
Quality of Experience from Cache Hierarchies:

Caching for Adaptive Streaming over

Information-Centric Networks

by

Wenjie Li

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

May 2019

Copyright c© Wenjie Li, 2019

Abstract

Video traffic is growing in dominance in today’s Internet, prompting new challenges in

timely delivery of video content. This demand motivates the development of Dynamic

Adaptive Streaming over HTTP (DASH), as a de facto paradigm for streaming ser-

vice. DASH attempts to maximize the video consumers’ Quality of Experience (QoE)

under varying network conditions. However, as an application-level solution, DASH

is struggling to cope with both low-latency delivery and massive service requests.

The emerging Information-Centric Networking (ICN) architecture, with its ubiqui-

tous cache hierarchies, promises a scalable adaptive streaming service. However,

current ICN caching capability is aimed at generic traffic, and lacks the optimiza-

tion needed for video-specific applications. As the performance of existing caching

schemes is discovered to decline as consumers dynamically select content encoded at

different bitrates, DASH evidently clashes with caching hierarchies, which reinforces

the need to explore novel caching schemes that can incorporate bitrate adaptation,

as a controlling mechanism in DASH, to serve this dominating traffic.

In this dissertation, catering to adaptive video traffic is accomplished by caching

mechanisms that emphasize various QoE measurements, such as video quality, bitrate

oscillation, and rebuffering. Specifically, 1) the delivered video quality is enhanced

by building a traffic model to estimate access delay under varying encoded bitrates.

i

This delay is further used to optimize cache placement that causes the highest video

throughput. 2) Bitrate oscillations and playback rebuffering are reduced due to our

findings where bitrates should be prioritized in cache hierarchies. This is manifested

in the design of a cache partitioning mechanism that safeguards cache capacity for

specific bitrates. 3) Building on the premises of cache partitioning, the underlying

dependency between cache hierarchies and bitrate adaptation is addressed for caching

decisions that rely on instant video statistics. That is, instead of focusing on cur-

rently popular bitrates, bitrate adaptation predicts preferable rates in the future,

and guides cache decisions that optimize the long-term performance under dynamic

video requests. Extensive simulations demonstrate the effectiveness of proposed ap-

proaches in achieving significant improvements to QoE. These results suggest that

cache hierarchies can better serve adaptive streaming when caching schemes capture,

understand, and react to bitrate adaptation.

ii

Co-Authorship

Journal Articles:

1. W. Li, S. Oteafy, and H. S. Hassanein. Predictive Cache Partitioning for Adap-

tive Streaming over Information-Centric Networks. in preparation.

2. W. Li, S. Oteafy, M. Fayed and H. S. Hassanein. Quality of Experience from

Cache Hierarchies: Keep Your Low-Bitrate Close, and High-Bitrate Closer.

IEEE/ACM Transactions on Networking, under review.

3. W. Li, S. Oteafy, M. Fayed and H. S. Hassanein. A Cache-level Quality of

Experience Metric to Characterize ICNs for Adaptive Streaming. IEEE Com-

munications Letter, 23(2), 262-265.

4. W. Li, S. Oteafy, and H. S. Hassanein. Rate-Selective Caching for Adaptive

Streaming over Information- Centric Networks. IEEE Transactions on Com-

puters, 66(9), 1613-1628.

Conference Publications:

1. W. Li, S. Oteafy, and H. S. Hassanein. Performance Comparison of Transcoding

and Bitrate-aware Caching in Adaptive Video Streaming. in proceedings of 2019

IEEE International Conference on Communications (ICC). IEEE.

iii

2. W. Li, S. Oteafy, M. Fayed and H. S. Hassanein. Bitrate Adaptation-aware

Cache Partitioning for Video Streaming over Information-Centric Networks. in

proceedings of 2018 IEEE Local Computer Networks (LCN) Conference. IEEE.

3. W. Li, S. Oteafy, and H. S. Hassanein. On the Performance of Adaptive Video

Caching over Information- Centric Networks. in proceedings of 2017 IEEE

International Conference on Communications (ICC). IEEE.

4. W. Li, S. Oteafy, and H. S. Hassanein. StreamCache: Popularity-based Caching

for Adaptive Streaming over Information-Centric Networks. in proceedings of

2016 IEEE International Conference on Communications (ICC). IEEE.

5. W. Li, S. Oteafy, and H. S. Hassanein. Dynamic adaptive streaming over

popularity-driven caching in Information-Centric Networks. in proceedings of

2015 IEEE International Conference on Communications (ICC). IEEE.

iv

Acknowledgments

I am writing these words down when my journey as a graduate student comes to an

end. Surprisingly, although I have rehearsed so many times in my mind how I would

celebrate after my Ph.D. defense, when my supervisors finally shook my hand and

said congratulations, I was not feeling the same thrill as what I had expected. For

the past five years, research has always been the priority in my life, and when the

work was finally completed, it seems like an important part withdrew from my body

and leaves an empty hole in my soul. In fact, I feel no thrill, no sadness, no relief, I

feel literally nothing. Fortunately, I have invaluable memories of the kindest people

whom I would never forget for the rest of my life.

There is an old Chinese saying: ”He who teaches me for one day is my father for

life”. My deep and sincere gratitude goes to my mentor Dr. Hossam Hassanein. Your

enormous support was always my source of courage, like a flashlight which lights the

path for me on this journey of exploration. Your diligence and dedication to work is

my perfect example which motivates me to never stop pursuing the best of the best.

Many thanks also go to another friend and advisor Dr. Sharief Oteafy. Without

you, none of my current achievements would be possible. It is from you that I learned

how to be a professional researcher. Although you never keep your schedule on time

LOL, I will absolutely miss those days when I hid outside your office, hoping to

v

ambush you for a meaningful discussion.

Special thanks must be given to Mrs. Basia Palmer. When I look back on this

journey, I realize you are the first person I met in the school. Through these years,

you have been so reliable and trustful, a person whom I can share little secrets with.

Thank you for all the kindest support not only helping me through my research but

also my life in this beautiful city.

How would I ever forget those closest friends from the Telecommunications Re-

search Lab (TRL)? I thank God who arranged the kindest and smartest people to

surround me. Thank you Ramy Atawia for bringing so many smiles in my life. I will

pray for you and Mariam to enjoy the happiest life in Ottawa. Same blessing goes to

Hesham Farahat. I appreciate so much your endless encouragement during my job

hunting. Your excellence is unbeatable and I am sure of great success in your ca-

reer. I would also thank Adel Ibrahim, Abdalla Abdelrahman, Amir Ibrahim, Ashraf

Alkhresheh, and Galal Hassan for your company which made my life colorful in the

lab. I would like to send my best wishes to Faria Khandaker, Sara Elsayed and Mary

Zarif Riad, I have confidence that you all will be able to conqueror any difficulty in

your future research.

For the past five years. I have been blessed to meet the best friends in my life.

Heng Li, Yu Zhao, Ke Xu, Dayuan Wang, thanks for giving me this opportunity

to know you and for bringing me so much joy. I cannot imagine how I can ever

say goodbye. Sometimes you never know the value of a moment until it becomes a

memory, and I would like to promise that I will never lose those memories.

I also want to say how I appreciate the thesis committee: Prof. Juergen Dingel,

Prof. Ali Etemad, Prof. Alfredo Grieco, and Prof. Ahmed Hassan. Thank you very

vi

much for your constructive feedback and support. Your comments provided me many

insightful suggestions on my thesis work and future directions.

Last but not least, I would never be able to make this achievement without the

love from my family. Moving to a different country is always difficult. Your love gives

me hope and strength that supports me through many freezing nights in Canadian

winter. I would also like to say to my other half, that although you have not shown

up yet, I wish you are just right there waiting for me on the next journey I take. I

am looking forward to the next challenge and I promise to live a meaningful life.

vii

Statement of Originality

I hereby certify that this Ph.D. thesis is original and that all ideas and inventions

attributed to others have been properly referenced.

viii

Contents

Abstract i

Co-Authorship iii

Acknowledgments v

Statement of Originality viii

Contents ix

List of Tables xii

List of Figures xiii

List of Acronyms xvii

Chapter 1: Introduction 1
1.1 Research Statement . 3
1.2 Thesis Contributions . 3
1.3 Thesis Organization . 5

Chapter 2: Background and Overview 7
2.1 Dynamic Adaptive Streaming . 7

2.1.1 Bitrate Adaptation Control 8
2.1.2 Standardized QoE Metrics . 10

2.2 ICN Architectures and Components 11
2.3 ICN Caching Research . 13

2.3.1 ICN Caching vs. Web Caching 13
2.3.2 Cache Decision Policy . 14
2.3.3 Cache Capacity Allocation . 20

2.4 Caching for Adaptive Streaming . 21
2.4.1 Transcoding on Edge Cache 22

ix

2.4.2 Bitrate-Aware Ubiquitous Caching 23
2.4.3 Transcoding vs. Bitrate-Aware Caching 24

Chapter 3: Bitrate-Selective Caching for Throughput Enhancement 26
3.1 Introduction . 26
3.2 Related Work . 29
3.3 System Description . 29

3.3.1 Network Architecture . 29
3.3.2 Video Request Patterns . 31

3.4 DaCPlace: Benchmark for Throughput Enhancement 32
3.4.1 Cache Placement Problem Formulation 32
3.4.2 Expected Delay Derivation . 40
3.4.3 DaCPlace Algorithm and Complexity 47

3.5 StreamCache: Low-Overhead Cache Placement 49
3.5.1 Cache Utility Derivation . 50
3.5.2 Cache Decision with Greedy Selection 51

3.6 Performance Results and Insights . 53
3.6.1 Simulation Setup . 54
3.6.2 Simulation Parameters . 55
3.6.3 Performance Evaluation . 57

3.7 Summary . 66

Chapter 4: Adaptive Streaming with Cache Partitioning 68
4.1 Introduction . 68
4.2 Why Do We Partition? . 71
4.3 How Do We Partition? . 73
4.4 RippleClassic Benchmark Optimization 75

4.4.1 Cache Placement Problem Formulation 76
4.4.2 Cache Reward Function . 78
4.4.3 Tuning the Quality-Oscillation Tradeoff 82

4.5 RippleFinder Cache Partitioning . 84
4.5.1 System Overview . 84
4.5.2 RippleFinder in Execution . 86
4.5.3 RippleFinder Algorithm and Complexity 93

4.6 Performance Results and Insights . 93
4.6.1 Simulation Setup and Parameters 94
4.6.2 Average Video Quality . 97
4.6.3 Bitrate Switch Count . 99
4.6.4 Rebuffer Percentage . 100
4.6.5 Evaluation On A Realistic Topology 101

x

4.6.6 Discussion of Results . 103
4.7 Summary . 104

Chapter 5: Predictive Cache Partitioning 106
5.1 Introduction . 106
5.2 Cache Partitioning with PredictiveRipple 108
5.3 Reinforcement Learning Framework 110

5.3.1 MARL Formulation . 113
5.3.2 Space Aggregation . 117
5.3.3 Distributed Coordination . 121

5.4 MARL in Execution . 123
5.5 Performance Results and Insights . 125

5.5.1 Simulation Setup and Parameters 125
5.5.2 The Impact of Online Prediction 127

5.6 Summary . 132

Chapter 6: Conclusion and Future Directions 133
6.1 Summary . 133
6.2 Limitations . 135
6.3 Future Directions . 136

6.3.1 Bitrate Adaptation Prediction with Deep Learning 136
6.3.2 Cache-Friendly Bitrate Adaptation 137

Bibliography 138

Appendix A: Performance Comparison of Transcoding and Bitrate-
Aware Caching 148

A.1 Simulation Setup . 148
A.2 Bandwidth Fluctuation Pattern . 150
A.3 Cache Hit Ratio . 151
A.4 QoE Metrics . 152

A.4.1 Average Video Bitrate . 154
A.4.2 Rebuffer Percentage . 155
A.4.3 Bitrate Switch Count . 157

A.5 Insights on Ubiquitous Caching vs. Edge-Transcoding 157
A.6 Conclusions . 160

xi

List of Tables

2.1 Differences between ICN caching and web caching 14

3.1 Summary of notations . 35

3.2 Simulation parameters for DaCPlace and StreamCache evaluation . . 56

4.1 An example of average cumulative delay of 4-second segments by hop

distance . 80

4.2 Simulation parameters for RippleClassic and RippleFinder evaluation 96

5.1 Simulation parameters for PredictiveRipple evaluation 127

A.1 Simulation parameters for Transcoding and Bitrate-aware Caching per-

formance . 149

xii

List of Figures

2.1 Concept of dynamic adaptive streaming 8

2.2 Process of dynamic adaptive streaming over HTTP 9

2.3 Illustration of a transcoding scheme. All-bitrate versions are cached

for the most popular x video content, while only the highest version is

stored for the rest. 22

2.4 Contrasting the caching behavior of ubiquitous bitrate-aware caching

vs. Edge-based caching with transcoding. In the latter paradigm, more

caching resources need to be allocated at the edge to cater for storing

most of the popular video segments at their highest bitrates. 24

3.1 Different system settings between master thesis and this work. The red

line indicates a forwarding path from consumers to a video producer.

Routers in a rectangle are coordinated to make caching decisions. . . 28

3.2 Network Topology. The bold lines indicate routing paths discovered

by the OSPFN. 30

3.3 The possible content delivery paths 33

3.4 Filtering effect of interest aggregation. The length of rRTT changes

according to real-time network condition. 42

3.5 Queueing model for adaptive streaming system 44

xiii

3.6 Summarized statistics and Cache Decision Table. Cache placement is

made from the network edge towards the core. The local decisions are

recorded by appending numbers in Cache Decision Table (in red color). 51

3.7 Access Delay Per Bit across different cache capacity 58

3.8 Access Delay Per Bit across cache allocation ratios 59

3.9 Average video segment delay (α = 1.2) 61

3.9 Average video segment delay (α = 1.2) (cont.) 62

3.10 Cache hits across cache allocation ratios at α = 1.2 63

3.11 Access Delay Per Bit across popularity skewness 64

4.1 Bitrate adaptations given cache distance: dark regions indicate switches

to the higher bitrate; lighter regions indicate switches to the lower bitrate. 72

4.2 Cache partitioning by encoding bitrates along each forwarding path. . 74

4.3 The impact of tunable cache reward η on consumers’ QoE. 83

4.4 RippleFinder diagram. Edge router R1 would create Cache Candidate

Tables (CCTs) for R1, R2 and R3. CCT for R1 is processed imme-

diately on R1. CCTs for R2 and R3 are delivered upstream. The

intermediate router R2 would intercept all CCTs for R2 (the icon in

red color), and forward CCTs for R3. 85

4.5 RippleFinder in execution [Step (1)]. 87

4.5 RippleFinder in execution [Step (2)]. 88

4.5 RippleFinder in execution [Step (3)]. 89

4.5 RippleFinder in execution [Step (4)]. 90

4.5 RippleFinder in execution [Step (5)]. 91

4.5 RippleFinder in execution [Step (6)]. 92

xiv

4.6 Average Video Bitrate under ‘BIP-tractable’ settings 98

4.7 Bitrate Switch Count under ‘BIP-tractable’ settings 98

4.8 Rebuffer Percentage under ‘BIP-tractable’ settings 98

4.9 Average Video Bitrate under ‘Large-scale’ settings 102

4.10 Bitrate Switch Count under ‘Large-scale’ settings 102

4.11 Rebuffer Percentage under ‘Large-scale’ settings 102

5.1 PredictiveRipple system architecture. The cache capacity of every ICN

router is divided into two portions, where each portion serves the con-

tent from producer P1 and P2 respectively. Each cache portion is man-

aged by a PredictiveRipple Unit (PRU) module, and is partitioned into

three sub-partitions for content encoded with bitrate B1, B2 and B3. 109

5.2 Timeline for a learning agent. ¬ Capture initial cache partition.

A learning episode (EP1) between [t1, t2]. ® A learning step where an

action to adjust cache partitions occurs. 112

5.3 An example of a dependency set. Agent i is installed on a router where

routing paths ¬ go through. All agents that are installed on these

two paths will be added into H(i). Other routers (agents), for example

the edge node along path ®, are not affected. 116

5.4 The dependency H(i) of agent i is divided into three topology classes. 118

5.5 Since H(2) = {1, 2}, the factor graph constructs a link between func-

tion node of agent 2 (F2) and variable node of agent 1 (X1), and an-

other link between F2 and X2. The same rule applies to H(3). The

action space aggregation trims H(1) by ignoring dependencies from

‘downstream’ agents, which are represented by dashed lines. 121

xv

5.6 Bitrate Switch Count under MARL evaluation settings 128

5.7 Rebuffer Percentage under MARL evaluation settings 129

5.8 Average Video Bitrate under MARL evaluation settings 131

A.1 ‘Last-mile’ bandwidth fluctuation pattern 151

A.2 Cache hit ratio under bandwidth pattern A 152

A.3 Average Video Bitrate across cache size and popularity skewness. . . 153

A.4 Rebuffer Percentage across cache size and popularity skewness. 156

A.5 Bitrate Switch Count across cache size and popularity skewness. . . . 158

xvi

List of Acronyms

CATT Cache Aware Target idenTification.

CBC Centrality Based Caching.

CCN Content-Centric Network.

CDN Content Delivery Network.

CE2 Cache Everything Everywhere.

CINC Cooperative In-Network Caching.

DASH Dynamic Adaptive Streaming over HTTP.

ICN Information-Centric Network.

LCD Leave Copy Down.

LFU Least Frequently Used.

LRU Least Recently Used.

MARL Multi-Agent Reinforcement Learning.

MCD Move Copy Down.

MDP Markov Decision Process.

MILP Mixed Integer Linear Programming.

xvii

MOS Mean Opinion Score.

MPD Media Presentation Description.

NDN Named Data Networking.

OSPFN Open Shortest Path First routing scheme for Named-data.

ProbCache Caching with Probability.

QoE Quality of Experience.

QoS Quality of Service.

xviii

1

Chapter 1

Introduction

The rapid evolution of Internet-based video dissemination is mandating novel paradigms

to scale with the volume of traffic and heterogeneity of users. By 2021, video content is

projected to dominate over 80% of global Internet traffic [10]. This massive amount

of data has motivated many developments in application-layer standards, yielding

Dynamic Adaptive Streaming over HTTP (DASH) [57] as a leading contender in

delivering video content over unstable channel conditions. However, researchers have

long argued that improvements are needed across the Internet protocol stack, to cope

with this evolution [47, 18].

DASH has played a major role in improving video delivery services. However, it is

intrinsically an application-layer solution, and thus cannot resolve the underlying net-

work scalability problem or ease bottlenecks caused by massive video traffic. A recent

focus has shifted towards Information-Centric Network (ICN) [24], as a promising so-

lution from a network architecture perspective. ICN is regarded as a next-generation

Internet, which builds upon a Publish-Subscribe model [1], enabling content-host de-

coupling, dynamic request forwarding, and adaptive in-network caching. These fea-

tures make video streaming a scalable service in ICNs. There have been increasing

2

calls [64, 33] to adopt dynamic adaptive streaming as an essential component in this

future Internet paradigm.

In principle, DASH provides a time-shift control on media requests in reaction to

varying bandwidth conditions experienced by each user. At its core, DASH adopts

three fundamental features in its operation: video content is first partitioned into

equal duration segments, all segments are encoded at multiple bitrates, and an adap-

tive control algorithm is applied from the consumer side to request the highest possible

quality given estimates of real-time network bandwidth.

Among all ICN features, in-network caching received the most attention. ICN

exploits caching as a networking primitive by equipping each router with caching

capacity, instead of pre-designated, sparse and static surrogate servers. In the context

of video streaming, in-network caching can significantly leverage users’ Quality of

Experience (QoE) [45, 40]. As a result, higher resolution video content, which may

grow difficult to retrieve without caching, will effectively become accessible.

Many research efforts have investigated ICN caching [69]. However, catering to

adaptive streaming in ICNs presents significant challenges. Although popularity-

based caching is known to improve the performance in terms of average cache hit

ratio or reduce overall access delay [24, 9, 49], ICN caching research seldom sought

to optimize QoE indicators, which essentially reflect consumer-side satisfaction, as a

core objective in adaptive streaming applications.

Understanding and optimizing QoE performance demands unique ICN caching

design. For instance, the interplay between cache placement and consumer-side bi-

trate adaptation introduces ‘oscillation dynamics’ [64], which overshoots what generic

1.1. RESEARCH STATEMENT 3

caching schemes could handle. Intrinsically, this oscillation is linked to inaccurate es-

timates caused by the ever-changing network conditions, that occur with intermittent

cache hits and misses. A ‘good’ caching mechanism for adaptive streaming must cap-

ture the impact from bitrate adaptation, and accordingly optimize its decisions that

adapt to dynamic video requests in the long term.

In this thesis, we demonstrate how our designs tackle the impact from bitrate

adaptation and optimize for various QoE measurements, such as video quality, bitrate

oscillation, and rebuffering. Extensive experiments demonstrate the achievements of

our approaches in QoE, which reinforces the motivations and importance of this

research.

1.1 Research Statement

We believe that:

ICN’s in-network caches will improve QoE when caching decisions capture and

react to bitrate adaptation.

1.2 Thesis Contributions

The major contributions of this thesis are listed as follows:

1. Video Throughput Improvement. We propose a benchmark DaCPlace and a

heuristic StreamCache scheme to improve average video throughput received by

consumers. As video quality has the highest correlation with overall QoE [14]

and bitrate adaptation decides video quality based on input throughput, we thus

choose to optimize video throughput. DaCPlace is accomplished by building an

1.2. THESIS CONTRIBUTIONS 4

adaptive video traffic model to analyze the queueing delay differed by encoded

bitrates.

2. Bitrate Oscillation Reduction. We design a benchmark RippleClassic and a

heuristic RippleFinder scheme to reduce rapid bitrate oscillation caused by in-

termittent cache hits and misses. RippleClassic and RippleFinder leverage a

novel idea called cache partitioning where cache capacity of each router is di-

vided and safeguarded for a certain bitrate. These two schemes are designed

under the guidance of a caching principle RippleCache where high-bitrate con-

tent is placed at the network edge and low-bitrate content is pushed into the

network core. Our results demonstrate that cache partitioning schemes deliver

content that suffers less oscillation and rebuffering, as well as the highest levels

of video quality, indicating overall improvements to QoE.

3. Predictive Cache Partitioning. We investigate the dependency between cache

placement and bitrate adaptation when caching decisions only rely on instant

video statistics and result in degrading performance. In remedy, we propose

PredictiveRipple which applies bitrate adaptation prediction to optimize the

cache partitioning performance in the long term. PredictiveRipple is accom-

plished by a Multi-Agent Reinforcement Learning (MARL) modelling, where

the Q-learning [55] is the driven approach that guides the cache partition ad-

justments. Our results show PredictiveRipple overcomes the overfitting problem

which is rooted in popularity-based caching schemes, and further enhances con-

sumers’ QoE.

1.3. THESIS ORGANIZATION 5

1.3 Thesis Organization

In this chapter, we present the motivation of the primary research problem, and

highlight the major contributions towards bitrate-adaptation-aware caching. The

rest of this thesis is organized as follows.

Chapter 2 introduces background and related work. We review the fundamental

concepts of DASH and directions of ICN caching studies. At the end of this chapter,

we explain popular caching paradigms for adaptive streaming and conduct preliminary

experiments to give a comprehensive comparison on QoE performance.

Chapter 3 first highlights the difference between this thesis and previous work. We

then describe the system settings, based on which the benchmark solution DaCPlace

is formulated. DaCPlace optimizes the delivered video quality by reducing the video

access delay per bit. A low-overhead scheme StreamCache mimics the execution of

DaCPlace and reduces the complexity by online measurement.

Chapter 4 highlights our novel cache partitioning concept. We start with the

reasons for cache partitioning, followed by a RippleCache principle that guides how

to partition. To validate RippleCache claims, we construct two separate implemen-

tations. The first is RippleClassic, which is a benchmark solution that optimizes

content placement by maximizing a measure for cache hierarchies shown to have high

correlation with QoE. The second is a lighter-weight RippleFinder, with distributed

execution for application in large-scale systems.

Chapter 5 builds on the cache partitioning design and presents the PredictiveRipple

system for bitrate adaptation prediction. PredictiveRipple uses a MARL framework

to derive cache partition adjustments. We resolve coordination and exploration issues

in MARL which enables distributed and efficient online training.

1.3. THESIS ORGANIZATION 6

Chapter 6 presents a summary of the topics addressed in this thesis and discusses

future research directions.

7

Chapter 2

Background and Overview

In the first part of this chapter, we elaborate on the DASH protocol and its funda-

mental bitrate adaptation control algorithm. In the second part of this chapter, we

explain the specifics of ICN architectures and give an overview of literature in ICN

caching studies.

2.1 Dynamic Adaptive Streaming

In dynamic adaptive streaming, video files are encoded in different bitrate levels by

producers. These files are chopped into segments with equal duration. On the user

end, each video player would request video segments, under a chosen bitrate, based on

its implementation of a bitrate adaptation control algorithm. This choice can change

bitrates over time, in response to varying link conditions in order to retrieve video

content with the best possible quality [33].

As shown in Figure 2.1, if the user’s request requires bandwidth which exceeds the

amount that current network can provide, dynamic adaptive streaming changes the

video quality on-the-fly to lower quality automatically. When the link condition im-

proves, DASH would recommend that the current request switches to higher quality.

2.1. DYNAMIC ADAPTIVE STREAMING 8

Server
User s Device

Network Infrastructure

Time

Bandwidth

Playback Time

Media Quality

High

Medium

Low

Playback Time

Media Quality

Video Producer with

Segmented Video Objects

Requests for Video

Qualities by Consumer

Figure 2.1: Concept of dynamic adaptive streaming

2.1.1 Bitrate Adaptation Control

DASH is driven by the adaptation engine, as shown in Figure 2.2. In this engine, an

adaptation control logic makes bitrate choices based on measurements of the most

recent video segments. The purpose of this adaptation is to minimize the impact of

network bandwidth variations and improve users’ QoE.

Bitrate adaptations are designed to handle network bandwidth fluctuations, caused

by traffic congestion, simultaneous requests, and so on. In the context of ICN, the

hierarchical caching structure is another source of bandwidth fluctuation since the

cache hit and miss on consecutive video requests would result in significantly differ-

ent access delay and throughput. This severe fluctuation is more likely to make the

requested bitrates switch up and down. Recent studies on bitrate adaptation tackled

this problem by seeking a balance between bitrate switch efficiency and stability.

Two types of approaches, throughput-based and buffer-based [31], are widely ap-

plied to achieve this balance of efficiency and stability. Throughput-based methods,

such as [42, 26], have smooth adaptation. Typically, extra conditions have to be

2.1. DYNAMIC ADAPTIVE STREAMING 9

DASH ServerDASH Server

Media

Presentation

Description

Media SegmentsMedia Segments

HTTP Server

DASH Client

Media Engine

Bitrate

Adaptation

Engine

M
P

D

T
h
ro

u
g
h
p
u
t
M

ea
su

re
m

en
t

S
eg

m
en

t
S

el
ec

ti
o
n

HTTP Client

T
im

in
g

Buffer Level

Media Engine

Bitrate

Adaptation

Engine

M
P

D

T
h
ro

u
g
h
p
u
t
M

ea
su

re
m

en
t

S
eg

m
en

t
S

el
ec

ti
o
n

HTTP Client

T
im

in
g

Buffer Level

DASH Client

Media Engine

Bitrate

Adaptation

Engine

M
P

D

T
h
ro

u
g
h
p
u
t
M

ea
su

re
m

en
t

S
eg

m
en

t
S

el
ec

ti
o
n

HTTP Client

T
im

in
g

Buffer Level

MPD Delivery

Media Delivery

Segment Request

Figure 2.2: Process of dynamic adaptive streaming over HTTP

satisfied before any bitrate switch occurs. For instance, in FESTIVE [26], a different

bitrate would be selected if it yields a higher combined efficiency and stability score

than the current bitrate. Note that bitrate adaptation can only occur between the

next higher or lower video quality level so that users would not notice a sudden video

quality change.

Buffer-based adaptation methods [23, 58, 13] utilize the buffer occupancy, which

is the current data size in the video playback buffer, as a indicator that guides bitrate

selection. This type of approach is designed based on an argument that the buffer

occupancy captures the relationship between requested video quality and network

2.1. DYNAMIC ADAPTIVE STREAMING 10

bandwidth. For instance, BBA [23] makes different adaptation decisions at different

buffer levels. When the video playback buffer is close to empty, the bitrate adaptation

attempts to be conservative and prefers low quality video content. Conversely when

the buffer is close to full, the bitrate adaptation would then become aggressive and

prefer high quality content.

2.1.2 Standardized QoE Metrics

QoE combines users’ experience with non-network-specific parameters, such as glitches,

artifacts, and excessive waiting times [54]. However, another important concept,

Quality of Service (QoS) is represented by network-specific parameters, such as through-

put, packet drop rate, and latency. Obviously, QoS problems imply QoE problems.

The quantitative relationship between QoE and QoS could be found in [17], where

QoE and QoS parameters are connected via an exponential relationship.

For adaptive video streaming applications, the DASH Industry Forum [56] has

published a set of QoE standard metrics. Several representative metrics adopted in

this thesis are listed below.

• Rebuffer Count: the number of video playback freezing that has occurred during

a given time window (e.g., within a entire video session).

• Rebuffer Percentage: the time spent in a playback freezing state over a given

time interval.

• Average Video Quality: the average video bitrate requested by the consumer.

• Bitrate Switch Count: the number of times the requested bitrate changed in a

given time interval.

• Bitrate Switch Rate: the rate of bitrate switches in a given time interval.

