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Abstract

Mobile Edge Learning (MEL) is a decentralized collaborative learning paradigm

that features distributed training of Machine Learning (ML) models over resource-

constrained edge devices (e.g., Internet of Things (IoT) devices). MEL enables such

devices to either learn a shared model without sharing data, or distribute the learning

model along with the data to other IoT devices and utilize their available resources.

In the former case, IoT devices (aka learners) need to be assigned an orchestrator

to facilitate decentralized learning and models’ aggregation from different learners.

Whereas in the latter case, IoT devices act as orchestrators and look for learners with

available resources to distribute the learning task and utilize their resources.

However, in MEL, the coexistence of multiple learning tasks with different datasets

may arise, which is referred to as multi-orchestrator MEL. The heterogeneity in edge

devices’ capabilities will require the joint optimization of the learners-orchestrators

association and task allocation. Moreover, the performance of each learning task

deteriorates without the availability of sufficient training data or computing resources.

Therefore, it is crucial to motivate the edge devices to become learners and offer their

computing resources, and either offer their private data or receive the needed data

from the orchestrator and participate in the training process of a learning task.
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To this end, we aim to develop an energy-efficient framework for orchestrators-

learners association and learning task allocation, in which each orchestrator gets

associated with a group of learners with the same learning task based on their com-

munication channel qualities and computational resources, and allocate the tasks

accordingly. Afterward, we propose an incentive mechanism, where we formulate the

orchestrators-learners interactions as a two-round Stackelberg game to motivate the

participation of the learners. In the first round, the learners decide which learning

task to get engaged in, and then in the second round, the training parameters and the

amount of data for training are decided in case of participation such that their utility

is maximized. Finally, numerical experiments have been conducted to evaluate the

performance of the proposed energy-efficient framework and the proposed incentive

mechanism.
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Chapter 1

Introduction

1.1 Overview and Motivation

The growing availability of various computing resources and abundant data have

pushed the learning algorithms for this data towards the network edge rather than

the cloud. Indeed, centralized cloud-based learning paradigms suffer from the huge

latency overhead, and such paradigms are impractical for many real-time edge-based

applications (e.g., health monitoring and surveillance) [1]. This has led to the emer-

gence of the Mobile Edge Learning (MEL) framework [2]. MEL is a framework that

combines two originally decoupled areas: Mobile Edge Computing (MEC) and Ma-

chine Learning (ML), where it distributes and executes learning tasks (i.e., ML mod-

els’ training) on wireless edge nodes such as IoT devices, while taking into considera-

tion the heterogeneity in these devices’ communication and computation capabilities.

In fact, the recent advancements in MEL would provide a platform for developing

and deploying edge artificial intelligence (AI) in 5G-and-Beyond systems and solving

large-scale problems in our society ranging from autonomous driving to personalized

healthcare [3].
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There are two main components in the MEL framework: 1) orchestrators, which

are responsible for distributing the learning tasks along with aggregating and syn-

chronizing the updates of the tasks, and 2) learners, each of which is responsible for

training a local ML model using its possessed or received data. MEL is a general-

ized framework of both Parallelized Learning (PL) and Federated Learning (FL) (see

Fig. 1.1). The former is orchestrator-oriented, where the orchestrator has the whole

dataset needed for learning, but it lacks the needed computational resources to do so.

Hence, it distributes the ML model with the data across trusted learners to utilize

their available resources. On the other hand, the latter is learner-oriented, where

each learner has its private data, but the goal is to learn a global model across all

the learners in a distributed manner governed by an orchestrator, without sharing

Figure 1.1: Federated Learning (left) and Parallelized Learning (right)
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the private data of each learner. However, the heterogeneity of the learners’ comput-

ing capacities causes the so-called ”straggler’s dilemma” issue, where the distributed

learning process is throttled by the learner with the lowest capabilities [4]. Hence,

the orchestrator in both cases needs to allocate the tasks according to the learners’

capabilities. Task allocation in PL refers to the number of training data samples that

will be sent along with the ML model to each learner, whereas in FL, it refers to the

number of data samples from the private dataset that will be considered in the local

training of each learner.

Multi-orchestrator MEL refers to the coexistence of multiple learning tasks with

different datasets, each of which being governed by an orchestrator to facilitate the

distributed training process. Examples of such environments are 1) multiple parallel

FL jobs on different datasets stored at different groups of learners, or 2) multiple

resource-constrained IoT devices parallelizing their learning tasks simultaneously on

a set of nearby learners. Moreover, handling simultaneous learning tasks in the same

edge environment with the heterogeneity of both learners’ resources and channels

quality represent a new challenge in the multi-task MEL setting, which was not

addressed in previous works.

Nevertheless, the training performance deteriorates without the availability of

sufficient training data or computing resources. Moreover, learners are reluctant to

get engaged in the learning process without receiving benefits or compensation, either

for offering their private data to train on, or for offering their computing resources

and receive data from other incapable nodes to help in performing the learning task.

In either case, the learning experience for the whole task increases with the amount

and quality of data included in training [5]. Therefore, it is crucial to motivate edge
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devices to become learners in an active and reliable manner, where they offer their

computing resources and either offer their private data or receive the needed data

from the orchestrator and participate in the training process of a learning task.

1.2 Objectives and Contributions

In this thesis, we first consider a multi-task MEL system to be administered simul-

taneously by multiple independent orchestrators. Examples of such environments

are 1) multiple parallel FL jobs on different datasets stored at different groups of

learners, or 2) multiple resource-constrained IoT devices parallelizing their learning

tasks simultaneously on a set of nearby learners. Moreover, handling simultaneous

learning tasks in the same edge environment with the heterogeneity of both learners’

resources and channels quality represent a new challenge in multi-task MEL setting,

which was not addressed in previous works. To this end, we propose energy-efficient

learner-orchestrator association and task allocation techniques in this multi-task MEL

system, while accounting for the learners’ heterogeneity in terms of computation and

communication capabilities. The contributions of the first part of the thesis can be

summarized as follows:

1. First, we formulate a multi-objective optimization problem (MOP) for energy-

efficient learner-orchestrator association and task allocation, that aims to min-

imize the total energy consumption in the system and maximize the learning

accuracy at the orchestrators.

