its domain manager and
sends it a JOIN_REQUEST packet. Upon reception of JOIN_REQUEST, the domain
manager can accept the request and return ACCEPT_JOIN packet to the new node for
confirmation of acceptance. With this confirmation, the new node joins the control tree.

Please see Appendix B for the details of JoinTree and LeaveTree algorithms.

New Node Existing Node

Figure 3-2 Joining in a tree

3.2.2 Data Transmission

TMTP exploits the efficient delivery mechanism of IP multicast for packet routing and

delivery. When a sender wishes to send data, it multicasts data packets to an IP multicast

46

3. Representative Reliable Multicast Protocols
address (with port number) representing an entire group at a regular interval defined in

configuration. The data packets arrive at all group members via standard IP multicast.

3.2.3 Packet Loss Recovery

The control tree takes the error control responsibility normally placed at the sender by
distributing it across multiple nodes. This distribution of error cbntrol also allows error
recovery to proceed independently and concurrently in different portions of the network.
Each node in control tree is not only responsible for handling the errors that arise in its
immediate children, but also provide error recovery for other nodes in its vicinity. TMTP
uses restricted NACKs with NACK suppression scheme to respond to packet losses.
When a child detects a missing packet, it multicasts a NACK to its parent and siblings
with a small TTL value in IP packet header. Like the process of joining a tree, this small
TTL value is used to restrict the scope of multicast. As in SRM, in order to avoid
multiple receivers multicasting a NACK for the same packet, each receiver delays a
random amount of time before transmitting its NACK. If the receiver hears a NACK
from another member during the delay period, it suppresses its own NACK (NACK
suppression). When a member receivers a NACK and has the corresponding data packet,
it immediately responds by multicasting the missing packet to the local domain using a

limited scope multicast message.

3.2.4 Implementation Decisions

In our simulation the underlying IP multicast routing protocol does not support limited
scope multicast using small TTL value. Therefore, when a node joins a group and

searches a parent, it has to use global multicast, i.e. multicast to all group members, to

47

3. Representative Reliable Multicast Protocols
locate a parent. For the same reason, NACKSs and repairs are unicast between a member

and its domain manager in our implementation. The modified loss recovery mechanism

of TMTP is as follows:

= Whenever a child detects a packet loss, it unicasts a NACK to its parent and starts a

| request timer.

= On reception of the NACK, the parent unicasts the corresponding packet to the child.

= The expiration of the request timer without reception of the corresponding packet
serves as a detection of loss of NACK or retransmitted packet. The child resends
NACK to its parent and starts a new request timer. The value of the new request
timer is double the previous request timer, i.e. exponential backoff.

= The child keeps on requesting until it receives the repair correctly or has repeated the
request up to certain times, i.e. reached a predefined request threshold. If the request
threshold is reached, the child gives up its current parent. It then uses multicast
NACK with NACK Suppression scheme to request retransmission from the entire

group and restarts the join procedure to find a new parent.

In the modified loss recovery mechanism, correlated losses are repaired individually,
generating more traffic than a multicast repair if many children have lost the same packet.
This may also cause NACK implosion if all children send NACK at the same time. We

alleviate this problem by limiting the number of children per parent to 3.

TMTP cannot handle domain manager failure or node disconnection. Although we

assume no node failure in our implementation, node disconnection must be sustained, e.g.

48

3. Representative Reliable Multicast Protocols
when a child cannot reach its parent since nodes can move arbitrarily in ad hoc networks.

To solve this problem, we provide a new function that allows a child to find a new parent
after it has failed to get a repair from its parent for a certain number times (5 times in our

simulation).

3.3 Reliable Multicast Protocol - RMP

RMP [10] is a ring-based protocol. RMP has two distingliished characteristics compared

to SRM and TMTP. These characteristics are:

= RMP provides a totally ordered reliable multicast service, i.e. packets from either one
Or more sources arrive at receivers in exactly the same sequence they are issued in.

= If no packets are lost, the only control messages a sender needs to manage is one

ACK per packet sent, regardless of the number of receivers [35, 43].

Prior to discussing the operation of RMP, we need to clarify the terminology that will be

used below:

= Ring: A ring is a logical structure that consists of members belonging to a group. It
corresponds to a circular linked list in data structure.

= Token: A token is a flag that can be passed around among the members along the
ring. Once a member accepts the token, it becomes the current token site.

= Current Token Site: A Current Token Site is the current token holder in a given ring.
It is responsible for acknowledging packets on behalf of the ring and servicing
retransmission requests from other members of the ring.

= Token List: A Token List is a list of operational members along a ring. Each group

member maintains a token list.

49

3. Representative Reliable Multicast Protocols

RMP operation relies on three algorithms. The basic delivery algorithm operates on
multicast messages during normal operation. It handles the delivery of packets to a group
of members. The membership change algorithm creates a new token list and updates it at
each member of the ring whenever a node joins in or leaves a ring. The reformation
algorithm re-organizes a multicast group when the current token site fails to pass a token

to its next token site. In what follows, we discuss these three algorithms.

3.3.1 Basic Delivery Algorithm

In RMP, each packet that is multicast from source S to its group contains a label (S, Ps)
that uniquely identifies the packet as the P," message from source S. When the current
token site of the ring receives a packet correctly, it multicasts an ACK to the entire group.
The ACK contains the same (S, P;) pair that the corresponding packet has, along with a
global sequence number assigned by the current token site. The global sequence number
in an ACK is also called a timestamp that serializes the packets sent from all sources.
Since we consider there is only one source in a group, in our simulation we did not
implement the serialization part, i.e. the part that re-orders packets from different sources

to provide the complete ordering service.

Source S transmits packets at regular interval. S starts a transmission timer for each
packet it transmits. If S does not receive an ACK for a packet after the transmission
timer expires, S considers the packet is lost, then retransmits it and resets the timer in

exponential backoff of the last timer value, i.e. exponentially increase the period of the

50

3. Representative Reliable Multicast Protocols
timer. S keeps on retransmitting until an ACK is received or the number of times of

retransmission reaches a threshold (We set threshold = 5 in our study).

Each receiver takes turn to become a current token site and acknowledge reception of
packets as a token being passing around. At any given time, there is only one current
token site in a ring. Token passing is one of the consequences when an ACK is multicast.
The current token site passes a token to the next token site by using an ACK. Each ACK
has a field to name the next token site. When this site receives the ACK, it checks to see
if it has received all packets up to the current one corresponding to the ACK. If not, it
requests the missing packets from the node that it currently believes is the current token
site. Once it has all packets, it declares itself as the current token site. It announces this
to other nodes either by sending an ACK for the next packet received or by unicasting a
confirmation message to the previous token site if no packet is received within a
predefined period of time. Since a receiver can not become a current token site until it
acquires all packets that current token site has, when the token site sends an explicit
acknowledgement for a packet it implicitly acknowledges that it has received all packets
up to the current packet [31].
In summary, the ACK performs a number of functions:
= It lets the sender know that the token site has received the packet. In this way, it
functions as a traditional positive acknowledgement.
= The timestamps in the ACKs provide a total ordering on messages.

s]t transfers the token to next token site.

51

3. Representative Reliable Multicast Protocols
When the current token site sends an ACK to name the next token site, it sets an ACK

timer. If the current token site has not heard from the next token site a confirming
announcement prior to the timer’s expiration, it resends the ACK. This process is
repeated until the current token site receives an ACK or a separate confirmation message
from the next token site. If the current token site has repeated sending the same ACK for
more than a predefined number of times, it decides that its successor is unreachable and

accordingly initiates the reformation algorithm to reconstruct a token ring.

The current token site is responsible for servicing retransmission requests until the next

token site takes over the retransmission responsibility. This guarantees that there is

always at least one site that has all packets and can respond to retransmission requests.

The error recovery of RMP is summarized as follows:

= Whenever a receiver detects a packet loss or transmission error, it unicasts a NACK
to the node it currently believes to be the current token site and starts a request timer.

= Upon receiving the NACK, the current token site unicasts the missing packets to the
receiver that requests it.

= The expiration of the request timer without receiving the corresponding packet serves
as a detection of loss of NACK or retransmitted packet. The receiver resends a
NACK to the current token site and resets the request timer as exponentially backoff
of last timer value.

= The receiver repeats requesting until it receives the correct repair or the times of retry
reaches a preset threshold. When threshold is reached, the receiver uses NACK

multicast with NACK Suppression scheme to request retransmission from entire

group.

52

3. Representative Reliable Multicast Protocols

Figure 3-3 depicts a RMP operation in absence of node failures. Frame 1 and 2 in Figure
3-3 shows the Source S sending packet 1 and receiving its ACK. Source S multicasts a
packet with a label of (source, sequence number) pair, Pkt (S, 1) to its group. Node A,
the current token site (CTS) multicasts ACK ((S, 1), 1, B) to the rest of group. Node D
misses the packet 1 due to transmission error. The ACK for packet 1 is time-stamped as
the global sequence number 1. The value in last field of the ACK, B, indicates that B is
the next token site (NTS). When B receives this ACK, it checks that if it has all packets
up to the one corresponding to the ACK. If so, it declares itself as NTS. Node A does
not hand over the CTS responsibility to B until it receives either a confirmation message
or an ACK from B. If A does not receive anything from B within a specified timeout
period, A re-sends ACK ((S, 1), 1, B) to B by multicast. Node A repeats this process
until it receives an appropriate response from B. If no such response is received, A

considers B unreachable and initiates the reformation algorithm to reconstruct the ring.

Frame 3 in Figure 3-3 is very similar to Frame 1. It shows S multicasts Pkt (S, 2). Now
the CTS, Node B multicasts the corresponding ACK, ACK ((S, 2), 2, C), to the whole
group in Frame 4. Node A knows that it has successfully passed the token to B upon
receiving ACK ((S, 2), 2, C) from B. Similarly, B is now waiting for C to accept the
token. Other nodes also know that B is now CTS when they receive ACK ((S, 2), 2, C)
from B. In addition Node D, which missed Pkt (S, 1) detects the packet loss because it
has received packet 2, but not packet 1. All other nodes have received both Pkt (S, 1) and

Pkt (S, 2).

53

3. Representative Reliable Multicast Protocols

@

(2) ACK((S, 1), 1,B)
=

\\ 404' Miss Pkt (S, 1)
s
> oy
%
®

Z
‘) @
e

(2) Current token site sends ACK 1

(4) ACK((S, 2),2,0C)

(3) Source sends packet 2

(4) Current token site sends ACK 2

(5) D sends NACK to current token site

Figure 3-3 An example of RMP operation

54

3. Representative Reliable Multicast Protocols

Frame 5 in Figure 3-3 shows Node D using unicast to send NACK for Pkt (S, 1) to the
node that it believes as CTS, which is B. Node B then responds to the request with a
copy of Pkt (S, 1). This retransmission request is guarded by a timer as well. If the

retransmission fails, D repeats the request.

3.3.2 Membership Change Algorithm

Group membership changes over time. Each member has a token list that consists of all
operational members along a ring. The token list is updated whenever a node joins in or

leaves a ring.

RMP allows nodes to join in a ring arbitrarily, one at a time. If a node is the only
member in a group it creates a new ring that consists of itself only. If not, the node sends
a Join Request message to an existing ring and informs the ring members that it wishes to
join in. When the current token site hears the Join Request message, it adds the node to
its token list, and multicasts an AcceptJoin message to the entire ring. This dialogue is
illustrated in Figure 3-4. Other receivers then know that the new node has been accepted
and update their token lists. RMP places the newly added member immediately after the
current token site in token list. This forces the new node to take an immediate role in the
ring. In Figure 3-5, node F wants to join a ring in which node A is the current token site.

Node F is inserted right after node A.

55

3. Representative Reliable Multicast Protocols

F New Node A

Joj
W“
N
AW

Figure 3-4 Join request dialogue in RMIP

\ /
) —C)

Figure 3-5 An example of joining in a ring

On the other hand, when a member wants to leave a ring, it multicasts a Leave Request
message to the ring. A member can be removed only when it is about to receive a token,
which guarantees that the resiliency requirements are not violated. The member that
requests to leave stops processing the token ring when it receives a message from the
current token site confirming its removal from the list. As shown in Figure 3-6, suppose

node A is the current token site. When node A accepts the token, it checks if its

56

3. Representative Reliable Multicast Protocols
neighboring node, B, wants to leave the ring. If this is the case, node A removes node B

from token list and multicasts a message to let other nodes know that node B is leaving.
Node A’s next node now becomes node C. The detailed algorithms of joining and

leaving a ring are given in Appendix C.

Figure 3-6 An example of leaving a ring in RMP

3.3.3 Reformation Algorithm

According to the specification of RMP protocol, multicasting a data packet, passing the
token to the next token site, and requesting retransmission of a packet require positive
acknowledgements. The sender sets a timer each time one of these operations is started,
and retries the given operation if the timer expires. It keeps on doing this until it receives
the correct response. If an operation is tried more than a set limit of tries, it decides that a
failure has occurred and a reformation algorithm is run to reconstruct the list of nodes in

the token ring.

In the reformation algorithm, the node that first detects the failure uses multicast packets

to repeatedly poll all of the nodes. Every node then responds if it is still active and

57

3. Representative Reliable Multicast Protocols
reachable. From these responses, the initiator constructs a new token list and multicasts

this list to the whole ring. The initiator of a reformation algorithm will be the new token
site and responsible for acknowledging packets during the reformation process. The

detailed reformation algorithm is in Appendix C.

3.3.4 Implementation Decisions

As mentioned in Section 3.3.1, since we consider there is only one source in a group, we
did not implement the serialization part, i.e. the part that re-order packets from different

sources to provide total order service.

As previously mentioned in Section 3.3.3, if a node repeatedly fails to receive the proper
response to one of the actions that requires a positive acknowledgement it runs the
reformation algorithm to reconstruct the token ring. Initial simulation results showed that
even under light traffic load some nodes do not always respond in time. Therefore, the
token ring was reconstructed very frequently, resulting in massive traffic in the network
and network congestion. The performance of RMP hence degraded sharply. To solve
this problem, we changed the protocol such that the reformation algorithm is invoked
only when the current token site considers that its successor is unreachable. In this case,
the current token site tries to recover from the failure by reforming the ring. The current
token site that detects the failure uses multicast to repeatedly poll all of the nodes. Each
node will then respond if it is still active and reachable. From these responses, the token

site constructs a new token list and multicasts this list to the whole ring.

58

3. Representative Reliable Multicast Protocols

3.4 Summary

This chapter describes in detail the operations of the three representative reliable
multicast protocols SRM, TMTP, and RMP, and how we implement each of them. Next
chapter will show the simulation model and results of these three protocols in ad hoc

networks.

59

4. Performance Analysis

4 PERFORMANCE ANALYSIS

We evaluate the performance of SRM, TMTP and RMP using simulation. The software
simulator chosen is Berkeley’s Network Simulator version 2 (NS-2) [7]. We build
simulation models for these three protocols in the NS-2 environment. Based on their
characteristics that were discussed in previous chapters, we develop multiple scenarios
and run simulations in order to observe the behavior of these protocols in reacting to
various testing stimuli in mobile ad hoc networks, in addition to comparing their

performances.

4.1 NS-2

NS-2 is an object-oriented, discrete event-driven network simulator developed by the
University of California at Berkeley. It provides support for simulating TCP, routing,
and other protocols over wired and wireless networks. It is written in C++, with an OTcl
interpreter as a front end [44]. OTcl, short for Object Tcl, is a Tcl script language with
object-oriented extensions developed at MIT [45]. NS-2 separates detailed protocol

implementation from simulation configuration. For fast packet and event processing, the

60

4. Performance Analysis
detailed protocol implementation requires a systems programming language (NS-2 uses

C++). On the other hand, a simulation usually involves varying parameters or
configurations, which requires efficient and easy configuration management. OTcl is an

ideal choice for simulation configuration since it accommodates frequent changes [44].

To setup and run a network simulation, a user writes an OTcl script that initiates an event
scheduler, sets up the network topology using the network objects and the functions in
the library, and decides when traffic sources are to start and stop transmitting packets

through the event scheduler.