2.2. ICN ARCHITECTURES AND COMPONENTS 11

2.2 ICN Architectures and Components

In recent years, an increasing concern for the scalability and efficiency of the In-

ternet has resulted in the emergence of ICN. The core premise is adapting to con-

tent/information, and catering to both consumers and producers, rather than adopt-

ing the client-server approach, which requires the establishment of end-to-end con-

nection, following the host-centric architecture.

ICN differs significantly from the current Internet in the following aspects [1, 65]:

• Location Decoupling. ICN is built upon the Publish-Subscribe model [1]. The

information source advertises its content through Publishing to the network and users

retrieve what they need via Subscribing. There is no need to know the exact des-

tination of the information (i.e., IP address) since the routing of request and data

are autonomous in ICN. Publishers do not need to know how many subscribers are

interested in the content, which guarantees the space decoupling between consumers

and producers in ICN.

• Naming. Information in ICN is identified by its unique ‘Name’ rather than being

bound to a known location. Requests have no explicit destinations to retrieve the

corresponding data. Instead, the best available data source is automatically chosen by

ICN. Naming is designed at the network layer, which enables ICN to adjust routing

hop-by-hop and exploit in-network storage optimally. In the literature there are

several naming schemes. A name of content could be flat or hierarchical, readable

or un-readable. A name could look like an HTTP request in a hierarchical design or

merely a string of seemingly meaningless numbers.

• Routing. ICN routing can be generally categorized into two types. In the first

type, routing depends on name resolution. Similar to the Domain Name System

2.2. ICN ARCHITECTURES AND COMPONENTS 12

(DNS) service of the current Internet, ICN name resolution matches an information

name to a producer that can supply that information. To help routing a request, the

name resolution service creates a source-route, or installs routing states on nodes.

In the second type, each ICN node adds or edits its own routing table based on the

received cache status from other routers in the neighbourhood. This type of routing

adds more information sources in addition to producers, and improves the utilization

of in-network caching.

• Ubiquitous Caching. ICN exploits caching as a networking primitive. Each

router is equipped with cache storage. This storage contains recent data which are

transmitted through the router and would be refreshed based on a predefined or

application-specific cache policy. ICN can be considered as a distributed cache archi-

tecture.

The ICN architecture has gained attention from both academia and industry.

There are several on-going projects which implement the basic principles of ICN,

such as Publish-Subscribe Internet Routing Paradigm (PSIRP) [19], Network of In-

formation (NetInf) [12], Data-Oriented Network Architecture (DONA) [29], Content-

Centric Network (CCN) [25] and Named Data Networking (NDN) architecture [68].

Among these projects, the CCN architecture proposed by Jacobson et al. [25] stands

out as a prominent architecture that facilitates rapid benchmarking and insightful per-

formance analysis. The proposed schemes are designed and evaluated on the NDN

architecture, and can be adapted to work under any other ICN design.

2.3. ICN CACHING RESEARCH 13

2.3 ICN Caching Research

Ubiquitous caching [69] is a fundamental component of ICN, and could effectively

reduce redundant data traffic generated by duplicated requests. Thanks to the content

and location decoupling made by the naming mechanism of ICN, users’ requests can

be satisfied by not only the producer but also the cache of any intermediate routers.

As a result, ICN can alleviate the pressure on the network architecture from the rapid

growth of data traffic.

However, ICN caching capability differs from traditional web caching, which brings

new challenges. In this section, we elaborate on the differences between caching

architectures, and expand on two main research topics of ICN caching: Cache Decision

Policy (Section 2.3.2) and Cache Capacity Allocation (Section 2.3.3).

2.3.1 ICN Caching vs. Web Caching

The web caching problem has been extensively studied in the 1990s, and most of

the research conducted was to improve the web content availability. However, as

the Internet transforms from a host-centric to a content-centric network, significant

differences arise between existing web caching and ICN caching [69]. These differences

are summarized in Table 2.1.

ICN caching is designed to provide better information accessibility than web

caching, in terms of ubiquity, granularity, and transparency. Compared to web

caching, ICN caching allows each node in the network to cache information, instead

of designated nodes as surrogate servers in web caching. Besides, ICN caching pro-

vides a finer caching granularity where content is divided into chunks and a portion

of content can be cached as needed.

2.3. ICN CACHING RESEARCH 14

Table 2.1: Differences between ICN caching and web caching

Features ICN Caching Web Caching

Ubiquity
Any router in the network
can be cache node. Caching
points are not fixed.

Cache locations are predeter-
mined and optimized based
on the type of topology.

Granularity

Content is divided into
chunks. Caching nodes
selectively store pieces of
content, which results in finer
granularity.

Web content must be cached
as an entire object.

Transparency
Caching decisions are made
upon content names, which is
independent of applications.

Caching is not a transparent
service and targets a particu-
lar traffic class/application in
a specific domain. Copies in
different domains are logically
separated.

2.3.2 Cache Decision Policy

Current research on cache decision policy needs to answer two fundamental questions,

first what to cache or which content should be stored in cache, and second where to

cache or which router should be selected to cache a particular content.

Based on whether routing and caching work in a collaborative manner, caching

decision policies can be categorized into two types, on-path caching and off-path

caching. In on-path caching, the choice of routing path is decided by name resolution

service only, and would not take the caching status into consideration. As a result,

only the caching storage located on each routing path can be utilized. Off-path

caching by comparison, depends on cache discovery: each node would detect the

cache status from its neighborhood/nearby nodes, and later build dynamic routing

paths to these routers.

Although on-path caching requires no coordination with routing, nodes along the

2.3. ICN CACHING RESEARCH 15

default routing path still need to advertise the cache status to facilitate the caching de-

cision. This advertisement will effectively reduce the policy design complexity. Under

the umbrella of on-path and off-path caching, the policies can be further categorized

into cooperative and non-cooperative caching. Depending on whether there exists

message exchange on cache status, cooperative caching policies can be further clas-

sified into explicit and implicit cooperation. As their names imply, explicit caching

policies require advertising the cache status whenever the cache holds or evicts a cer-

tain content; implicit caching on the contrary requires no cache status exchange but

usually needs extra operations to infer the transition of states in the cache.

On-Path Caching

• CE2. Cache Everything Everywhere (CE2) [25] is a widely applied policy, which is

also the default caching policy in CCN/NDN. Contents can be cached on any router

along the routing path, in order to minimize the upstream bandwidth demand and

downstream latency. Accordingly, CE2 is a non-cooperative caching decision policy,

and is prone to causing serious cache redundancy since every cache on a certain

routing path holds a copy of requested content, and content will always be served

from caches in downstream routers when there is a request, which makes the copies

on upstream nodes redundant.

• ProbCache. Caching with Probability (ProbCache) improves the cache efficiency

and hit ratio. ProbCache [49] determines different caching probability p to ICN

routers, based on the length of a routing path. In particular, each request adds a

Time Since Inception (TSI) field to its packet header. The TSI value increases by one

as a certain router relays this request to the next hop. When this request reaches the

2.3. ICN CACHING RESEARCH 16

content producer, TSI then represents the length of a routing path. A Time Since

Birth (TSB) field, along with the TSI retrieved from the request, is added to the

header of a data packet by the producer. The TSB value also increases by one at

each hop when the data packet is delivered back to the consumer. Any router on the

routing path then uses TSB
TSI

to derive the caching probability.

ProbCache assigns a different caching probability to routers according to their

locations on the routing path. As to a router near the consumer, the TSB value

would be close to TSI which results in a higher caching probability close to one. As

to routers near the content producer, caching probability would be close to zero. A

small probability makes sense since there is no need to cache around the producer.

In addition, ProbCache takes the different cache sizes of routers into consideration.

The caching probability will also be adjusted according to the remaining cache on

the data delivery path. As each router participates in changing TSI and TSB, we

consider ProbCache to be an implicit decision policy.

• LCD and MCD. Leave Copy Down (LCD) [32] is another approach which im-

proves the performance of CE2, not by assigning caching probability but by restricting

which routers can cache content. In LCD, a caching suggestion bit is added to the

data packet header, and will be turned on once a request for this data arrives at

the producer or any cache node. A router on the data delivery path can cache the

data packet only if the suggestion bit is on, and the bit will be switched off after the

corresponding data is cached to prevent additional caching on downstream nodes.

Therefore, every time there is a cache hit, the content can move one hop towards

the consumer. Popular content thus can be stored at the network edge after several

retrievals while less popular content is prevented from occupying cache space.

2.3. ICN CACHING RESEARCH 17

However, when moving towards the edge, duplicate copies of content are left on the

upstream routers which results in cache redundancy. Move Copy Down (MCD) [32]

works in a similar way to LCD and eliminates the on-path redundancy by deleting

the cached copy when data is moved downstream. Both LCD and MCD are implicit

schemes as the caching suggestion is transmitted piggyback through data packets.

• WAVE. Cho et al. proposed WAVE [9], which utilizes the suggestion flag bit

to facilitate caching decisions. As shown in Table 2.1, ICN caching is performed

on a finer granularity, which is a significant difference compared to traditional web

caching. WAVE highlights this feature of ICN caching by considering the inter-

chunk relationship. The number of chunks in a content object, where the caching

suggestion bits should be switched on, is determined based on a Chunk Marking

Window (CMW), where the size of the window increases exponentially according to

the request frequency of this content. For example, when a certain content object is

requested the first time, CMW is set to 1 by the content producer, which means only

the first chunk in the object would be moved one-hop towards the consumer. When

the content producer receives the second request for the same object, CMW is set

to two (suppose the base is two), which represents that the second and third chunks

would be moved from content producer to the cache in the next hop (if the third

request is received, CMW is then set to four). As WAVE is inherited from LCD,

WAVE is also an implicit caching decision policy.

• CBC. Chai et al. proposed Centrality Based Caching (CBC) [8] based on empirical

results that random caching at a single router along the content delivery path can

achieve almost the same performance as ubiquitous caching when LRU eviction is

applied. Thus, CBC solves the problem of choosing cache locations, which exploits

2.3. ICN CACHING RESEARCH 18

the topological feature to ensure high cache hit ratios. CBC measures the centrality

betweenness of each router, and chooses nodes with the highest betweenness value to

cache content.

The rationale behind such design is that a node with high centrality betweenness,

is more likely to get a cache hit. CBC computes the centrality betweenness offline

and attaches the largest betweenness value among routers on the routing path to

the header of the request. The corresponding data packet will copy this value to

its header and a router will cache the data only if the centrality betweenness of this

router matches the attached one in the packet header. Since CBC relies on this

betweenness value to coordinate caching, CBC is regarded as an implicit policy.

Off-Path Caching

• CINC. Cooperative In-Network Caching (CINC) [41] reduces the cache redun-

dancy by distributing the cached content based on a hash function. Each router is

assigned a label which is calculated offline with the objective of minimizing the total

distance to neighbourhood nodes of different labels. Data packets also carry a se-

quence number and can only be cached on routers where the router label matches the

hashed sequence number. As to a certain router, it is expected that there is no du-

plicate content existing in the one-hop range. To implement this design, CINC adds

a new Collaborative Router Table (CRT), which records the neighbourhood routers

and corresponding labels. ICN routers would forward data packets to the appropriate

neighbour for caching, according to CRT.

To utilize the cached content in the neighbourhood, CINC adds a second table

2.3. ICN CACHING RESEARCH 19

in each router called Collaborative Content Store (CCS), which records the neigh-

bourhood routers, the cached names, and the output interfaces to reach the caches.

Requests relayed from any router would refer to this table first instead of following

the default routing path discovered by name resolution service. This explains why

CINC is categorized under off-path caching.

In non-cooperative caching, the availability of information is discovered via name

resolution only. In cooperative caching, the cache consistency problem arises due

to the frequent insertion and deletion of content at different caches. CINC solves

this consistency issue by inferring the caching status of neighbourhood routers and

updates the CCS table based on the incoming requests. If a request comes from a

neighbour node where the corresponding entry exists in CCS, it means the content

has been evicted by the neighbourhood router.

• Intra-AS. The Intra-AS cache cooperation scheme [60] is similar to CINC in terms

of neighbourhood collaboration. Requests are redirected to a neighbouring node to

achieve better cache hit ratio. Intra-AS is different from CINC in two aspects. First,

the collaboration between routers is made by exchanging the cache status summary.

Second, the information availability is improved by tracking a Minimum Dominating

Set (MDS), instead of applying the hash-based mapping. Only a subset of routers,

which are reachable by any node in the network, would be selected to cache content.

• CATT. Cache Aware Target idenTification (CATT) [15] is a potential-based caching

scheme. Each cache router would initially assign a potential value for content. This

potential value is then broadcast inside the network, and will decrease as the hop

distance from the origin router increases. This value represents the ‘attraction’ to re-

quests. A route is selected by the node to forward a request, only if the route receives

2.3. ICN CACHING RESEARCH 20

the highest potential value. The evaluation results show that CATT can significantly

reduce the access latency.

From above descriptions, the design of ICN caching decision policy usually com-

bines features from different categories, such as off-path with cooperative caching.

With support from the ICN architecture, the caching policy can be customized to

adapt to different settings and network conditions.

2.3.3 Cache Capacity Allocation

Prior studies on cache capacity allocation attempted to answer how to allocate the

cache capacity among ICN routers in order to reach the maximal cache hit ratio

under limited cache budget. Some researchers advocate adjusting cache capacity

dynamically in real time. Wang et al. [62] modelled the optimal cache allocation

with 0-1 knapsack problem and solved it with dynamic programming. Their solution

adjusts the cache capacity of routers based on the content popularity. They conclude

that more cache space should be allocated on the edge when dealing with frequently

requested content, while intermediate routers should cache more of the less popular

content to reduce cache redundancy.

Another direction argues against ubiquitous caching in ICN. Fayazbakhsh et al. [16]

claimed that caching at the edge of the network yields almost the same performance

gain as ubiquitous caching. Their discovery was reinforced in [11], where an analyt-

ical model derived a similar result as [16]. However, these contributions overlook an

important issue of content redundancy due to edge caching, especially with limited

cache budgets and a large number of edge routers. Their performance was evaluated

under the simplistic Least Recently Used (LRU) scheme, which differs significantly

2.4. CACHING FOR ADAPTIVE STREAMING 21

from popularity-based and application-specific caching schemes.

2.4 Caching for Adaptive Streaming

The importance of in-network caching for adaptive streaming is well recognized. How-

ever, there is no consensus on how to manage these resources to maximize their uti-

lization. To date, two main paradigms have been explored, one where caches are

distributed across the entire network and one where caching nodes are only allocated

at the network edge. Evidently, both models have their own merits. Ubiquitous

caching on network intersections would effectively reduce traffic load in the core net-

work, but would in turn be unable to fulfill requests closer to consumers. Edge caches,

on the other hand, would result the least access delay, but at the same time result in

a higher degree of cache redundancy and require more caching capacity.

Ubiquitous and edge caching are both adapted to cater to ever-expanding video

streaming applications. With recent advancements in mobile/edge computing, com-

putational resources are moving from the cloud to the network edge, which enables

on-the-fly video transcoding at edge caches. For example, a representative transcod-

ing paradigm [27] describes that network edge nodes may only cache the highest

quality content and transcode requests to lower qualities when the demand on low

bitrate content arrives. Ubiquitous caching, instead, relies on bitrate-aware caching

schemes to enhance multi-bitrate streaming. For example, smooth playback can be

achieved by safeguarding a network of caches for particular bitrates along each for-

warding route [39]. However, deciding which one of these paradigms is superior in

performance, has been a long-standing question.

2.4. CACHING FOR ADAPTIVE STREAMING 22

…….

Fixed Cache Space

Cache all-bitrates for
most popular X segments

Cache highest-
bitrate for the rests

Figure 2.3: Illustration of a transcoding scheme. All-bitrate versions are cached for
the most popular x video content, while only the highest version is stored
for the rest.

2.4.1 Transcoding on Edge Cache

Grandl et al. [20] pointed out a core challenge of caching for adaptive streaming,

whereby the same content encoded in different bitrates competes for limited caching

storage. The potential of edge caching shown in previous studies [16, 11] motivated

transcoding at the network edge to enhance adaptive streaming service. Specifically,

Grandl et al. proposed DASH-INC, which only caches the highest bitrate of video

on the network edge, arguing that requests for lower bitrates would be serviced via

transcoding at each router. However, as transcoding has to be done almost on a per-

request basis, one cannot simply assume that with the increasing demand for video

content, in-node processing would be scalable for real-time requests.

Built on the prototype introduced in [20], Jin et al. proposed the adoption of a

partial transcoding model [27] shown in Figure 2.3, as a hybrid compromise. In this

model, each edge node selectively caches all bitrate versions for popular video content,

and only keeps the highest quality for the rest (as long as the cache capacity allows

it). As a result, transcoding only needs to be performed for unpopular content which

reduces the in-node processing load. The partial transcoding ratio then becomes

a critical parameter which decides how to divide the caching space for these two

2.4. CACHING FOR ADAPTIVE STREAMING 23

different usages. This ratio is derived by minimizing the total cost of caching system.

There are three types of costs: Storage, Transcoding and Bandwidth. The storage

cost is charged by allocating cache space to each edge node. The transcoding cost is

incurred when the highest bitrate content is transcoded into any lower bitrate version.

The bandwidth cost is triggered by retrieving content from a video producer when a

cache miss occurs at the network edge. The optimal partial transcoding ratio then

depends on the trade-off between these three types of costs. However, different cost

models, which focus on various performance metrics, such as energy consumption,

access delay, and throughput, would result in far different results. For example, CPU

usage becomes a significant component of transcoding cost in [70]. Finding a generic

cost model for transcoding is still an open issue, as it varies from the underlying

hardware and topology.

2.4.2 Bitrate-Aware Ubiquitous Caching

With the advent of next-generation routers that are capable of caching, there are

a number of networking paradigms considering a wider-adoption of caching at its

routers. While ICNs have this feature inherent in its design, the expansion of adap-

tive Content Distribution Networks, with more agile models for allocating caching

resources across networks, are opening up new frontiers in network-wide caching.

Ubiquitous caching [24] is a fundamental feature of ICN. Due to the decoupling of

content and location in ICN naming mechanisms, information is not bound to a par-

ticular host and can be retrieved from anywhere in the network.

The interaction between in-network caching and bitrate adaptation has attracted

the attention of researchers, leading to studies on bitrate-aware caching schemes.

2.4. CACHING FOR ADAPTIVE STREAMING 24

Low Medium High

Video Resolution

Edge-Based
Transcoding

Bitrate-Aware Ubiquitous
Caching

Figure 2.4: Contrasting the caching behavior of ubiquitous bitrate-aware caching vs.
Edge-based caching with transcoding. In the latter paradigm, more
caching resources need to be allocated at the edge to cater for storing
most of the popular video segments at their highest bitrates.

Araldo et al. [3] attempted to build a more direct relationship between video quality

and cache placement of multiple versions of video content. Lee et al. [36] extended

the principal of value-based caching schemes and applied it over different layers of

bitrates to increase cache reuse ratio. Kreuzberge et al. [30] solved the challenge

of unfair bandwidth sharing and proposed a cache-aware traffic shaping policy for

adaptive streaming.

2.4.3 Transcoding vs. Bitrate-Aware Caching

Although both transcoding and bitrate-aware ubiquitous caching are promising, their

impact of each on consumers’ QoE were never compared under realistic adaptive

2.4. CACHING FOR ADAPTIVE STREAMING 25

streaming scenarios. It was our intuition, given the inherent scalability and adap-

tiveness to content, that ubiquitous in-network caching would outperform edge-based

transcoding in most scenarios. After building our ubiquitous caching model, presented

in Chapter 4, we carried out extensive experiments to contrast the performance of

both paradigms. It was evident that ubiquitous in-network caching of multiple bi-

trates was mostly superior to transcoding models. Our detailed comparisons and

experiments are detailed in Appendix A. A brief description of the performance com-

parison is provided below.

The operational difference between these two caching paradigms are depicted in

Figure 2.4, where all cache resources are only allocated at edge nodes for transcoding

and distributed evenly across all nodes for bitrate-aware caching. To highlight the

potential gain of transcoding at the edge [27], in our experiments we assume zero

processing delay of transcoding, to cater for an upper bound performance that the

edge caching paradigms may achieve. This performance is compared against the best

known bitrate-aware caching scheme. We discover that even under the assumption of

zero transcoding delay, bitrate-aware caching can often match or even outperform the

upper bound performance of transcoding across various bandwidth patterns, cache

capacity, and popularity skewness measures. Based on our observations, bitrate-

aware caching is more suitable to serve consumers with fixed and dedicated link

capacity when cache resources are constrained. Online transcoding instead shows

more potential to serve mobile consumers when there is a significant amount of caching

space and computational power at the edge, but the ultimate performance must be

verified in real applications where transcoding delay cannot be ignored.

26

Chapter 3

Bitrate-Selective Caching for Throughput

Enhancement

3.1 Introduction

The inherent capacity of ICN to dynamically cache content enables novel models for

provisioning different services, contents, and interest groups. Many research efforts

have already investigated ICN caching [69], where typical schemes (e.g., [63, 53, 49])

target minimizing hop counts or cache-miss rates, in order to improve the network

performance for adaptive streaming service.

Both hop distance and cache-miss rate are generic performance metrics. However,

in adaptive streaming application, a consumer-centric QoE measure is more straight-

forward than generic metrics to reveal the essential satisfaction level of streaming

service.

QoE includes many objective features, such as video quality, playback freezing

and bitrate oscillation. While a Mean Opinion Score (MOS) is used to represent

the overall QoE from a subjective perspective, to evaluate the performance of any

streaming system, several researchers [14, 44] attempted to build a QoE model that

3.1. INTRODUCTION 27

maps the combined objective QoE features to a subjective MOS. Although much

progress has been made, there is still a lack of consensus on a standard QoE model.

We adopt the approach of looking into each objective QoE metric in order to provide

a comprehensive evaluation on the proposed caching system.

Among all QoE features, Duanmu et al. [14] discovered that video quality has

the strongest correlation with overall satisfaction. Since video throughput has a

direct impact on bitrate adaptation decisions, a higher video throughput would mostly

trigger requests for better video quality that enhances consumers’ QoE. Thus, we

address the core caching problem for adaptive streaming by optimizing the video

throughput. To this end, we

• develop DaCPlace as a benchmark caching scheme, generalized to scenarios

where consumers demand adaptive bitrates. The objective of DaCPlace is to

minimize access delay per bit of requested video, as a indicator of overall video

throughput.

• perform a rigorous analytical model for adapting to heterogeneous requests in

future Internet applications, and map them on ICN architecture to facilitate

in-depth analysis of caching performance influenced by bitrate adaptation.

• design a heuristic scheme, StreamCache, where each router makes caching deci-

sions using local statistics exchange to achieve low-overhead cache placement.

Comprehensive simulations are conducted and demonstrate how, under vari-

ous network settings (e.g., available cache storage and popularity distribution),

StreamCache achieves near-optimal performance in contrast to DaCPlace.

The remainder of this chapter is organized as follows. Section 3.2 reviews related

3.2. RELATED WORK 28

On-Path On-Path & Off-path

Coordinated
Cache Router

Figure 3.1: Different system settings between master thesis and this work. The red
line indicates a forwarding path from consumers to a video producer.
Routers in a rectangle are coordinated to make caching decisions.

work, where the contributions of my master thesis is explained, and the differences are

highlighted to emphasize the novelty of this work. Section 3.3 describes the system

upon which our designed caching algorithms are applied. We elaborate in Section 3.4

on the problem formulation of DaCPlace benchmark solution, and present the deriva-

tions for modeling the caching process, with specific emphasis on the queueing anal-

ysis. Section 3.5 describes the design of low-overhead scheme StreamCache, and we

present experiment setup and performance evaluation results in Section 3.6 . Finally,

we conclude in Section 3.7.

3.2. RELATED WORK 29

3.2 Related Work

The effect of ubiquitous caching for adaptive video delivery has been studied and

reported in my master thesis [37], where cache placement problem is formulated and

solved by optimizing the video throughput in a much constrained system. Specifically,

I proposed an optimal on-path caching scheme DASCache, where cache decisions

are coordinated among ICN routers along pre-determined routing paths to video

producers. This chapter instead tackles a more sophisticated system, where both

on-path and off-path caching are incorporated. As shown in Figure 3.1, the proposed

caching algorithms optimize not only the caching placement on the path to producer,

but also coordinate with resources in the neighborhood. A better caching decision

relies on accurate modeling of adaptive video traffic over ICN. Hence we analyze the

impact of interest aggregation, as a unique feature of ICN that reduces redundant

traffic, to facilitate a more accurate estimate of video throughput.

3.3 System Description

We first detail our system, explaining the network architecture and routing protocol.

Next, the video request pattern is elaborated to model the behaviors of consumers in

adaptive streaming applications.

3.3.1 Network Architecture

Two different types of routers are considered: edge and intermediate routers. All

consumers are served exclusively by edge routers.

Caching is not a standalone component of ICN, but highly coupled with Interest

forwarding. It is hence essential for caching to work with routing and forwarding in a

3.3. SYSTEM DESCRIPTION 30

1

5

8 9

6

10

11

4

2 3

7

Intermediate Router

Edge Router

Video Server

Figure 3.2: Network Topology. The bold lines indicate routing paths discovered by
the OSPFN.

cooperative way. We adopt the Open Shortest Path First routing scheme for Named-

data (OSPFN) [61], which is the most of both popular and commonly used routing

protocol in ICN. OSPFN discovers the shortest routing path from each router to the

video producer, as depicted in Figure 3.2, along which video requests can be satisfied

by any cache node. However, we argue that the system would not reach the optimal

performance when only the on-path caching resources are utilized. For instance, in

Figure 3.2, if there is a request sent from consumers connecting to router 9 and the

video content is not cached along the routing path to the producer but instead cached

on router 8. on-path caching would ignore router 8 which may instead respond to the

request faster than the video producer. This motivates our system to consider not

3.3. SYSTEM DESCRIPTION 31

only on-path caching but also opportunities from the off-path caches.

When on-path and off-path caching are incorporated, each router has more than

one option (interface) to forward a video request. Previous research by Rossini et

al. [51] showed that the single-path forwarding, which relays requests through only

one interface, results in the lowest network load, compared with existing multi-path

forwarding schemes which send requests through multiple interfaces simultaneously.

Thus, we adhere to ICN’s single-path forwarding. Each router is assumed to apply

the best route forwarding strategy, which chooses an interface with the minimal delay,

to retrieve the video content.

3.3.2 Video Request Patterns

Video request patterns are described in terms of levels: file and chunk. Requests

made on the file level represent the popularity of the video content. Once consumers

decide to watch a video file, Interests are tallied with the pattern on chunk level.

These requests are generated sequentially, following the exact video playback.

Based on this pattern, gauging the video file request is an umbrella concept, which

consists of a group of consecutive Interests for content belonging to the same video

file. Typically, video file requests are assumed to be made independently. However,

since video chunk requests are generated sequentially, two consecutive Interests from

the same consumer yield notable correlation. In our system, each request for a file

contains a batch of requests for chunks, and the number in each batch is variable. This

feature corresponds to the typical viewing behavior: start playing from the beginning;

keep watching for a period of time; terminate the media session when bored or out

of time.

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 32

3.4 DaCPlace: Benchmark for Throughput Enhancement

DaCPlace is a benchmark solution to adaptive video caching, which is formulated as a

Mixed Integer Linear Programming (MILP) problem. It optimizes video access time

per bit, as an indicator of video throughput measured by consumers. When DaCPlace

is executed, cached content is updated periodically on each router, over the period

of a pre-determined round. In order to optimize caching decisions, statistics are

collected to capture request patterns and cater to popular videos. At the beginning

of each round, operational parameters are derived based on the statistics from the

last round and are used as inputs to DaCPlace; the system then updates caches based

on decisions made by DaCPlace and refreshes the statistics, preparing for the next

round.

3.4.1 Cache Placement Problem Formulation

We model an ICN as a connected graph G = (V,E), where nodes in V are composed

of video producers P, edge routers D and intermediate routers N. Each consumer is

served exclusively by one edge router. Every node v ∈ V is equipped with content

storage capacity Cv dedicated to adaptive video caching. The actual allocation of Cv

has been investigated in related literature as a cache space allocation problem, which

is well detailed and addressed in Section 2.3.3.

The number of video files in the system is represented by F . Our model reflects

that content for adaptive streaming is fragmented into equal-duration segments, i.e.,

segments encoded at variable bitrates will be variable sizes. For ease of presentation,

video files are fragmented into the the same number of fragments K. The number

of bitrate encodings is B. Hence, video segments are identified by a (file, segment,

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 33

1

5

8 9

6

10

11

Forward Path 1

Forward Path 2

Forward Path 3

4

2 3

7

Figure 3.3: The possible content delivery paths

bitrate) triple, (f, k, b), where 1 ≤ f ≤ F, 1 ≤ k ≤ K, and 1 ≤ b ≤ B. Each video

segment has size S(f, k, b); we use S(b) to simplify notation since equal duration video

segments vary in size with bitrate encodings.

Let xv denote the cache placement decision, where v ∈ V and xv(f, k, b) ∈ {0, 1}.

Thus a decision of xv(f, k, b) = 1 indicates that video segment (f, k, b) is cached at

node v. We use Γd to denote the set of possible endpoints of Interest forwarding

paths starting from an edge router d. As current system utilizes on-path and off-

path caching capacity, Γd includes not only video producers but also selective edge

routers. These options in Γd define the boundary of cache coordination: each router

only exchanges its caching status with other nodes along forwarding paths that can

reach Γd. Let us take edge router 10 in Figure 3.3 as an example. In addition to the

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 34

video producer, edge router 6 and 11 are also included in Γ10 (i.e., Γ10 = {1, 6, 11}).

However, it is important to note that other edge routers, such as routers 8, 9 and 5

are not included in Γ10 because Interest packets sent from edge router 10 would not

reach them: the video producer cannot be an intermediate node in any forwarding

path.