2. Being non-convex and NP-hard to solve, we propose an approach that employs

an approximate solution to the relaxed and convexified formulated MOP.
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3. To reduce the complexity of the optimization approach, we propose a set of

lightweight heuristic algorithms that promote decentralization in the solution

and utilize the solution of a simplified version of that formulated MOP. The

performance of both proposed approaches is evaluated, analyzed and compared

to a recent state-of-the-art technique in MEL.

Secondly, in multi-orchestrator MEL, each orchestrator has a different independent

learning task. Accordingly, the learners get to choose which learning task to get

engaged in (i.e., which orchestrator to associate with) such that their service costs

are minimized and utility is maximized. To this end, we aim to design an incentive

mechanism for the multi-orchestrator MEL system, where learners first decide the

association, and then decide the amount of data that they will train on in the learning

process based on the associated orchestrator’s incentive, while the latter decides the

incentive and the training parameters based on the learners’ capabilities. The main

contributions of the paper can be summarized as follows:

1. First, we formulate the learners-orchestrators interactions as a single 2-round

Stackelberg game, where the associations are decided in the first round, and the

training parameters and the incentives are decided in the second round.

2. In the first round, as the association problem turned out to be NP-hard, we

propose a heuristic approach for the learners-orchestrators association. Whereas

in the second round game, we prove the existence of a Nash equilibrium, where

we derive the optimal strategies for both learners and orchestrators.

3. Finally, we carry out numerical results to show the performance of the proposed

incentive mechanism while being compared to other techniques.
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1.3 List of Publications

Journal Publications

1. Allahham, M. S., Sorour, S., Mohamed, A., Erbad, A., & Guizani, M. Energy-

Efficient Multi-Orchestrator Mobile Edge Learning. IEEE Transaction on Green

Communications and Networking (under review).

2. Allahham, M. S., Sorour, S., Mohamed, A., Erbad, A., & Guizani, M. Moti-

vating Learners in Multi-Orchestrator Mobile Edge Learning: A Stackelberg

Game Approach. IEEE Canadian Journal of Electrical and Computer Engi-

neering (under review).

Conference Publications

1. Allahham, M. S., Sorour, S., Mohamed, A., Erbad, A., & Guizani, M. (2021,

December). Energy-Efficient Device Assignment and Task Allocation in Multi-

Orchestrator Mobile Edge Learning. In 2021 IEEE Global Communications

Conference (GLOBECOM) (pp. 1-6). IEEE.

1.4 Organization of Thesis

The thesis is organized as follows: Chapter 2 introduces the concept of MEL and

provides a comprehensive literature review of the design approaches of task alloca-

tion and incentive schemes. Chapter 3 presents the device association and the task

allocation problem, where the system model is discussed first, then the proposed

approaches, followed by the simulation results. Whereas in Chapter 4, the incen-

tive mechanism formulation is introduced, followed by the proposed solution and the



1.4. ORGANIZATION OF THESIS 7

simulation results. Finally, Chapter 5 concludes our work and outlines future work.
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Chapter 2

Background and Literature Review

2.1 Mobile Edge Learning: Concepts and Design Approaches

In this section, We first present the learning preliminaries of MEL. After that, we

proceed to present and discuss the design metrics and challenges, the proposed ap-

proaches and recent advances in MEL.

2.1.1 Preliminaries

Consider a dataset D, consisting of {xi, yi}|D|
i = 1, where |D| is the total number of

samples in the dataset, xi is the ith feature vector (i.e., input sample), and yi is the

sample class or label. The objective function for the ith sample will be denoted as

fi(xi, yi,w), and fi(w) for short, where w is the vector of the parameters of the ML

or DL Model, which represents the classification error of the model for that sample.

The overall objective function for ML training is defined as follows:

F (w) =
1

|D|

|D|∑
i=1

fi(w) (2.1)
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The aforementioned objective function can be convex for some ML models such as

Support Vector Machines (SVMs), and not convex for other models such as Neural

Networks. Most ML objective functions are usually optimized using a gradient descent

optimizer, where the optimizer keeps updating the weights according to the direction

of the gradient until convergence. The gradient descent update is as the following:

w(k + 1) = w(k)− η∇F (w) (2.2)

where k is the update index and η is the step size hyperparameter.

However, in MEL, the dataset is distributed across L learners, where a learner l

have a dataset Dl, and ∪Li Dl = D. Each device’s dataset can be either private and

cannot be accessed by an orchestrator or any other device, or it can be offloaded

from the orchestrator as part of the learning task. Since the data is not located at

a centralized entity, the global objective function in (2.1) is not valid anymore and

it cannot be computed, but it can be computed on each device according to its data

only. Nevertheless, the authors in CITE defined the distributed training objective as

the following:

F (w) =
L∑
l=1

|Dl|
|D|

Fn(wl) (2.3)

where Fl(wl) is the local objective function at learner l. Moreover, in order to update

the learners’ model parameters and maintain a unified global model across the learn-

ers, the authors have presented the FedAvg algorithm, which is the basic algorithm in

any MEL system. In FedAvg, a centralized entity such as orchestrators first initialize

a global model and sends it to the learners, and then the latter, in turn, run τ num-

ber of local iterations on its dataset and update the model. After the local iterations
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are done, the models are sent back to the orchestrator, where it then aggregates the

models and consolidates them into one global model, and sends back again the model

consolidated model to the devices. This process is considered as one global cycle,

and it is repeated G number of global cycles. The FedAvg algorithm was targeted

for FL systems only, but in the PL case, the orchestrator distributes the data across

the learners along with the global model parameters. The algorithm is detailed in

Algorithm 1.