We build simulation models of SRM, TMTP and RMP in the NS-2 simulator
environment. Based on their basic mechanism and characteristics, we design a number of
simulation scenarios and run simulations against the models of SRM, TMTP and RMP.
We observe the behaviors of these three protocols in reacting to various stimuli of mobile
ad hoc networks, and compare their performances. In all simulations 90% confidence

levels are maintained with 10% confidence intervals (see Appendix D).

61

4. Performance Analysis

4.2 Simulation Model

This section describes the simulation model developed to evaluate the performance of

three wired reliable multicast protocols over ad hoc networks.

4.2.1 Simulation Assumptions

The major assumptions made in our simulation are as follows:

= One sender per group — For simplicity, we only simulate one multicast group that
consists of one source.

= All nodes are active — We assume each node has enough power to be alive all the
time during simulation. This assumption guarantees that a node is always ready to

relay packets if it is within transmission range of another node.

4.2.2 Experimental Setting

The NS-2 simulation environment we use is a four-layer network environment. From top
to bottom they are the application, transport, network and Medium Access Control
(MAC) layers. The application layer provides Constant Bit Rate (CBR) applications.
The reliable multicast protocol models are implemented at transport layer. At the
network layer, ODMRP is used for multicast routing and DSR is used for unicast routing.
The Distributed Coordination Function (DCF) of IEEE 802.11 for wireless LLANs is used
as the MAC layer protocol. The Monarch extension package [46] developed by the
researchers at Carnegie Mellon University provides an implementation of ODMRP in

NS-2.

62

4. Performance Analysis
We configure our NS-2 simulation environment as a 50-node mobile ad hoc network.

These mobile nodes can move around over a 1400 meters x 1400 meters flat space for
450 seconds of simulation time. There is one multicast group in this mobile ad hoc
network. This group consists of one traffic source and nine receivers. The normal

transmission range of each node is 250 meters. The channel capacity is 2 Mbl/s.

4.2.3 Mobility Model

The input to each simulation run is a node movement scenario file that describes the
motion of each node. We pre-generate multiple different node movement scenario files
with various movement patterns according to the “random waypoint” model [6]. In
“random waypoint”, each node begins the simulation by remaining stationary at its
current position for a certain pause time. It then selects a random destination from the
1400 meters x 1400 meters space and moves to the destination at a speed distributed
uniformly between 0 and a maximum speed (we set maximum speed at 1 meter / second
in our simulations). When reaching the destination, the node stays there for a second

pause, chooses a destination, and so on till the end of the simulation.

4.2.4 Traffic Model

The traffic source of the multicast group in our simulation is a CBR application at the
application layer. The sending rate is configurable in NS-2 environment. Each packet
sent by the source has a fixed size payload of 512 bytes. In order to simulate a real
network environment, we add CBR background traffic among the mobile nodes that do
not belong to the multicast group in additional to the interaction traffic within the

multicast group. To inject the background traffic, several source-destination pairs are

63

4. Performance Analysis
positioned randomly in the network, with unicast traffic maintained among them. The

background sources and destinations are not members of the multicast group.

4.2.5 Selection of Timer Values

SRM uses dynamic timers for transmission of NACKs or repairs. The value of each
timer changes during a given simulation run, depending on the delay between two nodes
engaged. TMTP and RMP do not specify whether to use fixed or dynamic timer. In our
implementation, we use fixed timers for TMTP and RMP. In TMTP and RMP, the
expiration of the request (NACK) timer without reception of the corresponding packet
serves as a detection of loss of NACK or retransmitted packet. RMP has three timers,
namely the request timer, the transmission timer and the ACK timer. A source starts a
transmission timer for each packet it transmits. If the source does not receive an ACK for
a packet after the transmission timer expires, it retransmits the packet and resets the
timer. When the current token site sends an ACK by multicast, it sets an ACK timer to
ensure that the success of passing on the token. Recall that the ACK also serves as token.
If the current token site has not heard from the next token site an announcement of
becoming a current token site after the ACK timer expires, it resends the ACK. It is
important to note that the transmission timer value must be larger than the value of ACK

timer to prevent the source from unnecessary retransmission.

Table 4-1 through Table 4-4 list the parameters that are constant throughout our

simulation. Parameters that vary are detailed in the “simulation results” section.

64

4. Performance Analysis

Parameter Value

Simulation grid size

1400 m x 1400 m

Node placement

Random

Number of nodes 50 (except in scenario of “effect
of number of nodes)
Multicast group 1

Number of sources in multicast group 1

Multicast routing protocol ODMRP

Unicast routing protocol DSR

MAC protocol IEEE 802.11 DCF
Bandwidth 2 Mb/sec

Size of CBR packet 512 bytes
Maximum moving speed of nodes 1 meter / second
Simulation time 450 sec

Table 4-1 Simulation environment parameters

Parameter Value
Ci, G 2

Dy, D, 1
Maximum number of times a NACK is backoff | 5
Session message interval 1 second

Table 4-2 SRM parameters

Parameter Value
Initial value of request timer 1 second
Maximum number of times a NACK is resent 5

Table 4-3 TMTP parameters

Parameter Value
Initial value of request timer 1 second
Maximum number of times a NACK is resent 5

Initial value of ACK timer 1 second
Maximum number of times an ACK is resent 5

Initial value of transmission timer at sender 3 second
Maximum number of times a packet |35

retransmission is resent

Table 4-4 RMP parameters

65

4. Performance Analysis

4.2.6 Performance Metrics

We collect the following statistics from each simulation run:

= Average packet delivery ratio — the ratio of the number of data packets received by
the multicast receivers to the number of data packets sent by a sender. We use this
ratio to determine the reliability of a protocol. Ideally this ratio should approach 1, as

each receiver should eventually receive all packets.

= Average end-to-end delay — the average time a packet takes to travel from source to
destination. This delay includes the delay caused by retransmission. We use average

end-to-end delay to evaluate a protocol’s timeliness.

= Packet retransmission overhead — the ratio of the number of retransmitted packets to
the number of packets sent by a sender. Retransmission overhead of data packet is
more significant than that of other control packets, such as ACKs or NACKs, since
ACK or NACK packets are usually smaller than data packets. Packet retransmission
overhead is an important index for comparing protocols, as it measures the scalability
of a protocol, the degree to which it can still function in congested or low-bandwidth
environment, and its efficiency in terms of consuming mobile node battery power.
Protocols that send large numbers of control packets can increase the probability of

packet collisions and may increase data packet delay.

66

4. Performance Analysis

4.3 Simulation Results

We conduct multiple simulations in order to measure the performance of SRM, TMTP,
and RMP in mobile ad hoc networks. We subject these three protocols to a range of ad
hoc network characteristics:

= Node mobility (pause time) — P: how frequent a mobile node moves,

= Transmission range — R: the area over which transmission can be heard,

= Packet arrival rate — A: how many packets a sender sends per second,

= Number of nodes — N: how many nodes within an ad hoc network,

= Group size — G: how many nodes within a multicast group,

= Background traffic — B: the traffic caused by mobile nodes other than the multicast

group members.

We also conduct two special-case simulations that demonstrate the performance of

protocols under various conditions:

= A cluster of nodes: a number of nodes belonging to a multicast group that stay within
a small vicinity and the nodes stay stationary all the time,

= Different timer settings: set different value for the timers in TMTP and RMP.

The results are shown in Figures 4-1 — 4-9. In these figures, the three charts in each
column show one simulation scenario result. Simulation results are obtained from
multiple runs and the results are averaged over the runs (with 90% confidence level and

10% confidence intervals).

67

4. Performance Analysis

4.3.1 The Effect of Pause Time
Node mobility is controlled by setting various pause times — P. The simulation results
show how node mobility, or pause time — P affects the performance of protocols in ad

hoc networks.

4.3.1.1 Basic Mobility Experiment

We randomly choose one source and nine receivers from the 50 mobile nodes to form a
multicast group. We run simulations with movement patterns generated for five different
pause times: 70, 100, 130, 160, and 200 seconds. Table 4-5 lists the parameters we use

for this experiment.

Parameter Value
N 50 Node ad hoc network
G 10 Node multicast group
A 4 Packets / Second
R 250 Meters
B 0.5 Mbit / Second
P 70, 100, 130, 160, 200 Seconds

Table 4-5 Parameters for basic mobility experiment

Column I — chart A in Figure 4-1 shows that the average packet delivery ratio increases
as pause time increases (i.e. node mobility decreases) in all three protocols. The ratios of
TMTP and RMP converge to 100% and the ratio of SRM has a trend towards 100% as
the pause time increases to 200 seconds. For TMTP, high node mobility can increase the
possibility of packet loss. A child has to frequently execute “Join” procedure to find a
new parent because node movements frequently change the structure of the control tree.
For the same reason, the child has to repeat requesting packet retransmission more often.

These operations generate many additional network overheads that easily congest the

68

4. Performance Analysis
readily bandwidth constrained links. Accordingly, more packets will be dropped and

more transmissions will eventually fail. This is why we see the ratio less than 100% at
pause times between 70 and 100 seconds. In our TMTP model, we set NACK retry limit
to five times. When reaching five NACKs, the node multicasts NACK to the entire
group to request repair, and search for a new parent. In a similar fashion, ring
reformation in RMP is frequently invoked when the next token site is unreachable due to
node movements. We use a maximum of five times to limit the number of retries on
reaching the next token site. When the limit is reached, the ring reformation is initiated.
If the source does not receive an ACK message from the current token site due to node
‘movements, it repeats retransmission. Again, all these operations cause further network
overhead and lead to congestion. Even in the extreme case where the current token site
continuously initiates ring reformation, it will still be responsible for serving packet
retransmissions until the ring is reconstructed. This violates the design principles of ring-
based protocols, where each node takes turn to be the current token site. The current
token site can be overwhelmed by the operation of retrying token passing and responding
to retransmission requests that may start dropping packets. This explains why we see the

ratio lower than 100% at pause times between 70 and 100 seconds.

From Column I in Figure 4-1 we can observe that the ratio of SRM is generally lower
than that of TMTP and RMP before it eventually converges to 100%. This is because
SRM uses multicast for both NACKs and Repairs. When transmission error occurs
frequently, there are many NACKs and Repairs multicast, while in TMTP and RMP

receivers only send NACKs via unicast. The SRM network overheads are more

69

4. Performance Analysis
significant than that of TMTP and RMP. Therefore, congestion can be more serious and

more packets can be dropped. Another reason is that SRM does not use ACK to make
sure packets have successfully arrived at the receivers. In the case of all receivers
missing a packet, the packet can not be recovered since the source does not perform

retransmissions.

As node mobility decreases, the possibility of packet loss drops. TMTP and RMP less
frequently execute the operations of tree restructure and ring reformation. SRM has less
NACKSs and Repairs to multicast. Thus, the network congestion is alleviated and the
network has a better throughput. The chart shows TMTP and RMP have relatively better

reliability than SRM when node mobility is lower.

Column I — chart B in Figure 4-1 shows that the average end-to-end delay for
transmitting a packet drops as node mobility decreases. Notice that the delay includes
retransmission time. When node mobility is high, there are more retransmissions than
when node mobility is low. Therefore, the delay is longer around pause times between
70 and 100 seconds. We can also see from the chart that when node mobility is high,
RMP has the longest delay and SRM has shortest delay with TMTP in between. This
particularly demonstrates SRM’s strength of fast error recovery, in which NACKs are
multicast to the entire group. Any neighbor who hears the NACKs can respond to the
NACKSs with a repair. This shortens the end-to-end delay. On the other hand, if the
current token site in RMP misses a packet due to node movements or other reasons, the

source is the node that retransmits the packet. As aforementioned, high mobility may

70

4. Performance Analysis
cause frequent ring reconstruction. The source’s continuous retransmission and frequent

ring reconstruction will cause network congestion, which results in long delays. In
TMTP, the parent uses unicast instead of multicast to request and retransmit a missing
packet. Multiple retransmission requests can happen if the parent is unreachable or it
does not have the requested packet, which further increases delay. In addition to the
delay caused by ring or tree restructure discussed above, when the current token site or
the parent is far away from the requestor node, the long transmission distance can result

in larger delays.

We obserye an undesired behavior of the TMTP model during simulation, which affects
the performance of TMTP as well. TMTP does not prevent a node from finding one of
its hierarchical children as its new parent, i.e., a sub-tree is disconnected from the whole
tree structure and becomes an isolated ring. Consider a tree structure where node A has
several children, one of which is B, which in turns has multiple children, one of which is
node C. When the tree structure is changed due to node movements, A gives up its
parent and looks for a new parent. Since TMTP is self-organizing, A may chose C as it
new parent unless a certain algorithm is implemented to specifically avoid this problem.
Such loops will render the entire tree structure broken, and it may take a considerably
long time for a node to return to the main control tree. Naturally, the network
performance will be seriously reduced. Note that this problem does not occur in wired
networks since the control tree is organized based on geographic arrangements, i.e. all

members in the same subnet belong to a definite sub-tree. In our implementation, we

71

4. Performance Analysis
specify that a node can not find its children as its parent as a temporary solution, but it is

possible that a node chooses its grandchild as its new parent, as described above.

Column I — chart C in Figure 4-1 depicts that the packet retransmission overhead
decreases as node mobility drops. When nodes move less frequently, the possibility of
packet loss is low and it takes a lower number of retransmissions to deliver a packet. We
can also see from the chart, for the same node mobility, RMP has the highest overhead
and SRM has the lowest overhead with TMTP in between. This again proves SRM’s fast
error recovery. In SRM, retransmission requests and repairs are always multicast to the
whole group. Any member that has a copy of the requested data can answer a request.
Thus, in the case that a number of nodes all miss the same packet, one multicast repair is
sent to the whole group. Also, with the Repair suppression scheme the number of
retransmissions can be significantly reduced. On the other hand, a source in RMP repeats
packet transmission either because a packet or an ACK message is lost due to the
movement of the current token site or network congestion. In TMTP, in addition to the
retransmissions caused by tree structural change, the retransmission via unicast between
parent and receivers can generate many added packet retransmissions if many children

loss the same packet.

4.3.1.2 Mobility Experiment with Lower Arrival Rate

In this experiment we simulate the models with packet arrival rate (A) equal to 2 Packets /

Second using the same movement scenario files used in section 4.3.1.1.

72

4. Performance Analysis

Parameter Value
N 50 Node ad hoc network
G 10 Node multicast group
A 2 Packets / Second
R 250 Meters
B 0.5 Mbit / Second
P 70, 100, 130, 160, 200 Seconds

Table 4-6 Parameters for mobility experiement with lower arrival rate

From Column II in Figure 4-1 we can see that all three models behave in a manner
similar to their behavior with A = 4 Packets / Second. The packet delivery ratio, average
end-to-end delay and packet retransmissions all show the same trend. At each pause time
point, the_ performance shown gives the same relative results that were discussed above.
By comparing results for A = 2 and A = 4, we can see that the performance in the former
is generally better than in the latter. This is expected since as the CBR application
reduces its data rate, there is less traffic for the network to handle. There will be less
contention for the wireless medium and less back off and waiting time at the underlying
802.11 protocol. In other words, network congestion is alleviated and any problem
caused by network congestion with A = 4 is therefore relieved. Hence, packet delivery

ratio increases, and end-to-end delay and retransmission packet overhead drop.

4.3.1.3 Mobility Experiment with Lighter Background Traffic

The third mobility experiment tests how various pause times with lighter background

traffic (B = 0.2 Mb/sec, 1/10 of the wireless channel capacity) affect performance.

73

4. Performance Analysis

Parameter Value
N 50 Node ad hoc network
G 10 Node multicast group
Y 4 Packets / Second
R 250 Meters
B 0.2 Mbit / Second
P 70, 100, 130, 160, 200 Seconds

Table 4-7 Parameters for mobility experiment with lighter background traffic

We can see from Column III of Figure 4-1 that the general trend of B = 0.2 is similar to
that of B = 0.5. The background traffic does not directly affect the performance of each
node in the multicast group. However, it can be seen that background traffic affects the
performance of nodes utilized by multicast groups for multi-hop routing. When these
nodes are busy in handling the background traffic, there are less processing capabilities
available for routing multicast packets. This causes longer transmission and
retransmission delay, in addition to increasing packet loss. When background traffic is
lighter, these phenomena are alleviated, the packet delivery ratio, average end-to-end

delay and packet retransmission overhead all show better performance.