We define [d,Γd(p)] as an array of nodes on a forwarding path, starting from an

edge node d to an endpoint p in the set Γd. For simplicity, we use [d, p] to denote

[d,Γd(p)]. The length of this forwarding path [d, p] is L. We further define the index

of [d, p] to start from 1, and the (i+1)th node denote the next-hop of ith node on [d, p].

Thus xi[d,p] represents the cache decision variable on the ith router of [d, p] (where f ,

k and b are implicit). Each xi[d,p] also becomes an alias within xv for example, x1
[d,p]

is an alias of xd, which provides a view of the edge router on the forwarding path to

the end node p.

We further define binary variable δi[d,p] as the caching status indicator, which

reflects an ‘aggregated’ cache placement decision from d to ith router of [d, p]. δi[d,p] = 1

only if any cache placement decision variable xj[d,p] = 1 for 1 ≤ j ≤ i. In other words,

δi[d,p] = 1 if content is already cached on a downstream router. Our scheme would

evaluate all possible forwarding routes to make caching decisions, where the p is

either a video producer or an edge router on the sibling branch. Finally, the number

of requests on video segment (f, k, b) received by edge router d is denoted as ξd(f, k, b),

with ξd substituted for simplicity. Notation is additionally summarized in Table 3.1.

In adaptive streaming, video throughput is used by the adaptation algorithm

to estimate the maximum supported bitrate. This is typically based on measuring

the round trip time (RTT) delay of the most recently requested video chunk. A

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 35

Table 3.1: Summary of notations

Notation Meaning

V Set of ICN nodes
E Set of links
D Set of edge routers
N Set of intermediate routers
P Set of video producers
S Sizes of video segments
C Cache capacity of ICN router
B Number of supported bitrates
F Number of adaptive video files
K Number of video Segments in any file
q Popularity distribution of video files
p The probability of continuing watching the video
π Stationary distribution on bitrate selection
x Cache placement decision (0 or 1)
δ Caching status indicator (0 or 1)
ξ Number of video requests received by edge router
[d, p] ICN routers on forwarding path from edge router d to node p
λ Average request arrival rate before interest aggregation

λ̃ Average request arrival rate after interest aggregation
Γ Endpoints of Interest forwarding paths
θ link bandwidth
RToh Round trip one-hop delay
RTT Round trip time delay of a request from an edge router
rRTT Residual RTT delay of a request from any router
µ Average request miss / data arrival rate

consumer who wants to switch to a higher bitrate must achieve high throughput first.

The problem is further compounded as consumers are highly sensitive to video delay.

Therefore, we argue for focusing on minimizing the average access time per bit and

optimize the ensuing cache placement. This objective is further specified via the

following definitions.

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 36

Definition 3.1. τ[d,p](f, k, b) denotes the feasibility whether video requests for content

(f, k, b) can be forwarded along path [d, p]. τ[d,p](f, k, b) is derived by

τ[d,p](f, k, b) =

0, if p is the producer

∞ · (1− δL[d,p]), otherwise

(3.1)

We highlight that τ[d,p](f, k, b) would return 0 for a feasible forwarding path, i.e.,

if a request for video chunk (f, k, b) reaches the video producer or is satisfied by a

cache along that path. Otherwise, τ[d,p](f, k, b) is assigned ∞. As τ is used in access

delay definition which appears later in the optimization objective, an infinite value of

τ[d,p](f, k, b), would imply that no cache along [d, p] can satisfy such requests.

Definition 3.2. E[RTT[d,p](f, k, b)] is an accumulated round-trip delay for a video

request (f, k, b) on a given forwarding path [d, p]. We denote E[RT ioh[d,p](b)] as the

single-hop delay on the ith hop for video content encoded in bitrate b, where ‘oh’

denotes One-Hop. E[RTT[d,p](f, k, b)] is derived by

E[RTT[d,p](f, k, b)] = τ[d,p](f, k, b)+E[RT 1
oh[d,p](b)]+

L−1∑
i=1

(1−δi[d,p])·E[RT i+1
oh[d,p](b)] (3.2)

Equation (3.2) sums round-trip delays on each hop over a given forwarding path.

The appearance of τ[d,p](f, k, b) guarantees that an infeasible forwarding path would

result in an infinite value of E[RTT[d,p](f, k, b)], which would not be considered by

the optimization. E[RT 1
oh[d,p](b)] is always included, as it denotes the delay on ‘last-

mile’ link, which exists anyway no matter the caching decision. Whether the rest of

single-hop delays on [d, p] should be added into E[RTT[d,p](f, k, b)] depends on the

caching status indicator δi[d,p]. Take the forwarding path from edge router 10 to video

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 37

producer 1 in Figure 3.3 as an example. If the requested video content can only

satisfied from the producer, δ[10,1] would always return 0 for any i where 1 ≤ i < L.

Thus, E[RTT[d,p](f, k, b)] would include round-trip delays on every hop over that path.

Our system applies the best route forwarding strategy, whereby each router selects

the next hop with the least data retrieval time. To implement this feature in the

optimization formulation, we define E[RTTd(f, k, b)] which ensures the smallest RTT

to retrieve video content among all forwarding path candidates as follows.

Definition 3.3. E[RTTd(f, k, b)] is the expected delay of video requests made by

consumers served under edge router d, which is derived by

E[RTTd(f, k, b)] = min
p∈Γd

{
E[RTT[d,p](f, k, b)]

}
(3.3)

We choose to minimize the average access delay per bit, which reflects the perfor-

mance of video downloading and relates to the throughput experienced by consumers.

min
∑
d∈D

F∑
f=1

K∑
k=1

B∑
b=1

ξdqf (1− p)pk−1πd(b)
E[RTTd(f, k, b)]

S(b)
(3.4)

s.t. xv(f, k, b) ∈ {0, 1}, ∀v ∈ V (3.5)

δi[d,p] ∈ {0, 1}, ∀d ∈ D,∀p ∈ Γd, 1 ≤ i ≤ L (3.6)∑
f∈F

∑
k∈K

∑
b∈B

S(b) ∗ xv(f, k, b) ≤ Cv, ∀v ∈ V− P (3.7)

δi[d,p] ≥ δi−1
[d,p], (3.8)

δi[d,p] ≥ xi[d,p](f, k, b), (3.9)

δi[d,p] ≤ δi−1
[d,p] + xi[d,p](f, k, b), (3.10)

δ0
[d,p] = 0, (3.11)

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 38

xp(f, k, b) = 1, ∀p ∈ P (3.12)

E[RTTd(f, k, b)] ≥ E[RTT[d,p](f, k, b)]− β[d,p]M, ∀d ∈ D,∀p ∈ Γd (3.13)∑
p∈Γd

β[d,p] = |Γd| − 1 (3.14)

β[d,p] ∈ {0, 1}, ∀d ∈ D, ∀p ∈ Γd. (3.15)

Objective

The objective function minimizes the system-wide access delay per bit. This de-

lay is represented by E[RTTd(f,k,b)]
S(b)

. Our previous definition 3.3 on E[RTTd(f, k, b)] is

nonlinear. We transform it to a linear presentation by making E[RTTd(f, k, b)] a

continuous variable, and converting definition 3.3 into multiple linear expressions to

play as constraints upon this variable E[RTTd(f, k, b)].

The rest of components in the objective function are weights to the access delay

per bit of different video segments. We use the number of requests ξd to distinguish

the contributions from video consumers, and use q to denote video content popularity,

where qf represents the probability of interests in video file f . After a certain video

file is determined, consumers start requesting a series of segments in that file. In

Section 3.3.2, we described the most common pattern when people watch videos.

Under this setting, the probability of requesting kth segment follows a geometric

distribution, where the probability is P (X = k) = (1−p)pk−1, k ≥ 1, k ∈ Z. p denotes

the chance for a consumer to continue watching the next segment.

We denote πd(b) as the probability for consumer-side bitrate adaptation to request

for content encoded with bitrate b. As the bitrate adaptation is influenced only by the

throughput of its preceding request, the process of adaptive video requests inherently

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 39

satisfies the markov property and can be modelled as a discrete-time markov chain.

Each state in this markov chain corresponds to one encoding bitrate. The process of

bitrate adaptation, which switches from one video quality to another, is equivalent

to the transition between two states. As a result, πd(b) is essentially the stationary

distribution of a markov chain, which facilitates us to understand the dynamics of

bitrate adaptation without tracking the real-time control.

Constraints

We build constraints which relate to the Cache Capacity, Caching Status Indicator,

and Best Route Selection, as follows.

• The Cache Capacity defined in Constraint (3.7) ensures that the total size of

cached video content is bound by available cache capacity over all cache routers except

video producers.

• The relationship between Caching Status Indicator δ and cache placement deci-

sions x is defined by Constraints (3.8)-(3.11). δ is an aggregation of cache placement

decisions x. Constraints (3.8) and (3.9) give the lower bound of δi[d,p], ensuring that

its value should be greater than or equal to both its last hop indicator δi−1
[d,p] and the

cache placement decision of the current router xi[d,p]. Constraint (3.10) gives the up-

per bound. When both δi−1
[d,p] and xi[d,p] are 0, Constraint (3.10) will enforce δi[d,p] to be

assigned 0 since video content is not cached yet along [d, p]. Constraints (3.11) and

(3.12) cope with the two special cases that are the consumer and the producer, re-

spectively. As the index of [d, p] starts from i = 1, we assign δ0
[d,p] = 0. Conversely, the

caching decision on video producer xp is equal to 1 for any content, since unavailable

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 40

content on in-network caches can always be found at the producer.

• Our interest forwarding applies Best Route Selection strategy, which is reflected

via a non-linear min operator as appeared in definition 3.3. We transform this origi-

nal definition using the ‘big-M’ approach to linear expressions (3.13)-(3.14). In Con-

straint (3.13), M denotes a very large positive constant number. E[RTT[d,p](f, k, b)] is

not a variable, but instead expanded via previous definitions 3.2 and 3.1. We also use

an artificial binary variable β[d,p] (where (f, k, b) is implicit), to indicate the best route

choice. When β[d,p] = 1, the right hand side of Constraint (3.13) is a very small nega-

tive number. Since access delay E[RTTd(f, k, b)] is always larger or at least equal to

0, β[d,p] = 1 guarantees this constraint is always satisfied. When β[d,p] = 0, Constraint

(3.13) is essentially E[RTTd(f, k, b)] ≥ E[RTT[d,p](f, k, b)]. The continuous variable

E[RTTd(f, k, b)] now has a lower bound E[RTT[d,p](f, k, b)]. As our optimization min-

imizes the access delay, E[RTTd(f, k, b)] is forced to adopt this lower bound value,

which is the round-trip delay along forwarding path [d, p]. Combined with Constraint

(3.14), we have a total |Γd| − 1 number of β which could be assigned 1, with only

one exception where β[d,p] = 0. Our optimization implements the Best Route Selec-

tion by considering all possible p in Γd and assign the only β[d,p∗] = 0, when video

requests are forwarded along path [d, p∗] that results in a minimal round-trip delay

E[RTT[d,p∗](f, k, b)].

3.4.2 Expected Delay Derivation

To solve the cache optimization problem, we must derive the accumulated round trip

delay E[RTT[d,p](f, k, b)]. Since E[RTT[d,p](f, k, b)] is composed of multiple single-hop

delays E[RT ioh[d,p](b)] across all links over path [d, p], we thus elaborate on our estimate

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 41

to this expected single-hop delay.

Four sources contribute to the video access delay: processing, propagation, trans-

mission, queueing. We assume the video server and consumers are under the service

of the same ISP, and thus the propagation delay is negligible. Processing delay is

also omitted because of the O(1) hashing technique of table lookup on unsatisfied

requests [25]. Thus, to compute E[RT ioh[d,p](b)], we consider the transmission and

queueing delays of video content. Let θi[d,p] denote the bandwidth of link over which

the video Data packet is delivered from the ith router to the (i−1)th router (in the re-

verse order along the request forwarding path [d, p]). We use E[Qi
[d,p](b)] to represent

the average queueing delay at ith router when the video segments decoded in bitrate

b are delivered to the (i− 1)th node. The expected single-hop delay, E[RT ioh[d,p](b)] is

derived by

E[RT ioh[d,p](b)] =
S(b)

θi[d,p]
+ E[Qi

[d,p](b)]. (3.16)

As both S(b) and θi[d,p] are constant input parameters, the problem of calculat-

ing E[RT ioh[d,p](b)] becomes how to provide a good estimate of E[Qi
[d,p](b)]. In the

rest of this section, we first explain interest aggregation for a better queueing delay

estimation in ICN, and then detail the derivation of E[Qi
[d,p](b)] using queueing theory.

Interest Aggregation

Quite often, large numbers of duplicate requests are witnessed in a short time frame

for the same video. Under the current host-centric architecture, independent commu-

nication between a consumer and a producer must be maintained, which consumes a

lot of resources (e.g., bandwidth) to repeatedly deliver the exact same content. ICN

remedies this inefficiency via interest aggregation, where each router keeps track of

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 42

T

Forwarded Interest

Filtered Interest

rRTT rRTT

Data Arrives

Figure 3.4: Filtering effect of interest aggregation. The length of rRTT changes ac-
cording to real-time network condition.

unsatisfied requests and discards duplicate ones to prune unnecessary traffic. When a

new Interest packet arrives at a certain router, not only would it be forwarded to the

next hop but also the name of the content in that packet would be recorded. Next

time, when an Interest packet for the same content arrives before the corresponding

Data is sent back to the router, this duplicate request would be discarded.

The video request pattern explained in Section 3.3.2 could be generalized as a

batch renewal process [46]. We denote rRTT i[d,p](b) as the residual round trip time

delay on ith router along path [d, p], which is the time interval between forwarding

a video request and receiving the corresponding data from either a video producer

or a cache. Caused by interest aggregation, there exists a filtering effect on requests

received by any router, which is shown in Figure 3.4.

Our fundamental goal is to determine optimal video caching by estimating the

round trip time delay, not to model video traffic over ICN. Due to the complex-

ity of analyzing the superposition of two renewal processes, we argue that a good

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 43

approximation is critical to guiding the cache placement decision.

Carofiglio et al. [7] proposed an approximation, however, based on an assumption

that once a video request is filtered, the following requests for the rest of video chunks

in the same file will also be filtered. This assumption cannot be applied in a general

scenario, since RTT depends on the cache placement and varies for video chunks of

different bitrates. Instead, we analyze the effect of interest aggregation on a chunk

level. The process of requests after filtering is approximated by a Poisson process.

The action of filtering is captured by the thinning of a Poisson process with

probability p̃i[d,p](f, k, b), which is

p̃i[d,p](f, k, b) = P (interval time > E[rRTT i[d,p](b)]),

= e−λv(f,k,b)E[rRTT i
[d,p]

(b)].

(3.17)

λv(f, k, b) in Equation (3.17) is the sum of incoming request rates for a video segment

(f, k, b) received by router v. v is also an alias with ith router along path [d, p].

However, λv includes not only the input from edge node d but also rates from other

paths through v. This approximation could be interpreted as: the video requests after

filtering are independently picked from the original ‘request flow’ (as shown in solid

arrow in Figure 3.4) with probability p̃. As a result, the time interval between two

subsequent requests is statistically guaranteed to be larger than rRTT . The average

request rate after filtering λ̃ is calculated by λ̃ = p̃ ·λ, which is an essential component

when we derive the queueing delay.

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 44

Receiving Queue

Sending Queue

Sending Queue

Sending Queue

Data flow

Video Chunk in Service

Video Chunk in Queue

Queuing

System

Figure 3.5: Queueing model for adaptive streaming system

Queueing Delay Analysis

For each video delivery path through a router, we model the queueing system to

consist of the Receiving Queue and the corresponding Sending Queue on that path.

As shown in Figure 3.5, both queues are assumed to be FIFO queues and are dedicated

to serve streaming packets for ensuring QoE. The Receiving Queue dispatches the

Data packet to a corresponding Sending Queue and that is where the queueing delay

occurs.

As video requests is already modeled by an approximate Poisson process, Data

packets are assumed to follow the same process as the requests, with the average input

rate equal to the request arrival rate. The job service time of a video Data packet

is determined by its corresponding size. As to adaptive streaming over ICN, the size

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 45

of a video segment (which is sent in one Data packet) only varies according to its

encoding bitrate. Data packets with the same encoding bitrate belong to one class,

sharing the same service time in the queue. As there are multiple available bitrates

(classes), we adopt the multi-class M/G/1 model to analyze the queueing delay.

In a dynamic adaptive streaming system, we assume traffic load ρ < 1. This

assumption is reasonable, since bitrate adaptation not only changes the requested

video quality but also correspondingly adjust the network traffic load. ρ ≥ 1 means

that even requesting the lowest bitrate would cause significant video playback freezing

and further lead to a total system failure, which is an extreme case and beyond the

range of this work. Based on this assumption, the queueing delay is derived as follows.

Definition 3.4. Based on the multi-class M/G/1 model, the queueing delay E[Qi
[d,p]]

to deliver a Data packet from the ith router to the (i − 1)th router along the path

[d, p] is

E[Qi
[d,p]] =

∑B
b=1 µ(b)S(b)2θ−2

2− 2
∑B

b=1 µ(b)S(b)θ−1
, (3.18)

where the superscript and subscript on µ(b) and θ are implicit. µ(b) denotes the

arrival rate of video chunks encoded in bitrate b.

Proof. The arrival rate of Data packets µ(b) is calculated based on the superposition

of independent Poisson processes [4] as follows.

µ(b) =
F∑
f=1

K∑
k=1

λ̃v(f, k, b) · (1− xi[d,p]), (3.19)

where λ̃v is the request arrival rate after interest aggregation.

The expected service time E[ϕ(b)] of given data packets encoded with bitrate b is

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 46

calculated by

E[ϕ(b)] = ϕ(b) =
S(b)

θ
. (3.20)

The queueing system load ρ (where [d, p] and i are implicit), can be derived by

ρ =
B∑
b=1

ρ(b) =
B∑
b=1

µ(b)E[ϕ(b)]. (3.21)

Our assumption of ρ < 1 means that the input rate to the queue is less than the

output rate, which guarantees the queueing model is not overloaded. The system

load ρ is a key component in the queueing delay E[Qi
[d,p]], as we derive by applying

the Little’s Theorem and Pollaczek-Khinchin (P-K) formula [4] as follows,

E[Qi
[d,p]] =

E[RS]

1− ρ , (3.22)

where RS denotes the Residual Service Time, which is the remaining time seen by

the new packet when it arrives in the queueing system until the current in-service

packet is complete. Consider a time interval [0, t], this Residual Service Time in a

multi-class M/G/1 model is derived by

E[RS] =
1

2t

B∑
b=1

Mb(t)∑
m=1

ϕ(b)2, (3.23)

where Mb(t) denotes the number of packets, encoded with bitrate b, which complete

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 47

their services during [0, t]. As t→∞, we have

E[RS] =
1

2

B∑
b=1

lim
t→∞

Mb(t)

t
· lim
t→∞

∑Mb(t)
m=1 ϕ(b)2

Mb(t)

=
1

2

B∑
b=1

µ(b)E[ϕ(b)2]

(3.24)

This is due to the service time of Data packets, ϕij(b), shown in Equation (3.20),

is a constant value. Then, we have E[ϕ(b)2] = E[ϕ(b)]2. Therefore, synthesizing

Equations (3.20)-(3.24), the expected queueing delay is

E[Qi
[d,p]] =

∑B
b=1 µ(b)S(b)2θ−2

2− 2
∑B

b=1 µ(b)S(b)θ−1
.

3.4.3 DaCPlace Algorithm and Complexity

DaCPlace solves the optimal cache placement for throughput enhancement. The

optimization is formulated as a MILP problem. Given the known complexity of

MILP, solving this problem is NP-Complete.

The caching decisions by DaCPlace are updated periodically according to the

most recent bitrate-specific statistics on video popularity. We refer to this popularity

update as the outer iteration. In addition, we also define a inner iteration to

resolve a circular dependency that exists between E[RT ioh[d,p]] and caching placement

decisions (x). E[RT ioh[d,p]] is a key component to derive the round-trip delay along

a forwarding path [d, p] as shown in definition 3.2. However, E[RT ioh[d,p]] depends

on queueing delay E[Qi
[d,p]] in Equation (3.16), which is further influenced by the

3.4. DACPLACE: BENCHMARK FOR THROUGHPUT
ENHANCEMENT 48

cache placement decisions (x) in Equation (3.18) and (3.19). That means the cache

placement would alter the traffic load on each link and change the round trip delay. In

remedy, we devise DaCPlace to iterate, by updating parameters and caching decisions

reciprocally. Specifically, DaCPlace uses the cache placement decision of the last

iteration to adjust the data input rate, which thereby yields a constant E[RT ioh[d,p]]

value. This constant round-trip delay is then plugged into the current iteration to

update the cache placement decision. Thus, in each iteration, the formulation is in

a linear form that is solvable by MILP. The result of each inner iteration is non-

increasing. Our simulations also show the execution of DaCPlace converges 100%.

Algorithm 1: DaCPlace

Input: Performance Difference Threshold (κ).
Output: Cache Placement Decision x.
1: Initialize x← 0, x′ ← 0

// Inner iteration starts
2: repeat
3: x← x′

4: OBJ(x)← Last optimization objective value
5: for all d ∈ D do
6: for all p ∈ Γd do
7: for i = 1 to L of path [d,Γd(p)] do
8: Update round-trip delay E[RT ioh[d,p]]
9: end for
10: end for
11: end for
12: x′ ← Solving a Mixed Integer Programming problem
13: OBJ(x′)← Current optimization objective value
14: until |OBJ(x)−OBJ(x′)| ≤ κ
15: return x

Algorithm 1 details the steps to compute the optimal cache placement. For read-

ability, the index (f, k, b) of variables are omitted. This algorithm only describes the

inner iteration which updates the cache placement variable x. The iteration stops once

3.5. STREAMCACHE: LOW-OVERHEAD CACHE PLACEMENT 49

predefined criterion (κ) is met, as shown in line 14, which measures the performance

difference of two consecutive cache placements based on the optimization objective.

This criterion should be set by the network provider considering the tradeoff between

cache performance and time to achieve it. Each inner iteration is composed of two

parts. Lines 5-11 calculate the expected delay and line 12 updates the cache place-

ment result by solving a MILP problem. The complexity of DaCPlace is dominated

by line 12 and is NP-Complete.

3.5 StreamCache: Low-Overhead Cache Placement

We propose StreamCache to narrow the gap between theoretical optimal solution and

the practical implementation. StreamCache makes distributed caching decisions at

each router with minimal coordination and aggregated statistical information. We

show that, under various network settings, such as available cache storage and pop-

ularity distribution, StreamCache enables users to achieve close-to-the-optimal per-

formance compared with our benchmark scheme DaCPlace and outperforms state-of-

the-art caching placement policies in the literature.

The complexity of DaCPlace algorithm arises from the fact that inner iteration

is required to update the cache placement, and in each iteration, a MILP formulated

problem must be solved which is NP-Complete. We reduce the complexity by making

each router keep track of Interest or Data packets in real time and measure the actual

delay without building a queueing model. This can be easily done over ICN due to

its unique feature in request forwarding. Next, we apply a greedy algorithm at each

router to decide cache placement, avoiding the inner iteration and MILP formula-

tion. Real-time measurement and heuristic design are two fundamental changes to

3.5. STREAMCACHE: LOW-OVERHEAD CACHE PLACEMENT 50

StreamCache, which effectively reduces the complexity and overhead.

Similar to DaCPlace, the objective of StreamCache is to maximize the aver-

age video throughput for adaptive streaming over ICN. To achieve this objective,

StreamCache starts with video statistics collection at edge routers. The collected

statistics are then used to derive cache utility, which reflects the contribution of each

video segment towards throughput calculation. The cache placement is then made

based on this utility value using greedy selection.

3.5.1 Cache Utility Derivation

The cache utility is calculated for all video segments at each router. For video chunk

(f, k, b), the Cache Utility function is defined as

U(f, k, b) =
q(f)pk−1π(b) · rRTT (b)

S(b)
, (3.25)

where file popularity distribution (q), stationary bitrate adaptation (π) and probabil-

ity of continuing watching next video chunk (p) are input parameters, following the

same definitions as previously described in DaCPlace scheme.

Edge routers record video request statistics to derive these input parameters. Two

statistics tables are involved in this derivation: Video File Table and Bitrate Table

as shown in Figure 3.6. Video File Table tracks the request frequency on different

video files to derive q. We also record the number of requests by encoding bitrates

in Bitrate Table to derive π. We do not need a third table to track the popularity

of different video segments. Instead, the maximum likelihood approach is applied to

estimate the probability of continuing watching the next video chunk (p).

After edge routers have made caching decisions, Video File Table and Bitrate

3.5. STREAMCACHE: LOW-OVERHEAD CACHE PLACEMENT 51

Name Count

Video1 200

Video2 150

Name Count

Video1 75

Video2 70

Name Count

Video1 275

Video2 220

Bitrate Count

250Kbps 50

900Kbps 180

1.2Mbps 20

Bitrate Count

250Kbps 100

900Kbps 35

1.2Mbps 10

Bitrate Count

250Kbps 150

900Kbps 215

1.2Mbps 30

Video File Table(R1)

Video File Table(R2)

Video File Table(R3)

Bitrate Table(R1)

Bitrate Table(R2)

Bitrate Table(R3)

Cache Decision Table(R1)

Name Bitrate Chunk

Video1 900Kbps 15

Video1 250Kbps 10

Name Bitrate Chunk

Video1 250Kbps 30

Video2 250Kbps 25

Name Bitrate Chunk

Video1 900Kbps 15+1

Video1 250Kbps 30+10

Video2 250Kbps 25+5

Video2 900Kbps 0+12

Cache Decision Table(R2)

Cache Decision Table(R3)
Pending new decisions

Parent Node

Child Node

Summarized Table
Forwarding Direction

R3

R2R1

Figure 3.6: Summarized statistics and Cache Decision Table. Cache placement is
made from the network edge towards the core. The local decisions are
recorded by appending numbers in Cache Decision Table (in red color).

Table are delivered to upstream nodes along the forwarding path to video producers.

Intermediate routers in the core network then intercept these tables, calculating cache

utilities based on joined information from downstream nodes. After the cache place-

ment is made, these two tables are forwarded to the next hop for further processing.

As a result, StreamCache is executed distributedly, starting from the network edge

towards the core.

3.5.2 Cache Decision with Greedy Selection

StreamCache sorts the cache utilities from high to low and caches video chunks with

high utility. These decisions are local, but require coordination to utilize both on-path

and off-path caching capability.

We design a Cache Decision Table for cache coordination based on an important

3.5. STREAMCACHE: LOW-OVERHEAD CACHE PLACEMENT 52

observation: as to any video file (f) encoded with bitrate (b), if the αth video chunk

is chosen to be cached, any video chunk k in the same file, where 1 ≤ k < α, must

have already been cached as well. It is because the caching utility for those video

chunks is larger than the αth chunk based on the Equation (3.25) and they should

have been cached prior to the αth chunk if there is enough cache capacity. Therefore,

each router maintains a record of the maximum sequence number to indicate those

video chunks which have already been cached. For instance, as shown in Figure 3.6,

an entry of (Video1, 900kbps, 15) in the table of router R1 means that the first 15

chunks of Video1 encoded with 900kbps have been cached.

Algorithm 2: StreamCache

Input: ICN Router v; Cache Capacity Cv; Video Segment Size S(b); Video File
Table; Bitrate Table; Cache Decision Table (CDv).

Output: Cache Placement Decision xv.
1: U← Calculate Utility
2: for all ∀i ∈ Downstream(v) do
3: for all ∀e ∈ CDi do
4: if e /∈ CDv then
5: Insert e in CDv

6: else if CDv(e).ChunkSeq < e.ChunkSeq then
7: CDv(e).ChunkSeq← e.ChunkSeq
8: end if
9: end for
10: end for
11: U← Sort(U)
12: for all ∀u ∈ U do
13: if Cv − S(u.b) ≥ 0 then
14: if (u.f, u.b) /∈ CDv or u.k > CDv(u).ChunkSeq then
15: xv(u.f, u.k, u.b) to be cached
16: Cv ← Cv − S(u.b)
17: end if
18: end if
19: end for
20: return xv

3.6. PERFORMANCE RESULTS AND INSIGHTS 53

In addition to Video File Table and Bitrate Table, Cache Decision Table

is also passed from the network edge towards the core. Let W denote the set of all

video chunks. Suppose a router v receives this Cache Decision Table Hv(i) from

a downstream router i. StreamCache on router v would only calculate cache utilities

and apply greedy selection on video segments within W−⋃iHv(i). That means video

chunks already cached by sibling nodes are not considered by the parent router again,

and requests for those chunks may be redirected, instead of being forwarding to the

video producer, in order to utilize the off-path caching.

Algorithm 2 details StreamCache scheme. Lines 2-10 aggregate the caching deci-

sions on router v from its downstream nodes by calculating the maximum sequence

number in order to serve the common interests. Suppose the data structure like hash

table is implemented which supports searching with O(1) cost. The complexity of

merging two decision tables is O(FB) as the size of cache decision table is propor-

tional to the number of bitrates and video files. Line 11 sorts the caching utility for all

video chunks from the largest to smallest, with a complexity of O(FB logFB). Lines

12-19 utilize the greedy selection to fill the cache capacity of router v, which scans the

sorted table with complexity O(FB). Thus, the overall complexity of StreamCache

is O(FB logFB).

3.6 Performance Results and Insights

We evaluate DaCPlace and StreamCache performance via simulation against known

caching strategies on the NDN architecture. Caching schemes were implemented onto

ndnSIM [2], an NS-3 based simulator. We claim without loss of generality that both

DaCPlace and StreamCache designs and subsequent analyses can be applied to other

3.6. PERFORMANCE RESULTS AND INSIGHTS 54

ICN architectures and cache hierarchies.