Algorithm 1: MEL Training Algorithm

At the orchestrator side:
initialization w0

for each global cycle g = 1, 2, ..., G do
if PL case then
DL ← Split dataset D into L datasets where:
DL = {D1, D2, ...., DL}

end
else

Set DL = {∅,∅, ...,∅}
end
for each learner l = 1, 2..., L do

wl
t+1 ← LearnerUpdate(wt, Dl)

end

wt+1 ←
∑

k
|Dl|
|D| w

l
t+1

end
LearnerUpdate(wt, Dl)
if FL case then

Set Dl to the local dataset
end
B ← (split Dl into batches with size B)
for each local iteration τ = 1, 2.... do

for batch b ∈ B do
wl ← wl − η∇Fl(wl)

end

end
return wl to server
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2.1.2 Literature Review

Since MEL is a distributed learning framework at the edge networks, there are multi-

ple challenges that need to be addressed and aspects to be considered. On one hand,

edge nodes (e.g., IoT devices) are heterogeneous in terms of computation and com-

munication capabilities. Moreover, the learning task itself may be computationally

exhaustive as the ML model can be huge, and therefore, it requires proper resource

allocation from the learner’s side and task allocation from the orchestrator’s side. On

the other hand, the quality of the learning experience (i.e., the learned model accu-

racy) depends on the amount of training data, and its distribution over the classes.

In the case of FL, the problem of non-independent and identically distributed (Non-

IID) data arises. In fact, the generated and collected data on each device is driven by

the user or application behavior, and hence, each dataset on each device will not be

representative of the whole data distribution. Moreover, the number of data points

in each device may vary significantly, which is heavily dependent on the application

or the users’ behaviors. Moreover, the edge nodes are always on a budget (e.g., time

or energy), and in synchronous settings, the learning process will always be throttled

by the learner with the weakest capabilities, where this issue is referred to as strag-

gler’s dilemma. Indeed, this learner will limit the number of global cycles or local

iterations in the learning process within its given budget, and hence, not granting the

best possible learning experience.

As such, several works have addressed these challenges from different approaches.

For example, The authors in [2] established an optimization paradigm to efficiently

execute distributed learning tasks on wireless edge nodes (i.e., learners). The aim

was to maximize the learning accuracy by maximizing the number of local iterations,
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while the learners were limited to a preset duration. As the formulated problem turned

out to be NP-hard, a solution is proposed that employs approximation and derived

upper bounds using KKT conditions. A similar approach has been proposed in [6],

but with considering power control and bandwidth allocation, where an optimization

problem has been formulated to maximize the accuracy under time, bandwidth, and

transmission powers constraints. With a different approach, Wang et al. in [7] have

proposed a control algorithm that determines the best tradeoff between the number of

local iterations and global cycles to minimize the loss function, under a given resource

budget. Specifically, the authors have studied the relation analytically and defined

the loss function as an upper bound to the divergence between the optimal learning

model and the distributed learning model. The divergence refers to how much are the

model parameters are deviating from the optimal parameters. As a result, minimizing

the divergence upper bound will result in a model that is optimal or near-optimal in

the worst cases. Afterward, an optimization problem has been formulated, where the

aim is to minimize the divergence under a generic resources constraint. However,

as the previous work has ignored the heterogeneity of the learners, this work has

been extended in [8] to include also the problem of task allocation and consider

the heterogeneous communication and computation capabilities of each learner. An

optimization has been formulated where the objective is to minimize the divergence

upper bounds under global time constraints, and the variables are the task allocation

( the number of data samples to train on each device ), the number of local iterations,

and global cycles.

While previous works ignored the energy perspective, a similar approach has been

proposed in [9], where an optimization problem has been formulated to maximize the
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learning accuracy under energy and time constraint. From a different perspective, the

authors in [10] explored a new direction of energy-efficient radio resource management

including bandwidth allocation and scheduling. The proposed solution addresses the

stragglers dilemma, as more bandwidth is allocated to devices with weaker channels

or poorer computation capacities while granting them scheduling priority. A more

general framework has been proposed in [11], where the authors address the tradeoff

between the computation and the communication latency and energy which is de-

termined by the desired accuracy level. More specifically, an optimization problem

has been formulated to minimize the energy consumption and the total latency in

the system, while considering different computation and communication capabilities

for the learners. The optimization problem includes resources allocation in terms of

learners’ CPU frequency, power allocation, optimizing the number of local iterations

and global cycles. As the optimization problem turned out to be NP-hard, the opti-

mization problem has been broken down into three sub-problems, where first the CPU

resource allocation is solved, then the uplink power control at the learners’ side, and

finally, the accuracy level for the learning task. Similar work has been done in [12],

where a joint learning and communication problem is formulated as an optimization

problem, and the goal is to minimize the total energy consumption of the system

under a latency constraint. However, the proposed solution is an iterative algorithm,

where at every step, closed-form solutions for time and bandwidth allocation, power

control, computation frequency, and learning accuracy are derived.

Regarding the non-IID data challenge, the authors in [13] have proposed a strat-

egy to improve the training on non-IID data, which is to create a small subset of

the data which is globally shared between the devices. In that work, the authors
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have shown that the original FedAvg algorithm can achieve much lower accuracy in

the case of highly skewed non-IID data, where each device is trained on only one

class. Moreover, the authors have shown that such reduction can be explained by

the models’ weights divergence, which can be quantified by the statistical distance

between the distribution over classes on each device and the population distribution.