4.3.1.4 Mobility Experiment with Larger Transmission Range

The fourth mobility experiment tests how various pause time with larger transmission

range (R = 350 Meters) affect the network performance.

Parameter Value
N 50 Node ad hoc network
G 10 Node multicast group
A 4 Packets / Second
R 350 Meters
B 0.5 Mbit / Second
P 70, 100, 130, 160, 200 Seconds

Table 4-8 Parameters for mobility experiment with larger transmission range

74

4. Performance Analysis
Column IV in Figure 4-1 shows that the general trends in performance with R = 350

Meters are similar to those with R = 250 Meters. However, it can be seen that a larger
transmission range enhances the general performance. This is because when the
transmission range is larger, number of hops that a packet travels to destination is
decreased, and the packet can be delivered to destination more quickly. The control
packet overhead will also be decreased. Therefore,v with a lower traffic load and a high

traffic throughput, a higher packet delivery ratio is achieved.

4.3.2 The Effect of Transmission range

In this section we conduct experiments to test how the node transmission range (R)
affects protocols performance. We run simulations with node movement scenario files
generated with pause time = 130 seconds. We set the node transmission range at 230,

250, 270, 290, 350 and 500 Meters.

4.3.2.1 Basic Transmission Range Experiment

We use this experiment as the base case, which we can use to compare with later

transmission range experiments. Table 4-9 lists the parameters we use in this experiment.

Parameter Value
N 50 Node ad hoc network
G 10 Node multicast group
Y 4 Packets / Second
R 230, 250, 270, 290, 350, 500 Meters
B 0.5 Mbit / Second
P 130 Seconds

Table 4-9 Parameters for basic transmission range experiment

75

4. Performance Analysis

Column (I) - A=4, R=250, B=0.5

Column (1) - A=2, R=250, B=0.5

Packet delievery ratio vs. pause time

g
X
X
X
|

Packet delievery ratio vs. pause time

—i— SRM

—i— TMTP

—¥— RMP

Packet delievery ratio (%)
&

70 100 130 160 200
Pause time - P (sec)

$ 100 e X

L g N S

S o x

B g e

2 9% 4—x - —i— SRM
2 o5 —4—TMIP
2 o RVP
2 e
5

-

[

% o

o

70 100 130 160 200
Pause time - P (sec)

(A) Packet delivery ratio

Average end-to-end delay vs. pause time

4500

4000 1—x
3500 |\
L

—— SRM
—t— TMTP
—¢ RVP

3000

2500 \\
2000 14—\
1500

1000 --—m—w—:ﬁk,%x—
500

0 =
70 100 130 160 200

Average end-to-end
delay (msec)

Pause time - P (sec)

Average end-to-end delay vs. pause time

—i— SRM
\ —a— TMTP
N\ —%— RVP

B 7 . 2
70 100 130 160 200

Pause time - P (sec)

Average end-to-end
delay (msec)
~88EEEEELE

X

(B) Average end-to-end delay

Packet retransmission overhead vs. pause
time

45

35)\

—m— SRM
—a— TMTP

25

15 >—RME

Packet retransmission
overhead
N

Pause time - P (sec)

Packet retransmission overhead vs. pause
time

e 45
o 4
& 35
5% .0 s
s N —a—TMTP
=g 2
2315 . ——RWP
= .
g ,_%ﬂ
§ 0.5 4t et

0 . - - B

70 100 130 160 200
Pause time - P (sec)

(C) Packet retransmission overhead

76

4. Performance Analysis

Column (IIT) - A=4, R=250, B = 0.2

Column (IV) — A=4, R=350,B = 0.5

Packet delievery ratio vs. pause time

100 X X X

—z— SAM
: —a— TMTP

i

—x—RWP

Packet delievery ratio (%)
&
!
N

70 100 130 160 200
Pause time - P (sec)

Packet delievery ratio (%)

Packet delievery ratio vs. pause time

06 —m— SRM
95 —a—TMTP
—x—RMP

70 100 130 160 200
Pause time - P (sec)

(A) Packet delivery ratio

Average end-to-end delay vs. pause time

4500
T 4000
¢ & 3500
2 @ 3000 —#—SRM
T £ 2500 a\
& = 2000 N\ AT
%E 1500 A\ \ —>¢— RMP
® @ \\\
g 1000 D
Z 500 S
0 e et e

70 100 130 160 200
Pause time - P (sec)

Average end-to-end

Average end-to-end delay vs. pause time

4500
4000
3500
3000
2500
2000
1500
1000 -
500 ¢
0 e e
70 100 130 160 200

—z— SAM
—&— TMTP
—¢—RMP

delay (msec)

Pause time - P (sec)

(B) Average end-to-end delay

Packet retransmission overhead vs. pause

time

o 45
k=3 4
& 35 x\
Ev 3 Y=y
23 25 N\
S€ 7, a N\ —a—TMTP
=
e 2 N e —¢— RMP
- 0 15
< \

1
& 05 i R
o o . e a—

70 100 130 160 200
Pause time - P (sec)

Packet retransmission

Packet retransmission overhead vs. pause
time
45
4
35
%2 s
£ ~— —a—TMTP
@ 2
3 15 ™~ —%—RMP
1L s S —
05 \&\&—\A X
0 At 7 :\A
70 100 130 160 200
Pause time - P (sec)

(C) Packet retransmission overhead

Figure 4-1 Effect of pause time

77

4. Performance Analysis

Column I — chart A in Figure 4-2 shows that the average packet delivery ratio of the three
protocols increases as the transmission range increases. At R = 500 meters, all three
ratios converge to 100%. As a nodé’s transmission range increases, the range a single
hop can reach is increasing. Therefore, for the same distance the underlying routing
protocol needs less intermediate nodes to relay packets, or less hops in between source
and destination. As in previous cases, background traffic can consume a significant
portion of the processing capability of the intermediate nodes, resulting in insufficient
processing capacity to work for multicast groups. Hence, multicast packets will be lost,
and packet retransmissions in addition to propagation delays will be incurred. With less
intermediate nodes, there will be a lower possibility of packet loss and retransmission and
long propagation delays. This explains why at transmissions range less than 270 meters,
packet delivery ratio is not 100%, average end-to-end delay is very high, and packet

retransmission overhead is high.

Column I — chart A in Figure 4-2 shows that SRM has slightly lower packet delivery ratio
than that of TMTP and RMP. This is because SRM’s multicast NACK and Repair
generate more traffic, which reduces the performance of the intermediate nodes.
Together with the background traffic, multicast NACK can congest some nodes and have
them fail to relay packets, introducing packet loss. Relatively, TMTP and RMP do not
use such multicasting and bring less traffic burden to each intermediate node, creating

lower packet losses.

78

4. Performance Analysis
From Column I — chart B in Figure 4-2, we can observe that RMP has a longer average

end-to-end delay than ‘TMTP at R = 230 meters. However after R > 270 meters, RMP
has a shorter delay than TMTP. This is because the retransmission between source and
token site, and token site to other receives contributes largely to end-to-end delay due to
multi-hop routes. When R > 270 meters, the ring and tree have relatively stable control
structure due to less intermediate nodes. In a stable ring, a receiver can always obtain the
retransmitted packet from the current token site, which always has the requested packet.
Also, a source in RMP always retransmits a packet if no ACK message is received from
the current token site. This also helps receivers get requested packet more quickly. Thus,
transmission delay is less in RMP. In TMTP, however, receivers unicast NACK
messages to their parents. If the parent does not have the packet, the receiver has to
execute a “Join” procedure to find a new parent after failing for a certain number of

retries in a sending NACK message. This can cause longer transmission delay.

Column I - chart C in Figure 4-2 shows that RMP has higher packet retransmission
overheads than TMTP, and SRM has the lowest overheads. As previously discussed, a
short transmission range introduces more packet loss. In RMP, if the source does not
receive an ACK message for a packet from the current token site due to a loss of a packet
or an ACK message, the source keeps retransmitting a packet for five times before it
gives up. This introduces many packet retransmissions. Relatively, RMP performs
retransmissions in between the source and the token site and token site to other receivers,

which means more retransmission than in TMTP. As SRM has a fast error recovery due

79

4. Performance Analysis
to enabling the NACK / Repair suppression scheme, packet retransmission is

significantly limited.

4.3.2.2 Transmission Range Experiment with Lower Arrival Rate

In this experiment we test how a lower packet arrival rate with various transmission

ranges affects network performance.

Parameter Value
N 50 Node ad hoc network
G 10 Node multicast group
A 2 Packets / Second
R 230, 250, 270, 290, 350, 500 Meters
B 0.5 Mbit / Second
P 130 Seconds

Table 4-10 Parameters for transmission range experiment with lower arrival rate

Column II of Figure 4-2 shows that as A is brought down to 2 Packets / Second, packet
delivery ratio, end-to-end delay and retransmission packet overhead all exhibit the same
trends as that with A = 4 Packets / Second. However, at lower transmission ranges, the
lower packet arrival rate apparently improves network performance. We attribute this
trend to an uncrowded network. Since less traffic is generated in the network, there will
be less contention for the wireless medium and less back off and waiting time at the

802.11 level.

4.3.2.3 Transmission Range Experiment with Lighter Background Traffic

The third experiment set tests how lighter background traffic (1/10 of the wireless

channel bandwidth) with various transmission ranges affects network performance.

80

4. Performance Analysis

Parameter Value
N 50 Node ad hoc network
G 10 Node multicast group
A 4 Packets / Second
R 230, 250, 270, 290, 350, 500 Meters
B 0.2 Mbit / Second '
P 130 Seconds

Table 4-11 Parameters for transmission range experiment with lighter background
traffic

From Column III in Figure 4-2 we can observe that the performance of short transmission
range is sensitive to background traffic. As background traffic becomes lighter, the
intermediate nodes are less interfered. The network shows relatively better performance.
Thus we see that the packet delivery ratios for the three protocols are all above 98%. The
end-to-end delay is shorter by 1 second and overhead is dropped from 2.5 to 2 for RMP.
Although the performance of long transmission ranges is not as sensitive as that of short

ranges, the performance does improve slightly with the former.

4.3.3 The Effect of Packet Arrival Rate

The experiments in this section test how different packet arrival rates (A) affect network
performance. We randomly choose one source and nine receivers among 50 mobile
nodes to form a multicast group. The packet arrival rates vary from 1 to 5 Packets /

Second.

81

4. Performance Analysis

Column (I) - A=4, B=0.5

Column (II) - A=2, B=0.5

Packet delivery ratio vs. transmission range

g

8

==X 7 K
T 995 //X W—
~ 29 X
© = 3
T 9851 /ﬁ/
> 98 —z—SRM
g 975 W/ —4— TMTP
3 9 —x—RVP
T 965
2
o
©
o

©0
a
(3]

&

230 250 270 290 350 500
Transmission range - R (m)

Packet delivery ratio (%)

Packet delivery ratio vs. transmission range

100 —_—Xy
99.5 fxéz S

99
9.5 M/

98 —i— SRM
97.5 —a— TMTP

97 —x—RMP
96.5

96
95.5

95 : - - . .

230 250 270 290 350 500
Transmission range - R (m)

(A) Packet delivery ratio

Average end-to-end delay vs. transmission

Average end-to-end delay vs. transmission

range range

3500 3500

X
E 3000 \ g 3000
$ g 200 \ & g 2500
e —— SRM i —p—
S £ 2000 | S o & 2000 SFM
c E \ —i— TMTP c = —a— TMTP
@ @
g & % % —x—RWP o g 1% —x— RWP
g8 1000 N 88 1000 {4~
[o X
> 500 % > 500
2 — e, < S
0 P | 0 Pt X%
230 250 270 230 350 500 230 250 270 290 350 500
Transmission range - R (m) Transmission range - R (m)
(B) Average end-to-end delay
Packet retransmission overhead vs. Packet retransmission overhead vs.
transmission range transmission range

3 3
5 5
‘B3 251X B 25 4-—
2 X 2
Ep 2 A SRV - —o—SAM
ce A c 0
&£ 15 N —a— TMTP S £ 15 > —te— TMTP
=) - @
g2 _— —X—RWP 2 1N —x—RVP
[] 05 - — © 0.5
& 0 e j\ﬁ a 0

230 250 270 290 350 500
Transmission range - R (m)

230 250 270 280 350 500

Transmission range - R (m)

(C) Packet retransmission overhead

82

4. Performance Analysis

Column (III) - A=4, B=0.2

Packet delivery ratio vs. transmission range

9190(5) gﬁ/ ~ X PR

e

99

985 e
98 —i— SRM

975 —a— TMTP
97 —X—RVP

965
9%

Packet delivery ratio (%)

©
© 9
a o

230 250 270 290 350 500
Transmission range - R (m)

(A) Packet delivery ratio

Average end-to-end delay vs. transmission
range
3500
'g 3000
& fg‘ 2500
S :
B g 2000 {—\ —#—SRM
5= \ —a—TMTP
o = 1500
o8 \ —X—RMP
g3 1000 \
] X
z 500 ey ~x
. \x:—__g\
0 ==X
230 250 270 290 350 500
Transmission range - R (m)

(B) Average end-to-end delay

Packet retransmission overhead vs.
transmission range

3
§
% 25
2
gg 21 —z— SRAM
8 £ 15 % —a— TMTP
- e
(23 —X— RMP
- o 1 A
g \ —_—
© 0.5 .
g T |

230 250 270 290 350 500
Transmission range - R (m)

(C) Packet retransmission overhead

Figure 4-2 Effect of transmission range

33

4. Performance Analysis

4.3.3.1 Basic Packet Arrival Rate Experiment

Figure 4-3 shows the performance of three protocols as packet arrival rate changes.

Table 4-12 lists the parameters used in this experiment.

Parameter Value
N 50 Node ad hoc network
G 10 Node multicast group
A 1,2,3,4,5 Packets / Second
R 250 Meters
B 0.5 Mbit / Second
P 130 Seconds

Table 4-12 Parameters for basic packet arrival rate experiment

From Column I — chart A in Figure 4-3 we can see that both TMTP and RMP achieve
almost 100% packet delivery ratio when A <4. SRM has a lower ratio, especially when A
> 3, where the ratio drops largely. SRM’s poor performance stems from its attempts to
recover lost packets by using multicast of NACKs and Repair. When packet arrival rate
is high, these multicast traffics cause high network resource contention, which results in
increasing packet losses. More packet loss in turn triggers more error recovery by
multicasting NACKs and Repair, which further dampens the situation. On the other
hand, Column — I chart B and C shows that obtaining repair from nears neighbors other
than only from the source or the current token site helps SRM achieve better end-to-end

delay and packet retransmission overheads than TMTP and RMP.

4.3.3.2 Packet Arrival Rate Experiment with Lower Background Traffic

The second packet arrival rate experiment shows that lighter background traffic (1/10 of
the wireless channel bandwidth) with various packet arrival rates apparently improves

network performance. The results, shown in Column II of Figure 4-3, are expected since

84

4. Performance Analysis
less traffic reduces network resource contention and leads to lower packet loss and better

performance.
Parameter , Value
N 50 Node ad hoc network
G 10 Node multicast group
A 1,2, 3, 4, 5 Packets / Second
R 250 Meters
B 0.2 Mbit / Second
P 130 Seconds

Table 4-13 Parameters for packet arrival rate experiment with lower background
traffic

4.3.3.3 Packet Arrival Rate Experiment with Larger Transmission Range

The third experiment proves that a larger node transmission range (R = 350 Meters) can
improve network performance. Nodes with a larger transmission range reduce the
number of hops in between the source and the destination and are less interfered by the
background traffic. Therefore, a better performance is achieved. From Column HI -
chart A in Figure 4-3, we observe that the longer transmission range apparently improves
SRM’s performance. This is because lower hop routes lead to less packet loss, and avoid

more error recovery triggered by error recovery procedures, as we described in 4.3.1.1.