3.6.1 Simulation Setup

To evaluate DaCPlace, the simulation is composed of two phases. The first phase

calculates the optimal cache decisions using Gurobi [22] to solve a MILP problem. The

second phase simulates a NDN via ndnSIM, applying the caching decisions derived

in the first phase. To evaluate StreamCache, we implement the distributed algorithm

on each router directly in ndnSIM.

The settings of our experiments mimic the dynamic adaptive streaming applica-

tion where requests are generated for different bitrates of video content. We consider

four common bit rates: 250 Kbps, 400 Kbps, 600 Kbps and 900 Kbps. Without

loss of generality, these four bit rates are typical viewing bit rates, which corre-

spond to representative video quality levels [34]. We compare the performance of

our proposed video caching schemes with three other cache placement schemes in the

literature: CE2 [25], ProbCache [49] and the on-path optimal video caching scheme,

DASCache [37]. We choose CE2 as it is a commonly used baseline [63, 8]. ProbCache

is a popular approach in the literature (seen in [53, 63]) because of its effectiveness

of reducing server hit ratio. DASCache is an optimal scheme which only utilizes the

cache on the default forwarding path and we use it to compare with the performance

of our proposed schemes in this more general system where both on-path and off-path

caching are considered.

DaCPlace and StreamCache require an outer iteration to update bitrate-specific

popularity. Our experiments only simulate one round in outer iteration since popular-

ity and bitrate distributions remain as control parameters in the simulations. After

3.6. PERFORMANCE RESULTS AND INSIGHTS 55

this round, the cached video content decided by DaCPlace or StreamCache would

not be replaced, and then we start collecting statistics for performance evaluation.

In order to make a fair comparison, simulation on CE2 and ProbCache mimics this

procedure and we disable cache replacement (LRU) before the evaluation.

As our DaCPlace scheme targets optimizing QoE in terms of video throughput

and quality, we choose the Access Time Per Bit of all consumers in the system as a

performance metric. The delay is measured between the Interest packet sending and

the corresponding Data packet arriving at the consumer’s device. Another metric we

choose is Cache Hit. This metric is commonly used to evaluate the performance of a

caching system.

The routing scheme applied in our system is based on OSPFN. It generates a

routing tree topology. At the same time, a tree is instructive because from the

perspective of a video producer, the distribution topology is effectively a tree. Thus,

in the simulations, we adopt a tree topology directly, with one layer of edge routers

as leaf nodes and at least one layer of intermediate routers which connect to the

producer. More routers between these two layers will only generate topologies with

larger tree heights. We chose 20 nodes in our simulations to contrast performance

results, as similar performance trends were observed for different network sizes.

3.6.2 Simulation Parameters

In the simulations, consumers generate video requests with certain parameters which

are carefully chosen using the following rules:

• Any video request specifies the file index, chunk index and bitrate. The abstract

requests for video files are determined by content popularity distribution (q).

3.6. PERFORMANCE RESULTS AND INSIGHTS 56

Table 3.2: Simulation parameters for DaCPlace and StreamCache evaluation

Parameter Value

Number of video files (F) 20
Number of video chunks per file (K) 15
Number of NDN routers (|V|) 20
Number of edge routers (|D|) 12
Number of video producers (|P|) 1
Video segment playback time (sec) 2
Encoded bitrates (Kbps) {250, 400, 600, 900}
Bandwidth (Mbps) 5
Topology tree height 4
Skewness factor (α) 0.8
Content store size percentage (ω) 15%
Cache allocation ratio (ε) 1
The probability of continuing watching (p) 0.9

We use the Zipf -like distribution [5] where the probability of requesting the f th

file is qf = β
fα

, where β = 1∑F
f=1 f

α
. The parameter α controls the skewness

of popularity distribution. A large α indicates that only few video files are

frequently requested and a small α represents large number of video files have

similar chance to be requested.

• The probability of continuing to watch the next chunk (p) is set manually, where

we discuss the impact of this parameter on the performance in Section 3.6.3.

• The stationary distribution of bitrate selection (π) on each edge router, is gener-

ated randomly. Since video chunks encoded with different bit rates could incur

different loads on the link, this distribution is determined before we choose the

video request rate.

• The average video request rate (λ) is chosen randomly, with the only constraint

3.6. PERFORMANCE RESULTS AND INSIGHTS 57

that the incurred load is less than the link capacity.

The complete list of simulation parameters are shown in Table 3.2. The cache capac-

ity percentage (ω) indicates the total available system capacity for video streaming,

calculated by ωFK
∑B

b=1 S(b). The cache capacity for each router Cv is influenced by

the cache allocation ratio (ε), where ε = Ci/Cj, i ∈ D, j ∈ N. All edge or intermediate

routers are allocated with the same cache capacity.

3.6.3 Performance Evaluation

We study the effect of cache capacity, cache allocation patterns and content popularity

on video access time per bit and cache hits. Simulation results are presented at a

90% confidence level.

The Impact of Cache Capacity Percentage

This experiment evaluates cache utilization and efficiency of caching schemes under

uniform (equal allocation) cache storage settings. Figure 3.7 shows the average access

delay per bit for different cache capacity (budgets). CE2 placement scheme yields

relatively longer access delays across all test cases. The reason is that CE2 with LRU

replacement keeps the most recent Data but cannot distinguish among video traffic

which are mixed with popular and unpopular content. The performance of ProbCache

outperforms CE2 because ProbCache caters to frequently requested content which

significantly reduces delay. For example, at ω = 25%, ProbCache outperforms CE2

by 11.8%. However, DaCPlace still achieves lower access delay per bit by 26.7% over

ProbCache. This is because DaCPlace optimizes video delivery, considering not only

the delay but also storage utilization. Even though DaCPlace is a popularity-based

3.6. PERFORMANCE RESULTS AND INSIGHTS 58

Figure 3.7: Access Delay Per Bit across different cache capacity

scheme, it may not keep the most popular content. Such available cache storage

is used for multiple less popular content with lower bit rates (smaller size), which

thereby achieves higher throughput.

Figure 3.7 also shows that StreamCache achieves close performance to DaCPlace

(approximate 3% difference across all cases). This small difference represents our

heuristic design considers important features of adaptive video caching system, re-

sulting in a near-optimal performance for different total cache budgets. DaCPlace

outperforms DASCache, especially for larger total cache capacity. For example, at

ω = 5%, the access delay of DaCPlace is 7.5% lower than DASCache as opposed to

13.3% when ω = 25%. As mentioned earlier, DASCache scheme would not forward

Interests to routers which are not on the default routing path. Thus, once a request

is missed by a cache, this request loses the opportunity to be satisfied on sibling

branches. This loss increases with larger ω which explains the trend.

3.6. PERFORMANCE RESULTS AND INSIGHTS 59

(a) α = 1.2

(b) α = 0.4

Figure 3.8: Access Delay Per Bit across cache allocation ratios

The Impact of Cache Allocation

3.6. PERFORMANCE RESULTS AND INSIGHTS 60

We explore the distribution of cache allocation among edge routers and intermedi-

ate routers by using different allocation ratios, including homogeneous (ε = 1) and

heterogeneous (ε = 0.2, 0.5, 2, 5) cases.

Cache storage on edge routers significantly impacts facilitating video streaming,

since it is closest to users, thus could satisfy requests with minimal delay. Wang

et al. [62] claim that when the content popularity distribution is highly skewed (i.e.

where only a small portion of videos are frequently requested), edge routers should

be allocated larger capacity. In contrast, when content has similar popularity score,

more cache capacity should be allocated to intermediate routers to reduce cache

redundancy. Figure 3.8a and 3.8b show the access delay under these two scenarios

with varying Zipf popularity skewness (α = 1.2 and 0.4 respectively).

The performance of all caching schemes has a similar trend across different allo-

cation ratios in both scenarios. The access delay when α = 1.2 is lower, compared to

the case when α = 0.4. This is attributed to cached content being more frequently

requested with larger α, which generates more cache hits and results in less average

delay. This is further analyzed in Section 3.6.3.

It is straightforward to see that moving more cache storage to the edge would

yield faster system response. However, this performance gain is coupled with the

expense of less cache hits caused by worse cache utilization. In fact, this constitutes

a core challenge in the design of any caching scheme, whereby striking the balance

between efficient cache utilization and fast system response. For example, as shown

in Figure 3.8, with increased ε, the performance of DASCache degrades and CE2

improves. These are two typical cases where cache redundancy and system response

play as the dominating factor. However, as to DaCPlace, the performance difference

3.6. PERFORMANCE RESULTS AND INSIGHTS 61

(a) 250 Kbps

(b) 400 Kbps

Figure 3.9: Average video segment delay (α = 1.2)

is statistically insignificant. We then focus on the scenario when α = 1.2 to present

more features of our schemes.

Figure 3.9 presents the average delay grouped by bit rates. DaCPlace results

in fastest download speed for video chunks encoded with 250 Kbps and 400 Kbps.

For example, when ε = 1, DaCPlace is 92.8% and 45.0% faster than CE2. It is

important to note that the access delay of DaCPlace is longer than StreamCache

3.6. PERFORMANCE RESULTS AND INSIGHTS 62

(c) 600 Kbps

(d) 900 Kbps

Figure 3.9: Average video segment delay (α = 1.2) (cont.)

for higher bit rates (600 Kbps and 900 Kbps). Nevertheless, the overall access delay

per bit (shown in Figure 3.8a) of DaCPlace is still lower than StreamCache. This

reveals that DaCPlace caters to the requests for low bit rates, which is significant for

adaptive video streaming: users who request low bit rates should be bound to benefit

from caching the most. This is because the link bandwidth of users requesting low bit

rates is relatively low, hence cached content would tremendously improve requested

3.6. PERFORMANCE RESULTS AND INSIGHTS 63

0.2 0.5 1 2 5
1

1.5

2

2.5

3

x 10
4

C
a

c
h

e
 H

it
s

Cache Allocation Ratio(ε)

CE2

ProbCache

DASCache

StreamCache

DaCPlace

Figure 3.10: Cache hits across cache allocation ratios at α = 1.2

video quality.

As shown in Figure 3.8a, the performance of DASCache degrades as the size of

caching storage on edge routers increases. For example, as ε changes from 0.2 to

5, the access delay per bit of DASCache correspondingly increases by 17.3%. This

impact is further investigated over the amount of cache hits. Figure 3.10 shows that

cache his of DASCache decrease by 48.0% as ε changes from 0.2 to 5, but cache hits

of DaCPlace are relatively unchanged across all tested cache allocation ratios. The

superior performance is attributed to DaCPlace utilizing off-path and on-path caching

in an optimized and cooperative manner. When ε = 5, the amount of cache hits of

DaCPlace increases by 55.7% over DASCache, which demonstrates the significant

improvement caused by off-path caching.

3.6. PERFORMANCE RESULTS AND INSIGHTS 64

(a) File Level Popularity

(b) Segment Level Popularity

Figure 3.11: Access Delay Per Bit across popularity skewness

The Impact of Content Popularity

3.6. PERFORMANCE RESULTS AND INSIGHTS 65

The popularity of video content is modeled in two levels, as explained in Section 3.3.2.

We control the skewness parameter α in the Zipf distribution, and p in our geometric

distribution model, to vary content popularity on file and chunk levels; respectively.

Figure 3.11a shows the results across different skewness parameter values. For ex-

ample, at α = 0.8, DaCPlace improves by 37.0% and 26.9% over CE2 and ProbCache

respectively. When α changes from 0.4 to 1.2, all tested caching schemes lead to

less average access delay. This is because users’ requests concentrate on a smaller

set of popular content with larger α, which thereby increases the chance of cache

hits. StreamCache captures popularity variance with different skewness values, and

achieves equivalent performance (around 3.2% difference across all cases) compared

with the optimal DaCPlace.

To capture the impact of the geometric distribution modeling of video requests,

we present a comparative experiment in Figure 3.11b that depicts the access delay

across different geometric parameter values. As p increases, more users are likely

to finish viewing the entire video, which results in increased delay per bit for all

caching schemes. The change in p would inherently influence the popularity per

video chunk. Even though a certain video file is popular, the last few chunks could

witness infrequent requests. Since the first several chunks of a popular video file are

highly likely to be cached, as users continue to watch the video, chunks at the middle

and (more towards) the end of that file may have to be retrieved directly from the

server.

Therefore, the longer the time a user watches a video, the less likely a cache hit

occurs. This explains why as p increases, the average access delay grows as well. As

both our optimal DaCPlace and heuristic StreamCache schemes have considered such

3.7. SUMMARY 66

request patterns, they outperform other caching schemes in capturing this variance

over the extended duration of the video. Moreover, it is worthwhile to note that it

is possible for users to experience bitrate switches while watching the video in the

middle because the throughput of video chunks witnessing cache hit or miss are quite

different. Our DaCPlace placement scheme is not designed for a particular user but

the rate adaptation algorithm should be further considered for smooth playback.

3.7 Summary

We address the premise of dynamic adaptive streaming of video content, with the

aim of minimizing the average access time per bit and improving QoE under varying

network conditions. The future of video delivery is coupled with adaptive streaming,

and caching schemes that address heterogeneous users cannot ignore tailored video

delivery.

At the core of the work presented in this chapter, we argue for the importance of

1) capturing the characteristics of bitrate selection over varying user demands, which

we modeled using a discrete-time markov chain, 2) establishing a solid queueing and

service delay analysis to project link utilization and network variability, which we

presented over a multi-class M/G/1 Queueing Model, 3) catering for interest ag-

gregation in video demand, as it significantly reduces network overhead in handling

equivalent content requests, which we analyzed and presented as thinning in a Pois-

son process, 4) presenting DaCPlace, as a benchmark solution for variable bitrate

caching over ICNs, which incorporates content popularity as a core factor in opti-

mizing caching performance, 5) designing a heuristic scheme, StreamCache, which

3.7. SUMMARY 67

significantly decreases the computational complexity and achieves near-optimal per-

formance to DaCPlace, and 6) enabling future improvements on our model and po-

tential benchmarking by developing an NS-3 based ndnSIM simulation environment

for StreamCache and DaCPlace.

We conclude that gauging popularity, on both the chunk and file levels, is crit-

ical to optimal cache placement. As adaptive video streaming yields requests for

different bitrates, it is crucial to evaluate their respective effects on throughput to

better optimize cache utilization. Moreover, utilizing ubiquitous in-network caching

improves video delivery delay under popularity-based schemes, in comparison to edge-

based caching. StreamCache and DaCPlace reduce cache redundancy by capitaliz-

ing on off-path caching, further building on ubiquitous in-network caching. Overall,

StreamCache and DaCPlace outperform existing caching schemes under varying cache

sizes and content popularity.

68

Chapter 4

Adaptive Streaming with Cache Partitioning

4.1 Introduction

Our previous research in Chapter 3 has shown the placement of video segments with

variable bitrates in cache hierarchies is far from intuitive. To fill this video-to-cache-

placement gap, DaCPlace and StreamCache are proposed to utilize snapshots, or

instantaneous inference, of adaptive video traffic in ICN, and focus on video through-

put as a direct factor that influences delivered video quality. Although evaluation

results show significant improvement, our approaches did not look into other factors,

such as bitrate oscillation and playback freezing, that impact QoE.

In this chapter, we tackle a different challenge that stems from the interplay

between cache placement and consumer-side bitrate adaptation, named ‘oscillation

dynamics’ [64]. To exemplify a common scenario, consumers that retrieve low-bitrate

segments from edge caches will perceive good performance. A consumer-side bitrate

adaptation protocol will thus invoke a request for higher-quality content that may be

stored on a different (farther) cache in the network core. Data from the network core

has to be delivered via a longer path than from the edge cache, and is more likely

4.1. INTRODUCTION 69

to face contention or congestion. Poor performance from the higher-quality video

source will cause the streaming application to reduce its video quality preference.

Oscillation dynamics are intrinsically linked to inaccurate estimates caused by ever-

changing network conditions that occur with intermittent cache hits and misses.

Oscillation dynamics are not inherent to ICNs only, and have previously been

studied in the context of Content Delivery Network (CDN). For example, cache-aware

bitrate adaptation [35] triggers independent threads of adaptation logic when cache

hits occur. However, caching in CDN differs significantly from cache hierarchies in

ICNs. CDN hosts all video content, and at fixed locations, so consumer estimates of

system performance are dominated by network effects. In contrast, cache hierarchies

in ICNs make it possible for video segments to appear at any cache router. As a re-

sult, consumer-side adaptation techniques have no means to distinguish between poor

performance from network conditions and poor performance from cache conditions.

This suggests that a “good” caching scheme may stabilize bandwidth fluctuations to

reduce oscillation, and thereby improve consumer QoE.

We posit that one such family of caching schemes emerges when encoding bitrates

are prioritized over - or alongside - conventional metrics associated with hit rates

and popularity. In particular, we hypothesize that the QoE for high-quality content

requests suffers disproportionately from resource sharing, relative to low-quality con-

tent. One implication would be that the highest bitrate content should be placed

where there is least congestion. Our investigations into adaptation-based caching dy-

namics show that bitrate oscillation patterns emerge with hop distance [38, 39]. The

pattern that emerges suggests that high-bitrate content is most stable when retrieved

from edge caches. From a caching perspective this may be counter-intuitive: it entails

4.1. INTRODUCTION 70

copies of the largest segments at multiple edge caches, rather than a single copy at

upstream caches that sit on intersecting paths.

This insight leads to, and is validated by, the main contribution of this chapter.

We present RippleCache as a cache guiding principle that safeguards capacity at the

edge routers for high-bitrate content, thereby pushing lower bitrate content along

the forwarding path towards the network core. This has the effect of partitioning

cache capacity along a forwarding path, but raises questions with respect to partition

boundaries and caches that sit on intersecting paths. In order to validate the main

contribution, we construct two independent caching schemes, following RippleCache

ideal:

• RippleClassic serves as a benchmark cache partitioning paradigm. Partitions

are created by solving an optimization problem formulated as binary integer pro-

gramming. The objective of RippleClassic maximizes a metric designed specif-

ically to measure cache hierarchy performance for adaptive streaming, that has

been shown to have high correlation with consumers QoE [38]. The solutions

that emerge place content in such a way that a RippleCache emerges.

• RippleFinder is a distributed caching scheme that is built on our prior work [39]

and executes in polynomial-time complexity. Execution begins at edge routers,

from where cache partitions are created along the forwarding path to each video

producer. Placement decisions prioritize utility, an indicator of the resource cost

of a video segment (by size) and weighted by popularity.

Performance evaluations also significantly differ from Chapter 3. Instead of us-

ing a throughput-based metric, measures are selected and defined in accordance with

4.2. WHY DO WE PARTITION? 71

DASH Industry Forum recommendations [56]. The consumer-side adaptation be-

haviour is simulated via our own implementation of FESTIVE [26], a well-known

mechanism that captures recent advancements in bitrate adaptation. Results show

that RippleCache constructions consistently reduce oscillation and re-buffering, while

meeting or exceeding the highest levels of competing video quality. The consistent

performance, across varying levels of capacity and popularity-skew, lend weight to

the argument that high-bitrate content should be kept close to consumers, and lower

quality content pushed further away.

The remainder of this chapter is organized as follows. Section 4.2 pinpoints the

challenges of adaptation-agnostic caching schemes on adaptive video streaming, fol-

lowed by the RippleCache cache partitioning principle in section 4.3. To assess the

potential gain of RippleCache, we formulate a benchmark solution RippleClassic in

Section 4.4, followed by a light-weight and practical embodiment RippleFinder in

Section 4.5. Section 4.6 presents our experiment setup and performance evaluation.

We conclude in Section 4.7 and present our final remarks.

4.2 Why Do We Partition?

To study the impact of consumer-side bitrate adaptation on cache placement, we car-

ried out extensive experiments to elicit the intrinsic challenge of bitrate oscillation

and high bitrate placement. The following characterizations are drawn from evalua-

tions of the benchmark CE2 with Least Frequently Used (LFU) [69]. The evaluation

setup is described in Section 4.6.

The salient results are summarized by Figure 4.1, depicting the likelihood of incur-

ring a bitrate adaptation as a function of hop distance between the video consumer

4.2. WHY DO WE PARTITION? 72

Bitrate(Mbps)
1 mbps 8 mbps

1 2 3 4 5 6 7
Hop Count

1 2 3 4 5 6 7
Hop Count

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
ro

b
a
b
ili

ty
 o

f
B

itr
a
te

 A
d
a
p
ta

tio
n

Adaptation
Lower Same Higher

Figure 4.1: Bitrate adaptations given cache distance: dark regions indicate switches
to the higher bitrate; lighter regions indicate switches to the lower bitrate.

and the cache. Each vertical bar is shaded according to the the direction of the

adaptation: dark regions indicate switches to a higher bitrate; lighter regions indi-

cate switches to lower bitrates; medium shade indicates no bitrate adaptation (same

decision). We note that bitrate adaptations may be triggered in response to changes

in either or both of network and caching conditions. Thus, the proportion of medium

shade is an indication of stable or steady state between video requests with the net-

work and caches that satisfy those requests. In order to reduce bitrate oscillation,

this proportion of medium shade is expected to be as much as possible.

Bitrate adaptations occur most frequently relative to cache distances when users

consume the lowest (1 mbps) and highest (8 mbps) bitrates under our experimental

settings. As depicted in Figure 4.1, the leftmost bars show bitrate adaptations after

successful requests for video content at 1 mbps. From among requests for low bitrates

satisfied within the first four hops, measurements indicate no significant difference in

4.3. HOW DO WE PARTITION? 73

the likelihood of a bitrate increase. This suggests a degree of insensitivity to the

location of low-bitrate content, with no obvious advantage to caching low-bitrate

content closer to consumers at the edge. Instead, caching low-bitrate content in the

core network provides an increasing adaptation stability, as the proportion of medium

shade increases in the last three hops.

In contrast, the rightmost bars in Figure 4.1 show an opposing trend. Consumers

that request high-bitrate content are increasingly likely to switch to lower quality as

hop distance increases. Service degradation becomes increasingly unavoidable with

hop distance for high-bitrate content. This happens because higher bitrate content

consumes a disproportionately greater share of cache and network resources.

The combination of these two sets of observations suggest that lower-bitrate con-

tent should be moved into the core to make room for higher-bitrate content at the

edges, which demonstrates the need for safe-guarding cache capacity for a particular

bitrate. These observations then motivate our design of an adaptation-aware cache

partitioning to reduce bitrate oscillation and improve consumers’ QoE.

4.3 How Do We Partition?

Our early experiments underscore the need for cache partitioning. However, rather

than conventional partitioning on individual cache, we propose RippleCache parti-

tioning principle that works upon each cache path. A cache path is a concatenation

of caches that sit on a forwarding path from consumers to a video producer. We say

that a RippleCache principle safeguards content along the cache path by prioritizing

bitrates in a monotonically decreasing fashion from edge routers.

The bitrate assignments in RippleCache effectively partition caches into concentric

4.3. HOW DO WE PARTITION? 74

C2

C1

(B1 < B2 < B3)
B1B1 B2B2 B3B3B1 B2 B3

P2

R3 R3

R1 R1

P1R4R4

R5R5

R2 R2

Figure 4.2: Cache partitioning by encoding bitrates along each forwarding path.

regions that we refer to as Ripples. Ripple behaviours derive from its namesake: as

much as ripples in liquid ebb and flow, partitions must be dynamic or re-definable in

response to changing interest patterns.

A visual representation of a RippleCache is illustrated in Figure 4.2. It shows two

independent forwarding paths from consumers C1 and C2 to their respective video

producers P1 and P2. Caches, as guided by RippleCache, are assigned one of three

available bitrates B1 < B2 < B3, in decreasing bitrate from the consumers. The

coloured arcs in Figure 4.2 mark the partition boundaries that delineate Ripples. We

note that Ripples may contain zero or many routers. For example, the path from C2

to P2 assigns bitrate B3 to the two routers closest to C2; the same path omits the

lowest bitrate from its partitions, leaving the video producer to satisfy lowest bitrate

requests.

4.4. RIPPLECLASSIC BENCHMARK OPTIMIZATION 75

Same as ripples in liquid must coincide when they meet, caches that sit on multiple

forwarding paths must share their capacity to resolve potential conflicts on cache

partitions. For example, the forwarding paths in Figure 4.2 intersect at R2, where

cache space is reversed for different bitrates from these two paths: the same router R2

is requested to cache both B3 and B2. As a result, a spontaneous solution is dividing

the cache space at R2 to ensure a fair share among these two cache paths, such that

video content with B2 and B3 can coincide.

Our proposed RippleCache provides a manifestation of the ‘ideal’ cache partition-

ing. However, it is still a guiding principle and must be realized by a caching scheme

in practice. A RippleCache implementation must 1. identify appropriate caching deci-

sion criteria so that placements may form partitions; and 2. implement a negotiation

mechanism to ensure fair share allocations of cache capacity at nodes on intersect-

ing paths. The following sections describe our implementations in RippleClassic as a

benchmark and RippleFinder as a scalable and distributed heuristic.

4.4 RippleClassic Benchmark Optimization

Guided by the RippleCache principle described in the previous section, we hereby

present the RippleClassic cache placement scheme. RippleClassic is an optimization

formulated as a binary integer programming (BIP) problem. Its solutions are cache

placements for adaptive video content under diverse network conditions and pref-

erences. These placements serve as the benchmarks, against which we design and

compare in later sections.

4.4. RIPPLECLASSIC BENCHMARK OPTIMIZATION 76

4.4.1 Cache Placement Problem Formulation

We apply the same settings and notations as detailed in Section 3.3.1, where dif-

ferences and additional notations are described as follows. We model an ICN as a

connected graph G = (V,E), where nodes in V are composed of video producers P,

edge routers D and intermediate routers. In this formulation, single-path forwarding

and on-path caching are assumed.

Our formulation then caters to diverse caching preferences by maximizing the sum

of ‘cache reward’ values. This cache reward of each request is denoted by φ(RBi
[d,p], b),

which is an evaluation on the effect of caching on the ith node along path [d, p], d ∈

D, p ∈ P. Each video request is granted a cache reward when cache hit occurs, and the

corresponding value is assigned by a reward function that is explained subsequently

in Section 4.4.2.

The optimization is formulated as a BIP problem, as outlined below. Given the

known complexity of BIP, solving this problem is NP-Complete.

max
∑
d∈D

∑
p∈P

L∑
i=1

F∑
f=1

K∑
k=1

B∑
b=1

φ(RBi
[d,p], b)ξd[δ

i
[d,p] − δi−1

[d,p]]

s.t. xv(f, k, b) ∈ {0, 1}, ∀v ∈ V (4.1)

δi[d,p] ∈ {0, 1}, ∀d ∈ D,∀p ∈ P, 1 ≤ i ≤ L (4.2)∑
f∈F

∑
k∈K

∑
b∈B

S(b) ∗ xv(f, k, b) ≤ Cv, ∀v ∈ V− P (4.3)

δi[d,p] ≥ δi−1
[d,p], (4.4)

δi[d,p] ≥ xi[d,p](f, k, b), (4.5)

δi[d,p] ≤ δi−1
[d,p] + xi[d,p](f, k, b), (4.6)

4.4. RIPPLECLASSIC BENCHMARK OPTIMIZATION 77

δ0
[d,p] = 0, (4.7)

xp(f, k, b) = 1, ∀p ∈ P, (4.8)

δL−1
[d,p] (f

′, k′, b)− δi[d,p](f ′, k′, b) ≤M−M ∗ δi[d,p](f, k, b). (4.9)

Objective

The objective function maximizes the system-wide cache reward. A higher cache

reward value corresponds to a better cache placement. The optimization traverses all

forwarding paths starting from each edge router, and accumulates cache reward values

on nodes where cache hits occur. Cache rewards are generated once per request where

the cache hit occurs. The objective expression thus utilizes the difference between

cache indicators δ to avoid infeasible reward values. In cases where a segment is cached

multiple times along the forwarding path, δi[d,p] and δi−1
[d,p] would be both equal to 1.

Their difference δi[d,p] − δi−1
[d,p], being 0, ensures the correctness of reward calculation.

Only where the segment first appears along the path can rewards be accumulated,

i.e. where δi[d,p] − δi−1
[d,p] is non-zero.

Constraints

Binary variables are defined in Constraints (4.1) and (4.2). The remaining constraints

relate to the Cache Capacity, Caching Status Indicator, and Popularity, as follows.

• The Cache Capacity defined in Constraint (4.3) ensures that the total size of

cached video content is bound by available cache capacity over all cache routers except

4.4. RIPPLECLASSIC BENCHMARK OPTIMIZATION 78

video producer.

• The relationship between Caching Status Indicator δ and cache placement de-

cisions x is defined by Constraints (4.4)-(4.7), as already described in Section 3.4.1.

• Popularity contributes via Constraint (4.9). The catering to popularity is known

to improve the performance of caching schemes [9, 69]. Constraint (4.9) ensures that,

whenever there is cache space, popular video content is selected for caching with a

higher priority (close to consumers). We utilize the ‘big-M’ approach [21] to ensure

caching order, where M is any large positive constant number.

The popularity Constraint (4.9) benefits from additional remarks. A ranking table

is assumed to exist for each forwarding path; in our own implementation (described in

Section 4.6) ranking tables are held and maintained at each edge routers d. Entries

in the table are first categorized into bitrates, and then sorted by popularity for

each category. We denote (f ′, k′, b) and (f, k, b) as any two consecutive items in this

table, where segment (f ′, k′, b) is more popular than content (f, k, b). Constraint (4.9)

guarantees that a less popular (f, k, b) cannot be cached closer to consumers than

(f ′, k′, b) on the forwarding path [d, p]. The result of left hand side is 1 if (f ′, k′, b)

is cached on any upstream router from i to penultimate node of the path [d, p]. To

ensure Constraint (4.9) is not violated, δi[d,p](f, k, b) in the right hand side must then

be assigned 0, which represents that (f, k, b) is never cached on a jth downstream

router closer to consumers (1 ≤ j ≤ i).