The experiments show that if a small subset of data is shared globally, it can increase

the accuracy by at least 30%. However, even though the shared data is relatively

small, such an approach violates privacy in FL, which was the main motivation of FL

in the first place. Another approach for addressing the non-IID challenge, the work

in [14] has proposed an experience-driven control algorithm that selects learners to

participate in each global cycle of federated learning to oppose the bias introduced by

the non-IID nature of data and to speed up the convergence. In other words, a user

selection scheme using Reinforcement Learning (RL) selects specific learners out of a

pool of learners that should participate in each round of FL in an intelligent manner,

leading to speeding up the convergence while maintaining high accuracy. With re-

gard to the same challenge, the work in [15] has proposed clustered FL (CFL), which

exploits the geometric properties of the FL objective function to group the devices

into clusters, such that each cluster contains devices with similar data distributions.

CFL is capable of distinguishing situations where a model can be trained from the

devices’ data from those in which this is not possible and only separates clients in

the latter case. However, the clustering technique is achieved by multiple iterations

of bi-partitioning, each requiring running the FedAVg algorithm until convergence.

Nevertheless, one important aspect has been ignored in the previous works, which

is scalability. The question that comes to mind is, what if all the learners need to
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learn the same global model in a very large-scale system? This question was the

motivation for the new paradigm, the Hierarchical Federated Learning (HFL) which

has been proposed in [16]. HFL is a client-edge-cloud hierarchy, where an edge server

acts as an orchestrator for the clients connecting to that edge (i.e., learners), and the

cloud acts as a global orchestrator for the edge servers. In fact, the edge servers which

are the main facilitators enjoy more efficient communications with both clients and

the cloud. However, since this work has disregarded the statistical challenge in FL,

another work has been done to tackle this challenge in [17]. In the latter work, the

authors aim to assign the clients to an edge and cluster them in an optimal way based

on their data distributions. The presented results show that such an assignment can

lead to faster convergence and higher accuracy. This work has been further extended

in [18] to address the resource allocation while considering the heterogeneity of the

learners in terms of the communication and computation capabilities.

There are also a plethora of works that try to improve the accuracy and the

communication efficiency with different approaches such as client selection [19, 20,

21, 22, 23] and model parameters compression and quantization [24, 25, 26, 27, 28].

2.2 Incentive Mechanisms

To incentivize is to motivate or prompt individuals to do certain actions. Incentives

can be either positive or negative. In the former case, incentives seek to motivate

by a promised payoff or a reward. Whereas in the latter case, incentives aim to

avoid unpleasant behaviors by penalizing the individuals. Incentive mechanisms are

modeled by Game Theory. Game Theory is a mathematical framework that models

the interactions between different players or agents. The goal of Game Theory is
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to study and analyze the decisions of each agent to derive an optimal set of actions

for each player. More specifically, we aim to find a set of solutions that satisfy all

the players in the game, where no player is willing to change its behavior if someone

else does, which is referred to as the Nash Equilibrium. Therein, we define the main

components of Game Theory as follows:

• Players: aka agents. The individuals who make decisions in the considered

environment.

• Strategy: aka policy. The set of possible actions that each agent can take in

the environment.

• States: The information or the knowledge that each agent has when taking the

decision.

• Utility: aka payoff/reward. It refers to what does each player gets in return for

taking an action in a certain state.

The most commonly used approaches in Game Theory to design incentives are

Stackelberg Game (SB) approach, or Auction Theory approach. In the SB approach,

the incentive is modeled as follows: An agent (who is requesting the service) first

publishes the service requirements with the incentive beforehand. Then the other

agents (who provide the service) then take their decisions based on the payment and

the requirements. Whereas in Auction Theory approach, an agent (who is providing

the service) first publishes his service. The other agents (who request the service)

bid to be served. The serving agent then decides who gets the service based on

the bids. In what follows, we present and discuss previous works that exploited SB

game or Auction Theory to design incentive mechanisms in MEC and MEL. Incentive
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mechanisms in MEC are designed mainly for two applications: crowdsensing and

computation offloading. In what follows, we discuss the incentive mechanisms in each

application.

2.2.1 Incentive Mechanisms in Mobile Crowdsensing and Computation

Offloading

Mobile crowdsensing requires a large number of participants (i.e., normal smartphone

users) to sense the environment via various sensors (e.g., gyroscopes, accelerome-

ters...etc). Employing such data enables the development of health care, traffic, and

environment monitoring services [29]. The quality of these services relies heavily on

the number of participants. As such, it is important to sufficiently motivate users to

participate. Most incentives in crowdsensing fall into three categories: entertainment

[30, 31, 32, 33, 34, 35], service [36, 37, 38, 39], and money [40, 41, 42, 43, 44]. Each

incentive focus on some aspects of user need, such as: such as profit, enjoyment and

comfort, fulfillment. In entertainment incentives, the crowd sensing task is turned

into a sensing game, such that participants can offer computation or sensing capabil-

ities of their mobile device when they play the game. By doing so, the participants

feel enjoyable when they perform tasks and offer resources. As for service-based in-

centives, it is a manifestation of the mutual-benefit principle. Service consumers can

also be providers, that is, if a user wants to be served, it also has to provide some kind

of service. As for the monetary incentive category, the system pays the participant

a certain amount of money to motivate them, such that devices’ sensors or resources

can be utilized.

While a plethora of works has approached the design of incentive mechanisms for
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crowdsensing from different aspects, we mention a few which employed Auction the-

ory or Stackelberg games. The authors in [45] have applied a two-stage Stackelberg

game to analyze the level of participation of each mobile user and the optimal incen-

tive mechanism using the backward induction algorithm. In order to motivate the

formers, the incentive mechanism is designed such that it takes into consideration the

social network effects from the mobile social domain. Whereas in [46], the work pro-

poses a centralized framework where a platform provider can estimate participants’

parameters very efficiently by sending and receiving a few messages. An optimiza-

tion problem was formulated on the platform provider side as an integer non-linear

program to optimize the payment and the resource usage with time and budget con-

straints. Since the optimization is NP-hard, heuristic algorithms were proposed that

enable tradeoffs in the system such as optimality and scalability. A learning-based

incentive mechanism was proposed in [47] to address the security issue in crowdsens-

ing systems where it might be vulnerable to faked sensing attacks. More specifically,

a Deep Reinforcement Learning (DRL) algorithm is employed to derive the optimal

policy in terms of incentives against faked sensing attacks.