Parameter Value
N 50 Node ad hoc network
G 10 Node multicast group
A 1,2, 3,4, 5 Packets / Second
R 350 Meters
B 0.5 Mbit / Second
P 130 Seconds

Table 4-14 Parameters for packet arrival rate experiment with larger transmission
range)

85

4. Performance Analysis

Column (T) - R=250, B=0.5

Column (II) - R=250, B=0.2

Packet delivery ratio vs. packet arrival rate

100 +—x X s
99.8 R

\
99.6
99.4 S \

—z—SRM
—a—TMTP
—x—RWP

AN \
N

X
2.8 \b‘&\ﬂ

98.6
98.4
98.2

98

Packet delivery ratio (%)

1 2 3 4 5
Packet arrival rate (packet/sec)

Packet delivery ratio (%)

Packet delivery ratio vs. packet arrival rate

100 -
99.8
99.6 +—=
99.4 %A

99.2 AN
99 D
98.8 P
98.6
98.4 —
98.2
98

Mx%)‘s___::x_**

—— SRM
—&— TMTP
—X—RMP

1 2 3 4 5
Packet arrival rate (packet/sec)

(A) Packet delivery ratio

Average end-to-end delay vs. packet arrival
rate

5888

1200 / —u— SRM
4&7 —i— TMTP
—X— RMP

Average end-to-end
delay (msec)

.B5888
AV

Packet arrival rate (packet/sec)

Average end-to-end

Average end-to-end delay vs. packet arrival
rate
2000
1800
1600
P
o 1400
a 1200 | |—#—SRM
% 1000 4 |—a—TMTP
o 800 X | _x—R
T 600 P AP
© A X
400
200 L X—X—X"
oL ~ - o ,,2
1 2 3 4 5
Packet arrival rate (packet/sec)

(B) Average end-to-end delay

Packet retransmission overhead vs. packet

arrival rate

25
&
2 2 *
% .5 / & SRM
c o
B | /x —a—TVTP
@
= 3 x——f/ —X—RMP
2
[%}
[
o

1 2 3 4 5
Packet arrival rate {packet/sec)

Packet retransmission

Packet retransmission overhead vs. packet

arrival rate

25

24
® 15 | [——srm
S 1.
£ /" —4— TMTP
[
> 3
3 . X — RMP

1 2 3 4 5
Packet arrival rate (packet/sec)

(C) Packet retransmission overhead

86

4. Performance Analysis

Column (IIT) — R=350, B=0.5

Packet delivery ratio (%)

Packet delivery ratio vs. packet arrival rate

100 +—Xx X
n\‘x———ﬁ
99.8 X

99.6
99.4
99.2

99
98.8
98.6
98.4
98.2

98

1 2 3 4 5
Packet arrival rate {packet/sec)

—i— SRM
—&— TMTP
—X—RMP

(A) Packet delivery ratio

Average end-to-end delay vs. packet arrival

rate
2000
- 1800
§ __ 1600
&g 1400
5 2 1200 —— SRM
S < 1000 —a— TMTP
X
g & 800 7 —x—RWP
© % 600
A—M /
g 400 4
< 200 -y =——x x—2 —
(o] e e =
1 2 3 4 5
Packet arrival rate (packet/sec)
(B) Average end-to-end delay
Packet retransmission overhead vs. packet
arrival rate
o 25
o
3 2
g -§ 15 —i— SRM
£% / —&—TMIP
e % 1 X —x—RWP
-
—X Ay
% 05 fx=—=
S k____ﬁ/r
0. o - — o3
1 2 3 4 5

Packet arrival rate (packet/sec)

(C) Packet retransmission overhead

Figure 4-3 Effect of packet arrival rate

87

4. Performance Analysis

4.3.4 The Effect of Number of Nodes

The results of the experiments in this section show the effect of changing the number of
mobile nodes in the network on performance. The number of nodes (N) is varied from 20

to 70. We randomly choose one source and nine receivers to form a multicast group.

4.3.4.1 Basic Number of Nodes Experiment

Figure 4-4 shows the performance of the three protocols with different number of nodes.

Parameter Value
N 20, 30, 40, 50, 60, 70
G 10
A 4 Packets / Sec
R 250 Meters
B 0.5 Mbit / Second
P 130 Seconds

Table 4-15 Parameters for basic number of nodes experiment

We observe from Column I — chart A of Figure 4-4 that with the increase of N, packet
delivery ratio is increases up to some point (N = 40), then decreases. When N is small
(e.g. N = 20), packet delivery ratio is low. Two factors explain this result. First, with
small number of nodes, the network can not be fully connected, i.e. a node may not be
able to transmit packets to other nodes since there are not enough nodes to relay packets.
Packets have to be dropped if no connection can be found. Second, we inject the same
amount of background traffic, independent of the number of nodes. Naturally, the
background traffic will have more effect on a small network than in a larger one. Itis
due to these two factors that some packets may not arrive at their destinations, i.e.

dropped, and will accordingly not be counted when we calculate average end-to-end

88

4. Performance Analysis
delay. This results in the low end-to-end delay when N is small as shown in Column I -

chart B of Figure 4-4.

When the number of nodes is raised to some point (here is N = 40), the packet delivery
ratio decreases. As the number of nodes further increases, more routing decisions are
made and the number of routing packets exchanged increases, which contributes to
network load. Therefore, as shown in Column I — B and C of Figure 4-4, more packets
are dropped and more packets have to be retransmitted, resulting in longer delays and

larger packet retransmission overheads.

Column I — chart C of Figure 4-4 shows that RMP’s retransmission packet overhead is
high with a small number of nodes. The reason is that the source keeps retransmitting a
packet many times until it receives an ACK message for that packet. Two factors cause
the source’s retransmission. First, because connectivity is low with a small number of
nodes, current token site may not be able to pass the token to next token site, resulting in
frequently reconstructing the token ring. This reconstruction adds traffic to the network
and may cause loss of an ACK message moving towards the source. The source will then
keep retransmitting a packet. The second factor that can invoke resource’s
retransmission is when the current token site can not reach the source because of low

connectivity.

4.3.4.2 Number of Nodes Experiment with Larger Transmission Range

The second experiment is to test the effect of number of nodes with larger transmission

range (R = 350m) using the same node movement scenario files.

89

4. Performance Analysis

Parameter Value
N 20, 30, 40, 50, 60, 70
G 10
Y 4 Packets / Sec
R 350 Meters
B 0.5 Mbit / Second
P 130 Seconds

Table 4-16 Parameters for number of nodes experiment with larger transmission

range

As shown in Column — II in Figure 4-4, with a larger transmission range, the number of

hops that a packet makes to a destination is decreased, resulting in a better performance.

4.3.5 The Effect of Group Size

In this section, we test how varying the size of the multicast group affects the network

performance, i.e., the scalability of each protocol. The group size varies from 5 to 25.

We randomly choose one sender and various numbers of receivers to form a multicast

group. We conducted experiments with two different pause times.

Figure 4-5 shows the performance of the three protocols with different group sizes.

Parameter setting for this experiment is listed in the following table.

Parameter Value
N 50
G 5, 10, 15, 20, 25
A 1 Packets / Sec
R 350 Meters
B 0 Mbit / Second
P 70, 130 Seconds

Table 4-17 Parameters for group size experiment

90

4. Performance Analysis

Column (I) - A=4, R=250, B=0.5

Column (II) - A=4, R=350, B=0.5

Packet delivery ratio vs. number of nodes

100

X=X AN

< 98
E % y/A N N\ X
2 o V4 PR W
> 92 ,/ —z— SRM
g % X —a— TMTP
T 88 / —x—RMP
g =/
< 4
2 e X
8 &
o
80

20 30 40 50 60 70
Number of nodes- N

Packet delivery ratio vs. number of nodes

—
RS~
o " —
94

92 —iz— SRM
90 —t— TMTP
88 —X—RMP
86
84
82
80

Packet delivery ratio (%)

20 30 40 50 60 70
Number of nodes - N

(A) Packet delivery ratio

Average end-to-end delay vs. number of

nodes
3000
T 2500 X
[T .
28 2000 /
%9 // —z— SRM
2E X
S < 1500 —a— TMTP
g /
g 1000 VA —X—RvP
s° _
z 500 — =X]
X P
0 ~—x/—,—-@zq=b&ﬁ—

20 30 40 50 60 70
Number of nodes - N

Average end-to-end delay vs. number of
nodes
3000
2 2500 —
0
£ a0 ———
o
s £ 1500 —a— TMTP
Y / —X—RVP
o g 1000
g”® /&\“f{/ X
> 500 X ———X
< <=
0 L e — |
20 30 40 50 60 70
Number of nodes - N

(B) Average end-to-end delay

Packet retransmission overhead vs. number of

nodes

6
§
% 54X
o \
Eo4 —— SAM
28 \
£ 3 \¢ < |—a—TMIP
5
° 2 ~ x— —X—RWP
= 02 \(5
]
S 1 :
5 W\W

0 ey - :

20 30 40 50 60 70

Number of nodes - N

Packet retransmission overhead vs. number of

nodes

6
&
2 5
2
Eo 4+ —o— SAM
c o L
8 £ 3 —&— TMTP
=
2 32 \(—X—RMP
I \x
=2
Q
©
[

20 30 40 50 60 70

Number of nodes- N

(C) Packet retransmission overhead

Figure 4-4 Effect of number of nodes

91

4. Performance Analysis

Packet delivery ratio charts show that TMTP and RMP are more scalable than SRM. As
shown in Column I — chart A of Figure 4-5, SRM’s packet delivery ratio drops quickly
from 99% to 93% as node number increases from 5 to 25. This is again because of
SRM’s error recovery using multicasting of NACKs and Repairs. Larger size groups
have a relatively higher rate of packet, NACK and Repair losses. The loss of NACK or
Repair causes more control packet transmissions, and makes a readily busy network more
congested. The ratios of TMTP and RMP do drop but within a very limited extent. With
more receivers, there is a high probability that receivers are close to each other.
Therefore, a child in TMTP can more quickly find a new closer parent, and a current
token site in RMP can easily pass the token to next token site or reform a new ring.
Hence, the tree or ring structure are quickly stabilized, greatly reducing packet loss.
Also, since TMTP and RMP use unicast error recovery, they avoid generating further
global multicast traffic, which aids error recovery. However, if there are too many
receivers in a multicast group (e.g. G = 25), the traffic caused by multicast sender and
receivers is very high, causing network congestion and degrading the performance of

TMTP and RMP.
Column I — charts B and C in Figure 4-5 show that as the number of receivers increases,

both the average end-to-end delay and packet retransmission overhead increase. This is

caused by the network congestion due to having more receivers.

92

4. Performance Analysis
In Comparing Column II with Column I, we can see that the network performance with

low mobility (P = 130) is much better than that with high mobility (P = 70). As we
discussed in section 4.3.1, the possibility of packet loss under low mobility is minimized,
and reconstruction of the trees and rings are less frequent. Therefore, the chance for

network congestion is lowered and performance is improved.

4.3.6 The Effect of Background Traffic

The results of the experiments in this section show the effect of changing the background
traffic on performance. The background traffic is varied from 0 to 2/5 of the wireless

channel bandwidth.

4.3.6.1 Basic Background Traffic Experiment

Figure 4-6 shows the performance of the three protocols with varying background traffic.

Parameter setting of this experiment is shown in Table 4-18.

Parameter Value
N 50
G 10
s 4 Packets / Sec
R 250 Meters
B 0,0.2,04, 0.6, 0.8 Mbit / Second
P 130 Seconds

Table 4-18 Parameters for basic background traffic experiment

93

4. Performance Analysis

Column (I) - P=70

Column (IT) — P=130

Packet delivery ratio (%)

100
99
98
97

95

93
92
91
90

Packet delivery ratio vs. group size

=X

R—%
T~
e
\E\ _ —i— SRM
—t— TMTP
\;g —X—RMWP
5 10 15 20 25

Group size -G

100
99
98
97

95

93

92
9

Packet delivery ratio (%)

Packet delivery ratio vs. group size

X X
‘@\
T~ —o— SRM
N —a—TMIP
~ |—x—RMP
5 0 15 20 25

Group size -G

(A) Packet delivery ratio

Average end-to-end delay vs. group size Average end-to-end delay vs. group size
1000 1000
R & 9w
T a0 //A g 80
B 700 B 700
83 oo 7 —z— SAM 25 60 —a— SAM
< 8 500 - —a—TMIP % @ 500 —a—TMIP
B E / T £
5= 400 4 —X—RMP g = 400 —x—RMP
@ 300 o g 300 A
4 200 s] ® 200 2B
™ B
[1 / o 100 /Kéf_
s 100 X X > 5 e
2 0l m— 3 0 1K mm——X ==X
5 10 15 20 25 5 10 15 20 25
Group size - G Group size - G
(B) Average end-to-end delay
Packet retransmission overhead vs. Packet retransmission overhead vs.
transmission range transmission range
4
5 s 5 o
L : ; S 35 e
2 s / R
E § 25 // —5— SRM g g 25 —— SRM
s £ 2 —t— TMTP s£ 2 —i— TMTP
<0 / X 50
gz 15 . —x~RMP e z 15 /@ —x—RVP
po -
[1 X R @ 1 —i
X X 2 kx
S 05{ y—mX— SR § o5 —x X=X
— i
& ol a= , ‘ g —
5 10 15 20 25 5 10 15 20 25
Group size - G Group size - G

(C) Packet retransmission overhead

Figure 4-5 Effect of group size

94

4. Performance Analysis

We notice that for all three protocols, as the background traffic increases, the packet
delivery ratio decreases while the average end-to-end delay and packet retransmission
overhead dramatically increase (Column I of Figure 4-6). The low packet delivery ratio
results from the fact that heavy background traffic causes network congestion and packet
loss increases. This congestion, in turn, causes frequent reconstruction of tree and ring in
TMTP and RMP, respectively, which causes steady increase of end-to-end delay and

packet retransmission overhead.

We also notice that background traffic has little impact on end-to-end delay in SRM.
This is mainly due to that any member who has requested a packet can issue a repair.
With repair suppression scheme, a node can quickly get the missing packet. On the other
hand, TMTP and RMP are quite sensitive to the background traffic. TMTP and RMP
produce heavy traffic themselves because of tree or ring reconstruction, in addition to
unicast NACK and retransmission. More background traffic will make an already busy
network congested in TMTP and RMP. Even though TMTP and RMP have better
performance in terms of packet delivery ratib, the price they have to pay is to have longer

end-to-end delay and more control packet overhead.

4.3.6.2 Varying Background Traffic with Lower Packet Arrival Rate

The second experiment was to test the effect of background traffic with lower packet

arrival rate (2 packets/sec).

95

4. Performance Analysis

Parameter Value
N 50
G 10
A 2 Packets / Sec
R 250 Meters
B 0,0.2,0.4, 0.6, 0.8 Mbit / Second
P 130 Seconds

Table 4-19 Parameters for background traffic experiment with lower packet arrival
rate

As shown in Column II of Figure 4-6, the results show trends similar to the ones in
Column I. A better performance is achieved in this experiment due to the light multicast

traffic on part of the sender and the receivers.

4.3.6.3 Varying Background Traffic with Larger Transmission Range

The third experiment was to test the effect of background traffic with larger transmission

range (R =350m).

Parameter Value
N 50
G 10
A 4 Packets / Sec
R 350 Meters
B 0,0.2,0.4, 0.6, 0.8 Mbit / Second
P 130 Seconds

Table 4-20 Parameters for background traffic experiment with larger transmission
range

As shown in Column III of Figure 4-6, the result shows trends similar to the ones that are
in Column I. A better performance is achieved in this experiment because the number of
hops decreases as the transmission range is increased, which lowers the possibility of

packet loss. Hence, less tree and ring reconstructions are needed.