4.4.2 Cache Reward Function

RippleClassic decides content placement among caches, without explicit knowledge

of the interplay between caches and consumers. This information is encoded in and

4.4. RIPPLECLASSIC BENCHMARK OPTIMIZATION 79

modelled by the reward function φ. The design of φ relies on the following intuition:

A cache hit is valuable only if the transfer of video content from that cache to the

consumer can be reliably sustained for the requested bitrate.

This intuition is demonstrated by an example in Table 4.1. Each cell in the table is

the average transfer delay for a 4-second video segment delivered to consumer C from

any cache on the forwarding path. The greyed cells delineate the routers from which

content can be reliably retrieved within 4-second time for a given encoding. The

duration of a video segment (4 seconds) is the deadline for video delivery: meeting

this deadline means the requested bitrate is reliable, while missing this deadline may

ultimately cause video playback freezing. For example, video requests for B2 are only

sustainable when satisfied on R1 or R2; video content retrieved from R3 or R4 will

arrive 2.5s or 7s late on average.

Transfer delay also gives an indication on the value of a cache hit to the consumer.

Referring again to Table 4.1, the delineation by greyed cells also corresponds with

consumer adaptations. Consider a consumer that selects content encoded into 4-

second segments at bitrate B2. Table 4.1 says that consumers would maintain or

even increase their selected bitrate when content retrieved from R2 or R1. Conversely,

that same content retrieved from R3 or R4 will cause the consumer to avoid playback

freezing by reducing its selected bitrate. This type of oscillation is the behaviour

observed in Figure 4.1.

The consumer-side adaptation and its interaction with in-network caches are then

captured by reward function φ that we first introduced in [38], where the numerical

reward values were shown to have a high correlation with traditional consumer-side

4.4. RIPPLECLASSIC BENCHMARK OPTIMIZATION 80

Table 4.1: An example of average cumulative delay of 4-second segments by hop dis-
tance

(C..R1) (C..R2) (C..R3) (C..R4)
B3 3s 6.5s 10.5s 16.5s
B2 1s 3.5s 6.5s 11s
B1 0.5s 1s 2s 3s

measures of QoE. The function takes two input parameters: (i) the consumer’s re-

quested bitrate b and, crucially, (ii) the router’s assigned Ripple Bitrate, (RBi
[d,p]).

Given the ith router on the forwarding path from edge node d to producer p, Ripple

Bitrate (RBi
[d,p]) denotes the highest sustainable bitrate that can be delivered to

consumers (i.e., the top greyed cell of each column in Table 4.1). We further use RBi

to denote RBi
[d,p], where forwarding path [d, p] is implicit.

The reward function φ(RBi, b) is defined as,

φ(RBi, b) =

µ(b), if b = RBi

µ(b↑) ∗ β(b) + µ(b) ∗ (1− β(b)), if b < RBi

µ(RBi), if (b > RBi) ∧ (RBi ≥ b1)

µ(b1), otherwise.

(4.10)

We note that storage and transmission requirements for the encodings of any single

video segment are non-uniform. In order to ensure that similar bias is reflected in

the reward, µ is proportional to the base segment size. For the base bitrate at rank

1, µ(b1) = 1. Any other bitrate b is calculated as µ(b) = Sb/Sb1 , where Sb1 as the size

of the base bitrate segment. A bitrate b↑ denotes the next higher bitrate relative to

b in the set of discrete bitrates used to encode the video.

Each entry in µ corresponds with a likely behaviour of the consumer relative to

4.4. RIPPLECLASSIC BENCHMARK OPTIMIZATION 81

the Ripple Bitrate. The first case triggers when the requested bitrate matches the

target rate for the router b = RBi. In this case there are sufficient resources to satisfy

subsequent requests at the requested bitrate. The reward function returns µ(b).

The second case is left for discussion following third and fourth cases. The third

case returns when b > RBi, the requested bitrate is higher than Ripple Bitrate.

Here a reward lower than µ(b) should be granted since the cache hit generates load

or throughput that may cause consumers to reduce their video quality. As a result

the lower reward discourages those cache partitions that can lead to video quality

degradation.

The final case triggers when a cache is unable to maintain even the base rate video

quality. In this case the φ function returns the lowest reward of µ(b1), since requests

satisfied under such circumstances are likely to lead to buffer-induced freezing, and

should be avoided.

Returning to the second case b < RBi, when the requested rate is lower than

Ripple Bitrate for the cache. Recall that cache reward is only granted when there

is a cache hit. Thus, this case represents a request that is satisfied by the cache,

yet for content that should be pushed towards the network core. In this case the

return value represents a trade-off. Strictly speaking, a cache hit encourages consumer

to subsequently request a higher bitrate b↑. However, the additional load on the

network could lead to bandwidth fluctuations that cause bitrate oscillation. Thus,

care must be taken to avoid over-awards. φ returns a weighted sum of µ(b) and µ(b↑),

where the contribution of each component is controlled by parameter β(b) ∈ [0, 1].

β(b) = 1 returns φ(RBi, b) = µ(b↑) and prioritizes video quality that consumers can

achieve, while ignoring the risk of bitrate oscillation. Conversely, β(b) = 0 prioritizes

4.4. RIPPLECLASSIC BENCHMARK OPTIMIZATION 82

bitrate stability by returning µ(b). As RippleClassic optimizes cache placement from a

system-wide perspective, β(b) = 0 encourages RippleClassic to relocate video content

via matching Ripple Bitrate. As a result, lower quality would be eventually pushed

towards the network core.

The question then emerges: What is an appropriate weight? A fixed β fails to

capture the disproportional resource increases needed to satisfy requests for higher

quality content. We then study consumers’ QoE under a variable β, to highlight the

trade-off under different design choices.

4.4.3 Tuning the Quality-Oscillation Tradeoff

We define β(b) in a manner that is inversely proportional to the rank of the bitrate,

rank(b), such that

β(b) =
1

η + rank(b)
. (4.11)

The inverse of rank(b) echoes the increasingly conservative nature of rate adapta-

tion controls at higher quality, corresponding with the disproportional increases in

resources to support higher bitrates. The high correlation revealed in our previous

study between φ rewards and consumer QoE implemented the inverse of rank(b),

alone [38]. Here we add a tunable parameter η to further explore the trade-off be-

tween quality and oscillation implied by β.

The competing demands between high quality and low oscillation are made evident

by the box plots in Figure 4.3. These plots show the impact of β on various measures

of consumers’ QoE for a range of η values. Performance metric definitions, as well

as further experimental design details, are provided in Section 4.6. A smaller η

value favours µ(b↑), the reward that emphasizes higher quality. This can be seen in

4.4. RIPPLECLASSIC BENCHMARK OPTIMIZATION 83

0 1 2 5 10 20 50
Tunable Reward Parameter (η)

2800

3000

3200

3400

3600

3800

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s)

(a) Expected bitrate.

0 1 2 5 10 20 50
Tunable Reward Parameter (η)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

B
it

ra
te

S
w

it
ch

C
ou

nt

(b) Quality degradation (lower is better).

0 1 2 5 10 20 50
Tunable Reward Parameter (η)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
eb

uff
er

P
er

ce
nt

ag
e

(%
)

(c) Buffer-induced freezing.

Figure 4.3: The impact of tunable cache reward η on consumers’ QoE.

Figure 4.3a, where consumers receive the highest quality when η = 0 and diminishing

quality as η values increase. Conversely, Figure 4.3b shows that those larger values

of η correspond with fewer adaptations that reduce quality. This happens because

larger η values emphasize stability via µ(b). Finally, Figure 4.3c shows no significant

difference in buffer-induced freezing. We take this as evidence that consumer-side

adaptations are able to ensure the same degree of uninterrupted playback despite

changes in network conditions.

4.5. RIPPLEFINDER CACHE PARTITIONING 84

Figure 4.3 points to η = 1 as striking a good balance between bitrate and oscilla-

tion. As η = 0 emphasizes video quality regardless of cache utilization and resulting

bandwidth fluctuation, η = 1 would reduce bitrate oscillation without sacri-

ficing on received video quality. We found this to be true throughout our wider

evaluations in Section 4.6.

RippleClassic is designed to be a benchmark partitioning scheme that optimizes

for high-bitrate content by pushing lower-bitrate content towards the core. The com-

plexity of RippleClassic presents scalability challenges. In the next section, we design

a distributed heuristic that can partition caches according to the RippleCache prin-

ciples in polynomial time.

4.5 RippleFinder Cache Partitioning

The NP-Complete complexity class of RippleClassic is a barrier to deployment at

scale. For larger networks, we design the distributed RippleFinder cache placement

scheme. RippleFinder manages cache capacity per-forwarding path, rather than per-

router. We begin with a high-level description, then follow with the details of each

step, before showing that RippleFinder executes in polynomial time.

4.5.1 System Overview

A full execution consists of 6 procedures performed in sequence. RippleFinder begins

at each edge router that (1) ranks video segments by their utility, and also (2) discovers

the total cache capacity of the path. The edge router uses this information to (3) push

and pop entries from the full ranking tables into new bitrate-specific stacks. Edge

routers’ final step is to (4) nominate the caching candidates for video content at each

4.5. RIPPLEFINDER CACHE PARTITIONING 85

router on the forwarding path.

A system-wide representation appears in Figure 4.4, where Cache Candidate Ta-

bles (CCTs) for routers R1, R2 and R3 (in blue, red, and green, respectively) are

generated following Steps (1) (2) (3) and (4). R1 is processed immediately on R1,

Intermediate
Router (R3)

R1 R2 R3
Edge

Router (R1)

Intermediate
Router (R2)

R2 R3R2 R3

Cache Candidate Table (CCT)

Control Flow

R2 R3R2 R3

Cache
Partitions

Cache
Partitions

Figure 4.4: RippleFinder diagram. Edge router R1 would create Cache Candidate
Tables (CCTs) for R1, R2 and R3. CCT for R1 is processed immediately
on R1. CCTs for R2 and R3 are delivered upstream. The intermediate
router R2 would intercept all CCTs for R2 (the icon in red color), and
forward CCTs for R3.

4.5. RIPPLEFINDER CACHE PARTITIONING 86

while the other two tables are delivered to upstream routers. Procedures (1)-(4) are

repeated at each ICN edge router for each forwarding path.

Subsequent steps (5)-(6) are executed by all routers in the system. Routers that

sit on intersecting paths must then (5) negotiate their finite cache capacity between

competing paths once all candidate tables are received, since the total size of video

segments in these candidate tables may exceed the cache capacity of this router.

Note that the resulting cache capacity allocated to each path will differ from the

initial values in Step (2). In the final Step (6), each router updates and returns this

new values to the respective edge routers.

Steps (2) to (6) are repeated until cache capacity values at nomination phase

(Step (4)) match the values after negotiation (Step (5)). This iteration is guaranteed

to terminate, as is explained following the details of individual steps.

4.5.2 RippleFinder in Execution

Each individual step is described below with numbering that corresponds to the

system overview.

(1) Ranking Table Construction. Video statistics are used to rank content

by utility, for each bitrate, as shown in Figure 4.5-1. Every entry in a ranking table

consists of the name of the content and the corresponding caching utility U, sorted

from high utility to low. The cache utility for video segment indexed by (f, k, b) is

calculated as,

Ud(f, k, b) = µ(b) ∗ ξd(f, k, b). (4.12)

µ(b) and ξd(f, k, b), both previously defined in Section 4.4, are a value proportional

to the size of video segment and the number of requests, respectively. This notion

4.5. RIPPLEFINDER CACHE PARTITIONING 87

(B3 > B2 > B1)
Video Request Statistics

Name Utility

/Video1/B3

/Video2/B3

/Video3/B3

100

70

40

Ranking Table (B3)

...
/Video10/B3 15...

Name Utility

/Video1/B3

/Video2/B3

/Video3/B3

100

70

40

Ranking Table (B3)

...
/Video10/B3 15...

Name Utility

/Video1/B2

/Video3/B2

/Video24/B2

80

60

16

Ranking Table (B2)

...

/Video25/B2 14...

Name Utility

/Video1/B2

/Video3/B2

/Video24/B2

80

60

16

Ranking Table (B2)

...

/Video25/B2 14...
Ranking Table (B1)

Name Utility

/Video2/B1

/Video4/B1

/Video5/B1

40

35

30...
/Video20/B1 20......

Name Utility

/Video2/B1

/Video4/B1

/Video5/B1

40

35

30...
/Video20/B1 20...

Ranking Table (B1)

Name Utility

/Video2/B1

/Video4/B1

/Video5/B1

40

35

30...
/Video20/B1 20...

(1) Ranking Table Construction. Construct ranking tables for each bitrate (B1, B2 and
B3) from video statistics collected by edge router.

Figure 4.5: RippleFinder in execution [Step (1)].

of utility emphasizes video content that is both costly to deliver and highly popular.

The caching decisions would then cater to video segments with high overall utility.

(2) Cache Capacity Discovery. The core of RippleFinder manages the entire

cache capacity along each forwarding path. In this step, available cache volumes of

routers dedicated to a forwarding path [d, p] of length L are concatenated so that the

total path capacity is C[d,p] =
∑L

j=1C
j
[d,p]. We note that Cj

[d,p] differs from our earlier

definition of Cv, where Cv represents the entire caching space on a certain router v.

For any j = v, Cj
[d,p] ≤ Cv since the volume at a router dedicated to a path must

be upper bounded by the router’s cache capacity. In RippleFinder, the initial value

for Cj
[d,p] ← Cv. However, as caching decisions are made along each forwarding path

independently and routers in an ICN may be shared by multiple paths, one cannot

guarantee that our initial assumption always remains valid. As shown in Figure 4.5-2,

4.5. RIPPLEFINDER CACHE PARTITIONING 88

Cache Capacity
(R1)

Cache Capacity
(R1)

Cache Capacity
(R3)

Cache Capacity
(R3)

R2 R3R1

Forwarding Path

Cache Capacity
(R2)

Cache Capacity
(R2)

Available Cache
Volume

(2) Cache Capacity Discovery. The shaded volume of router R1 , R2 and R3 would be
used to cache video content delivered along forwarding path. These shaded volume is
added together, with a size of C[d,p].

Figure 4.5: RippleFinder in execution [Step (2)].

only portions of the cache capacity at ICN nodes may be allocated to a forwarding

path, so that some capacity may be reserved to content delivered through other paths.

The volume of a cache on the path may be adjusted in later steps. Consequently, the

cache capacity discovery marks the beginning of an iteration that ends with cache

volume updates in Step (6).

(3) ”Push” and ”Pop”. In this intermediate step, a cache stack STb is popu-

lated for each of the bitrate ranking tables in Step (1). Entries from ranking tables are

pushed into the corresponding stack in descending order. The ordering can be seen

in Figure 4.5-3, where higher bitrate stacks are filled before lower bitrate stacks, and

within each stack the higher utility items sit deeper than lower utility items. Ranked

4.5. RIPPLEFINDER CACHE PARTITIONING 89

Ranking Table (B1)

Cache Stack (STB1)

Pop

Ranking Table (B3) Ranking Table (B2)

Cache Stack (STB2)

/Video1/B2 (80)

...
/Video24/B2 (16)

/Video25/B2 (14)

Cache Stack (STB3)

/Video1/B3 (100)

/Video2/B3 (70)

...
/Video10/B3 (15)

(3) “Push” and “Pop”. Video content is pushed into Cache Stack by ranking order.
After content ‘/Video25/B2 ’ is pushed into STB2 , the Equation 4.13 is violated, which
triggers ‘Pop’ operation. Since utility of ‘/Video10/B3 ’ on top of STB3 is higher than
‘/Video25/B2 ’ on top of STB2 , video segment ‘/Video25/B2 ’ is popped.

Figure 4.5: RippleFinder in execution [Step (3)].

entries are pushed into the stacks until the ‘stacked’ size of the video segments exceeds

the total available cache capacity, i.e.

∑
b∈B

Size(STb) > C[d,p]. (4.13)

Once the cache size required by stack elements exceeds capacity C[d,p], RippleFinder

pops and pushes entries as follows, and depicted by example in Figure 4.5-3. Until

constraint
∑

b∈B Size(STb) ≤ C[d,p] is restored, RippleFinder compares the top entries

of each stack and pops the entry with lowest utility. Note that it is possible for a least-

utility entry in a high-bitrate stack to have less utility than the least-utility entry in

a lower-bitrate stacks. Once constraint
∑

b∈B Size(STb) ≤ C[d,p] is restored, pushing

resumes as normal until the known capacity is again exceeded. Stack operations

4.5. RIPPLEFINDER CACHE PARTITIONING 90

STB3STB3

Cache Capacity
(R3)

Cache Capacity
(R2)

Cache Capacity
(R1)STB2STB2 STB1

Cache
Placement

(4) Cache Candidate Nomination. Video segments in Cache Stacks are assigned to
Cache Candidate Tables (CCTs). The assignment occurs first at CCT for R1, followed
by R2 and R3. Video content in STB3 is first arranged, followed by STB2 and STB1 .

Figure 4.5: RippleFinder in execution [Step (4)].

continue until the lowest bitrate stack is marked complete. A stack is marked complete

when the popped video content is taken from the stack that is currently being filled

since the overall cache utility can no longer be improved by continuing to push content

into the current stack. The ordering of push operations ensures that higher bitrate

stacks will always be marked complete before lower quality stacks. The content

corresponding to entries that have been popped or that remain in the ranking tables

would be excluded from cache placement.

(4) Cache Candidate Nomination. For each cache node along the forwarding

path, the edge router constructs a Cache Candidate Table (CCT). Tables are popu-

lated with entries from the cache stacks, again in descending bitrate order, starting

from the CCT for edge router itself. We note that content from any stack may span

multiple tables. For example, the depiction in Figure 4.5-4 shows content from the

stack for B3 has filled the CCT for router R1, and overflows into the CCT for R2.

The sum sizes of content assigned to candidate tables are capped by the capacities

reported to the edge router during discovery in Step (2). Since the total space re-

quired by all items in all stacks is constrained by the path capacity C[d,p], every item

4.5. RIPPLEFINDER CACHE PARTITIONING 91

Name Utility

/Video2/B3

/Video2/B1

/Video5/B2

70

40

30

Cache Candidates
([d,p])

Name Utility

/Video2/B3

/Video2/B1

/Video5/B2

70

40

30

Cache Candidates
([d,p])

Cache Decision
Table

Name Utility

/Video2/B1

/Video2/B3

/Video1/B2

80

70

60

/Video3/B3

/Video5/B2

35

30

Name Utility

/Video2/B1

/Video2/B3

/Video1/B2

80

70

60

/Video3/B3

/Video5/B2

35

30

Cache Decision
Table

Name Utility

/Video2/B1

/Video2/B3

/Video1/B2

80

70

60

/Video3/B3

/Video5/B2

35

30

Name Utility

/Video1/B2

/Video2/B1

/Video3/B3

60

40

35

Cache Candidates
([d’,p’])

Name Utility

/Video1/B2

/Video2/B1

/Video3/B3

60

40

35

Cache Candidates
([d’,p’])

(5) Cache Placement Negotiation. The cache placement decision is made by (1) merg-
ing CCTs received from path [d, p] and path [d′, p′], and (2) choosing video segments
with high utility as long as the cache capacity of this router Cv allows.

Figure 4.5: RippleFinder in execution [Step (5)].

in the stacks finds a place in a CCT. The result adheres to RippleCache ideals by

assigning high-bitrate content in tables for ICN routers closer to consumers, leaving

lower bitrate content for CCTs bound towards the core.

(5) Cache Placement Negotiation. Cache nodes receive a candidate table

from each of its forwarding paths. The combined entries from all CCTs may exceed

the cache’s capacity and must be negotiated. Nodes rank video segments from all

CCTs by the sum of the content’s utility. In Figure 4.5-5 the individual utility values

for ‘/Video2/B1 ’ from left and right tables are summed to a utility of 80. Each router

v ∈ V can cache up to its cache capacity Cv, according to the sorted utility from high

to low.

(6) Cache Volume Update. Since sum utility is used to populate a cache, the

portion of capacity dedicated to a path may be smaller than was previously reported

in Step (2). In the example shown by Figure 4.5-6, a router would cache the three

4.5. RIPPLEFINDER CACHE PARTITIONING 92

Name Utility

/Video2/B3

/Video2/B1

/Video5/B2

70

40

30

Cache Candidates
([d,p])

Name Utility

/Video2/B3

/Video2/B1

/Video5/B2

70

40

30

Cache Candidates
([d,p])

Cache Placement
Decision

Name Utility

/Video2/B1

/Video2/B3

/Video1/B2

80

70

60

Name Utility

/Video2/B1

/Video2/B3

/Video1/B2

80

70

60

Cache Placement
Decision

Name Utility

/Video2/B1

/Video2/B3

/Video1/B2

80

70

60

/Video2/B1

/Video2/B3

Cache Volume

Capacity
Update

(6) Cache Volume Update. The final caching decisions are compared against the items
in each CCT. Segments ‘/Video2/B1 ’ and ‘/Video2/B3 ’ appear in both final cache
placement and CCT. The updated cache volume of this router to path [d, p] would be
equal to the total size of these two segments.

Figure 4.5: RippleFinder in execution [Step (6)].

video segments enveloped in the red dot-dash line. The volume size dedicated to

path [d, p] is then equal to the size of both segments ‘/Video2/B3 ’ and ‘/Video2/B1 ’.

Updated volume sizes are returned to the respective edge routers along the reverse

of forwarding paths, so that the available cache capacity C[d,p] for a entire path can

remain current.

At this stage, the updated volume sizes are compared with previous values ob-

tained in Step (2). A mismatch triggers another iteration of Steps (2)-(6). RippleFinder

terminates when C[d,p] is unchanged for all forwarding paths between two consecu-

tive iterations. RippleFinder is guaranteed to terminate. In any iteration, candidate

tables are constructed with reported cache volume sizes. Since cache candidates nom-

inated by edge routers may be omitted from the final placement at core routers, Cj
[d,p]

decreases monotonically. The worst possible case is that no cache capacity is allo-

cated for a path, meaning that Cj
[d,p] is capped by 0. Since no volume can be negative

iteration must eventually end.

4.6. PERFORMANCE RESULTS AND INSIGHTS 93

4.5.3 RippleFinder Algorithm and Complexity

RippleFinder is a distributed algorithm with polynomial time complexity of the num-

ber of paths in the system, |D| · |P|.

For ease of presentation, RippleFinder is written as a single-thread of execution in

Algorithm 3. The analysis pertains to edge routers since only edge routers execute the

full set of operations; intermediate routers are limited to negotiating placements and

updating cache volumes. Line 4 constructs B ranking tables, each of up to size FK,

with sorting complexity O(B ·FK log (FK)). Line 5 iterates over every router in each

forwarding path to update cache capacity, with a complexity of O(|V|). Both Lines

6 and 7 each scan over existing data structures in a time that is linear with the size

of the structures, of O(BFK). Thus, the overall complexity for the full set of tasks

(Line 3-8) is O(|P|BFK log (FK)+ |P||V|), as the same operations have to repeat for

totally |P| number of forwarding paths. The complexity incurred by Steps (5) and (6)

at all routers is dominated by merging CCTs at Line 9. CCT is already a sorted

table, and the length of each CCT is capped by cache capacity and also expected to

be markedly less than the length of ranking tables (that contain all requested video

content) at Line 4. As such the complexity at Line 9 is bound by that at Line 4.

Therefore, the complexity of RippleFinder is O(|P|BFK log (FK) + |P||V|).

4.6 Performance Results and Insights

We evaluate RippleClassic and RippleFinder performance via simulation against known

caching strategies on the NDN architecture. Results reinforce the broader merits of

cache partitioning for adaptive streaming. We claim without loss of generality that

the merits of RippleCache designs and subsequent analyses can be applied on other

4.6. PERFORMANCE RESULTS AND INSIGHTS 94

Algorithm 3: RippleFinder

Input: Edge router d; set of producers P; length of routing path L for each
(d, p), p ∈ P; dedicated cache volume Cj

[d,p] at each hop.
Output: Adaptation-aware cache placement xd on router d.
1: Initialize available cache volume C[d,p] ←

∑L
j=1 C

j
[d,p]

2: repeat
3: for all p ∈ P do
4: Ranking Table Construction
5: C[d,p] ← Cache Capacity Discovery
6: “Push” and “Pop”
7: CCT ← Cache Candidate Nomination
8: end for

// j = 1 as RippleFinder is working on an edge node
9: C1

[d,p], xd ← Cache Placement Negotiation
10: for all p ∈ P do
11: C ′[d,p] ← Cache Volume Update
12: end for
13: until C[d,p] = C ′[d,p]
14: return xd.

ICN architectures and cache hierarchies.

4.6.1 Simulation Setup and Parameters

The proposed cache partitioning schemes were implemented onto ndnSIM [2], an NS-3

based simulator. Each NDN router is allocated a Content Store (CS), where its size

Cv is subject to a total available system capacity, controlled by ω, as

Cv =

∑
Size of Video

of NDN Routers
∗ ω,∀v ∈ V.

Consumer-side adaptation behaviour is simulated via our own implementation of

FESTIVE [26], a throughput-based mechanism that captures recent advancements in

bitrate adaptation. Users’ interests in video content vary across different video files,

4.6. PERFORMANCE RESULTS AND INSIGHTS 95

captured by a Zipf -like distribution (controlled via skewness parameter α). Videos

are comprised of 4-second segments. Each video segment is prepared at 1, 2.5, 5,

and 8 Mbps, which are recommended encoding bitrates by YouTube [67]. Consumers

initiate a session first by requesting a video file and retrieving video-related meta-

data (i.e. the Media Presentation Description (MPD)) from the producer. Interests

in videos are triggered following a Poisson process, with an average time interval

between two consecutive interests being 300 seconds. Once interest for a video file is

initiated, subsequent requests for the session are initiated by the bitrate adaptation

algorithm.

Three additional caching schemes are evaluated alongside our proposed RippleFinder

and RippleClassic for comparison. CE2 [69] with LRU, also with LFU, is a baseline

that commonly appears in literature [69]. ProbCache [49] serves as a baseline for

probabilistic caching [9]. Both RippleClassic and RippleFinder are cache placement

schemes. As the interaction between in-network caches and consumer-side adapta-

tion exists, the caching decisions from RippleClassic and RippleFinder are updated

iteratively to keep up with the changes on consumers’ preferred bitrates. The itera-

tion on RippleClassic stops once two consecutive optimization produces similar cache

rewards. RippleFinder stops after a fixed number of iterations, where we observe a

stable performance on consumers’ QoE.

Two separate networks are implemented for evaluation. A smaller 16-node ICN

network with a maximum 7-hop distance from a video producer to consumers allows

the binary integer programming from RippleClassic to find solutions in a reasonable

time. Variations on hop distance are used to cause different video access delay by

consumers. We choose network link capacity at 20 Mbps, and as a result, the highest

4.6. PERFORMANCE RESULTS AND INSIGHTS 96

Table 4.2: Simulation parameters for RippleClassic and RippleFinder evaluation

NDN BIP-tractable Large-scale

Number of video files 25 500
Number of video segments per file 25 50
Number of NDN routers 16 42
Video segment playback time (sec) 4 4
Number of video producers 1 3
Number of video consumers 32 84
Encoded bitrates (Mbps) {1, 2.5, 5, 8} {1, 2.5, 5, 8}
Request interval on video file (sec) 300 300
Bandwidth (Mbps) 20 20
Cache reward parameter (η) 1
Skewness factor (α) 1.2 1.2
Content store size percentage (ω) 0.2 0.05

FESTIVE

Drop Threshold 0.8 0.8
Combine Weight 8 8

bitrate (8 Mbps) cannot be retrieved directly from the producer and must be provided

by caches. We choose this relatively small link capacity to examine the performance

that is enhanced by caching policies. Results for RippleClassic are shown for η = 1.

Recall from Figure 4.3 and surrounding discussion that η = 1 appears to strike a

good balance between prioritizing high bitrates and low oscillation.

A larger 42-node topology generated by BRITE [48] is used to evaluate cache par-

titioning in a realistic and large-scale system with multiple producers. The complete

list of simulation parameters for both scenarios/topologies is listed in Table 4.2.

Results are evaluated using standard QoE metrics published by the DASH In-

dustry Forum [56]. From the standard set, we adopt three metrics, Average Video

Quality, Bitrate Switch Count and Rebuffer Percentage, as described in their relevant

sections. Each set of evaluations is repeated across a range of content store size ratio

4.6. PERFORMANCE RESULTS AND INSIGHTS 97

ω and popularity-skewness parameter α. All results are presented at a 95% confidence

level.

4.6.2 Average Video Quality

Figures 4.6a and 4.6b show the Average Video Quality, defined as the average video

bitrate that consumers request among all video sessions [56]. Measurements indicate

that RippleClassic and RippleFinder performance meet or exceed CE2 with LFU

and ProbCache. We observe that the gap in performance against the benchmark

RippleClassic grows proportionally larger as cache resources diminish. For exam-

ple, Figure 4.6a shows that when the cache capacity ratio is ω = 0.2, RippleClassic

delivers higher video quality than CE2 with LFU by 4.6%. When the total cache

capacity drops to 0.1, RippleClassic delivers an average bitrate 9.4% better than CE2

with LFU. RippleFinder results in a similar performance as CE2 with LFU across

all tested cache capacity, with one exception. At ω = 0.1, RippleFinder delivers

an average bitrate 3.9% lower than CE2 with LFU. Later observations show that

RippleFinder magnifies such small differences by substantially reducing bitrate oscil-

lation irrespective of caching resources.