As for auction-based approaches, in [48] the authors propose a reverse auction-

based incentive mechanism, which considers participants’ potential contributions when

employing new workers and retaining existing workers. The work aims to optimize

the worker composition in the system while reducing the system cost. The poten-

tial contribution of a participant to the system is measured as the degree to which

the user is joining or staying in the system. Whereas in [49], the authors propose a

quality-driven incentive mechanism, where workers are paid off based on the quality
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of sensed data instead of working time, as previous works adopted. Moreover, the in-

centive mechanism was applied in Wi-Fi fingerprint-based indoor localization system,

where the system tries to incentivize the participants for fingerprint collection.

Computational offloading in MEC is a collaborative paradigm where an IoT device

has a computational task and is incapable of performing it due to the lack of resources,

so it sends this to nearby devices to perform the task. Collaborative offloading costs

storage, computation, and communication resources from other devices. As such,

service requesters have to incentivize other mobile devices to offer their resources to

do the task. One of the earliest works to design an incentive mechanism for compu-

tation offloading was done in [50]. The authors formulated the interactions between

cloud service operators ( service requester) and edge servers as a Stackelberg game to

maximize the utilities of both parties by obtaining optimal strategies for payment and

offloading. Similar work was done in [51], wherein the formulated Stackelberg game,

edge users act as followers, and edge cloud act as a leader. The proposed framework

aims to maximize the revenue of the edge cloud while maximizing the edge users’

utility under budget constraints. In line with the previous works’ objective, similar

approaches have been proposed in [52, 53, 54].

2.2.2 Previous Studies on Incentive Mechanisms in MEL

One of the earliest works of incentive mechanism in MEL is the one which was done

in [55]. The incentive mechanism is modeled as an SB game, where the orchestrator

aims to minimize the total training time given the learner’s computation capacity. As

a result, the orchestrator needs to incentivize learners to increase their allocated CPU

power for the learning task. On the other side, the learners will determine the CPU
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power according to its utility function such that their revenue is maximized, and the

computation energy is minimized. A more generic approach has been proposed in [5],

where the orchestrator utility has been expressed in terms of the learning accuracy and

the payment. The modeled learning accuracy function depends on the number of data

samples that will be included in the training process, where training on more unique

data samples leads to an increase in learning accuracy. As such, the orchestrator will

try to motivate learners to include as much data as possible in the training process.

Whereas at the learners’ side, the utility is expressed in terms of revenue, commu-

nication, and computation energy consumption, where all the aforementioned terms

depend on the number of data samples in the training. Consequently, the learners

will determine the number of data samples such that their revenue is maximized, and

the total energy consumption is minimized. A more sophisticated scenario has been

investigated in [56], where a cooperative relay network is considered to support model

transfer between the learners and the orchestrators to increase the energy efficiency

at the edge network. However, the relay nodes have service costs, and during models’

transmission, the channels will suffer from interference. As such, the learners need

to determine the transmission power and the relay node in addition to the number

of data samples. As for the orchestrator, the utility is also expressed in terms of the

learning accuracy and the total payment to the learners, where the learning accuracy

also depends on the number of training data samples. As for auction-based incen-

tives, the authors in [57] developed a generic lightweight algorithm for encouraging

learners’ participation, taking into account the learner’s multiple resources. The top

K learners with the highest bids are then selected to be engaged in the learning pro-

cess. Whereas in [58], the authors formulated the incentive mechanism with wireless
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cellular network characteristics. The learners decide their bid and policy in terms of

transmission power and computation capacity based on an allocated bandwidth and

incentive. The learner selection is then formulated as a knapsack problem and solved

via a greedy-based algorithm.
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Chapter 3

Device Association and Task Allocation

3.1 System Model

In this chapter, we consider a multi-task multi-orchestrator MEL system as shown

in Fig. (3.1). Each of these orchestrators can be considered as either 1) a governing

node for learners that have private data for the same learning problem in the case

of FL, or 2) an edge device that lacks the computational resources to execute the

training of its learning problem due to its limited capabilities, or the computational

resources are exhausted by another task in the case of PL. In this latter case, each

of the orchestrators has to distribute its learning task and offload the data needed to

the associated learners given their available resources. The learners are considered to

be trusted nodes since orchestrators have to share private data with them. Without

loss of generality, we focus in this work on the PL case only in the edge settings, as

it can be considered as the general case with the fact that the orchestrators have to

offload the data, which is not the case in FL. We will however point out how our

formulations and solutions apply to FL whenever needed.
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Figure 3.1: The considered system model

3.1.1 Learning Settings

We denote the set of orchestrators by O, the set of learners by L and the set of

learners that are associated with orchestrator o by Lo. Each orchestrator o ∈ O has a

dataset with No samples, and each data sample i can be represented by {xi, yi}, where

xi is the ith feature vector (i.e., input data), and yi is the ith class or label. After

the association with the learners is done, an orchestrator o sends the learning model

parameters wl,o and nl,o ×No data samples to learner l, where nl,o is the proportion

of the data to send, and
∑|Lo|

l=1 nl,o = 1 since the orchestrators need to train on all the

available data1. Each learner then performs τo local training iterations on its own or

received data using Stochastic Gradient Descent (SGD) to minimize its loss function

fl(wl,o). Once done, the learners send back to the orchestrator the parameters of their

locally trained models, where the latter aggregates these parameters by performing

1In the FL case, the constraint
∑

l nl,o = 1 does not necessarily hold since each learner selects
a proportion nl,o of its local dataset to perform the learning task. Instead, a constraint has to be
added such that the selected samples from a learner represent the distribution of its local dataset.