96

4. Performance Analysis

Column (T) - A=4, R=250

Column (IT) - A=2, R=250

Packet delivery ratio (%)

Packet delivery ratio vs. background traffic

100 =X

995 "\SEK\X

)~

99 | -
985 \@M —z— SRM
\
98 M —X— RMP
975
97
96.5

0 02 0.4 0.6 08
Background traffic - B (Mb/sec)

Packet delivery ratio vs. background traffic
PR e » =x
& 995 =
2 -
8 9] m\z—“.%\
> 985 s SAM
g \ —a—TMTP
= 98 o
% a —X— RMP
= 975
]
g 97
o
96.5 - : :
0 0.2 04 0.6 0.8
Background traffic - B (Mb/sec)

(A) Packet delivery ratio

Average end-to-end delay vs. background traffic Average end-to-end delay vs. background traffic
- 5000 < . 1200
] 4500 S
s / A [1000 A
k<] 4000 //— °
T 3500 yV/d 2 a0 Va
g o 3000 4— —iz— SRM g m / —ii— SRM
3 é 2500 —a— TMIP s “g’ 600 X —a—TMIP
£ < 2000 % // —x— RVP 8> 40 —x—RWP
g 1500 //A(8 / x/
g 1000 - £ 200
I e e]]
< 0 Xt et | < 0 X
0 02 04 06 0.8 0 02 04 06 0.8
Backgroud traffic - B (Mb/sec) Backgroud traffic - B (Mb/sec)
(B) Average end-to-end delay
Packet retransmission overhead vs. Packet retransmission overhead vs.
background traffic background traffic
. 45 c 18
o 4 X 8 14]
8 35 // 8 12 - /
p—
E’ 3 22 X —E— SR E g1 /)(/ —5— SAM
8 £ '2 . —a— TMTP & £ 08 / 4 |——TMTP
[% 15 /x e —X— RMP [% 0.6 /:/ —X—RMP
g 05 A_qﬁx/A/K o g 02 .M
o o2 B Zt o o
0 0.2 0.4 0.6 0.8 0 02 0.4 0.6 0.8
Background traffic - B (Mb/sec) Background traffic - B (Mb/sac)

(C) Packet retransmission overhead

97

4. Performance Analysis

Column (IIT) - A=4, R=350

Packet delivery ratio vs. background traffic

100 X X X S
2 X
< 995 4—
8 = 4
=
[
- ® —s— SRM
[
_g 985 \m —a— TMTP
3 = —X— RV
-
(]
S 975
[]
o
97
0 02 04 06 08

Background traffic - B (Mb/sec)

(A) Packet delivery ratio

Average end-to-end delay vs. background traffic

1200
>
° X
: e /]
2 800
iy N4 / —z— SRM
o 3E” 600 / —— TMIP
&~ LJ —x— RVP
o 400 ot
(=]
E 200 /
g — 7
< ol x|
0 02 04 06 08
Backgroud traffic - B (Mb/sec)
(B) Average end-to-end delay
Packet retransmission overhead vs.
background traffic
e 14
2 12 5
5 K —iz— SRM
0.8 X
E£ A/ — e
5306 —X—RMP
-E © 04 s /
£ /‘“’”_n
F] 02 4+—X M—
[
o 0 -—ﬂ/ 4

0 0.2 0.4 0.6 0.8
Background traffic - B (Mb/sec)

(C) Packet retransmission overhead

Figure 4-6 Effect of background traffic

98

4. Performance Analysis

4.3.7 The Effect of Cluster of Nodes

The results of the experiments in this section show how the three protocols perform when

receiver group is within close proximity (with no consideration for mobility).

4.3.7.1 Basic Cluster of Nodes Experiment

Figure 4-7 shows the performance of the three protocols with varying packet arrival rate

when receivers are close to each other.

Parameter Value
N 50
G 10
A 1,2, 3, 4,5 Packets / Sec
R 250 Meters
B 0.5 Mb / Second
P 450 second

Table 4-21 Parameters for basic cluster of nodes experiment

We can see from Column I — chart A in Figure 4-7 that RMP and TMTP outperform
SRM in terms of reliability. When a group of receivers are close to each other and packet
arrival rate is not too high, current token site in RMP can successfully pass the token to
the next token site and does not require reconstructing the token ring. Similarly, a child
in TMTP has little difficulty reaching its parent and does not require frequent
reconstructing the tree. Therefore, the amount of control packets is dramatically
decreased and the network is not congested. This results in more packets successfully

arriving at the destinations.

Column I — chart B of Figure 4-7 shows that the average end-to-end delay in TMTP is
higher than that in RMP. The main reason for this behavior is that in RMP, a node that

misses a packet first asks for retransmission from the current token site, which is

99

4. Performance Analysis
guaranteed to have a copy of the requested data packet. Another reason is that the ring is

less frequently reconstructed, which results in less traffic in network, and a generally
lower delay. On the other hand, a node in TMTP asks for retransmission from its parent,
which may not have the requested data packet. Such a node would then have to make
several requests until either the parent receives the packet or the node gives up the current
parent after trying a number of times and ask all receivers for retransmission. This
process is definitely time-consuming. This also explains why RMP and TMTP have
close packet retransmission overheads as shown in Column I — chart C, which is different
from pervious results in which RMP has more packet retransmission overhead than

TMTP.

4.3.7.2 Cluster of Nodes Experiment with Lighter Background Traffic

Column II of Figure 4-7 shows the performance of three protocols with varying packet

arrival rate with lighter background traffic.

Parameter Value
N 50
G 10
Y 1,2,3, 4, 5 Packets / Sec
R 250 Meters
B 0.2 Mb / Second
P 450 second

Table 4-22 Parameters for cluster of nodes experiment with lighter background
traffic

Charts A and B in Column II show similar trend as those in Column I except that all
protocols have better performance due to lighter background traffic. Column II - chart C
shows that RMP has less packet retransmission overhead than TMTP. We already

discussed in previous section that RMP and TMTP have similar packet retransmission

100

4. Performance Analysis
overheads when B = 0.5. When B = 0.2, less ring reconstruction requests are issued and

less traffic is generated. Hence, more packets can go through the network and less packet

retransmissions are issued.

4.3.8 The Effect of Timer Settings

It was mentioned in section 4.2.5 that we implemented fixed timers for transmission of
NACKs and repairs in TMTP and RMP. Timer values can have impact on TMTP and
RMP performance. The results of the experiments in this section show how TMTP and
RMP perform when applying different timer settings. Parameter setting of this

experiment is shown in Table 4-23.

Parameter Value
N 50
G 10
oy 1,2, 3, 4, 5 Packets / Sec
R 250 Meters
B 0.2 Mb / Second
P 130 second

Table 4-23 Parameters for timer experiment

The setting of timers is listed in Table 4-24 and 4-25.

Default Timer Half Timer Double Timer
Request Timer 1 second 0.5 second 2 seconds

Table 4-24 Timers for TMTP

Default Timer Half Timer Double Timer
Request Timer 1 second 0.5 second 2 seconds
ACK Timer 1 second 0.5 second 2 seconds
Transmlsswn 3 second 1.5 second 6 seconds
Timer at Sender

Table 4-25 Timers for RMP

101

4. Performance Analysis

Column (I) - B=0.5

Column (II) — B=0.2

Packet delivery ratio vs. packet arrival rate

X 3 X e ¢

—i— SRM
—a— TMTP
—X—RMP

8 8 8 8 3
N » o ®» O
1

o
o

&
@

Packet delivery ratio (%)

98.6

1 2 3 4 5
Packet arrival rate (packet/sec)

Packet delivery ratio (%)

Packet delivery ratio vs. packet arrival rate
100 7 X Xy
99.8 4—4\
99.6 \é\ —z— SRM
99.4 pa— —a&— TMTP
9.2 —x—Rw
99
98.8 : .
1 2 3 4 5
Packet arrival rate (packet/sec)

(A) Packet delivery ratio

Average end-to-end delay vs. packet arrival
rate

~
=]
S

g

#

3
)

/ —i— SRM

-/ —a—TMIP

8

w
8

‘// —X—RMP

g

&

X

Average end-to-end
delay (msec)

X X X

g

T—X

o

1 2 3 4 5

(=]

Packet arrival rate (packet/sec)

Average end-to-end

rate
250
200 //A
G //
é 150 I —iz— SRM
= / —a— TMTP
& 10 x| |—x—RwP
8 50 "/
x—X—" *
0+ ——f—p——n———
1 2 3 4 5

Average end-to-end delay vs. packet arrival

Packet arrival rate (packet/sec)

(B) Average end-to-end delay

Packet retransmission overhead vs. packet

arrival rate

0.3
§
@ 0.25 > >3 X
o /XA_ =
Ew 02
@ © X —z— SRM
c 0
8 £ 015 —a— TMIP
] g X — RMP
;v_',o 0.1
4
[*]
©
o

1 2 3 4 5

Packet arrival rate (packet/sec)

Packet retransmission

overhead

Packet retransmission overhead vs. packet
arrival rate

0.18
0.16 — —t
0.14
0.12 i [—sRM

0.1 NEENNS S | R
008 =
0.06 —x—RMWP
0.04
0.02 4+ % 1

0 T . : .
1 2 3 4 5
Packet arrival rate (packet/sec)

(C) Packet retransmission overhead

Figure 4-7 Effect of cluster of nodes

102

4. Performance Analysis

Figure 4-8 shows the performance of TMTP and RMP with varying packet arrival rate
and different timer settings. When small request timer values are used in TMTP,
retransmitted packets can be obtained quickly (as shown in Column I — chart B) at the
expense of producing more retransmitted packets (as shown in Column I — chart C) and
causing network congestion. Especially when A is high, the frequent retransmission
makes the already busy network more congested, which results in packet loss and packet
delivery ratio being dramatically decreased, as shown in Column I — chart A. On the
other hand, when large request timer values are selected, even though less control traffic
is generated, nodes may not be able to quickly get the requested packet because the nodes

have to wait a longer time to resend NACK, which translates into longer delay.

The setting of RMP request timer has the same impact as that of TMTP request timer.
Here we only discuss ACK timer and transmission timer of RMP. Choosing small ACK
timer values would lead to frequent ACK sent by current token site, which may cause
network congestion. This leads to frequent reconstruction of ring when A is high since
the current token site will initiate ring reconstruction algorithm every time after it tries to
send an ACK for five times. Therefore, compared to other timer settings, more packets
have to be dropped and packet delivery ratio is much lower when A is high as shown in
Column II — chart A. On the other hand, when large ACK timer values are selected, even
though less ACK will be generated, the current token site has to wait a longer time to
reconstruct the ring if its next token site moves away. The current token site will then be

the only node responsible for serving retransmission request during a considerably long

103

4. Performance Analysis
period of time, violating the design principles of RMP, i.e. each node taking turns to be

current token site, and causing the current token site overwhelmed by NACKSs.

A source retransmits a packet if it does not hear the corresponding ACK with the
transmission timer timeout. Choosing small transmission timer values would lead to
frequent and unnecessary data packet retransmission sent by the source, which wastes
network capacity and may cause network congestion. When A is high, the frequent
retransmission makes the already busy network more congested, which results in packet
loss and packet delivery ratio sharp decrease as shown in Column II — chart A (A = 5). On
the other hand, when large transmission timer values are selected, even though less
control traffic will be generated, nodes may not be able to quickly get the missed packet

if the current token site also missed that packet.
Figure 4-9 shows the comparison of SRM, TMTP and RMP when half timer and double

timer are applied in ‘TMTP and RMP. Please refer to Column II of Figure 4-3 to see

performance of SRM, TMTP and RMP when default timer is applied.

104

4. Performance Analysis

Column (I) - TMTP

Column (IT) - RMP

TMTP: packet delivery ratio vs. packet

RMP: packet delivery ratio vs. packet

0 1 2 3 4 5 6

Packet arrival rate (packet/sec)

arrival rate arrival rate
o 100 e s s X, = smen X ey g L e e . e S
g 95 Y g 9 \
99 : ®
§_ o5 \ —#—half tiver 5 o \ i haf timer
% g 98 \\ —a&— default timer 3 \ pS —a— default imer
- o75 \ —x— double tiTer 3 ¥ \ —x— double timer
g 95 \ g % LI
o 96 T T T T T & 95 - - - . -
0 1 2 3 4 5 6 0o 1 2 3 4 5 6
Packet arrival rate (packet/sec) Packet arrival rate (packet/sec)
(A) Packet delivery ratio
TMTP: average end-to-end delay vs. RMP: average end-to-end delay vs.
packet arrival rate packet arrival rate
6000 12000
° °
$ _ 5000 X S __ 10000 72;-—»
5 © - ®
;? é 4000 RV/% —— half "me‘f f 8 8000 / i | —z— half timer
§ S 8000 —x 7 —&— default timer £ E go00 —a— default timer
- >
% & 2000 / —X — double timer "é, 5 4000 //< et |==x = double timer
s ° 1000 5° 2000 *2!
S R S—e | > s
< 0 T T T T T < 0 X ==X —X &
0o 1 2 3 4 5 6 0 1 2 3 4 5 6
Packet arrival rate (packet/sec) Packet arrival rate (packet/sec)
(B) Average end-to-end delay
TMTP: packet retransmission overhead vs. RMP: packet retransmission overhead vs.
packet arrival rate packet arrival rate
25 c
i o £ ¢ 7
P4 5 . " © 5 +
5 E 15 #— half timer a 8 5 —— half imer
§ £ / < X —&— default timer g5 4 —a— default timer
58 14— /) 5 .
?3 1 T —X— double timer 23 —x—double timer
% o5l XX e 8 24— X
S ’ S KX X =B
S s 0 —
a 0 e o

¢ 1 2 3 4 5 &6

Packet arrival rate (packet/sec)

(C) Packet retransmission overhead

Figure 4-8 Effect of different timers on TMTP and RMP

105

4. Performance Analysis

Column (I) — Half timer

Column (IT) — Double timer

Packet delivery ratio (%)

Packet delivery ratio vs. packet arrival rate

100 X gy
99.5

[e JO0 U m—— Sm—
98.5

—\\ .
o)\ I
97 \Q\ —X— RMP

g5
-

95.5
95

1 2 3 4 5
Packet arrival rate (packet/sec)

Packet delivery ratio (%)

Packet delivery ratio vs. packet arrival rate
100 +—x 4 2
99.5 \
99 --A% & S S—
98.5
98 \\ —iz— SRM
97.5 X —a— TMTP
97 —x—RMP
96.5
96
95.5
95
1 2 3 4 5
Packet arrival rate (packet/sec)

(A) Packet delivery ratio

1 2 3 4 5
Packet arrival rate (packet/sec)

Average end-to-end delay vs. packet arrival Average end-to-end delay vs. packet arrival
rate rate

10000 X 10000
- 9000 / - 9000 R
§ . 8000 / S 8000
&g 7000 e g 7000
38 e / —s— SRM I8 so00 —u— SRM
5 < 5000 / —a— TMTP 5 E 5000 —a —t— TMTP
g g 4000 " —X—RMP 2 E 4000 7 X —x— RVP
&9 3000 v &g 3000 e — -~
g " 2000 ol @ 2000
< 1000 / z 1000 X

0 B:’_‘/—y—%@—v—@—r— 1} = - M - e
1 2 3 4 5 1 2 3 4 5
Packet arrival rate (packet/sec) Packet arrival rate (packet/sec)
(B) Average end-to-end delay
Packet retransmission overhead vs. packet Packet retransmission overhead vs. packet
arrival rate arrival rate

9 c 0
5 8 x s 8
g 7 / g 7
i85 / s 5% s
8 £ v —a— TMTP 8 £ —a— TMTP
= g 4 = g 4
e 2, / —x—RWP [—x—RMP
- -
g /Q&/‘“ 3 2 %
é? 1 1x x==X § 1 .ﬁ,_x._x_gsgﬁﬁg‘; ,,,,,,,,]

ol ————— NI = s

1 2 3 4 5
Packet arrival rate (packe¥/sec)

(C) Packet retransmission overhead

Figure 4-9 Effect of half and double timers

106

4. Performance Analysis

4.4 Summary

In this chapter, we presented NS-2 simulator and our simulation model. We conducted a
series of simulations to investigate how each parameter of the simulation model affects
the performance of the reliable multicast protocols (SRM, TMTP and RMP). We then
discussed the performance of SRM, TMTP and RMP over ad hoc networks based on

simulation results. Table 4 - 26 shows a summary of the comparison of these three

protocols.
SRM T™MTP RMP
(Receiver-initiated) (Tree-based) (Ring-based)
Reliability Low Medium High
End-to-end Low Medium High
delay
| Retransmission Low Medium High
overhead
Scalability High High Low
Power Low Medium High
consumption
Memory High Medium Low
requirement
Implementation Low Medium High
Complexity

Table 4 - 26 Comparison of SR

[, TMTP and RMP

The conducted simulations showed that RMP outperformed TMTP and SRM in terms of
reliability. This is because RMP uses ACK to at least ensure that the current token site
actually receives the data packets, and that any receiver that misses a packet always
requests retransmission from the current token site, which in turn is always guaranteed to

have the requested data packets. If the source does not receive ACK for a packet from

107

4. Performance Analysis
the current token site due to packet loss or ACK loss, the source keeps retransmitting that

packet for five times before it gives up. This retransmission increases the probability of
receiving the missed packet and, therefore, the packet delivery ratio is high. However,
the source retransmission also causes RMP to have the highest packet retransmission
overhead in most cases (except in Column II — chart C of Figure 4-7), compared to SRM
and TMTP. Another tradeoff in RMP to have high reliability is large end-to-end delay.
In a harsh environment, e.g. high mobility, heavy traffic, etc, the ring reformation
algorithm will have to be initiated several times to maintain the ring, which produces

more traffic, causes network congestion and results in large packet end-to-end delay.