The trend is similar to popularity skewness, shown in Figure 4.6b. As expected,

the average video bitrates increase among all caching schemes as the skewness param-

eter α grows from 0.8 to 1.4, since a greater number of requests target fewer video

content. Here, too, RippleClassic and RippleFinder will distinguish themselves via

improvements in reducing oscillation.

When comparing both RippleCache-guided schemes to each other, we observe

measurable differences when cache capacity and skew diminish. This is explained by

4.6. PERFORMANCE RESULTS AND INSIGHTS 98

0.10 0.20 0.30 0.40
2000

2500

3000

3500

4000

4500

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s) CE2(LRU)

CE2(LFU)

ProbCache

RippleClassic

RippleFinder

(a) Content Store Size Percentage (ω)

0.80 1.00 1.20 1.40
2000

2250

2500

2750

3000

3250

3500

3750

4000

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s) CE2(LRU)

CE2(LFU)

ProbCache

RippleClassic

RippleFinder

(b) Popularity Skewness (α)

Figure 4.6: Average Video Bitrate under ‘BIP-tractable’ settings

0.10 0.20 0.30 0.40
1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

B
it

ra
te

S
w

it
ch

C
ou

nt

CE2(LRU)

CE2(LFU)

ProbCache

RippleClassic

RippleFinder

(a) Content Store Size Percentage (ω)

0.80 1.00 1.20 1.40
1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

B
it

ra
te

S
w

it
ch

C
ou

nt

CE2(LRU)

CE2(LFU)

ProbCache

RippleClassic

RippleFinder

(b) Popularity Skewness (α)

Figure 4.7: Bitrate Switch Count under ‘BIP-tractable’ settings

0.10 0.20 0.30 0.40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
eb

uff
er

P
er

ce
nt

ag
e

(%
)

CE2(LRU)

CE2(LFU)

ProbCache

RippleClassic

RippleFinder

(a) Content Store Size Percentage (ω)

0.80 1.00 1.20 1.40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
eb

uff
er

P
er

ce
nt

ag
e

(%
)

CE2(LRU)

CE2(LFU)

ProbCache

RippleClassic

RippleFinder

(b) Popularity Skewness (α)

Figure 4.8: Rebuffer Percentage under ‘BIP-tractable’ settings

4.6. PERFORMANCE RESULTS AND INSIGHTS 99

the design of RippleClassic to optimize the use of available resources against request

patterns. In contrast the advantages of optimization over popularity-based schemes,

including RippleFinder, diminish as capacity resources grow or request patterns be-

come predictable.

4.6.3 Bitrate Switch Count

The bitrate switch count measures oscillation by recording the frequency of bitrate

switches (including both upgrade and downgrade) in a video session [56]. Results are

shown in Figures 4.7a and 4.7b, as cache capacity and popularity distribution are

made to vary, respectively. In all evaluations, both RippleClassic and RippleFinder

reduce bitrate oscillation when compared with popularity-based CE2 with LFU and

ProbCache. When cache capacity is lowest, or popularity least skewed, CE2 with

LRU appears to meet or exceed RippleFinder or RippleClassic scheme. The corre-

sponding video bitrate observations for LRU show that this comes at the cost of video

quality. The lower video quality for LRU also explains the low degrees of oscillation.

Coupled with Figures 4.6a and 4.6b, we see that even when ω = 0.1 (or α = 0.8),

our RippleCache-guided schemes are seen to reduce oscillation while sustaining the

highest levels of video quality.

Observations in Figures 4.7a and 4.7b also indicate that RippleFinder outper-

forms RippleClassic, despite both adhering to RippleCache ideals. The performance

gap may be explained by their difference in caching decision criteria. Recall that

RippleClassic implements a reward system that approximates adaptation behaviour.

This has the effect of optimizing for the consumer’s criteria, namely maximal sus-

tainable bitrate. Conversely, the use of utility in RippleFinder embeds conventional

4.6. PERFORMANCE RESULTS AND INSIGHTS 100

notions of hit ratio, albeit on a per-path basis. This has the effect of stabilizing

video throughput across a single logical cache despite being distributed over multiple

volumes. The differences in performance between the two RippleCache schemes are

reflective of their different emphases on consumer vs. cache performance.

4.6.4 Rebuffer Percentage

Short-term variations in network and system conditions can adversely affect playback

before bitrate adaptations are triggered. One such indication is buffer-induced paus-

ing during playback that manifests on-screen as ‘freezing’. We measure the impact

of ‘freezing’ in terms of rebuffer percentage, which is the average time spent in a

video freezing state over the active time of a video session [56]. Results are shown in

Figures 4.8a and 4.8b.

Since video playback freezing relates to the access delay of media segments, caching

schemes that achieve high hit ratios must be able to deliver segments before they

are needed for playback, otherwise the playback will freeze. This can be seen in

Figures 4.8a and 4.8b, where both RippleCache-guided caching schemes outperform

the others. As large amount of video segments with high quality would significantly

increase the network delay and choke video traffic, RippleFinder and RippleClassic

reduce system-wide traffic load by satisfying high-bitrate requests as early as possible.

Only when the request distribution is least skewed (α = 0.8) or there exists limited

cache capacity (ω = 0.1), does RippleFinder or RippleClassic performance diminish to

a degree matched by popularity-based schemes. It is also noticeable that the freezing

time for all tested caching schemes is relatively short. This is because the simulation

settings assume a small video file to measure the video freezing. A small video

4.6. PERFORMANCE RESULTS AND INSIGHTS 101

file is already representative to differentiate the performance between our proposed

RippleCache schemes and other benchmark solutions. It can be expected that for a

larger video file, the freezing time would increase correspondingly.

Intuitively, average video bitrate and rebuffer percentage are conflicting measures,

i.e, a higher video bitrate probably leads to a worse playback freezing. However, sim-

ulation results from Figures 4.6 and 4.8 imply that the relationship between these

two metrics is more subtle. In support of intuition, for example, at cache capacity

ω = 0.1 LFU delivers higher video quality than LRU, but causes almost twice play-

back freezing. The perceived relationship between metrics is broken when comparing

RippleFinder at the same ω = 0.1. Here, RippleFinder delivers the higher video

quality matching LFU but maintains the same rebuffer ratio as LRU. Collectively

these observations reinforce that, in distributed multimedia caching systems, cache

hits have value only if their occurrence is useful to the consumer.

4.6.5 Evaluation On A Realistic Topology

We evaluate over a large 42-node autonomous system (AS) topology generated using

BRITE [48]. The Barabási-Albert (BA) model is first selected to build an autonomous

system(AS)-level structure. Connections between ICN routers within each AS are

established randomly. A total of 84 video consumers are connected to this network,

and request for video content from three producers. Each producer provides 500

video files, each consisting of 50 segments. Remaining simulation settings for this

large-scale scenario are listed in Table 4.2.

Results in Figures 4.9-4.11 show that RippleFinder performance trends are similar

to previous observations. In particular, RippleFinder meets or exceeds competing

4.6. PERFORMANCE RESULTS AND INSIGHTS 102

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s) CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

(a) Content Store Size Percentage (ω)

0.80 1.00 1.20 1.40
Popularity Skewness (α)

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s) CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

(b) Popularity Skewness (α)

Figure 4.9: Average Video Bitrate under ‘Large-scale’ settings

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

B
it

ra
te

S
w

it
ch

C
ou

nt

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

(a) Content Store Size Percentage (ω)

0.80 1.00 1.20 1.40
Popularity Skewness (α)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

B
it

ra
te

S
w

it
ch

C
ou

nt

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

(b) Popularity Skewness (α)

Figure 4.10: Bitrate Switch Count under ‘Large-scale’ settings

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
eb

uff
er

P
er

ce
nt

ag
e

(%
)

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

(a) Content Store Size Percentage (ω)

0.80 1.00 1.20 1.40
Popularity Skewness (α)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
eb

uff
er

P
er

ce
nt

ag
e

(%
)

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

(b) Popularity Skewness (α)

Figure 4.11: Rebuffer Percentage under ‘Large-scale’ settings

4.6. PERFORMANCE RESULTS AND INSIGHTS 103

levels of video quality and rebuffering, while significantly reducing bitrate oscillation.

This consistent performance of RippleCache-guided design across topologies is

also noteworthy. When compared to trends of the smaller network captured in Fig-

ures 4.6 and 4.8, the performance of competing schemes appears to be affected by

size and topology. For example, Figures 4.8a and 4.8b show CE2 with higher rates

of rebuffering for LFU than LRU at small ω or small α, respectively. However, in

the representative topology LFU and LRU performance is inverted, as can be seen

in Figures 4.11a and 4.11b. These differences further demonstrate the poorly un-

derstood interactions between caching and adaptation controls. The consistent QoE

performance delivered by RippleFinder across different traffic patterns and topologies

is important for real-world deployments.

4.6.6 Discussion of Results

Throughout our evaluations we notice the ability of CE2 with LFU in terms of de-

livered video quality and playback freezing. Looking ahead, the robustness of LFU

suggests that performance gains promised by ICNs specifically, and caching hierar-

chies generally, may be dependent on their ability to exploit content characteristics.

Otherwise caching mechanisms may be mooted by simple popularity, alone, and the

corresponding simplicity of LFU.

The general hypothesis that cache placement should be informed by content char-

acteristics is reinforced by RippleFinder/RippleClassic observations. By designing a

cache placement scheme for adaptive streaming content, we draw insights that run

counter to convention. Lower quality content that is pushed into the core, for ex-

ample, can improve end-user QoE. Edge caches are left with additional capacity for

4.7. SUMMARY 104

higher-quality content. Consequently, content quality at all bitrates becomes network-

limited rather than cache-limited.

4.7 Summary

In this chapter, we have argued that ICN cache placement should be tailored for

adaptive streaming, as bitrate adaptation mechanisms appear to clash with generic

ICN caching techniques. We highlight the issue of oscillation dynamics which is

caused by the interplay between in-network caching and bitrate adaptation control,

present a primer in a novel approach to caching, and establish the premise of safe

guarding cache partitions for higher bitrates, allowing for more ideal cache placement

strategies for adaptive video content.

Our proposed safe-guarding mechanism enforces bitrate-based partitioning of cache

capacities, named RippleCache, in order to stabilize bandwidth fluctuation. In RippleCache,

a network of caches is viewed along each forwarding path from consumers, where the

essence is safeguarding high-bitrate content on the edge and pushing low-bitrate con-

tent into the network core. To validate the concept and demonstrate the potential

gain of RippleCache, we implement two cache placement schemes, RippleClassic and

RippleFinder, where our experiment results contrast to leading caching schemes, and

demonstrate how cache partitioning would improve consumers’ QoE, in terms of high

video quality and significant reduction on bitrate oscillation.

More importantly, our explorations yield the following three conclusions. 1. The

operational mandate of bitrate adaptation algorithms significantly impacts in-network

caching schemes, thus caching must seamlessly cooperate with adaptation. Existing

schemes that apply a snapshot approach cannot be applied directly for adaptive

4.7. SUMMARY 105

streaming application, as they ignore the need of cooperation, which results in severe

bitrate oscillation. 2. The problem of bitrate oscillation can be tackled by concate-

nating caches along a forwarding path into a cache path. Although cache hits on a

standalone router would result in similar throughput, adaptation-level dynamics vary

across encoding bitrates such that even exact same throughput will not bring the

same adaptation decision for each bitrate. By zooming out our view from one cache

to the range of a forwarding path, we can arrange video content of different bitrates

at a hop distance from consumers that maximizes the chance of maintaining the same

adaptation decision, which is the key to avoid bitrate oscillation. 3. It is possible for a

caching scheme to deliver video consumers high-quality content while ensuring near-

zero playback freezing and minimal bitrate oscillation. Our experiments demonstrate

that there is significant room of improvement for future caching policies to enhance

QoE by practicing cache partitioning and inheriting from RippleCache principle. This

study paves the way for caching schemes that can interact with bitrate selection al-

gorithms, and handle the dependency between adaptation control and caching via

network prediction for future request patterns.

106

Chapter 5

Predictive Cache Partitioning

5.1 Introduction

Bitrate oscillation is one of the enduring challenges in cache management, caused by

the interplay of cache placement and throttling actions by adaptation control [64].

This challenge was addressed in Chapter 4, where it was shown that cache partitioning

can effectively reduce bitrate oscillation while maintaining high streaming quality.

However, similar to most popularity-based caching schemes, both RippleClassic and

RippleFinder derive caching decisions from recent request statistics. This operation

typically involves iteratively updating the cached bitrates, with the assumption that

these selected bitrates would remain popular in the near future.

However, since cached video content would significantly change the throughput

experienced by users, bitrate adaptation schemes could (based on recent statistics)

attempt to request bitrates which exceed the expected network behavior. That is, as

we improve the user’s experience due to better cache management, the user’s bitrate

adaptation scheme may in fact attempt to surpass the available throughput, based

on its conceived ‘improvement’ in network conditions. Thus, if caching decisions are

5.1. INTRODUCTION 107

made without inferring future video requests, the cached bitrates would typically lag

behind real-time changes. Therefore, we argue that a better video caching strategy

must cater to incoming traffic by considering not only the (currently) most requested

bitrates, but also predicting the bitrate adaptation to occur in the future.

This insight motivated the work presented in this chapter. Specifically, we de-

vise the PredictiveRipple that attempts to predict future video traffic, to remedy the

dependency between in-network caches and bitrate adaptation. PredictiveRipple is

guided by the RippleCache principle, and optimizes the same cache reward indica-

tor that is central to RippleClassic. However, PredictiveRipple presents significant

improvements in contrast to previous schemes, specifically in the following aspects:

• PredictiveRipple is a cache partitioning scheme. Compared with our previous

proposals in Chapter 4, where cache partitions are created via cache place-

ment, PredictiveRipple determines the cache size for each bitrate, rather than

deciding on which specific video segments to cache, and leaves content place-

ment/replacement to an independent caching strategy. The decoupling of cache

partitioning from content placement reduces the complexity of PredictiveRipple,

and yields flexibility to handle video content with time-varying popularity.

• PredictiveRipple captures the dynamics of cache-partitioning via a Multi-Agent

Reinforcement Learning (MARL) model, aiming to optimize the user’s QoE. At

its core, the MARL-based model guides each router to independently monitor

the consumers’ input, learning from its reaction to bitrate adaptation, and

cooperating with other routers to discover the best (joint) cache partitioning

actions.

5.2. CACHE PARTITIONING WITH PREDICTIVERIPPLE 108

• PredictiveRipple is an adaptive system, which evolves to improve cache parti-

tioning under various video traffic patterns.

The results of our evaluation show that although the QoE improvements by

RippleFinder are significant, PredictiveRipple optimizes the long-term QoE perfor-

mance of caching system and resolves an overfitting issue which is rooted in popularity-

based caching schemes.

The remainder of this chapter is organized as follows. We present the overview

of PredictiveRipple caching system in Section 5.2, and elaborate on the formulation

of its MARL framework in Section 5.3. Section 5.4 details the training process of

MARL, elaborating on the heuristics employed to facilitate efficient cache partition

exploration. Section 5.5 presents the experiment setup and performance evaluation.

We summarize our findings in Section 5.6.

5.2 Cache Partitioning with PredictiveRipple

We design PredictiveRipple , as an adaptive scheme to perform cache partitioning.

PredictiveRipple is guided by the same RippleCache principle as in Chapter 4. Each

router coordinates with other nodes - along forwarding paths - to adjust the cache

capacity dedicated to each bitrate.

We model an ICN as a connected graph G = (V,E), where nodes in V are com-

posed of video producers P, edge routers D and intermediate routers. All users are

served exclusively by edge routers. Every node v, where v ∈ V, is equipped with

content storage with capacity Cv which represents the capacity dedicated to adap-

tive video caching. In PredictiveRipple, we assume each router relays video requests

following single-path forwarding, and applies the best route forwarding strategy.

5.2. CACHE PARTITIONING WITH PREDICTIVERIPPLE 109

R3R3

Cache Capacity (R5)Cache Capacity (R5)

PRU(P2)

B3

B2

B1

PRU(P1)

R4R4

P2P1

R5R5

R2 R2

C1

R1R1

C2

Edge RouterEdge Router

Intermediate
Router

Intermediate
Router

Cache CapacityCache Capacity

PRU(P1)
PRU for

Producer P1
PRU(P1)

PRU for
Producer P1

Figure 5.1: PredictiveRipple system architecture. The cache capacity of every ICN
router is divided into two portions, where each portion serves the content
from producer P1 and P2 respectively. Each cache portion is managed
by a PredictiveRipple Unit (PRU) module, and is partitioned into three
sub-partitions for content encoded with bitrate B1, B2 and B3.

The available cache capacity on any router v ∈ V is further divided into portions to

serve video content from different producers. We use Cv(p) to denote cache capacity

that is dedicated to caching video content from producer p, where Cv =
∑

p∈PCv(p).

As shown in Figure 5.1, multiple PredictiveRipple Units (PRUs) are installed on ICN

routers. Each PRU is responsible for managing cache capacity Cv(p) for a certain

video producer p, and coordinating with other PRUs which serve the same producer,

to adjust its cache partitioning. In Section 5.3, we elaborate on this PRU, which is

trained by reinforcement learning to cater to future bitrate adaptation. Each PRU

5.3. REINFORCEMENT LEARNING FRAMEWORK 110

determines the cache size for each bitrate, not which specific video segments should be

cached. As catering to video content popularity is known to improve the performance

of caching schemes [69], we implement and evaluate CE2 with LFU as a representative

video placement/replacement scheme for PredictiveRipple.

5.3 Reinforcement Learning Framework

While PRU adjusts cache partitions based on bitrate adaptation prediction, under-

standing the interaction between cache placement and bitrate adaptation is a fun-

damental prerequisite to build PRU. Our first attempt involved modelling this in-

teraction, but the challenge lies in the diversity of heuristics employed in adaptation

algorithms [23, 58, 66]. These heuristics are designed for various scenarios, render-

ing it almost impossible to build a generic model which can represent the specifics

of these algorithms. Thus, we set to devise a model-agnostic approach, and built

the proposed PRU in PredictiveRipple using a Multi-Agent Reinforcement Learning

(MARL) framework [55, 6]. As a result, PRU is not limited by any specific type of

bitrate-adaptation, and can be applied to general network settings.

In the context of this work, PRU is intrinsically a learning agent in the MARL

framework. Our proposed PredictiveRipple has multiple PRUs installed on ICN

routers for different video producers. Those PRUs, which serve video content from the

same producer, logically form a MARL instance. Thus, PredictiveRipple encompasses

multiple MARL instances, where each instance configures the in-network caching for

a particular producer. As the formulation of each MARL instance is intrinsically

the same, in this section, we focus on explaining the MARL framework of a single

producer.

5.3. REINFORCEMENT LEARNING FRAMEWORK 111

MARL predicts future bitrate adaptation by referring to cache reward in the long

term. The evaluation of this reward reflects diverse caching preferences from differ-

ent video consumers. We apply the same reward function design as in Section 4.4.2,

which quantifies the ‘quality’ of cached video content based on the RippleCache prin-

ciple. Our cache reward design is inherently distributed, since reward is evaluated

independently at each router, and granted per cache hit. Thus, each PRU implements

the same reward function, measuring and recording the received reward in real-time.

Each MARL instance evaluates its own performance by capturing the sum of rewards

contributed by all corresponding PRUs. The evolution of MARL instances in the

long term relies on PRUs for exchanging and maximizing their local cache rewards,

which is elaborated on later in this section.

The rest of this section is organized as follows. First we elaborate on how each

learning agent (PRU) is executed under the MARL framework. Second, we detail

the problem formulation, defining the state and action space for PRUs. Third, we

elaborate on the need for space aggregation as a practical implication, and finally

highlight the distributed coordination among agents to reach the global optimum.

Overview

The timeline for a learning agent (PRU) is shown in Figure 5.2. Before each agent

starts learning, an initialization period is triggered between [0, t1]. During this period,

a popularity-based caching scheme (such as CE2 with LFU) would run on each router.

Video statistics are collected and video content is ranked by popularity. Each PRU

allocates cache space for popular video content for as much as its cache capacity

allows, which eventually forms the initial cache partitions for each bitrate.

5.3. REINFORCEMENT LEARNING FRAMEWORK 112

③

②①
t0

t1 t2 t3 t4 ...

EP1 EP2 EP3

t1 t2

Step1 Step2 Step3
t

Figure 5.2: Timeline for a learning agent. ¬ Capture initial cache partition. A
learning episode (EP1) between [t1, t2]. ® A learning step where an action
to adjust cache partitions occurs.

Each PRU then continues from t1 and cycles through multiple episodes. For in-

stance, the time interval between (t1, t2] forms episode 1 (EP1), during which multiple

actions are taken by this PRU. At the end of each episode, regardless of the current

cache partitions, the initial partitioning (derived at time t1) would be restored in

order to prepare for the next training episode.

Each episode consists of several steps, and each step starts with an action that

adjusts the size of cache partitions. The cached content in each partition is managed

by a popularity-based caching scheme, where we adopt CE2 with LFU without loss

of generality. Cache replacement can only occur between video content encoded with

the same bitrate, in order to refresh the cached content while maintaining the size of

partitions. During the time interval of a step, the cache reward is also computed by

each agent to indicate the performance of recent action on cache partitions.

5.3. REINFORCEMENT LEARNING FRAMEWORK 113

5.3.1 MARL Formulation

We formulate the behavior of agents in MARL as a Markov Decision Process (MDP),

where both the state and action of an agent define its status .

We consider a MARL instance with m learning agents, indexed by {1, ...,m},

which are installed on different ICN routers. The local state of any agent i (1 ≤ i ≤ m)

is represented by si = 〈Λi
P ,Λ

i
R〉, which includes the status of cache partitions (Λi

P)

and incoming requests (Λi
R) as an input to MARL instance. We include these features

in an agent’s state as they will eventually influence the cache reward that each agent

can receive.

Given that there are B available bitrates for users to request, the status of cache

partitions is defined by Λi
P = 〈θib1 , θib2 , . . . , θibB〉, where θibj (1 ≤ j ≤ B) is the (dis-

cretized) percentage of cache capacity allocated for encoded bitrate bj. The incoming

requests Λi
R are similarly represented by 〈υib1 , υib2 , . . . , υibB〉, where υibj denotes the per-

centage of requests for bitrate bj received from video consumers. If an agent i is

located on an edge router (the topological boundary of PredictiveRipple), υibj can be

derived directly from video statistics, which form the input to the MARL instance.

Otherwise, υibj is assigned value 0 to indicate that agent i is installed on an interme-

diate router.

Each agent in a certain state would select an action, which triggers a tran-

sition to adjust cache partitions. The local action of agent i is represented by

5.3. REINFORCEMENT LEARNING FRAMEWORK 114

ai = 〈τ ib1 , τ ib2 , . . . , τ ibB〉. τ ibj and is defined by

τ ibj =

+ 1, increase size by ζ(%)

0, no action

− 1, decrease size by ζ(%),

(5.1)

where ζ represents the action granularity. For example, if ζ = 10(%), τ ibj = +1

means increasing the cache size for bitrate bj by 10% within the total cache capacity

managed by this agent (PRU). The values of τ ibj for any local action ai must satisfy

the following constraints:

B∑
j=1

τ ibj = 0 (5.2)

B∑
j=1

|τ ibj | ≤ 2, (5.3)

where increasing and decreasing the cache capacity for bitrates must occur pairwise.

For example, if B = 4, a legitimate action ai can be 〈+1, 0,−1, 0〉, which means

increasing the cache size for b1 and decreasing for b3. Another example is 〈0, 0, 0, 0〉

which means the current cache partition remains unchanged.

In a MARL instance, all agents are adjusting cache partitions simultaneously

and each one needs to be aware of both its local status and the status of other

agents; to reach a global optimum. We thus define the agent-dependent state si

and action ai, where we use a bold typeface to distinguish each from their local

versions. Formally, si = sH(i), where H(i) is the dependency set of agent i. H(i)

contains agents, where their hosts (routers) relay video requests which impact the

5.3. REINFORCEMENT LEARNING FRAMEWORK 115

cache reward received by agent i. Figure 5.3 shows an example of this dependency

set H(i). H(i) includes all agents along the request forwarding paths, since cache hits

on those nodes could change video throughput and influence the adaptation decision.

Suppose |H(i)| = k. k ≥ 1 is guaranteed since eachH(i) must include i itself. If agents

i1, . . . , ik are contained in H(i), si is then represented by si = 〈si1 , si2 , . . . , sik〉. The

agent-dependent action, ai, is similarly defined, where ai = 〈ai1 , ai2 , . . . , aik〉, which

contains local actions applied by agents in H(i). The size of H(i) depends on the

size of routing topology and could be very large when MARL is applied in a complex

ICN. We propose space aggregation later in Section 5.3.2 for practical considerations.

After agent i applies action ai, the cache reward is recorded and then MARL

instance transits to a different state. The local reward of agent i is denoted by

Ri(si,ai). We apply the same cache reward function φ as in Section 4.4.2. Suppose

we denote Ψi as a set of video requests satisfied by caches that are managed by agent i.

The local reward, Ri(si,ai), is then defined by Ri(si,ai) =
∑

Ψi
φ(RBi, b).

The objective of the MARL framework is to maximize the global cache reward;

computer as the sum of local rewards from all agents. To accomplish this goal, we

apply Q-Learning [55] as the underlying technique to track the variations in cache

reward through multiple transitions. Q-Learning, where Q stands for Quality, is

a model-free approach, and has been extensively studied in the literature. Q is a

weighted sum of reward in an episode and is updated by each transition. The update

rule of Q for each agent i, derived in [28], is shown as

Qi(si,ai) = Qi(si,ai) + ρ[Ri(si,ai) + γQi(s′i,a
′∗
i)−Qi(si,ai)], (5.4)

5.3. REINFORCEMENT LEARNING FRAMEWORK 116

 Agent i

Agents in Dependency Set H(i)Agents in Dependency Set H(i)

Agents NOT in Set H(i)Agents NOT in Set H(i)

Request Routing PathRequest Routing Path

Figure 5.3: An example of a dependency set. Agent i is installed on a router where
routing paths ¬ go through. All agents that are installed on these two
paths will be added into H(i). Other routers (agents), for example the
edge node along path ®, are not affected.

where ρ denotes the learning rate and γ represents the discount factor, which are

common notations in reinforcement learning. As presented in Equation (5.4), up-

dating Q relies on the instant cache reward Ri(si,ai) and the best possible fu-

ture reward Qi(s′i, a
′∗
i) on the next state s′i. The best action is derived by a

′∗
i =

arg maxa′
∑

j∈H(i)Qj(s′j, a′j). Apparently, each agent i needs to reach a consensus

with other agents in the dependency set H to achieve this a
′∗
i , and we elaborate in

Section 5.3.3 a max-sum algorithm [50] to coordinate behaviors among agents.

5.3. REINFORCEMENT LEARNING FRAMEWORK 117

5.3.2 Space Aggregation

The dependency set H(i) contains agents along routing paths which impact the local

cache reward at agent i. The agent-dependent state si and action ai are built based

on H(i), and thus the dimension of si and ai increases with the size of H. In the

worst case, when agent i runs on a router where most routing paths are merged (e.g.,

the last hop before reaching the video producer), H may possibly include all routers

in the network which causes space explosion. In this section, we propose aggregation

approaches on si and ai respectively, based on our insights of cache partitioning

problem. The objective of our approach is to reduce the dimension of si and ai while

maintaining the necessary features that reveal the essence of transitions in MARL

framework. We show in this section that the dimension of aggregate state/action is

bounded by the length of routing path.

State Space Aggregation

All agents - which serve the same video producer - have to coordinate with each

other on cache partitioning. As every MARL instance serves one video producer,

its routing topology intrinsically has a tree structure. Our proposed aggregation on

state space is thus performed based on this tree topology. Specifically, as shown

in Figure 5.4, agents in H(i) are grouped into three topology classes ‘downstream’,

‘local’ and ‘upstream’, based on their relative locations to agent i in the tree. Our

state space aggregation then attempts to merge the states in ‘downstream’ class into

‘local’ class, while keeping the same states in ‘upstream’ class.

Formally, we denote the aggregated state as s̃i. The dependency set H(i) can

be represented as H(i) = Hup(i) ∪ {i} ∪ Hdown(i), where Hup(i) denotes the agent

5.3. REINFORCEMENT LEARNING FRAMEWORK 118

 Agent i

Agents in Dependency Set H(i)

Topology Class

Upstream Local

Downstream

Figure 5.4: The dependency H(i) of agent i is divided into three topology classes.

set in the ‘upstream’ class and Hdown(i) denotes the ‘downstream’ class. Suppose

|Hup(i)| = k and agents i1, . . . , ik are contained in Hup(i). The aggregated state s̃i

is constructed as s̃i = 〈si1 , si2 , . . . , sik , s̃i〉, where s̃i is the modified local state after

the aggregation with downstream states. As a result, the dimension of s̃i equals to

|Hup(i)| + 1 and is bounded by the length of routing path. When the agent i is

installed on an edge router, there are no other agents in its ‘downstream’ class, and

thus state space aggregation is not performed (s̃i = si).

Similarly, when agent i runs on an intermediate router, we should construct s̃i,

where the local state of agent i is represented by si = 〈Λi
P ,Λ

i
R〉, which includes both

cache partitioning status and video request pattern. Initially, Λi
R is assigned to 0

if the agent is not directly connected to video consumers. This is due to the fact

that such agents are inside a PredictiveRipple and only agents on the boundary (i.e.,

installed at the edge router) can receive input to the system.