3.1. SYSTEM MODEL 24

weighted averaging as follows:

wo =
∑
l∈Lo

nl,owl,o (3.1)

Each orchestrator then keeps sending back more data samples and the updated model

to the learners, which repeat the same above process for Go global cycles, until a

stopping criteria is satisfied such as the exhaustion of a certain resource (e.g., energy,

time) or the attainment of a given accuracy for the aggregated model. One can refer

to [7] for more details about minimizing local loss functions and models aggregations.

3.1.2 Edge Settings

In this part, we introduce the communication and computation parameters of wireless

edge learners. First, we define the number of bits that an orchestrator o sends to

learner l as:

Bdata
l,o = nl,oNoFoΓ

d
o (3.2)

Bweights
o = Sw

o Γ
w
o (3.3)

where Fo is the feature vector length, S
w
o the total number of weights in the model, and

Γd
o and Γw

o represent the bits/feature and bits/weight values, respectively. Therein,

we can define the time needed for the orchestrator to send the data and the model

weights by:

tSl,o =
Bdata

l,o +Bweights
o

W log2(1 +
hl,oPl,o

σ2 )
(3.4)

where W is the channel bandwidth, Pl,o is the orchestrator’s transmission power, σ2

is the channel noise variance, and hl,o is the channel gain expressed as hl,o = d−ν
l,o g

2



3.1. SYSTEM MODEL 25

where dl,o is the distance between the orchestrator and the learner, ν is the path loss

exponent, and g is the fading channel coefficient. Similarly, the time needed for a

learner to send the updated model parameters is defined as follows:

tUl,o =
Bweights

o

W log2(1 +
hl,oPl,o

σ2 )
(3.5)

Last, we define the time needed for a learner l to execute its allocated learning task

by:

tCl,o =
τonl,oNoC

w
o

fl
(3.6)

where τo is the number of local iterations, Cw
o is the model computational complexity

parameter, and fl is the local processor frequency. Consequently, the total training

time for a learner across Go global cycles can be expressed as:

tl,o = Go(t
S
l,o + tUl,o + tCl,o) (3.7)

We assume in the considered system a fixed bandwidth of W , fixed transmission

power Pl,o = Po,l = P for all the nodes, and hl,o = ho,l (i.e., channel reciprocity).

Moreover, we assume that the orchestrator employs a controlled medium access con-

trol (MAC) protocol for the learners (e.g., the Reservation protocol).

Afterward, we define the energy consumption for both learners and orchestrators.

Generally, the energy consumed for communications is the product of the transmission

power with the transmission time and defined as E = P×t. Therein, the orchestrator

o energy consumption to send each cycles’ data samples and the model weights can
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be given by:

ES
l,o = Pl,ot

S
l,o =

Pl,o(B
data
l,o +Bweights

o )

W log2(1 +
hl,oPl,o

σ2 )
(3.8)

Similarly, the learner’s l energy consumption to send the updated model is given by:

EU
l,o = Pl,ot

U
l,o =

Pl,oB
weights
o

W log2(1 +
hl,oPl,o

σ2 )
(3.9)

As for the computation energy consumption at each learner l, we adopt the model in

[59], which can be defined in our context as follows:

EC
l,o = µτonl,oNoC

w
o fl (3.10)

where µ is the on-board chip capacitance. The total energy consumption for an

orchestrator-learner pair during training can thus be expressed as:

El,o = Go(E
S
l,o + EU

l,o + EC
l,o) (3.11)

To simplify the notation in the reminder of the paper, we define the following time

and energy coefficients:

A0
l,o =

2Bweights
o

W log2(1+
hl,oPl,o

σ2 )
, ζ0l,o = Pl,oA

0
l,o

A1
l,o =

NoFoΓd
o

W log2(1+
hl,oPl,o

σ2 )
, ζ1l,o = Pl,oA

1
l,o
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A2
l,o =

NoCw
o

fl
, ζ2l,o = µCw

o fl

such that the training time and energy consumption can be re-expressed respectively

as:

tl,o = Go(A
2
l,oτonl,o + A1

l,onl,o + A0
l,o) (3.12)

El,o = Go(ζ
2
l,oτonl,o + ζ1l,onl,o + ζ0l,o) (3.13)

3.2 Problem Formulation

In this section, we first present the distributed learning objective formulation, then

present the whole formulation in terms of energy consumption and learning objective

in our MEL settings.

3.2.1 Learning Objective Formulation

For a given learners-orchestrator association, aligned with the previous literature [8],

we first consider the model presented in [7] to define the learning objective in the

resource constrained system:

min
τo,Go

. 1
|O|
∑

o∈O Fo(wo)

s.t.

Go(A
2
l,oτonl,o + A1

l,onl,o + A0
l,o) ≤ Tmax, ∀ l, o

(3.14)

where Fo(.) is the global loss function for the learning task of an orchestrator o, and

Tmax is the maximum allowed training time for the whole learning process. It is gen-

erally impossible to find an exact analytical solution for the problem presented in (14)
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that relates the optimization variables τo, Go with Fo(wo). Thus, the objective is typ-

ically re-formulated as a function of the distributed learning convergence bounds over

the edge network. The convergence bounds in the formulation represents how much

the trained model in the distributed learning is deviating from the optimal model.