Results also showed that SRM has the smallest average end-to-end delay and the lowest
packet retransmission overhead. Nevertheless, SRM has the lowest packet delivery ratio
compared to TMTP and RMP. In SRM, any retransmission request is multicast to the
entire group, and any group member who hears the retransmission request can respond
with a repair. This shortens the end-to-end delay. Moreover, in the case where a number
of nodes miss the same packet, only one repair is required to be multicast to the whole
group. With Repair suppression scheme, the number of retransmission is significantly
reduced. = However, multicasting retransmission requests and repairs introduces
significant overhead, which may cause network congestion and higher packet drop rate.
Also, since ACK is not used in SRM, a packet may be permanently lost if no one
received that packet. Therefore, the packet delivery ratio is low in SRM. Another
drawback of multicasting retransmission requests and repairs is the additional overhead

needed by the underlying multicast routing protocol, of which each transport layer

108

4. Performance Analysis

receiver must become a routing layer source and establish its own multicast source mesh.

What is worse is the fact that if the retransmission requests / repairs do not occur

frequently, the multicast routing protocol will time out the multicast mesh structure and,

consequently, the mesh will have to be rediscovered — a process with high bandwidth

consumption.

Simulation results also showed that TMTP did not achieve fast delivery and low packet

retransmission overhead as it does in wired networks. Three main reasons contribute to

this behavior:

First, we used unicast NACKs and repairs in our simulation because the underlying
ODRMP does not support restricted TTL multicast. A node that misses a packet, first
requests packet retransmission from its parent. It may issue multiple NACKSs if its
parent is unreachable or the parent does not have the requested packet, thus delay can
be large. Also, the parent has to retransmit the lost packet by using unicast for many
times if many of its children lose the same packet. This causes added overheads and
large delays.

Second, the frequent reconstruction of tree structure causes a large amount of
overheads in ad hoc network, and results in network congestion.

Third, TMTP does not prevent a node from finding one of its hierarchical children as
its new parent. One solution to this problem is that each node keeps a structure of the
entire control tree and refers to that structure when searching for a new parent.
However, this would require a more complicated tree maintenance algorithm that

would require further traffic.

109

4. Performance Analysis

The fixed timer value scenario showed that it is significant to choose an optimal or near-
optimal value for a timer in order for the protocols to achieve a high performance. For
instance, in RMP, if the value for the transmission timer is too small, there would be
many unnecessary retransmissions. If the value is too large, the protocol would be
sluggish in responding to packet loss. In general, it is not suitable for ad hoc networks to

use a fixed timer value to respond to dynamically changing network conditions.

110

5. Conclusions & Future Work

5 CONCLUSIONS & FUTURE WORK

In recent years, reliable multicast in wired networks has been a very active area of
research. Many reliable multicast protocols have been proposed for wired networks.
Meanwhile, equal interest has been made in providing reliable multicast in mobile ad hoc
networks. In order to obtain a unified solution that provides reliable multicast in a
seamlessly integrated wired network and wireless ad hoc network, we need to investigate
the efficiency of existing wired reliable multicast protocols in ad hoc netwqus. Hence we
need to extend and enhance the current protocols to address the challenges in ad hoc
networks, such as high nodal mobility and network congestion so that they can work well
in integrated networks. In this thesis, we described four classes of wired reliable
multicast protocols and evaluated the performance of three representative protocols,
namely SRM, TMTP and RMP, in ad hoc network environment. We also discussed the
simulation models and compared the performance of the three protocols under a variety

of effects such as mobility, traffic load and multicast group size.
The performance metrics that we used were average packet delivery ratio, average end-
to-end delay, and packet retransmission overhead. Each of the protocols studied

performs well in some cases yet has certain drawbacks in others. RMP achieved highest

111

S. Conclusions & Future Work
packet delivery ratio (close to 100%) but largest end-to-end delay and heaviest packet

retransmission overhead due to sender continuous retransmission and ring maintenance
procedures. In a harsh environment, e.g. a high node mobility rate or a high packet
arrival rate, network will be congested by tremendous overhead caused by retransmission
and ring maintenance. Consequently, additional packets are lost and performance of
RMP is degraded. On the other hand, SRM performed the worst in terms of packet
delivery ratio. It has the lowest average end-to-end delay and packet retransmission
overhead due to multicasting retransmission requests and repairs with NACK / repair
suppression scheme. Finally, simulations showed that some of the features of TMTP that
makes it attractive in the wired domain, such as hierarchical structures for reduced end-

to-end delay and scalability, were not as advantageous in the wireless domain.

Mobile ad hoc networks have highly dynamic topology and are very limited in
bandwidth, power and processing capability. These characteristics pose several
challenges in tailoring reliable multicast protocols for mobile ad hoc networks. The
simulation results showed that, as we expected, the wired reliable multicast protocols are
not adequate for ad hoc networks. In designing reliable multicast protocols for ad hoc
network, the outcome protocols should produce minimum network overhead, thus
preserving the limited network bandwidth and nodal processing capability. The outcome
protocols should also maintain end-to-end delay within a satisfactory and guaranteed

bound, in addition to providing reliable delivery.

112

5. Conclusions & Future Work
This thesis identifies the relative merits of different wired reliable multicast protocols.

The in-depth understanding of the relative merits and detailed performance comparison
between the protocols over ad hoc networks serve as a cornerstone for development of
more effective reliable multicast protocols for mobile ad hoc networks. To improve the
performance of the three wired reliable multicast protocols in ad hoc networks, we
recommend following enhancements and describe the open problems that should be
addressed:
= RMP: Three timers (ACK timer, transmission timer, and request timer) are used in
RMP. Choosing appropriate values for timers is significant in achieving high
performance. The exact manner in which these values are chosen is viable to further

research.

As we mentioned in chapter 2 that even in wired networks, RMP only guarantees that
all receivers “eventually” receive packets, but does not guarantee end-to-end delay.
The work in [23] proposed a modified RMP that has lower delay than RMP. We can

experiment the new scheme in ad hoc networks.

= SRM: Global multicasting retransmission requests and repairs may not be the best
approach when a small neighborhood is affected by packet loss. The bandwidth cost
incurred by loss recovery procedures is reduced if requests and repairs are multicast
within a limited area. Therefore, in the future we need to develop a mechanism that
can limit the scope of retransmission requests and of repairs. TMTP proposed using

restricted TTL to limit the reach of retransmission requests and repairs. As we

113

S. Conclusions & Future Work
pointed out earlier, since the underlying multicast routing protocol (ODMRP) does

not support this restricted TTL, we need to investigate how to modify ODMRP to
provide this feature. Another possible approach to restrict the multicast scope is to
use separate local multicast groups for error recovery. A local multicast group
consists of a subset of members who are close to each other. If a packet loss is
detected, a member sends its request to its local group. If there is no reply after trying

for several times, the request is multicast to all members.

TMTP: Similar to SRM, we should use restricted multicast NACK / repair in TMTP
as it was originally designed for, with ODRMP supporting local multicast. By
multicasting NACK messages, a node losing a packet can get a repair not only from
its parent, but also from any node near by. Ideally, receivers that have the same loss
can get repairs by a single multicast repair. In this manner end-to-end delay and

packet retransmission overhead can be significantly reduced.

Another problem to be solved in TMTP is to prevent a node from finding one of its
hierarchical children as its new parent during the tree reconstruction procedure. One
solution to this problem is to require each node to keep a structure of the entire
control tree that would be referred to when searching for a new parent. However, this
is not a practical solution since the significant overhead caused by refreshing the
control tree structure can overwhelm mobile devices equipped with limited memory

and processing capability. Hence, a more efficient solution is required.

114

5. Conclusions & Future Work
Fixed or dynamic timers: There are two ways to set timer values. First, a fixed

timer value can be used depending on the network’s typical behavior. We
experimented with fixed timer values for TMTP and RMP. One limitation of fixed
timer values is that they suffer from an inability to adequately respond to quickly
changing network conditions, especially for ad hoc networks that are highly dynamic

and unpredictable.

Timer values can also be dynamic, which is how timers are set in SRM. A dynamic
timer solves the fixed timer’s problem — it responds to varying network conditions.
Nevertheless, it introduces another set of drawbacks. To illustrate this, suppose that
in RMP the source keeps track of the time taken to receive ACK packets and sets its
transmission timer based on the average of the observed delays. This value may not
reflect the true network condition for two reasons: (1) The current token site may not
be able to acknowledge a packet immediately. (2) Network conditions may suddenly
change. The consequence of using this timer value is that it can cause the system
incorrectly respond to the network condition change, leading to more unpredicted
performance drop. Therefore, a better mechanism is desired to provide more accurate

timer value.

Congestion control: A congestion control mechanism reacts to network traffic load
and avoids having nodes overwhelmed by traffic. The performance of Ad hoc
networks is sensitive to traffic load, and reliable delivery can be failed by network

congestion. It is imperative for ad hoc network that reliable multicast protocols

115

5. Conclusions & Future Work
incorporate congestion control mechanism for achieving reliability. However, among

the currently proposed reliable multicast protocols for wired networks, only few have
considered congestion control due to the complexity. It is hence desired to propose a

congestion control mechanism that is tailored for reliable multicast protocols.

Combination of different protocols: Receiver-initiated, tree-based and ring-based
reliable multicast protocols have their advantages and limitations. We can combine
these protocols into a new protocol so that the new protocol can absorb all the
advantages. For instance, we can combine a ring-based protocol with a tree-based
one. By using a clustering technique [47], we organize multicast group members into
subgroups (i.e. cluster). Clustering is a known technique in the area of distributed
network computing. Each cluster is represented by a leader, which acts as a token
site. Among cluster leaders the RMP-like protocol is used. Inside of clusters, we can
apply a tree-based protocol. The purpose of this combination is to combine the

scalability of tree-based protocol and the reliability of ring-based protocol.

116

References

REFERENCES

[1]

(2]

[3]

[4]

(5]

[6]

[7]
(8]

[9]

[10]

C. Jelger and T. Noel, “Multicast for Mobile Hosts in IP Networks: Progress and
Challenges”, IEEE Wireless Communications, Vol. 9, No. 5, October 2002, pp. 58 -
64.

C. D. M. Cordeiro, D. H. Sadok, and J. Kelner, “Establishing a Trade-off Between
Unicast and Multicast Retransmission Modes for Reliable Multicast Protocols”,
Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
Proceedings of 8th International Symposium, September 2000, pp. 85 —91.

S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Routing
Protocol Performance Issues and Evaluation Considerations”, Mobile Ad-hoc
Networks Working Group, http://www.ietf.org/rfc/rfc2501.txt, January 1999.

I. Chlamtac, M. Conti, and J. Liu, “Mobile Ad Hoc Networking: Imperatives and
Challenges”, Ad Hoc Network Journal, Vol. 1, No. 1, January 2003, pp. 13 - 64.

F. Y. Loo, “Ad Hoc Networks: Prospects and Challenges”, Rinkou Paper,
http://www.mlab.t.u-tokyo.ac.jp/~ylfoo/Research/MANET Rinkou.pdf, January
2004.

J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. Jetcheva, “A Performance
Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols”,
Proceedings of the ACM MOBICOM’98, October 1998, pp. 85 - 97.

ns-2 network simulator: http://www.isi.edu/nsnam/ns

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing”, IEEE/ACM
Transactions on Networking, Vol. 5, No. 6, December 1997, pp. 784 — 803.

B. Yavatkar, J. Griffioen, and M. Sudan, “A Reliable Dissemination Protocol for
Interactive Collaborative Applications”, Proceedings of the third ACM
international conference on Multimedia, November 1995, pp. 333 — 344.

B. Whetten, T. Montgomery, and S. Kaplan, “A High Performance Totally Ordered

Multicast Protocol”, Workshop on Theory and Practice in Distributed Systems,
September 1994, pp. 33-57.

117

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

References
L. D. Fife and L. Gruenwald, “Research Issues for Data Communication in Mobiel
Ad-Hoc Network Database Systems”, ACM SIGMOD RECORD, Vol. 32, No. 2,
June 2003, pp. 42 - 47.

T. You and H. Hassanein, “Controllable Fair QoS-based MAC Protocols for Ad
Hoc Wireless Networks”, Proceedings of the 2004 International Conference on
Parallel Processing Workshops (ICPPW’04), IEEE Computer Society, August
2004, pp. 21 - 28.

IEEE 802.11 WG, “ISO/IEC 8802-11:1999 (E) IEEE STD 802.11, 1999 Edition.
International Standard [for] Information Technology-Telecommunications and
Information Exchange Between Systems - Local and Metropolitan Area Networks -
Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications”, 1999

E. M. Royer, S. Barbara and C. Toh, “A Review of Current Routing Protocols for
Ad Hoc Mobile Wireless Networks”, IEEE Personal Communications, April 1999,
pp- 46 - 55.

C. E. Perkins, E. M. Royer, S. R. Das, and M. K. Marina, “Performance
Comparison of Two On-demand Routing Protocols for Ad Hoc Networks”, IEEE
Personal Communications, Vol. 8, No. 1, February 2001, pp. 16 - 28.

D. B. Johnson and D. A. Maltz, "The Dynamic Source Routing Protocol for Mobile
Ad Hoc Networks" IETF Draft, October 1999.

C. E. Perkins and E. M. Royer, "Ad Hoc On-demand Distance Vector Routing",
proceedings of 2" JEEE Workshop, Mobile Computing Systems and Applications,
February 1999, pp. 90 - 100.

P. Misra, “Routing Protocols for Ad Hoc Mobile Wireless Networks”,
http://www.cis.ohio-state.edu/~jain/cis788-99/adhoc_routing/index.html, 1999

S. E. Deering and D. R. Cheriton, “Multicast Routing in Datagram Internetworks
and Extended LANs”, ACM Transactions on Computer Systems, Vol. 8, No. 2,
May 1990, pp. 85 - 110.

E. Bommaiah, M. Liu, A. McAuley, and R. Talpade, “AMRoute: Ad-hoc Multicast
Routing Protocol”, Internet Draft, draft-talpade-manet-amroute-00.txt, August
1998.

S. Lee, W. Su, and M. Geria, “On-Demand Multicast Routing Protocol in Multihop

Wireless Mobile Networks”, Mobile Networks and Application 7, 2002, pp. 441-
453.

118

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

References
S. Lee, W. Su, J. Hsu, M. Geria, and R. Bagrodia, “A performance Comparison
Study of Ad Hoc Wireless Multicast Protocols”, IEEE INFOCOM 2000, Vol. 2,
March 2000, pp. 565 — 574.

C. Cordeiro, H. Gossain, and D. Agrawal, “Multicast over Wireless Mobile Ad Hoc
Networks: Present and Future Directions”, IEEE Network, Vol. 17, No. 1, January
2003, pp. 52 - 59.

S. Deering, “Host Extensions for IP Multicasting”, RFC 1112,
http://www.fags.org/rfcs/rfc1112.html, August 1989.

M. D. Rey, “Transmission Control Protocol Darpa Internet Program Protocol
Specification”, RFC 793, http://www.fags.org/rfcs/rfc793.html, September 1981.