The state space aggregation process then executes in the following manner: any

5.3. REINFORCEMENT LEARNING FRAMEWORK 119

agent i at an intermediate router would monitor the incoming request patterns in-

dependently, assigning a non-zero value to Λ̃i
R, and discarding all states from other

agents in its ‘downstream’ class. As a result, the modified local state s̃i is then de-

fined as s̃i = 〈Λi
P , Λ̃

i
R〉. Since cache partitions and consumers’ input have a combined

impact on video traffic, we argue that the incoming request pattern Λ̃i
R at an inter-

mediate router is a good indicator of the aggregated cache status from downstream

agents. Our state space aggregation then looks as though we merge all states in

‘downstream’ class into the ‘local’ class.

Action Space Aggregation

Action space aggregation is a challenging problem, since optimal global behavior of

the MARL framework relies on the action coordination among all agents in H(i).

As agents whose actions are aggregated would not be involved in the coordination,

action space aggregation may cause an quasi-optimal result. The aggregated action ãi

is determined by evaluating the degree of dependency (relationship) in H and actions

are aggregated from agents with minimal degrees. As a result, the aggregation would

make the least impact on the MARL performance.

Designing an aggregation approach pivots on quantify the dependency relation-

ship. Rogers et al. [50] used Q(si,ai) to calculate the dependency degree, and fur-

ther reduced the complexity of deriving the approximate optimal action. As Q(si,ai)

changes when a MARL instance is being trained, the dependency degree thus changes

correspondingly, so is the representation of aggregated action ãi. More importantly,

since Q(si,ai) has to be recorded before action space aggregation, Q(si,ai) is in-

dexed by ai such that a complete action space of agent i must be tracked. In fact,

5.3. REINFORCEMENT LEARNING FRAMEWORK 120

although Rogers’s approach is insightful, it forms a paradox: we need Q(si,ai) to

reduce the action space, but to acquire Q(si,ai), we cannot reduce the action space.

As brought forward by [50], we argue that to resolve such contradiction, the action

space aggregation approach must have a static rule (‘static’ referring to the approach

not being affected by the runtime status) to remove dependency relationship in H(i)

during the learning procedure.

The aggregation approach is guided by our experiments on ideal cache partition-

ing. We note that the dependency relationship in H is symmetric, meaning if we find

the agent j ∈ H(i), we can also find the agent i ∈ H(j). Our action aggregation

approach then removes one dependency from this symmetric dependency pair which

is less necessary when deriving a good cache partitioning. Recall from our previ-

ous description on RippleCache principle, an ideal cache partitioning would push low

quality video content towards to the core network while safeguarding cache capacity

for high quality content on the edge. Once dependencies with upstream agents are

removed, cache router has no idea whether upstream caches have enough space to

relocate low quality content. When this critical information is missing, safeguarding

cache capacity for high quality content becomes useless since the users’ basic needs

on low quality content must be satisfied before bitrate adaptation can upgrade video

quality. On the contrary, the dependencies from downstream agents are less neces-

sary. Since whatever actions are taken by downstream agents, these actions would

alter the incoming video request pattern (Λ̃i
R) and local agent can still derive the best

possible cache partitioning under current traffic. Therefore, we remove the original

dependencies between agents in ‘downstream’ class and others in the rest of H. For-

mally, The aggregated action ãi. is constructed as ãi = 〈ai1 , ai2 , . . . , aik , ai〉, where

5.3. REINFORCEMENT LEARNING FRAMEWORK 121

 Agent 2

F2 F3X1

F1X2 X3

 Agent 1 Agent 3

 Agent 1

 Agent 2 Agent 3

 Agent 1

 Agent 2 Agent 3

Figure 5.5: Since H(2) = {1, 2}, the factor graph constructs a link between function
node of agent 2 (F2) and variable node of agent 1 (X1), and another link
between F2 and X2. The same rule applies to H(3). The action space ag-
gregation trims H(1) by ignoring dependencies from ‘downstream’ agents,
which are represented by dashed lines.

ik ∈ Hup(i). The dimension of ãi again equals to |Hup(i)|+ 1 and is bounded by the

length of the forwarding path.

5.3.3 Distributed Coordination

Both state and action space aggregation mandate that coordination shall be limited

within the same pruned dependency set G, where G(i) = Hup(i) ∪ i. We adopt a

distributed max-sum algorithm [50] to manage the coordination among agents in G

and derive a∗i as an estimate of optimal action at each transition.

The max-sum algorithm works based on a bipartite factor graph. In this graph,

every agent is represented by a variable component and a function component. Each

dependency relationship after state/action space aggregation creates a link between

5.3. REINFORCEMENT LEARNING FRAMEWORK 122

a variable and a function component. Figure 5.5 shows an example of this factor

graph. Max-sum algorithm then operates by specifying coordination messages that

are exchanged between variable and function component (along solid lines as shown

in Figure 5.5). The coordination messages are then denoted as

• From variable i to function j:

qi→j(ai) = cij +
∑

h∈G(i)\j

rh→i(ai) (5.5)

where cij is a normalization factor which prevents the messages from increasing

endlessly. G(i) is defined as the ‘opposite’ of G(i). That means if j ∈ G(i), we

then have i ∈ G(j).

• From function j to variable i:

rj→i(ai) = max
aj\ai

[Qj(sj ,aj) +
∑

h∈G(j)\i

qh→j(ah)] (5.6)

As qi→j depends on r from the function component, and rj→i depends on q from

the value component, message exchanges carried out by the max-sum algorithm be-

tween variable and function components are iterated, and terminated when both q

and r converge. Each agent i can find its approximate optimal action a∗i by locally

calculating a∗i = arg maxai zi(ai), where zi(ai) =
∑

h∈G(i) rh→i(ai). We observe that

the max-sum algorithm typically converges to good solutions. However, to safe guard

PredictiveRipple, in case the max-sum algorithm does not converge, we establish a

secondary measure to terminate the max-sum algorithm when the number of itera-

tions reaches a pre-defined threshold.

5.4. MARL IN EXECUTION 123

5.4 MARL in Execution

We hereby elaborate on how agents in the MARL framework are trained over ICN

to predict bitrate adaptation. The behavior of any agent in an episode is specified as

shown in Algorithm 4.

Algorithm 4: MARL Training - in an episode

Input: Learning policy ψ; time interval between two transitions ν; Total number of
transitions in an episode Ω.

1: Discover initial cache partitions si
2: Current transition m← 0
3: repeat
4: ai ← ∅
5: if ψ = ‘Exploitation’ then
6: ai ← a

′∗
i at last transition (m− 1)

7: else if ψ = ‘Exploration’ then
8: for ∀ik ∈ G(i) \ {i} do
9: Receive local action aik from agent ik
10: Insert aik into ai

11: end for
12: Choose local action ai for agent i randomly
13: Insert ai into ai;
14: end if
15: Carry out action ai to adjust cache partitions
16: Start measuring cache reward Ri(si,ai) for current transition
17: Wait ν do
18: Discover state s′i in the next transition
19: Derive approximate optimal action a

′∗
i using Max-Sum coordination

20: Update Qi(si,ai) using Equation (5.4)
// Prepare for the next transition

21: m← m+ 1
22: si ← s′i
23: end Wait
24: until m ≥ Ω

Each agent starts with an initialization on cache partitions (Lines 1-2) at the

beginning of an episode, and then performs cache partition adjustments at multiple

5.4. MARL IN EXECUTION 124

transitions. Lines 4-15 detail the action selection procedure, where all agents face a

problem of ‘Exploitation’ vs. ‘Exploration’ (Lines 5 and 7). This problem is essentially

determining whether agents shall apply the known optimal action or explore the

performance of a new cache partitioning. The choice ψ between these two options are

made by the video producer and is broadcast inside the network to ensure each agent

would apply the same strategy. Specifically, we apply ε-greedy [55], which generates a

probability ε in the range of [0, 1], to help this decision. When ‘Exploitation’ mode is

selected (Line 6), each agent utilizes the known optimal action derived from the last

transition; when ‘Exploration’ mode is selected (Lines 8-13), all agents then explore

the impact of a random action.

Our preliminary studies show that although only a random action for ‘Exploration’

is required, agents rarely improve the cache reward in the actual experiments. We

discover that constraints on action selection must be placed for efficient exploration.

In practice, the video producer not only decides ψ but also chooses a pair of bitrates

(bx, by) for exploration. Thereafter, the explorations by all agents are limited within

possible combinations of bitrates from this pair. For example, if we consider a total

of 4 bitrates in the system and the bitrate pair is (b1, b4), actions by agents can only

choose from 〈+1, 0, 0,−1〉, 〈−1, 0, 0,+1〉 and 〈0, 0, 0, 0〉.

After a certain action is taken, agents wait for ν time to collect cache reward.

Lines 18-20 completes a transition. Each agent detects the video request pattern

based on the recent video statistics and transits from the original state si to the next

s′i. Meanwhile, the approximate optimal action is derived by max-sum algorithm and

Q value is updated to record the experience learned from the recent transition. As

MARL cycles through multiple episodes, learned experience is accumulated until it

5.5. PERFORMANCE RESULTS AND INSIGHTS 125

is trained to deal with common request patterns.

5.5 Performance Results and Insights

We evaluate PredictiveRipple performance via simulations on the NDN architecture to

highlight the improvement made by online learning and prediction. Compared with

the performance of RippleFinder presented in Section 4.6, PredictiveRipple driven

by MARL framework achieves better or at least equal performance across multiple

QoE metrics, which reinforces the need of predictive cache partitioning schemes for

adaptive video streaming.

5.5.1 Simulation Setup and Parameters

We apply a similar simulation setup as Section 4.6 to examine the performance of

PredictiveRipple, and the differences in our setup are described as follows.

PredictiveRipple is a predictive online cache partitioning scheme driven by MARL

framework. Essentially, a MARL instance improves its performance by optimizing the

Q value, as defined in Equation (5.4). A Q value is composed of cache reward in an

entire episode across many transitions. As a result, the performance measurement on

PredictiveRipple starts from the initial cache partitions until the end of an episode.

The same methodology is applied to RippleFinder. This approach differs from what

we previously used in Section 4.6, where RippleFinder iteratively updates its cache

partitioning, hoping that it reaches an equilibrium. An equilibrium for RippleFinder

means the recent cache partitioning would not alter the consumer-side bitrate adapta-

tion decision. The results of RippleFinder in Section 4.6 are reported at an equilibrium

5.5. PERFORMANCE RESULTS AND INSIGHTS 126

status. We argue that our current measurement is more appropriate to reveal the per-

formance of a streaming service, because (1) the equilibrium status is not always easy

to reach in real applications, and (2) the improvement of a predictive scheme can be

highlighted when we focus on the system performance in a given period.

We evaluate our findings on a 16-node NDN network with a single video producer.

The topology is randomly generated by BRITE [48]. We do not consider multiple

producers in the experiments since the performance of PredictiveRipple depends on

multiple identical MARL instances, while each MARL instance manages video con-

tent from the same producer. Thus, a network with a single producer is already

representative to test the MARL design and reflect the overall PredictiveRipple per-

formance. In addition, we present results for a smaller 16-node topology to reveal

the dynamics of a MARL instance since with our state/action space aggregation, the

difficulty of training a MARL is already bounded.

The parameters we apply to train and evaluate PredictiveRipple are listed in

Table 5.1. We choose the granularity ζ = 5 (%) since the MARL instance produces

the best results among other trials in our preliminary experiments. The learning rate

ρ, as appeared in Equation (5.4), is dynamically adjusted during the MARL training.

Specifically, ρ =
κ

of updates + κ
, where κ is a constant input. The learning rate

depends on the number of times the same (si,ai) pair in Q function that has been

updated. As a result, ρ is close to 1 when there are few updates, which makes the

value of Q change fast towards the recent cache reward; the learning rate drops to

near 0 after many updates to help Q value converge and reach a consensus on the

optimal action.

5.5. PERFORMANCE RESULTS AND INSIGHTS 127

Table 5.1: Simulation parameters for PredictiveRipple evaluation

NDN

Number of video files 200
Number of video segments per file 50
Number of NDN routers 16
Video segment playback time 4 sec
Number of video consumers 32
Encoded bitrates {1, 2.5, 5, 8} mbps
Average time interval on video file requests 400 sec
Bandwidth 20 mbps
Skewness factor (α) 1.2
Content store size percentage (ω) 0.1
Cache reward parameter (η) 1

MARL

Learning discount (γ) 0.99
Learning rate coefficient (κ) 20
State/Action granularity (ζ) (%) 5
Number of episodes for training 25000
Number of episodes for evaluation 100

5.5.2 The Impact of Online Prediction

We evaluate PredictiveRipple using the same performance metrics as defined in Sec-

tion 4.6, which are Bitrate Switch Count, Rebuffer Percentage and Average Video

Quality. Compared to the bar charts we used in Chapter 3 and 4, box plots were

chosen here as they effectively filter abnormal data, to focus on the performance that

appears most frequently.

Figure 5.6 shows that PredictiveRipple achieves the least bitrate oscillation matter

regardless of our choice of the cache size or popularity skewness. Compared against

CE2 with LFU, PredictiveRipple is more efficient in reducing the Bitrate Switch Count

at a low cache size ω or low popularity skewness α setting, and the performance gap

5.5. PERFORMANCE RESULTS AND INSIGHTS 128

0.80 1.00 1.20 1.40
Popularity Skewness (α)

2.0

2.5

3.0

3.5

4.0

4.5

B
it

ra
te

S
w

it
ch

C
ou

nt

Cache Performance under ω = 0.1
CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

MARL

0.05 0.10 0.15 0.20
Content Store Size Percentage (ω)

2.5

3.0

3.5

4.0

4.5

B
it

ra
te

S
w

it
ch

C
ou

nt

Cache Performance under α = 1.2
CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

MARL

0.05 0.10 0.15 0.20
Content Store Size Percentage (ω)

2.0

2.5

3.0

3.5

4.0

4.5
B

it
ra

te
S

w
it

ch
C

ou
nt

Cache Performance under α = 0.8
CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

MARL

Figure 5.6: Bitrate Switch Count under MARL evaluation settings

between PredictiveRipple and CE2 with LFU shrinks as we increase cache size ω or

popularity skewness α. This is because when there is sufficient cache storage or video

requests are highly concentrated on a few options, popularity-based caching schemes

already have enough resources to satisfy a large number of requests or capture the

request pattern. Thus, Bitrate Switch Count as shown in Figure 5.6 is contributed

mostly by bitrate switch up at a higher skewness α or a larger cache size ω, which

matches the higher video quality as presented later in Figure 5.8. The impact of cache

5.5. PERFORMANCE RESULTS AND INSIGHTS 129

0.80 1.00 1.20 1.40
Popularity Skewness (α)

0.0

0.2

0.4

0.6

0.8

1.0

R
eb

uff
er

P
er

ce
nt

ag
e

(%
)

Cache Performance under ω = 0.1

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

MARL

0.05 0.10 0.15 0.20
Content Store Size Percentage (ω)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
eb

uff
er

P
er

ce
nt

ag
e

(%
)

Cache Performance under α = 1.2

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

MARL

0.05 0.10 0.15 0.20
Content Store Size Percentage (ω)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
R

eb
uff

er
P

er
ce

nt
ag

e
(%

)

Cache Performance under α = 0.8

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

MARL

Figure 5.7: Rebuffer Percentage under MARL evaluation settings

partitioning is limited under this setting (since the popularity-based caching scheme

already performs well). On the contrary, at a smaller skewness α or cache size ω,

general caching schemes struggle with unstable video throughput and result in both

high bitrate switch up and down. The effect of cache partitioning, as represented by

RippleFinder and PredictiveRipple, is highlighted due to their capability of reducing

the number of bitrate switch down.

Although both PredictiveRipple and RippleFinder are guided by RippleCache

principle, PredictiveRipple outperforms RippleFinder in a given episode for its online

5.5. PERFORMANCE RESULTS AND INSIGHTS 130

prediction capability. RippleFinder derives the cache partitioning based on only the

current video traffic pattern. The lack of foreseeing the future bitrate adaptation

would harm the performance of RippleFinder as there exists an ‘overfitting’ problem:

RippleFinder may work perfectly under the current traffic but once bitrate adaptation

triggers a different request pattern, the performance of RippleFinder may degrade

significantly.

Figure 5.7 shows that PredictiveRipple causes the least playback freezing com-

pared against other caching schemes. Special attention must be paid when the pop-

ularity skewness α = 0.8 (bottom right figure), where the rebuffer percentage of

RippleFinder increases to the same (or even higher) level as CE2 with LFU but

PredictiveRipple is still capable of keeping a low level of playback freezing. The

reason is similar to our previous analysis for Bitrate Switch Count ; the overfitting

of RippleFinder worsens the performance, especially in a heavy load system caused

by lower popularity skewness α. In addition, PredictiveRipple only controls the size

of each cache partition and allows LFU to refresh the cached content in real time,

while RippleFinder is essentially a cache placement scheme and must be refreshed

manually. Such difference makes PredictiveRipple more suitable in a highly dynamic

environment.

Figure 5.8 shows CE2 with LFU delivers the highest video quality to consumers

across all scenarios, which is consistent with our previous observations in Section 4.6.

Our proposed PredictiveRipple achieves a similar performance as CE2 with LFU

across different cache sizes (ω) at a higher popularity skewness α = 1.2. However, at

α = 0.8, PredictiveRipple performs worse than RippleFinder and other popularity-

based caching schemes. This performance gap increase at a larger cache size (as

5.5. PERFORMANCE RESULTS AND INSIGHTS 131

0.80 1.00 1.20 1.40
Popularity Skewness (α)

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s)

Cache Performance under ω = 0.1

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

MARL

0.05 0.10 0.15 0.20
Content Store Size Percentage (ω)

1500

2000

2500

3000

3500

4000

4500

5000

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s)

Cache Performance under α = 1.2

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

MARL

0.05 0.10 0.15 0.20
Content Store Size Percentage (ω)

1500

2000

2500

3000

3500
A

ve
ra

ge
V

id
eo

B
it

ra
te

s
(K

bp
s)

Cache Performance under α = 0.8

CE2(LRU)

CE2(LFU)

ProbCache

RippleFinder

MARL

Figure 5.8: Average Video Bitrate under MARL evaluation settings

illustrated in the bottom right figure). Combined with the results for Bitrate Switch

Count, we argue that a relatively worse video quality does not indicate the overall

performance of PredictiveRipple. A caching scheme that leads to frequent bitrate

oscillation would always deliver a higher video quality on average, since the adaptation

control attempts to increase the requested bitrate without considering whether such

video quality can be sustained or not. Our proposed PredictiveRipple makes the

necessary compromise on the delivered video quality to achieve a balance between

multiple performance metrics and finally ensures an overall improvement to QoE.

5.6. SUMMARY 132

5.6 Summary

In this chapter, we have shown that the dependency relationship between in-network

caches and bitrate adaptation may harm the performance of caching schemes that rely

on recent request statistics to make caching decisions. In remedy, bitrate adaptation

prediction can resolve such dependency by considering not only what the current

most requested bitrates are, but also predict popular choices in the future. As our

existing designs of cache partitioning schemes were shown to improve overall QoE,

we proposed the novel caching system PredictiveRipple, building upon this cache

partitioning concept with prediction capability; catering to dynamic video content in

the long term.

PredictiveRipple manages cache partitions via a MARL framework. In the MARL,

we utilized a Q-learning approach to perform online prediction. Q-learning optimizes

the impact of a cache partition adjustment by evaluating both immediate and fu-

ture cache reward. Our experiments on PredictiveRipple against the representative

caching partitioning approach RippleFinder reinforces the need for adaptation pre-

diction. We explained how the performance of popularity-based caching is hindered

by an overfitting challenge, rooted in its inherent design where caching decisions de-

pend on instantaneous video statistics. Although popularity-based caching schemes,

like RippleFinder, may efficiently cache currently popular video content, future bi-

trate adaptation degrades their performance. PredictiveRipple achieves significant

improvement over classic cache partitioning schemes by further reducing bitrate os-

cillation and re-buffering levels. Moreover, it is only when cache resources are con-

strained or popularity distribution is less skewed, that PredictiveRipple makes a nec-

essary compromise on video quality to ensure smooth video playback.

133

Chapter 6

Conclusion and Future Directions

6.1 Summary

In this thesis, we demonstrated the QoE performance when cache hierarchies in ICN

can capture, understand and react to bitrate adaptation. This was motivated by

the fact that video streaming is dominating the current Internet, and the lack of

prior research on caching schemes that are optimized for adaptive streaming appli-

cations. We proposed solutions which emphasized various QoE metrics and achieved

comprehensive improvements to QoE performance.

Chapter 1 gave an overview of the research problem and our contributions in each

chapter. Chapter 2 detailed the background and related work, where we explained

the concepts of bitrate adaptation in DASH and related research which attempted to

improve QoE from the consumer side. We emphasized and compared two different

caching paradigms for adaptive streaming by conducting preliminary experiments.

Our results showed that a representative bitrate-aware caching approach can meet or

even exceed the ideal video transcoding at the edge (where we assume zero transcod-

ing delay), which reinforced the advantage of utilizing cache hierarchies to handle

6.1. SUMMARY 134

video requests for variable bitrates. While our intuition was to pursue the latter,

we were further reassured via experimental studies that transcoding would not out-

perform ubiquitous network-wide caching. Our experiments are further detailed in

Appendix A.

Chapter 3 presented our designs to improve video quality, regarded as an impor-

tant metric that affects consumers’ satisfaction score. As video throughput is used as

the primary indicator that guides the requested video quality selection, we proposed

caching schemes that reduced the video access delay under varying encoded bitrates

which eventually led to a higher video quality. The first part of this chapter pre-

sented our adaptive video traffic modelling, which later facilitated the queueing delay

analysis and video throughput derivation. A benchmark caching scheme DaCPlace

then utilized the delay estimates to decide the cache placement when both on-path

and off-path cache resources were jointly optimized. The second part of this chapter

aimed to reduce the complexity in DaCPlace and presented StreamCache as a greedy

heuristic to handle adaptive streaming.

In Chapter 4, we shifted our focus to bitrate oscillation, as another critical QoE

metric. In order to reduce the impact of intermittent cache hits and misses which ulti-

mately caused bitrate oscillation, a novel notion of cache partitioning was introduced.

We first displayed an ideal cache partitioning, as summarized by a RippleCache prin-

ciple. Two separate designs RippleClassic and RippleFinder were developed to cater

to RippleCache ideal. The performance gains were reinforced by evaluations against

state-of-the-art baseline approaches, using standard measures of QoE as defined by the

DASH Industry Forum. Measurements showed that RippleClassic and RippleFinder

delivered content that suffered less oscillation and rebuffering, as well as the highest

6.2. LIMITATIONS 135

levels of video quality, indicating overall improvements to QoE.

Chapter 5 extended the foundation laid in Chapter 4 to predictive cache partition-

ing. We proposed a MARL framework, driven by Q-learning to estimate the cache

performance in the long term. MARL was presented as a distributed framework,

where cache routers work cooperatively to adjust cache partitions based on both cur-

rent and future popular bitrates. Experiment results indicated the overfitting prob-

lem, rooted in popularity-based caching schemes, was resolved by bitrate adaptation

prediction, and the proposed predictive caching framework further enhanced QoE.

6.2 Limitations

Our priority in system modelling is to mimic realistic adaptive streaming scenar-

ios. Although several efforts have been made, including implementing an existing

bitrate adaptation control algorithm and adopting recommended encoding bitrates

from YouTube, the proposed schemes are evaluated under a simulation environment

which may not be able to replicate the exact same settings from the real world.

Recently, an NDN testbed has been released [43], which gives ICN researchers an

opportunity to examine their ideas and proposals over a real network. However, for

adaptive streaming studies, a large number of real consumers must also be involved

in the experiments to provide feedback online under different caching decisions. Ex-

isting video trace data over the current Internet is not useful as it cannot reflect the

caching status, as a key metric in my work. Video traces particularly under ICN must

be generated in order to produce hard evidence on the performance of the proposed

solutions.

6.3. FUTURE DIRECTIONS 136

6.3 Future Directions

This thesis has presented a novel direction in bitrate adaptation-aware caching over

ICN. Our proposals achieve comprehensive improvements on various consumer-side

QoE metrics. However, there are still open challenges and potential implementa-

tion opportunities that can be explored in order to fully leverage the ICN caching

capability. Some of these avenues are listed as follows.

6.3.1 Bitrate Adaptation Prediction with Deep Learning

Recent advancements in Deep Learning enable future work on training MARL frame-

works more efficiently. This could be accomplished by applying deep neural networks

to estimate unexplored Q value before the optimal action derivation. In order to

accelerate the training procedure, existing Deep Learning platforms, such as Tensor-

flow and Keras, shall be incorporated in the experiments. Our current experiment

setup requires MARL to interact with a network simulator for real-time measurement

on consumers input. As a result, the performance of this network simulator would

highly influence the training speed of the entire system. Our choice of ndnSIM [2],

in spite of the best simulator to mimic the NDN architecture, has limited support of

multi-threading, which would be the bottleneck of experiments. Future work must

develop an experimental system that matches the speed of Deep Learning and net-

work simulation. We also want to highlight this issue prevails in all practical systems

which depend on the real-time input for further processing by Deep Learning.

6.3. FUTURE DIRECTIONS 137

6.3.2 Cache-Friendly Bitrate Adaptation

The currently adopted DASH protocol cannot perform as desired in a network with

cache hierarchies, because bitrate adaptation is unable to differentiate whether video

throughput variations are caused by network jiter or intermittent cache hits and

misses. Thus, it is important for bitrate adaptation to identify the source of vari-

ations. In remedy, it would be fruitful to investigate cache hit locations for video

requests, and explore schemes that could capitalize on such information. As a re-

sult, consumers can evaluate the impact of cache hits and then determine if a given

bandwidth fluctuation is more likely caused by in-network caches or not. Thereafter,

bitrate adaptation schemes can be developed to handle different sources of band-

width fluctuation. We envision this type of adaptation control as cache-friendly rate

adaptation, as it would aim to enhance its performance by coordinating with caching

schemes in cache hierarchies.

BIBLIOGRAPHY 138

Bibliography

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A Survey

of Information-Centric Networking. IEEE Communications Magazine, 50(7):26–

36, 2012.

[2] A. Alexander, I. Moiseenko, and L. Zhang. ndnSIM: NDN simulator for NS-3.

Technical Report NDN-0005, 2012.

[3] A. Araldo, F. Martignon, and D. Rossi. Representation Selection Problem: Opti-

mizing Video Delivery Through Caching. In IFIP Networking Conference, pages

323–331. IEEE, 2016.

[4] D. P. Bertsekas, R. G. Gallager, and P. Humblet. Data Networks, volume 2.

Prentice-Hall Englewood Cliffs, NJ, 1987.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, et al. Web Caching and

Zipf-like Distributions: Evidence and Implications. In IEEE INFOCOM, pages

126–134. IEEE, 1999.

[6] L. Bu, R. Babu, B. De Schutter, et al. A Comprehensive Survey of Multiagent

Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 38(2):156–172, 2008.

BIBLIOGRAPHY 139

[7] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino. Modeling Data Transfer in

Content-Centric Networking. In IEEE International Teletraffic Congress (ITC),

pages 111–118. IEEE, 2011.

[8] W. K. Chai, D. He, I. Psaras, and G. Pavlou. Cache ”Less for More” in

Information-centric Networks (Extended Version). Computer Communications,

36(7):758–770, 2013.

[9] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack. Wave: Popularity-

Based and Collaborative In-Network Caching for Content-Oriented Networks. In

IEEE Conference on Computer Communications Workshops (INFOCOM WK-

SHPS), pages 316–321. IEEE, 2012.

[10] Cisco. Cisco Visual Networking Index: Forecast and Methodology, 2016–2021,

2017.

[11] A. Dabirmoghaddam, M. M. Barijough, and J. Garcia-Luna-Aceves. Understand-

ing Optimal Caching and Opportunistic Caching at the Edge of Information-

Centric Networks. In ACM conference on Information-Centric Networking, pages

47–56. ACM, 2014.

[12] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and H. Karl. Net-

work of Information (NetInf) - An Information-Centric Networking Architecture.

Computer Communications, 36(7):721–735, 2013.

[13] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. Elastic: a Client-

side Controller for Dynamic Adaptive Streaming over HTTP (DASH). In IEEE

International Packet Video Workshop (PV). IEEE, 2013.

BIBLIOGRAPHY 140

[14] Z. Duanmu, A. Rehman, and Z. Wang. A Quality-of-Experience Database for

Adaptive Video Streaming. IEEE Transactions on Broadcasting, 64(2):474–487,

2018.

[15] S. Eum, K. Nakauchi, Y. Shoji, N. Nishinaga, and M. Murata. CATT:

Cache Aware Target Identification for ICN. IEEE Communications Magazine,

50(12):60–67, 2012.

[16] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. Maggs,

K. Ng, V. Sekar, and S. Shenker. Less Pain, Most of the Gain: Incrementally De-

ployable ICN. ACM SIGCOMM Computer Communication Review, 43(4):147–

158, 2013.

[17] M. Fiedler, T. Hossfeld, and P. Tran-Gia. A Generic Quantitative Relationship

Between Quality of Experience and Quality of Service. IEEE Network, 24(2):36–

41, 2010.

[18] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng, T. Karim, E. Katz-

Bassett, and R. Govindan. An Internet-Wide Analysis of Traffic Policing. In

ACM SIGCOMM Conference, pages 468–482. ACM, 2016.

[19] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos. Developing Information

Networking Further: from PSIRP to PURSUIT. In International Conference on

Broadband Communications, Networks and Systems. Springer, 2010.

[20] R. Grandl, K. Su, and C. Westphal. On the Interaction of Adaptive Video

Streaming with Content-Centric Networking. In IEEE Packet Video Workshop

(PV). IEEE, 2013.