Interestingly, it has been shown that the convergence bound mainly depends on the

optimization variables, namely, τo and Go. The convergence bound for one learning

task of one orchestrator has been derived in [7], and has been used to reformulate the

learning problem objective. For the sake of brevity, we will only show the important

findings that will be included in our main formulation. Similar to [7], we assume the

following about the loss function at each learner l:

1. Fl(w) is convex.

2. Fl(w) is β-smooth, i.e., ||∇Fl(w)−∇Fl(w
′)|| ≤ βl||w −w′|| for any w′.

3. The divergence between the gradients of the local loss and the aggregated loss

function has a maximum of δl such that ||∇Fl(w)−∇F (w)|| ≤ δl

An auxiliary global model with weights vo can be then defined, where the auxiliary

model represents the centralized training model, which is considered as the optimal

training model in the distributed training case. At each global cycle, the model will

be updated by SGD as follows:

vo[go] = vo[go − 1]− ηo∇Fo(vo[go − 1]) (3.15)

where ηo is the learning rate and go is the index of the global cycles. The difference

between the distributed learning weights and the centralized learning at each global
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update was shown to be upper bounded such that ||wo[go]−vo[go]|| ≤ Ho(τo), where:

Ho(τo) =
δo
βo

[
(ηoβo + 1)τo − ηoδoτo

]
(3.16)

where δo can be estimated at each global cycle by δo =
∑

l∈Lo
nl,oδl, and βo can be

estimated by βo =
∑

l∈Lo
nl,oβl, where βl is given as:

βl =
||∇Fl(wo)−∇Fl(wl)||

||wo −wl||
(3.17)

As a result, the aim of the reformulated objective is to minimize the difference be-

tween optimal loss function Fo(w
∗
o) (i.e., the centralized loss function Fo(vo)) and the

distributed global loss function after Go global cycles. This difference was shown to

be upper bounded as follows:

Fo(wo)− Fo(w
∗
o) ≤

1

Goτo

[
ηo(1− βoηo

2
)− ϕHo(τo)

τo

] (3.18)

where ϕ is a control parameter. Moreover, the following conditions on the learning

rate have to be satisfied to guarantee the convergence:

1. ηoβo ≤ 1

2. ηo(1− βoηo
2

)− ϕHo(τo)
τo

> 0

Even though the aforementioned convergence bound was shown to be convex when

τo ∈ [1, τmax], where τmax is the maximum allowed number of local iterations, mini-

mizing over this bound will not have an exact analytical solution. Thus, to enable

some solution analysis, we propose to approximate this bound with a simpler convex
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expression instead. Since the parameters Go and τo are the only active variables in

the expression, and the other variables ϕ, ηo, δo and βo are either fixed or empirically

estimated during training, we can thus define the approximation function as:

Uo =
c1

Goτ c2o
(3.19)

where c1 and c2 are the approximation parameters. Such approximation can be done

with log transformation and Linear Regression [60]. Consequently, the learning ob-

jective is no longer a function of the number of local and global cycles only, but also

preserves the convexity of the upper bound with the fact that τo, Go ≥ 1. Further-

more, it can be noticed that, as we increase these two parameters, the convergence

bound and its approximation in (19) is minimized, which leads to a better learning

experience. Finally, although this approximation assumes the loss function is convex,

our simulation results show that it also works well in practice for non-convex models

(i.e., neural networks).

3.2.2 Multi-Objective Optimization Formulation

Recall that, in this work, we aim to associate each orchestrator o with a set of learners,

and to optimize for each orchestrator with its associated learners set Lo the task

allocation (i.e., nl,o, the proportion of the data to be sent to each learner) along with

the number of local iterations τo, and the number of global cycles Go, such that both

the energy consumption in the system and the average global loss functions at all

orchestrators are minimized. To formulate this joint problem, we define the MOP as

follows:
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P1 : min.
λl,o,Go,τo,nl,o

α
∑
l,o

λl,oEl,o + (1− α)
∑
o

Uo (3.20a)

s.t.
∑
o

λl,otl,o ≤ Tmax, ∀ l ∈ L (3.20b)

∑
o

λl,o = 1, ∀ l ∈ L (3.20c)

∑
l∈Lo

nl,o = 1, ∀ o ∈ O (3.20d)

1 ≤ τo ≤ τmax, ∀ o ∈ O (3.20e)

λl,o ∈ {0, 1}, nl,o ∈ [0, 1], ∀ l ∈ L, o ∈ O (3.20f)

Go, τo ∈ Z+ (3.20g)

where λl,o is the association variable between an orchestrator o and a learner l, and α is

a weighting coefficient that determines the importance of each objective with respect

to the other. Constraint (20b) ensures that each learner does not exceed the global

time limit for the whole training process, while constraint (20c) guarantees a learner

can not associate with more than one orchestrator. Constraint (20d) conveys that the

orchestrator offloads the whole dataset to its associated learners, and constraint (20e)

guarantees that τo stays in the range where the original convergence bound is convex.

Note that the energy and loss objectives in (20a) are averaged over all the learners

and orchestrators and normalized between 0-1 by dividing by their maximum values

Emax and Umax, respectively, in order to enable a fair trade-off between the objectives.

It is readily obvious that the MOP P1 is a Mixed Non-Linear Integer Program

(MNLIP), due to the multiplication and division of the variables in the objective
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function and the constraints. MNLIP’s are known to be non-convex and NP-hard to

solve [61]. Usually in such cases, a common approach is to relax the integer variables

and consider it as a Geometric Program (GP), but this is not possible in our problem

due to the existence of constraints (20c) and (20d). In fact, with the relaxation of

the integer variables, the program presented in (20) is an uncommon special case of

GP’s and known as Signomial Programs (SP) [61]. Generally, SPs are not convex, but

several works have proposed algorithms with different approaches to obtain a global

solution for them through convexifications and successive solving of sub-optimization

problems [62, 63, 64]. In this work, we adopt the presented approach in [64] and

present some analysis from [62], where we convexify the problem and approximate

the non-convex constraints by linear functions, and successively solve relaxed sub-

optimization problems until we obtain a global solution. However, such approach is

centralized and requires all the information about the environment, the orchestrators

and the learners to be available at a single entity, which makes it not practical.

Hence, we further present partially decentralized and fully decentralized light-weight

heuristic algorithms that reduce the complexity of the solution.