R. Talpade amd M. H. Ammar, “Single Connection Emulation: An Architecture for
Providing a Reliable Multicast Transport Service”, Proceedings of the 15th IEEE
International Conference on Distributed Computing Systems, June 1995, pp. 144 —
151.

S. Ramakrishnan and B. Jain, "A Negative Acknowledgement Protocol with
Periodic Polling Protocol for Multicast over LANs", IEEE INFOCOM &7,
March/April 1987, pp. 502-511.

B. N. Levine and J. J. Garcia-Luna-Aceves, “A Comparison of Reliable Multicast
Protocols”, Multimedia Systems 6, 1998, pp. 334-3438.

J. M. Chang, “Simplifying Distributed Database Systems Design by Using a
Broadcast Network ”, Proceedings of SIGMOD 84, June 1984, pp. 223 — 233.

M. Liu, “Chapter 6. Group Communication”, Distributed Computing,
http://www.aw-bc.com/info/liu/CHO6.pdf, pp. 1 - 18.

R. G. Lane, S. Daniels, and X. Yuan, “An Empirical Study of Reliable Multicast
Protocols over Ethernet-Connected Networks”, IEEE International Conference on
Parallel Processing (ICPP’01), September 2001, pp. 553 — 560.

J. P. Macker, J. E. Klinker, and M. Scott Corson, “Reliable Multicast Data Delivery
for Military Networking”, IEEE Military Communications Conference, Vol. 2,
October 1996, pp. 399 — 403.

D. Towsley, J. Kurose, and S. Pingali, “A Comparison of Send-Initiated and
Receiver-Initiated Reliable Multicast Protocols”, IEEE Journal on Selected Areas
in Communications, Vol. 15, No. 3, April 1997, pp. 398 — 406.

R. Chow and T. Johnson, “Distributed Operating Systems & Algorithms”, Addison
Wesley, October 1998, pp.108 — 109.

119

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

References

J. M. Chang and N. F. Maxemchuk, “Reliable Broadcast Protocols”, ACM
Transactions on Computer Systems, vol. 2, No. 3, August 1984, pp. 251—273.

N. F. Maxemchuk, “Reliable Multicast with Delay Guarantees”, I[EEE
Communications Magazine, vol. 40, No. 9, September 2002, pp. 96 — 102.

S. Paul, K. K. Sabnani, J. C. Lin, and S. Bhattacharyya, “Reliable Multicast
Transport Protocol (RMTP)”, IEEE Journal on Selected Areas in Communications,
Vol. 15, No. 3, April 1997, pp. 407 — 421.

B. Levine, D. Lavo, and J. Garcia-Luna-Aceves, “The Case for Reliable Concurrent
Multicasting Using Shared Ack Trees”, Proceedings of the Fourth ACM
Multimedia Conference (MULTIMEDIA’96), November 1996, pp. 365-376.

C. Maihofer, K. Rothermel, and N. Mantei, “A Throughput Analysis of Reliable
Multicast Transport Protocols”, http://www.informatik.uni-
stutteart.de/ipvi/vs/Publications/2000-maihoefer-03.pdf, 2000

R. Chandra, V. Ramasubramanian, and K. P. Birman, “Anonymous Gossip:
Improving Multicast Reliability in Mobile Ad-Hoc Networks”, Proceedings of
IEEE ICDCS 2001, April 2001, pp. 275-283.

K. Tang, K. Obraczka, S-J Lee, and M. Gerla, “A Reliable, Congestion Controlled
Multicast Transport Protocol in Multimedia Multi-hop Networks”, Proceedings of
IEEE WPMC 2002, October 2002. ’

D. Clark and D. Tennenhouse, “Architectural Considerations for a New Generation
of Protocols”, Proceedings of ACM SIGCOMM, September 1990, pp. 201 — 208.

N. F. Maxemchuk and J. M. Chang, “Analysis of the Messages Transmitted in a
Broadcast Protocol”, Proceedings of ICC’84, May 1984, pp. 1263 - 1267.

K. Fall and K. Varadhan, “The ns Manual”, December 2003
MIT Object Tcl web site: ftp:/ftp.tns.lcs.mit.edu/pub/otcl/README html
CMU Monarch Project Extensions to NS-2.

http://www.monarch.cs.rice.edu/multicast_extensions.html, 2000

S. Basagni, “Distributed Clustering for Ad Hoc Networks”, Proceedings of the
1999 International Symposium on Parallel Architectures, Algorithms and Networks
(I-SPAN’99), IEEE Computer Society, June 1999, pp. 310 — 315.

120

Appendix A - SRM Algorithm

APPENDIX A - SRM ALGORITHM

This appendix lists algorithms in protocol SRM.

SendMsg()

The algorithm for sending data packets is shown in Figure A-1. The procedure is as
follows: For each packet, append header of transport layer protocol (i.e. SRM in this
case) to network layer header (line 2). The SRM packet header includes type_ (types of
the packet), sender_ (sender of the packet), and seqnum_ (sequence number of the
packet). The destination of packet is set as the multicast group (line 3). Each message is
then multicast to the entire group (line 4). Source sets a timer each time when it starts

sending a message (line 5), and transmits next message if timer is expired (line 7).

SendMsg()
SOURCE:

1. For each data packet P {

2 Add transport layer protocol’s header;
3 Set destination;

4. Multicast P to all members;

5. Start timer;

6 If (timeout) {

7 Multicast next message;

8

9

Figure A-1 Algorithm for source sending data packets

Recv()
The Recv() procedure, shown in Figure A-2, is called when a node receives a packet.

Recv() can receive four types of packets: data, control, NACK, and repair packets.

121

Appendix A - SRM Algorithm
Depending on the packet types, different methods are invoked (line 2, 4, 6, 8). Packets

will be freed after it is finished processing (line 10).

Recv(packet)

Start {

If (packet type is “DATA”) {
recv_data (packet);

} Else if (packet type is “NACK”) {
recv_nack (packet);

} Else if (packet type is “REPAIR”) {
recv_repair (packet);

} Else if (packet type is “CONTROL”) {
recv_ctrl (packet);

OO N U AW

-}
10. Free (packet)
} End

Figure A-2 Algorithm for receiving packets

Recv_data()

On receiving a data type packet, Recv_data (packet), shown in Figure A-3, marks the
arrival of this packet (line 1), and triggers retransmission requests if it detects packet loss.
If the sequence number of the packet is higher than the last known sequence number of
data from this source (line 2), the node then checks if it receives all packets whose
sequence number is up to the current one (line 3). The node multicasts a NACK to

request retransmission if it finds packet losses (line 5).

122

Appendix A - SRM Algorithm

Recv_data (packet)

1. Mark the arrival of this packet;

2. If (receiving packet’s sequence number > last known sequence number of data) {

3. For (each packet between last and current receiving) {

4. If (I didn’t receive packet) {

5 Send NACK to request retransmission;

6 Set last known sequence number to the receiving packet’s
sequence number;

Figure A-3 Algorithm for receiving data packet

Send_nack()

A node invokes Send_nack(), shown in Figure A-4, to set a timer and schedule sending
NACK. Timer value is randomly selected from interval [C; - ds, (C; + Cy) - di] (line 1),
where C; and C; are repair request timer parameters (C, and C, are 2 in our simulation).
d; is the estimated one-way delay between the node who sends NACK and the source of
packet. Backoff_ is computed by calling Backoff() shown in Figure A-5. The time to
send NACK is determined by product of Delay and backoff_ (line 3). The node

multicasts NACK to all group members after the repair request timer expires (line 4).

Send_nack(packet)

Start {
1. Delay = [Cd,, (C; + Cyd];
2. backoff_ = Backoff();
3. timer to send NACK = Delay * backoff;
4. Construct NACK and Multicast it to all group members after timer expires;

Figure A-4 Algorithm for sending NACK

123

Appendix A - SRM Algorithm

Backoff()

Figure A-5 shows the algorithm of exponential backoff. A node needs to exponentially
backoff if it receives a NACK for the same missing data packet from before its own
repair request timer for that data packet e;%pires. Initially, number of backoffs is set to 0,
backoff_is set to 1, and backoff limit is set to 5. When Backoff() is invoked, the number
of backoffs is incremented by 1 (line 1). If the node hasn’t backoff for maximum number
of times (line 2), increment thve value of backoff_ by backoff_, i.e. the value of backoff_

is like 1, 2, 4, 8, 16, etc.

Backoff()

Start {
1. Increment number of backoffs by 1;
2. If (backoff counter <= backoff limit) {
3. Increment backoff_ by backoff_;
4. }

End

Figure A-5 Algorithm for exponential backoff

Recv_nack()

When receiving a retransmission request (NACK) for a particular packet (Figure A-6), a
node can operate in one of three states. (1) The node has the data, and has seen an earlier
NACK, upon which it has scheduled to send a repair for it. (2) The node has the data and
has'not received the same NACK before. (3) The node lost the same packet and has a
send_nack event scheduled. In case (1), the node considers the NACK as a duplicate and

ignores it (line 3). In case (2), the node instantiated a repair and schedules to send it (line

124

Appendix A - SRM Algorithm
5). In case (3), in order to avoid sending duplicated NACKs, the node suppresses its own

NACKS by canceling send_nack event and re-schedules, after having backed off its timer

(line 8).

Recv_mnack (packet)

Start {
1. If (I have the requested data packet) {
2 If (I have received same NACK within some period of time) {
3 Duplicate NACK, ignore this NACK;
4 } Else {
5. Schedule to send a repair;
6 }
7. } Else {
8 Cancel my own send NACK event and re-schedule another one;
9. }

} End

Figure A-6 Algorithm for receiving NACK

Send_repair()

A node invokes Send_repair() to schedule a timer for sending a repair (Figure A-7). The
node sets a repair timer to a value that is randomly selected from interval [D;- da, (D1 +
D,) - da] (line 1). D; and D, are repair timer parameters (D; and D, are 1 in our
simulation). d, is the estimated one-way delay between the node who has the requested
data packet and the requestor of missing data. If the node receives the same repair for the
missing data before its repair timer expires, it cancels its repair timer (line 3). Otherwise,

the node multicasts the repair to all group members after its repair timer expires (line 5).

125

Appendix A - SRM Algorithm

Send_repair(packet)

Start {

1. Repair timer = [D1d,, (D + D,)dal;

2. If (I receive the same repair from other nodes before repair timer expires) {
3. Cancel repair timer;

4. } Else {

5. Multicast repair after the repair timer expires;

6.

}
} End

Figure A-7 Algorithm for sending repair

recv_repair()

recv_repair() is invoked when a node receives a repair (Figure A-8). Like recv_data(),
recv_repair () marks the arrival of the retransmitted packet (line 1). When the requesting
node receives the repair (line 5), it can be operating in one of two states. (1) The node
can be waiting for a repair. (2) The node has already received a repair. In case (1), the
node cancels the timer for re-sending NACKs since it has received the repair (line 3). In
case (2), the node will ignore the duplicated repair (line 7). To avoid repair-implosion,
other nodes that have the request data and schedule sending repairs cancel their repair

timers when they see the repair (line 5).

Send_ctrl()

When a member sends a session message, it schedules to send the next in a fixed interval

(1 second in our simulation). Send_ctrl is shown in Figure A-9.

126

Appendix A - SRM Algorithm

Recv_repair(packet)
Start {
1. Mark the arrival of this message;
2. If (I have sent NACK and waiting for this repair) {
3. Stop sending NACK;
4. 1} Else if (I have the data and scheduled to send repairs) {
5. Cancel my repair timers;
6. } Else {
7. Duplicate repair, ignore it;
- 8}
} End

Figure A-8 Algorithm for receiving repair

Send_ctri()

Start {
1. Every 1 second {
2. Multicast session packet to all group members;
3. }

} End

Figure A-9 Algorithm for sending control message

Recv_ctrl()
As shown in Figure A-10, when receiving a session control message a node updates its
last known sequence number for the source (line 2), and computes its instantaneous

distance to the sender of session message (line 4).

Recv_ctri(Packet)
Start {
1. If (last known sequence number < total number of packets that source sent) {
2. Last known sequence number = total number of packets that source sent;
3.}
4. Distance to the sender of session message = round trip delay of the session message
/2

- Figure A-10 Algorithm for receiving control message

127

Appendix B - TMTP Algorithm

APPENDIX B — TMTP ALOGRITHM

This appendix lists algorithms in protocol TMTP.

JoinTree()

Figure B-1 outlines the process of joining a control tree. A new node begins searching
for a parent by multicasting a SEARCH_FOR_PARENT message (line 3). If the node
does not receive a response within timeout, it resends the SEARCH_FOR_PARENT
message. The node repeats this process until it receives a WILLING_TO_BE_PARENT
message from one or more existing nodes in the control tree (line 6). All existing nodes
will respond with a WILLING_TO_BE_PARENT message if they have not already had
the maximum number of children (line 17 - 18). Upon receiving
WILLING_TO_BE_PARENT message, the node sends a JOIN_REQUEST message to
its potential parent, i.e. the sender of WILLING_TO_BE_PARENT (line 7). The
potential parent then sends ACCEPT_JOIN message back to the node to confirm the
joining success (line 21). When the node receives ACCEPT_JOIN, it sets the sender of

ACCEPT_JOIN as its parent and stop looking for a parent (line 9 — 11).

LeaveTree()

Figure B-2 shows the algorithm for leaving a tree. The operation for leaf nodes in the
tree to leave is straightforward (line 2 — 3). On the other hand, the operation for internal
nodes is complicated by the fact that internal nodes are a crucial link in a control tree and
breaking those links cause all the relative nodes to re-join in a tree. When an internal
node departs a control tree, it first notifies its children of its departure and asks them to

find new parents (line 5). The children then find their new parents by using the process

128

Appendix B - TMTP Algorithin
of joining a tree (line 15). When all the children find their new parents successfully (line

16), the internal node now can leave the tree (line 6 — 8).

JoinTree()

NEW NODE:
Start {
1. FoundParent = False;
2. While (FoundParent == False) {

3. Multicast a SEARCH_FOR_PARENT message;
4. Start timer;
5. Wait for WILLING_TO_BE_PARENT responses or timer expires;
6. If (receive WILLING_TO_BE_PARENT within timeout) {
7. Send JOIN_REQUEST to parent;
8. Wait for ACCEPT_JOIN reply;
9. If (ACCEPT_JOIN received) {
10. Set sender of ACCEPT_JOIN as my parent;
11. FoundParent = True;
12. } Else /* try again */
13. } Else /* try again */
14. }
} End
EXISTING NODES:
Start {

15. Receive request message;
16. If (request is SEARCH_FOR_PARENT) {

17. If MAX_CHILDREN not exceeded) {
18. Send WILLING_TO_BE_PARENT message;
19. } Else /* Do not respond */
20. } Else if (request is JOIN_REQUEST) {
21. Send ACCEPT_JOIN message;
22. }
} End

Figure B-1 Algorithm for joining a control tree

129

Appendix B - TMTP Algorithm

LeaveTree()
NODE TO BE LEAVING

1. If I am a leaf node) {

2 Send LEAVE_TREE request to parent;

3 Receive LEAVE_CONFIRM, and terminate;

4. }Else { /*1am an internal manager */

5. Send FIND_NEW_PARENT message to children;

6 Receive NEW_PARENT_FOUND reply from all children;
7 Send LEAVE_TREE request to parent;

8 Receive LEAVE_CONFIRM, and terminate;

9

} End
LEAVING NODE’S PARENT
Start {
10. If (receive LEAVE_TREE) {
11. Remove node from control tree;
12. Send LEAVE_CONFIRM,;
13. }
} End
INTERNAL NODE’S CHILDREN
Start {
14. If (receive FIND_NEW_PARENT) {
15. Restart the JoinTree procedure;
16. When finding new parent, send NEW_PARENT_FOUND;
17. }
} End
Figure B-2 Algorithm for leaving tree
SendMsg()

The algorithm for sending data packets of TMTP is very similar to that of SRM as shown

in Figure A-1, except appending TMTP header to network layer packet header on line 2.

130

Appendix B - TMTP Algorithm

Recv()
The algorithm for receiving packets of TMTP is same as that of SRM as shown in Figure

A-2.

Recv_data()
The algorithm for receiving data packets of TMTP is same as that of SRM as shown in

Figure A-3.