BIBLIOGRAPHY 141

[21] I. Griva, S. G. Nash, and A. Sofer. Linear and Nonlinear Optimization, volume

108. Siam, 2009.

[22] Gurobi. Gurobi Optimizer Reference Manual. http://www.gurobi.com/

documentation/. Accessed on 2019-03-18.

[23] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A Buffer-

based Approach to Rate Adaptation: Evidence From a Large Video Streaming

Service. ACM SIGCOMM Computer Communication Review, 44(4):187–198,

2015.

[24] A. Ioannou and S. Weber. A Survey of Caching Policies and Forwarding Mech-

anisms in Information-Centric Networking. IEEE Communications Surveys &

Tutorials, 18(4):2847–2886, 2016.

[25] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and

R. L. Braynard. Networking Named Content. In International Conference on

Emerging Networking Experiments and Technologies. ACM, 2009.

[26] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in

HTTP-Based Adaptive Video Streaming with FESTIVE. In ACM International

Conference on Emerging Networking Experiments and Technologies (CoNEXT),

pages 97–108. ACM, 2012.

[27] Y. Jin, Y. Wen, and C. Westphal. Optimal Transcoding and Caching for Adap-

tive Streaming in Media Cloud: an Analytical Approach. IEEE Transactions on

Circuits and Systems for Video Technology, 25(12):1914–1925, 2015.

http://www.gurobi.com/documentation/
http://www.gurobi.com/documentation/

BIBLIOGRAPHY 142

[28] J. R. Kok and N. Vlassis. Collaborative Multiagent Reinforcement Learning by

Payoff Propagation. Journal of Machine Learning Research, 7(Sep):1789–1828,

2006.

[29] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and

I. Stoica. A Data-oriented (and Beyond) Network Architecture. ACM SIGCOMM

Computer Communication Review, 37(4):181–192, 2007.

[30] C. Kreuzberger, B. Rainer, and H. Hellwagner. Modelling the Impact of Caching

and Popularity on Concurrent Adaptive Multimedia Streams in Information-

Centric Networks. In IEEE International Conference on Multimedia & Expo

Workshops (ICMEW). IEEE, 2015.

[31] J. Kua, G. Armitage, and P. Branch. A Survey of Rate Adaptation Techniques

for Dynamic Adaptive Streaming over HTTP. IEEE Communications Surveys

& Tutorials, 19(3):1842–1866, 2017.

[32] N. Laoutaris, H. Che, and I. Stavrakakis. The LCD Interconnection of LRU

Caches and Its Analysis. Performance Evaluation, 63(7):609–634, 2006.

[33] S. Lederer, C. Mueller, C. Timmerer, and H. Hellwagner. Adaptive Multimedia

Streaming in Information-Centric Networks. IEEE Network, 28(6):91–96, 2014.

[34] S. Lederer, C. Müller, and C. Timmerer. Dynamic Adaptive Streaming over

HTTP Dataset. In ACM Multimedia Systems Conference, pages 89–94. ACM,

2012.

BIBLIOGRAPHY 143

[35] D. Lee, C. Dovrolis, and A. Begen. Caching in HTTP Adaptive Streaming:

friend or Foe? In Network and Operating System Support on Digital Audio and

Video Workshop (NOSSDAV), pages 31–36. ACM, 2014.

[36] J. Lee, K. Lim, and C. Yoo. Cache Replacement Strategies for Scalable Video

Streaming in CCN. In IEEE Asia-Pacific Conference on Communications

(APCC), pages 184–189. IEEE, 2013.

[37] W. Li. Popularity-driven Caching Strategy for Dynamic Adaptive Streaming over

Information-Centric Networks. Master’s thesis, Queen’s University, Kingston,

2015. Available Online: http://hdl.handle.net/1974/13414.

[38] W. Li, M. Fayed, S. M. Oteafy, and H. S. Hassanein. A Cache-Level Qual-

ity of Experience Metric to Characterize ICNs for Adaptive Streaming. IEEE

Communications Letters, 23(2):262–265, 2019.

[39] W. Li, S. Oteafy, M. Fayed, and H. S. Hassanein. Bitrate Adaptation-Aware

Cache Partitioning for Video Streaming over Information-Centric Networks. In

IEEE Conference on Local Computer Networks (LCN). IEEE, 2018.

[40] W. Li, S. M. Oteafy, and H. S. Hassanein. On the Performance of Adaptive Video

Caching over Information-Centric Networks. In IEEE International Conference

on Communications (ICC). IEEE, 2017.

[41] Z. Li and G. Simon. Time-Shifted TV in Content Centric Networks: the Case

for Cooperative In-Network Caching. In IEEE International conference on com-

munications (ICC). IEEE, 2011.

http://hdl.handle.net/1974/13414

BIBLIOGRAPHY 144

[42] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. Probe and

Adapt: Rate Adaptation for HTTP Video Streaming at Scale. IEEE Journal on

Selected Areas in Communications, 32(4):719–733, 2014.

[43] H. Lim, A. Ni, D. Kim, Y.-B. Ko, S. Shannigrahi, and C. Papadopoulos. NDN

Construction for Big Science: Lessons Learned from Establishing a Testbed.

IEEE Network, 32(6):124–136, 2018.

[44] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao. Deriving and Validating User

Experience Model for DASH Video Streaming. IEEE Transactions on Broadcast-

ing, 61(4):651–665, 2015.

[45] Y. Liu, J. Geurts, J.-C. Point, S. Lederer, B. Rainer, C. Muller, C. Timmerer, and

H. Hellwagner. Dynamic Adaptive Streaming over CCN: a Caching and Overhead

Analysis. In IEEE International Conference on Communications (ICC), pages

3629–3633. IEEE, 2013.

[46] D. M. Lucantoni. New Results on the Single Server Queue with a Batch Marko-

vian Arrival Process. Communications in Statistics. Stochastic Models, 7(1):1–46,

1991.

[47] A. Mansy, M. Fayed, and M. Ammar. Network-Layer Fairness for Adaptive

Video Streams. In IFIP Networking Conference. IEEE, 2015.

[48] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: an Approach to Uni-

versal Topology Generation. In International Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunication Systems, pages 346–353.

IEEE, 2001.

BIBLIOGRAPHY 145

[49] I. Psaras, W. K. Chai, and G. Pavlou. Probabilistic In-Network Caching for

Information-Centric Networks. In ACM ICN Workshop on Information-Centric

Networking, pages 55–60. ACM, 2012.

[50] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings. Bounded Approximate

Decentralised Coordination via the Max-Sum Algorithm. Artificial Intelligence,

175(2):730–759, 2011.

[51] G. Rossini and D. Rossi. Evaluating CCN Multi-Path Interest Forwarding Strate-

gies. Computer Communications, 36(7):771–778, 2013.

[52] A. Sackl, P. Casas, R. Schatz, L. Janowski, and R. Irmer. Quantifying the

Impact of Network Bandwidth Fluctuations and Outages on Web QoE. In IEEE

International Workshop on Quality of Multimedia Experience (QoMEX). IEEE,

2015.

[53] L. Saino, I. Psaras, and G. Pavlou. Hash-Routing Schemes for Information

Centric Networking. In ACM SIGCOMM workshop on Information-Centric net-

working, pages 27–32. ACM, 2013.

[54] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia. A

Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE Commu-

nications Surveys & Tutorials, 17(1):469–492, 2015.

[55] R. S. Sutton, A. G. Barto, et al. Introduction to Reinforcement Learning, volume

135. MIT press Cambridge, 1998.

BIBLIOGRAPHY 146

[56] MPEG. DASH Industry Forum. DASH-IF Position Paper: Proposed QoE Media

Metrics Standardization for Segmented Media Playback. (Date last accessed 25-

October-2018).

[57] MPEG. DASH. http://dashif.org/mpeg-dash.

[58] G. Tian and Y. Liu. Towards Agile and Smooth Video Adaptation in Dynamic

HTTP Streaming. In ACM International Conference on Emerging Networking

Experiments and Technologies (CoNEXT), pages 109–120. ACM, 2012.

[59] A. V. Ventrella, G. Piro, and L. A. Grieco. Publish-Subscribe in Mobile In-

formation Centric Networks: Modeling and Performance Evaluation. Computer

Networks, 127:317–339, 2017.

[60] J. M. Wang, J. Zhang, and B. Bensaou. Intra-AS Cooperative Caching for

Content-Centric Networks. In ACM SIGCOMM Workshop on Information-

Centric Networking, pages 61–66. ACM, 2013.

[61] L. Wang, A. Hoque, C. Yi, A. Alyyan, and B. Zhang. OSPFN: An OSPF Based

Routing Protocol for Named Data Networking. Technical Report NDN Technical

Report NDN-2012-13, 2012.

[62] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie. Design and Evaluation of the

Optimal Cache Allocation for Content-Centric Networking. IEEE Transactions

on Computers, 65(1):95–107, 2016.

[63] Y. Wang, M. Xu, and Z. Feng. Hop-based Probabilistic Caching for Information-

Centric Networks. In IEEE Global Communications Conference (GLOBECOM),

pages 2102–2107. IEEE, 2013.

http://dashif.org/mpeg-dash

BIBLIOGRAPHY 147

[64] C. Westphal, S. Lederer, D. Posch, C. Timmerer, et al. Adaptive Video

Streaming over Information-Centric Networking (ICN), 2016. [Online]. Avail-

able: http://www.rfc-editor.org/rfc/rfc7933.txt.

[65] G. Xylomenos, C. N. Ververidis, V. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos,

K. V. Katsaros, G. C. Polyzos, et al. A Survey of Information-Centric Networking

Research. IEEE Communications Surveys & Tutorials, 16(2):1024–1049, 2014.

[66] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Approach for

Dynamic Adaptive Video Streaming over HTTP. ACM SIGCOMM Computer

Communication Review, 45(4):325–338, 2015.

[67] YouTube Help. https://support.google.com/youtube/answer/1722171?hl=

en. [Online; accessed 20-September-2018].

[68] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Papadopoulos,

L. Wang, B. Zhang, et al. Named Data Networking. ACM SIGCOMM Computer

Communication Review, 44(3):66–73, 2014.

[69] M. Zhang, H. Luo, and H. Zhang. A Survey of Caching Mechanisms in

Information-Centric Networking. IEEE Communications Surveys & Tutorials,

17(3):1473–1499, 2015.

[70] H. Zhao, Q. Zheng, W. Zhang, B. Du, and H. Li. A Segment-Based Storage and

Transcoding Trade-off Strategy for Multi-version VoD Systems in the Cloud.

IEEE Transactions on Multimedia, 19(1):149–159, 2017.

https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en

148

Appendix A

Performance Comparison of Transcoding and

Bitrate-Aware Caching

We compare the performance of caching under the ubiquitous and edge caching

paradigms, via simulation. One of the important observations in our simulations

is that conventional cache metrics, such as cache hit ratio, are not ideal for measuring

streaming performance. Our evaluations are conducted on the NDN [68] architecture,

as a favored representative that implements ICN primitives.

A.1 Simulation Setup

We build an NDN environment using the NS-3 based simulator ndnSIM [2]. Caching

space is either distributed evenly across all NDN nodes or only at edge nodes to

represent both caching paradigms. We ensure equal cache capacity between edge and

ubiquitous caching. This total capacity is allocated proportional to the size of all

video content provided by the video producer, formally as
∑N

n=1

∑B
b=1 S

b
n ∗ ω where

Sbn is the size of a video segment with index n encoded at bitrate b. N is the number of

video segments, and B is the number of video encodings, and ω is a control parameter

A.1. SIMULATION SETUP 149

Table A.1: Simulation parameters for Transcoding and Bitrate-aware Caching per-
formance

NDN

Number of video files 250
Number of video segments per file 40
Number of NDN nodes 16
Video segment playback time 4 sec
Number of video consumers 32
Request interval on video file/session (sec) 400
Skewness factor (α) 1.2
Content store size percentage (ω) 0.02

FESTIVE

Drop Threshold 0.8
Combine Weight 8

that enables us to examine the caching performance under different cache sizes.

Consumer-side adaptation is simulated via our implementation of FESTIVE [26].

FESTIVE is a highly-cited approach, and a representative of throughput-based adap-

tation control algorithm. A video session would be triggered following a Poisson

process, where consumers’ interests on video content are captured by a Zipf distribu-

tion (controlled by skewness parameter α). Once a video session is initialized, video

segments within the requested video file are retrieved under control by FESTIVE.

Video files are 160 seconds in duration and are divided into 4-second segments. Each

video segment is prepared at 1, 2.5, 5, and 8 Mbps, which are recommended encoding

bitrates by YouTube [67]. The simulation parameters are listed in Table A.1.

We evaluate RippleFinder and the transcoding model in [27], which we refer by

name as Transcode. RippleFinder is a cache placement scheme, where its caching

decisions are updated until a steady state is reached. We assume zero transcoding

cost/delay for Transcode to highlight the upper bound performance of transcoding

A.2. BANDWIDTH FLUCTUATION PATTERN 150

at the network edge. In addition, we evaluate CE2 with LFU replacement. Although

CE2 is not designed specifically for adaptive streaming, it is a widely used benchmark

for ubiquitous caching. LFU caters to content popularity and outperforms LRU. We

also test a variation of CE2 where only edge nodes are allocated cache capacity, along

with LFU for content replacement. We name this approach as EdgeOnly to represent

generic edge caching. All results are presented at a 95% confidence level.

A random topology is generated by BRITE [48] to mimic a realistic streaming

scenario [59]. In this topology, we chose a video producer such that the hop distance

between any consumer and the producer ranges from three to six hops. This variation

in hop distance would cause different video access delay for consumers. We choose

in-network link capacity at 20 Mbps, and the ‘last-mile’ link bandwidth varies by

fluctuation patterns as we detail in A.2. As a result, the highest bitrate (8 Mbps)

cannot be retrieved directly from the producer and must be provided by caches. We

choose this relatively small link capacity to examine the performance that is enhanced

by caching policies.

A.2 Bandwidth Fluctuation Pattern

We investigate different bandwidth variation patterns on the ‘last-mile’ link between

each consumer and their edge node, to mimic wired and wireless networks. Three

patterns were discovered in studies on real measurements for mobile users [52], in

addition to a stationary pattern for benchmarking. Thus, we adopted four variation

patterns are evaluated as shown in Figure A.1. Throughout our experiments, we

discovered that the variations in performance of caching schemes under Patterns C

and D were not statistically significant. We thus opted to present results under

A.3. CACHE HIT RATIO 151

0 50 100 150
Time (Second)

0

5

10

15

20

25

B
an

dw
id

th
(m

bp
s)

Pattern A

0 50 100 150
Time (Second)

0

5

10

15

20

25

B
an

dw
id

th
(m

bp
s)

Pattern B

0 50 100 150
Time (Second)

0

5

10

15

20

25

B
an

dw
id

th
(m

bp
s)

Pattern C

0 50 100 150
Time (Second)

0

5

10

15

20

25

B
an

dw
id

th
(m

bp
s)

Pattern D

Figure A.1: ‘Last-mile’ bandwidth fluctuation pattern

Pattern A, B and C only.

A.3 Cache Hit Ratio

Cache hit ratio is a classic metric to evaluate the performance of caching schemes.

As shown in Figure A.2, we observe even the baseline CE2 with LFU outperforms

Transcode, because of high cache redundancy caused by edge caching. This relation-

ship remains the same no matter the bandwidth fluctuation pattern, cache capacity

A.4. QOE METRICS 152

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

0.0

0.1

0.2

0.3

0.4

0.5

C
ac

he
H

it
R

at
io

CE2(LFU)

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

0.0

0.1

0.2

0.3

0.4

C
ac

he
H

it
R

at
io

CE2(LFU)

Transcode

Figure A.2: Cache hit ratio under bandwidth pattern A

or content popularity skewness. However, our following observations on QoE con-

tradict the current result, where Transcode outperforms CE2 across almost every

QoE metric that we examined. As the effectiveness of caching for video streaming

must be verified by consumers’ QoE, QoE metrics are thus a more direct indicators

of system performance. Cache hit ratio itself, as a conventional cache metric, has

critical flaws when measuring schemes particularly for video streaming. As cache hit

ratio cannot distinguish ‘where’ this hit occurs, cache hits at the edge or within the

network can cause significantly different video throughput that alters the behaviour

of consumer-side bitrate adaptation, impacting users’ QoE.

A.4 QoE Metrics

DASH industry forum has published a standard set of QoE metrics [56]. In our exper-

iments, we selectively adopt three metrics from the standard set, Average Video Bi-

trate, Rebuffer Percentage and Bitrate Switch Count. Other metrics, such as Rebuffer

Count or Bitrate Switch Rate are also evaluated but not reported, since they either

A.4. QOE METRICS 153

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

1800

2400

3000

3600

4200

4800
A

ve
ra

ge
V

id
eo

B
it

ra
te

s
(K

bp
s)

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

1800

2300

2800

3300

3800

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s)

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

(a) Pattern A

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

1800

2000

2200

2400

2600

2800

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s)

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

1800

1900

2000

2100

2200

2300

2400

2500

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s)

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

(b) Pattern B

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

1800

2200

2600

3000

3400

3800

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s)

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

1800

2200

2600

3000

3400

A
ve

ra
ge

V
id

eo
B

it
ra

te
s

(K
bp

s)

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

(c) Pattern C

Figure A.3: Average Video Bitrate across cache size and popularity skewness.

share a similar trend with presented metric or the performance difference (caused by

caching) is insignificant.

A.4. QOE METRICS 154

A.4.1 Average Video Bitrate

This metric represents the average video quality that consumers request among all

video sessions. Results are grouped by bandwidth fluctuation pattern, and in each

group we present the performance across cache capacity and content popularity skew-

ness. As shown in Figure A.3a, transcoding at the network edge has no advantage over

ubiquitous caching with constant bandwidth at the ‘last-mile’ link (pattern A). The

video quality difference between CE2 and Transcode was statistically insignificant.

Instead, RippleFinder delivers the highest quality to consumers, which reinforces

bitrate-aware caching as the superior paradigm under pattern A. This is because

Transcode only maximizes its utilization of cached content when it assumes that ‘

requests to all bitrates are equally likely’. However, a constant link capacity fails to

provide enough bandwidth fluctuation, and video throughput variations are mainly

caused by in-network traffic congestion. Thus, this assumption is not always satisfied

across all video segments, which diminishes the performance of Transcode.

Figure A.3b presents delivered video quality when there is intermittent connec-

tion failure. The performance trend is similar to pattern A. As requests for lower

quality content are dominating under this pattern B, not all bitrates are frequently

requested for each segment which impacts the performance of Transcode. Besides, it

is noticeable that at low capacity or low popularity skewness, EdgeOnly delivers even

higher video quality than Transcode. This means online transcoding, even with zero

processing delay, brings no benefits to system performance. This is because Transcode

requires caching only the highest quality no matter what are the frequently requested

bitrates. When requests for low quality content are dominating, Transcode forces

edge caches to store the highest quality segments, which not only consumes more

A.4. QOE METRICS 155

caching space than needed (for lower quality content) but also reduces the amount of

video content that can be served by the cache.

Transcode presents superior performance mainly under pattern C as shown in

Figure A.3c. This is due to bandwidth fluctuation between 4 Mbps and 20 Mbps

creating more chances for all encoding bitrates to be frequently requested, which

boosts the performance of Transcode. At large cache volume, this enhancement by

Transcode is significant since large caching space gains more advantage from the

efficient cache utilization of Transcode that allows to cache only the highest quality

video segment.

A.4.2 Rebuffer Percentage

This metric is defined as the time spent in a video freezing state over the active

time of a video session. It is noticeable that EdgeOnly causes a higher chance of

video freezing than ubiquitous caching scheme CE2. Intuitively, as a representative

of edge caching, EdgeOnly would satisfy requests closer to the consumer, which should

lead to less video access delay than CE2. This counter-intuitive result is affected by

consumer-side bitrate adaptation. Cache hits on edge caches have a higher chance

than in-network caches to trigger a video quality upgrade. However, this upgrade

is harmful once high quality content is not sustainable. The follow-up cache misses

would require consumers to retrieve content directly from the producer, which results

in a even longer access delay and a higher chance of video stalling.

In contrast, Transcode performs better than EdgeOnly, since it can satisfy video

requests for any version of the content, with a constant cost of caching space (by

storing only the highest version). RippleFinder achieves less video freezing than

A.4. QOE METRICS 156

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

0.0

0.2

0.4

0.6

0.8

R
eb

uff
er

P
er

ce
nt

ag
e

(%
) CE2(LFU)

RippleFinder

EdgeOnly

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
eb

uff
er

P
er

ce
nt

ag
e

(%
) CE2(LFU)

RippleFinder

EdgeOnly

Transcode

(a) Pattern A

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

0

1

2

3

4

5

6

7

8

R
eb

uff
er

P
er

ce
nt

ag
e

(%
) CE2(LFU)

RippleFinder

EdgeOnly

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

0

1

2

3

4

5

6

7

8

R
eb

uff
er

P
er

ce
nt

ag
e

(%
) CE2(LFU)

RippleFinder

EdgeOnly

Transcode

(b) Pattern B

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
eb

uff
er

P
er

ce
nt

ag
e

(%
) CE2(LFU)

RippleFinder

EdgeOnly

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

0.0

0.2

0.4

0.6

0.8

1.0

R
eb

uff
er

P
er

ce
nt

ag
e

(%
) CE2(LFU)

RippleFinder

EdgeOnly

Transcode

(c) Pattern C

Figure A.4: Rebuffer Percentage across cache size and popularity skewness.

Transcode under constant link capacity as shown in Figure A.4a. Transcode re-gains

its advantage under fluctuated link capacity in Figure A.4c. Under an intermittent

network connection, all tested schemes are prone to significant video stream stalls

A.5. INSIGHTS ON UBIQUITOUS CACHING VS.
EDGE-TRANSCODING 157

(although Transcode may perform slightly better). The impact of caches on video

stalling is thus negligible under pattern B.

A.4.3 Bitrate Switch Count

This metric is defined as the number of times the requested video bitrate changed

during a video session. It is evident that EdgeOnly causes more bitrate oscillations

than Transcode, which indicates that the edge caching paradigm alone is not the key

contributor to smooth video playback. We suspect our assumption of zero transcoding

delay is the main reason for such performance, as the same video throughput is

guaranteed across all versions of popular video content. Thus, a higher degree of

bitrate oscillation is expected when Transcode is applied under a realistic setting

that factors in the inevitable processing delay, which varies as the highest quality

version is transcoded to different bitrates. In addition, RippleFinder can still achieve

a similar bitrate switch count as Transcode under bandwidth pattern A and C. As

shown in Figure A.5a, RippleFinder even matches the upper bound performance

of Transcode at high popularity skewness (e.g., at α = 1.2 or 1.4). This result

highlights the potential of bitrate-aware ubiquitous caching schemes in controlling

bitrate oscillations.

A.5 Insights on Ubiquitous Caching vs. Edge-Transcoding

Throughout our experiments, we discover that neither transcoding nor bitrate-aware

caching present blanket solutions across all bandwidth fluctuation patterns. When

A.5. INSIGHTS ON UBIQUITOUS CACHING VS.
EDGE-TRANSCODING 158

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

1.5

2.0

2.5

3.0

3.5

4.0
B

it
ra

te
S

w
it

ch
C

ou
nt

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

1.5

2.0

2.5

3.0

3.5

4.0

B
it

ra
te

S
w

it
ch

C
ou

nt

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

(a) Pattern A

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

1.5

3.5

5.5

7.5

9.5

11.5

B
it

ra
te

S
w

it
ch

C
ou

nt

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

1.5

3.5

5.5

7.5

9.5

B
it

ra
te

S
w

it
ch

C
ou

nt

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

(b) Pattern B

0.01 0.02 0.05 0.10
Cache Size Percentage (ω)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

B
it

ra
te

S
w

it
ch

C
ou

nt

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

0.80 1.00 1.20 1.40
Popularity Skewness (α)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

B
it

ra
te

S
w

it
ch

C
ou

nt

CE2(LFU)

RippleFinder

EdgeOnly

Transcode

(c) Pattern C

Figure A.5: Bitrate Switch Count across cache size and popularity skewness.

consumers are dedicated to a fixed bandwidth or connect via a wired link, bitrate-

aware caching is better suited to facilitate streaming services. RippleFinder outper-

forms even the upper bound performance of transcoding with regards to video quality

A.5. INSIGHTS ON UBIQUITOUS CACHING VS.
EDGE-TRANSCODING 159

and playback freezing, while almost matching Transcode in bitrate oscillation.

However, when consumers are connecting via mobile devices, transcoding has a

great potential in overall QoE improvement. In reality, as the processing delay of

transcoding exists and varies by case, it is necessary to evaluate against best-known

bitrate-aware caching schemes to validate this advantage.

We also noticed the performance of Transcode diminishes at low cache capacity

or low popularity skewness. Edge caching would cause a higher degree of cache re-

dundancy and the online-transcoding assumption may not hold in many scenarios.

Both of these factors undermine cache utilization, which impacts performance when

the available cache capacity is limited. We thus emphasize the edge transcoding ap-

proaches when high cache capacities are guaranteed, coupled with minimal-contention

on caching resources. Same reason applies to high popularity skewness, where few

video content is popular and competes for cache.

In designing caching models, it is important to take into consideration the impact

of transcoding on computing and networking resources. That is, simply assuming that

edge nodes are computationally more equipped than core routers, does not warrant an

assumption of superior performance that could handle both computationally-intensive

transcoding along with edge computing requirements.

As we previously mentioned, transcoding also has significant storage and com-

munication cost, which should be factored into the design. In addition, even if edge

nodes have significant caching capacity, the notion that they can equate to the caching

capacity found in ubiquitous caching models is not always true. Thus, relying on edge

caching alone inherently sacrifices potential space that could benefit more content.

A.6. CONCLUSIONS 160

A.6 Conclusions

In this work, we addressed the seldom investigated comparison between the impact of

transcoding and bitrate-aware caching on consumers’ QoE. We conducted extensive

experiments to examine their performance across various bandwidth patterns, cache

capacity, and popularity skewness measures. Our experiments demonstrated that

conventional metrics, such as cache hit ratio, are not ideal indicators of video-related

system performance, as they often contradict QoE performance benchmarks. We thus

adopted industry-leading benchmarks in quantifying QoE, and accordingly contrasted

the performance of both paradigms.

Even under the assumption of zero transcoding delay, we discovered that bitrate-

aware caching can often match or outperform the upper bound performance of transcod-

ing. Based on our observations, bitrate-aware caching is more suitable to serve con-

sumers with fixed and dedicated link capacity when cache resources are constrained.

Online transcoding is more suitable to serve mobile consumers when there is a signif-

icant amount of caching space and computational power at the edge, in excess to the

operational needs of the omnipresent edge computing architecture.

One of the important future directions to evaluate different caching models, is

investigating user-centric video request patterns in edge networks. We are in need of

more representative models for video behavior in mobile environments that capture

video viewing activity. Evidently, the co-existence of transcoding functionalities with

other edge tasks is a problem that requires further investigation. This is especially

important when edge computing architectures are tasked with significant offloading

and migration requirements, which may hinder their responsiveness to time-sensitive

video traffic management.

	Abstract
	Co-Authorship
	Acknowledgments
	Statement of Originality
	Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Research Statement
	Thesis Contributions
	Thesis Organization

	Background and Overview
	Dynamic Adaptive Streaming
	Bitrate Adaptation Control
	Standardized QoE Metrics

	ICN Architectures and Components
	ICN Caching Research
	ICN Caching vs. Web Caching
	Cache Decision Policy
	Cache Capacity Allocation

	Caching for Adaptive Streaming
	Transcoding on Edge Cache
	Bitrate-Aware Ubiquitous Caching
	Transcoding vs. Bitrate-Aware Caching

	Bitrate-Selective Caching for Throughput Enhancement
	Introduction
	Related Work
	System Description
	Network Architecture
	Video Request Patterns

	DaCPlace: Benchmark for Throughput Enhancement
	Cache Placement Problem Formulation
	Expected Delay Derivation
	DaCPlace Algorithm and Complexity

	StreamCache: Low-Overhead Cache Placement
	Cache Utility Derivation
	Cache Decision with Greedy Selection

	Performance Results and Insights
	Simulation Setup
	Simulation Parameters
	Performance Evaluation

	Summary

	Adaptive Streaming with Cache Partitioning
	Introduction
	Why Do We Partition?
	How Do We Partition?
	RippleClassic Benchmark Optimization
	Cache Placement Problem Formulation
	Cache Reward Function
	Tuning the Quality-Oscillation Tradeoff

	RippleFinder Cache Partitioning
	System Overview
	RippleFinder in Execution
	RippleFinder Algorithm and Complexity

	Performance Results and Insights
	Simulation Setup and Parameters
	Average Video Quality
	Bitrate Switch Count
	Rebuffer Percentage
	Evaluation On A Realistic Topology
	Discussion of Results

	Summary

	Predictive Cache Partitioning
	Introduction
	Cache Partitioning with PredictiveRipple
	Reinforcement Learning Framework
	MARL Formulation
	Space Aggregation
	Distributed Coordination

	MARL in Execution
	Performance Results and Insights
	Simulation Setup and Parameters
	The Impact of Online Prediction

	Summary

	Conclusion and Future Directions
	Summary
	Limitations
	Future Directions
	Bitrate Adaptation Prediction with Deep Learning
	Cache-Friendly Bitrate Adaptation

	Bibliography
	Performance Comparison of Transcoding and Bitrate-Aware Caching
	Simulation Setup
	Bandwidth Fluctuation Pattern
	Cache Hit Ratio
	QoE Metrics
	Average Video Bitrate
	Rebuffer Percentage
	Bitrate Switch Count

	Insights on Ubiquitous Caching vs. Edge-Transcoding
	Conclusions