Send_nack()

When a receiver detects a packet loss, it repeats requesting for the packet until it receives
it or it has tried a number of times. The receiver sets a timer each time it sends a NACK
(line 2 and line 11), and retries the operation if the timer expires (line 13). The node
needs to exponentially backoff like SRM does (Figure A-5) each time when it retries the
operation (line 11). It keeps on doing this until it receives the correct repair (line 8). If
the receiver has tried to send a NACK more than a set limit of tries but still could not get
repair (line 16), it will multicast NACK to entire group (line 17) and find another node as

parent (line 18), i.e. restart the JoinTree procedure as shown in Figure B-1.

131

Appendix B - TMTP Algorithm

Send_nack(packet, parent)

Start {
Construct and send a unicast NACK to parent;
Start timer;
Counter = 0;
Stop_sending = False;
Do {
Wait until a repair is received or timer expires;
If (receive repair within timeout) {
Mark the arrival of this repair packet;
Stop_sending = True;
} Else if (timeout) {
Exponentially backoff and reset timer;
Counter = Counter + 1;
Resend NACK to parent;

WA R WD

prmt ot
WO

14. }
15. } While (Counter < threshold and stop_sending == False)
16. If (Counter >= threshold) {
17. Multicast NACK to entire group;
18. Find another parent;
19. }
} End

Figure B-3 Algorithm for sending NACK

Recv_nack()

The algorithm for receiving NACK packets of TMTP is same as that of SRM as shown in

Figure A-6.

Send_repair()
When a node sends a retransmission request (NACK) using unicast (line 1), the parent
then sends a repair back by unicast (line 2). If the parent is unreachable, then any node

that hears the NACK can respond with the repair like SRM does (line 4).

132

Appendix B - TMTP Algorithm

Send_repair(packet, unicast_nack, requestor)
Start {
1. If (unicast_nack == True) {
2. Unicast repair to requestor;
3. } Else {
4, Maulticast repair to requestor;
5.}
} End

Figure B-4 Algorithm for sending repair

recv_repair()
The algorithm for receiving retransmission packets of TMTP is same as that of SRM as

shown in Figure A-8.

Send_ctrl(), Recv_ctrl()
Control packets that are used in JoinTree() and LeaveTree() are handled by routines

Send_ctrl() and Recv_ctrl(). These two algorithms have been discussed in Figure B-1

and Figure B-2.

133

Appendix C - RMP Algorithm

APPENDIX C - RMP ALOGRITHM

This appendix lists algorithms in protocol RMP.

Join_ring()

A new node calls join_ring() to add itself in a ring (Figure C-1). If the new node is the
only member in the group it creates a new ring (line 2). Otherwise, it sends a multicast
“JoinRequest” message to the entire ring informing the existing ring members that it
wishes to join in (line 4). When the current token site gets this message, it adds the new
node to the token list at the spot immediately after itself, and sends an “AcceptJoin”
message to the entire ring (line 25). Two important fields in message “AcceptJoin” are
“newTokenList” and “newNextTokenSite”. “newTokenList” is the latest token list that
consists of all ring members, including the new node. “newNextTokenSite” is the next
token site named by the current token site prior to joining in of the new node. When the
new node receives “Acceptfoin” from the current token site, it sets its next token site as
“newNextTokenSite”, i.e. new node’s next token site is current token site’s next token
site (line 15). The new node also sets the sender of “AcceptJoin” as the current token site
(line 16), and updates its token list with “newTokenList” (line 17). When an existing
member of ring receives “AcceptJoin”, it updates its own token list with “newTokenList”
and make sure that its next token site is correct by checking the latest token list (line 26).
The new node repeatedly sends the “JoinRequest” message (line 13) until it receives an
“AcceptJoin” message or number of tries is greater than a threshold (line 20). If no
Acceptoin message is received after a certain number of tries, the new node is failed to

join in (line 22).

134

Appendix C - RMP Algorithm

Join_ring()
NEW MEMBER:
Start {
1. If (I am the only node in the group) {
2 Create new token ring;
3. } Else{
4. Multicast “JoinRequest” to token ring;
5. Set timer;
6 Counter = 0;
7 Stop_join = False;
8 Do {
9 Wait until timer expires or AcceptJoin is received naming me as next
token site;
10. If (timeout) {
11. Reset timer;
12. Counter = Counter + 1;
13. Resend JoinRequest multicast message;
14. } Else if (receive AcceptJoin from current token site) {
15. Set my next token site as current token site’s old next token
site;
16. Set sender of Acceptioin as current token site;
17. Update token list;
18. Stop_join = True;
19. }
20. } While (Counter < Threshold and Stop_join == False);
21. If (Counter >= Threshold) {
22. Return failure;
23. }
24. }
} End
CURRENT TOKEN SITE:
Start {
25. Upon receipt of “JoinRequest”, adds the new member to the token list in the spot
immediately after me, and multicasts “AcceptJoin” to token ring;
} End
REST OF RECEIVERS
Start {
26. Upon receipt of “AcceptJoin”, updates its own token list;
} End

Figure C-1 Algorithm for adding a new nede to a token ring

135

Appendix C - RMP Algorithm

Leave_ring()

To remove itself from a ring, a member multicasts a “LeaveRequest” message to the
entire group (line 1). Each member of the group stores the request in a queue called
“LeavingNodes” (line 3). It checks this queue each time it accepts the token (line 4). If
the queue is not empty at that time (line 5), the token site dequeues it until it finds one
from the next site in the ring or until the queue is empty (line 6). If a request from the
next site in the ring is found, then the token site removes that site from the current token
list and multicasts a “LeaveConfirm” message around (line 8 — 9). One field in
“LeaveConfirm” message specifies which node has been removed from ring. When other
nodes receive “LeaveFonfirm” message, they remove that node’s LeaveRequest from

leavingNodes queue, and remove the node from token list as well (line 13).

Leave_ring()

MEMBER to be leaving
Start {
1. Multicast “LeaveRequest” message
2. Continue processing until “LeaveConfirm” message is received

} End
OTHER MEMBERS
Start {
3. Upon receipt of “LeaveRequest” message, store it in the LeavingNodes queue
4. Upon accepting the token, {
5. If (LeavingNodes queue is not empty) {
6. Dequeue LeavingNodes until finds LeaveRequest from next site or
queue is empty
7. If (LeaveRequest from next site exists in LeavingNodes queue) {
8. Remove next site from token list
9. Multicast “LeaveConfirm” message to the ring
10. }
11 }
12. }

13. Upon receipt of “LeaveConfirm” message, remove “LeaveRequest” of the
confirmed leaving node from LeavingNodes queue, and update token list
} End '

Figure C-2 Algorithm for removing a node from token ring

136

Appendix C - RMP Algorithin

SendMsg()

Figure C-3 shows the algorithm for sending data packets. Each packet is multicast to the
entire group (line 4). Source sets a transmission timer each time when it starts sending a
packet (line 5), and retransmits it if it does not receive ACKs from the current token site
within a timeout period (line 13 - 14). The source keeps on retransmitting a packet until

it receives ACK for it (lien 10 — 11) or it has re-sent the packet for more than a number of

times (line 17).

SendMsg()
SOURCE.:
Start {
1. For (each data packet P) {
2 Add RMP’s header to P;
3 Set destination; '
4. Multicast P to all members;
5. Start retransmission timer;
6 Counter = 0;
7 Stop_transmit = False;
8 Do {
9. Wait until an ACK is received or the retransmission timer expires;
10. If (receive the ACK) {
11. stop_transmit = True;
12. } Else if (timeout) {
13. Exponentially backoff and reset timer;
14. Retransmit P;
15. Counter = Counter + I;
16. }
17. } While ((Stop_transmite == False) and (Counter < threshold))
18. }
} End
Figure C-3 Algorithm for source sending data packet
Recv()

Recv() is very similar to that of SRM and TMTP as shown in Figure A-2, except that

RMP handles one more packet type — ACK.

137

Appendix C - RMP Algorithm

Recv_data()

Each time a receiver receives a data packet (Figure C-4), it marks the reception of the
data packet (line 1). If the receiver detects a packet loss, it requests a retransmission by
sending a NACK (line 5). If the receiver is the current token site, it multicasts an ACK to
the whole group (line 11). This ACK passes the token to next token site and

acknowledge to the source of receiving the receiving packet.

Recv_data(packet)

Start {
1. Mark the arrival of this packet;
2. If (receiving packet’s sequence number > last known sequence number of data) {
3. For (each packet between last and current receiving) {
4. If (I didn’t receive it) {
5. Send NACK to request retransmission;
6. Set last known sequence number to the receiving packet’s

sequence number;

7. }
8. }
9. }
10. If (I am the current token site) {
11. Multicast ACK to the group;
12. }

} End

Figure C-4 Algorithm for receiving data packet

Send_ack()

Send_ack() is called when the current token site receives a data packet or retransmission
of a data packet. The token site multicasts an ACK to entire group (line 1). If there is no
response to the ACK within the specified timeout, the current token site will send ACK
again until it receives acknowledgement from next token site (line 9 - 12). If the

acknowledgement is not received after a specified number of attempts, the current token

138

Appendix C - RMP Algorithm

site assumes that next token site is unreachable and initiates a reformation action to

reconstruct the ring (line 15 - 16).

Start {

Rl A O i al h e

et et
[N

} End

send_ack(packet)

Y e
Bl S

. } While (Counter < threshold and Stop_ack == False)
. If (counter > = threshold) {

16.
17.

Multicast ACK for this packet to group;
Start timer;
Counter = 0;
Stop_ack = False;
Do {
Wait until an ACK from next token site is received or timer expires;
If (receive ACK from next token site) {
Stop_ack = True;
} Else if (timeout) {
Exponentially backoff and reset timer;
Counter = counter + 1;
Retransmit ACK;

}

Initiate the reformation protocol;

}

Figure C-5 Algorithm for sending an ACK

Recv_ack()

Upon reception of an ACK, Recv_ack() is called (Figure C-6). If the source receives an

ACK for a packet, it will stop waiting for that ACK and previous ACKs, i.e. stop

retransmitting corresponding packets since it knows that the current token site has

successfully received all packets up to the one just acknowledged (line 2). A field in

each ACK names the next token site. If the receiver is the node that is specified as the

“next token site”, it starts checking if it is qualified to become the next token site (line 3).

If the receiver has received all of the packets whose sequence number is smaller than and

equal to this ACK (line 4), it declares itself to be the token site (line 5). The next token

139

Appendix C - RMP Algorithin
site notices the old token site of its role by multicasting an ACK for the next packet

received, or by sending a unicast confirm message to the old token site if no message is
received within a set period of time. When the old token site receives the notice, it sets
the current token site as the sender of ACK (line 11) and stop sending ACKs (line 12).
When all other receivers get an ACK, they know that the current token site is the sender

of ACK (line 14).

recv_ack(packet)

Start {
1. If (I am the source) {
2. Stop waiting for all ACKs up to the one just received;
3. } Else if (I am the new token site) {
4. If (I have received all messages whose sequence number <= sequence number
of this ACK) {
5. Set myself as the current token site;
6. } Else {
7. Send NACK to request retransmission of missing packets;
8. Wait for retransmissions for missing packets;
9. }
10. } Else (I am the current token site) {
11. Current token site = sender of ACK
12. Stop sending ACKs
13. } Else {
14. Current token site = sender of ACK
15.}
} End

Figure C-6 Algorithm for receiving ACK

Send_nack()
The algorithm for sending NACK in RMP is very similar to that of TMTP as shown in
Figure B-3, except that a requestor sends NACK to the current token site instead of

parent (line 1 and 13), and does not find another parent in RMP (line 18).

140

Appendix C - RMP Algorithm

Recv_nack()
The algorithm for receiving NACK in RMP is same as that of SRM as shown in Figure

A-6.

Send_repair()
The algorithm for sending repair in RMP is same as that of TMTP as shown in Figure B-

4.

Recv_repair()

There are two types of repairs — repairs from group members and retransmission from
source due to lost ACK. RMP deals with repairs from group members just like SRM as
shown in Figure A-8 (line 1 and 10 — 16 in Figure C-7). For retransmission from the
source (line 2 - 8), there are three possible reasons causing this retransmission. (1) The
current token site does not receive original packet. (2) The current token site does
receive the original packet and multicast ACK, next token site receives the ACK and
becomes the current token site, but the source misses the ACK. (3) Both next token site
and sourcé miss the ACK. For case (1) and (3), the current token site multicasts ACK to
the group, i.e. treat the retransmission packet as a new data packet (line 4 - 5). For case
(2), we do nothing here since the ACK of next packet from the new token site implicitly

acknowledges this retransmission packet.

141

Appendix C - RMP Algorithm

Recv_repair(packet)

Start {
1. Mark the arrival of this packet;
2. If (the repair comes from source) {
3 If (I am the current token site) {
4. If (packet is what I am responsible for acknowledge) {
5. Multicast ACK to the group;
6 }
7
8

-
9.
10. If (I have sent NACK and waiting for this repair) {
11. Stop sending NACK;
12. } Else if (I have the data and scheduled to send repairs) {
13. Cancel my repair timers;
14. } Else {
15. Duplicate repair, ignore it;
16. }
} End

Figure C-7 Algorithm for receiving a repair

Send_ctrl(), Recv_ctrl()

Control messages (such as JoinRequest, AcceptJoin, etc.) that are used for ring
membership and reconstruction of ring are handled by routines Send_ctrl() and
Recv_ctrl(). The algorithms for these two routines are discussed in JoinRing(),

LeaveRing() and Reformation() as shown in Figure C-1, Figure C-2 and Figure C-8.

Reformation()

Reformation() is invoked when the current token site considers that its successor is
unreachable (Figure C-8). The current token site starts reformation by multicasting a
“ReformationRequest” message to the ring (line 1). During reformation process the

initiator is the current token site and responsible for acknowledging data packets from the

142

Appendix C - RMP Algorithm
source. When other nodes receive “ReformationRequest”, they send “RejoinConfirm”

message to the initiator to confirm that they are alive and reachable (line 3). Once the
initiator receives “RejoinConfirm” from a member, it adds the member to the token list
immediately after itself, and sends an “AcceptRejoin” message with latest token list to
the sender of “RejoinConfirm” (line 2). When a member who has sent “RejoinConfirm”
receives “AcceptRejoin” from the initiator (line 4), the member sets its next token site as
initiator’s old next token site (line 5). It also sets the sender of “AcceptRejoin” (line 6) as

the current token site and updates its token list (line 7).

Reformation()

INITIATOR
Start {
1. Create a ring, multicast “ReformationRequest” message
2. Once receiving “RejoinConfirm”, add sender of “RejoinConfirm” to the token list
in the spot immediately after me, send “AcceptRejoin” to the sender of

“RejoinConfirm”
}
OTHER NODES
Start {
3. Upon receiving “ReformationRequest”, send “RejoinConfirm” to initiator
4. If (receiving “AcceptRejoin”) {
5. Set my next token site as initiator’s old next token site
6. Set sender of “AcceptRejoin” as current token site
7. Update token list
8. }
} End

Figure C-8 Algorithm for ring reformation

143

Appendix D — Confidence Intervals

APPENDIX D — CONFIDENCE INTERVALS

Normally, confidence intervals placed on the mean values of simulation results can be
used to describe the accuracy of the simulation results. Consider the results of N
statistically independent simulation runs for the same experiment: X;, Xy, ..., Xn. The

sample mean, X is given as:

N

2 X,
’X’ — =l
N

The variance of the distribution of the sample values, S f is:
N _

2. (X, —X)
=1

S2=i
! N -1

X

N

Under the assumption of independence and normality, the sample mean is distributed in

The standard derivation of the sample mean is given by:

accordance to the T-Distribution, which means the sample mean of the simulation runs
fall in the interval + & within the actual mean with a certain probability drawn from the

T-Distribution.

Sxta'/Z,N—l

JN

E =

where 1,,,,., is the value of the T-distribution with N-1 degrees of freedom with

probability a /2.

The upper and lower limits of the confidence interval regarding the simulation results are:

144

Appendix D — Confidence Intervals

Sxta'/Z,N—-l

JN

Lower Limit = X -

SxtaIZ,N—l

JN

Upper Limit = X +

145