3.3 Solution Approaches

In this section, we first present the centralized approach, where we solve the convex-

ified and relaxed version of the presented MOP P1 in (20). Afterward, we present

the partially decentralized and fully decentralized approaches to simplify and solve

the complex MOP.
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3.3.1 Centralized Solution using Convex Relaxation

In order to convexify the problem, we first relax all other integer variables, namely,

λl,o, τo and Go, which will be later floored after finding the solution of the simplified

convex problem. Since integer variable relaxation expands the feasible region, some

undesirable values for the association variables might appear in the solution (e.g.,

λl,o =
1
|O|). Hence, we add the following constraint:

|O|−1∑
i=1

|O|∑
j=i+1

λl,iλl,j ≤ ϵ, ∀l ∈ L (3.21)

where ϵ is a very small number, and ϵ > 0. Along with constraint (20c), this con-

straint ensures that each learner can only associate with one orchestrator, where its

association variable has higher value, and enforces the values of other orchestrators’

association variables’ to be close to 0.

Afterward, we perform an exponential variable transformation for all the variables

such that:

x = exp(x̄) (3.22)

where x can be either λl,o, nl,o, τo or Go. Such transformation will make the multi-

objective function in (20a) as sum of exponential terms, which is known to be convex.
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Consequently, the MOP in P1 can be reformulated as:

P2 : min. α
∑
l,o

2∑
k=0

ζkl,o exp(Xk) + (1− α)
∑
o

c1 exp(−c2 τ̄o − Ḡo) (3.23a)

s.t.
∑
o

2∑
k=0

Ak
l,o exp(Xk) ≤ Tmax, ∀ l ∈ L (3.23b)

∑
o

exp(λ̄l,o)− 1 ≤ 0, ∀ l ∈ L (3.23c)

1−
∑
o

exp(λ̄l,o) ≤ 0, ∀ l ∈ L (3.23d)

|O|−1∑
i=1

|O|∑
j=i+1

exp(λl,i + λl,j) ≤ ϵ, ∀ l ∈ L (3.23e)

∑
l∈Lo

exp(n̄l,o)− 1 ≤ 0, ∀ o ∈ O (3.23f)

1−
∑
l∈Lo

exp(n̄l,o) ≤ 0, ∀ o ∈ O (3.23g)

λ̄l,o, n̄l,o, τ̄o, Ḡo ∈ D (3.23h)

where X0 = λ̄l,o + Ḡo, X1 = λ̄l,o + Ḡo + n̄l,o, X2 = λ̄l,o + Ḡo + n̄l,o + τ̄o, and D is the

new domain of the MOP after the reformulation. This new domain can be defined

by applying the transformation on the upper and lower bounds for each variable in

constraints (20e)-(20g). It can be noticed that the reformulated MOP P2 is convex

in the objective and the constraints, except for constraints (23d) and (23g), where

there exist concave terms. Hence, by utilizing the following linear function:

L(x) =
xmaxe

xmin − xmine
xmax

xmax − xmin
+

exmax − exmin

xmax − xmin
x (3.24)

where xmin, xmax represent the bounds for the variables λl,o and nl,o in P1 after the

integer relaxation. We relax the MOP P2 by underestimating each of the exponential

terms in constraints (23d) and (23g) such that the constraints can be rewritten as
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affine functions as follows:

1−
∑
o

L(λ̄l,o) ≤ 0 (3.25a)

1−
∑
l∈Lo

L(n̄l,o) ≤ 0 (3.25b)

In fact, the linear underestimator represents a lower bound on the concave terms in

(23d) and (23g), and the smaller the difference between the underestimation and the

concave terms the closer the solution of the relaxed MOP will be to the solution of

the MOP in (23). By making use of the analysis shown in [62], we can assess the

quality of this lower bounding by examining the tightness of the underestimation of

every concave term with the linear function (24) inside an interval [xmin, xmax].

Lemma 1. Given the separation function ∆(x) as the difference between the concave

term and its underestimator, ∆(x) is concave in x and its maximum can be given by:

∆max = exmin (1− Z + Z log(Z)) (3.26)

where

Z =
eϑ − 1

ϑ
, ϑ = xmax − xmin (3.27)

Proof. The proof is detailed in Appendix A. We follow the same presented

procedure in [62] with a slight modification.

It can be noticed that as the interval ϑ goes to zero, Z approaches one, and hence

the maximum separation goes to zero. Furthermore, the rate at which ∆max goes to
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zero can be examined using the Taylor series expansion of (26)2 as follows:

∆max

exmin
=

ϑ2

8
+

ϑ3

16
+

11ϑ4

576
+

5ϑ5

1152
+O(ϑ6) (3.28)

Taking into consideration the first term only, it can be deduced that the rate at which

∆max goes to zero is:

∆max ≈ O(ϑ2), as ϑ→ 0. (3.29)

We can conclude that if an effective relaxation is desired, a sufficiently small difference

between the lower and the upper bounds is required.

After the convexification of P2, a Branch and Bound (BnB) algorithm is em-

ployed as in [64]. This approach solves a sequence of convex sub-problems of P2 over

partitioned subsets of D in order to obtain a global optimum solution. The BnB ap-

proach consists of k stages, where in each stage the set Dk is partitioned into subsets,

each concerned with a node in the BnB-tree, and each node is associated with a sub-

problem of P2 in each subset. In each stage, the feasibility of each sub-problem in

each node is checked and solved via interior point methods to obtain a lower bound

on the optimal value of P2. Subsets that obtain a better lower bound than the

previous stage are then partitioned again, each with a new node. This process is

repeated until convergence, or the maximum number of stages is reached. Interested

readers can refer to [64] for the full algorithm details and proof of convergence. Such

BnB approaches for solving SPs are already available in optimization solvers such as

GPkit [65]. Nevertheless, it is important to note that, while obtained solutions from

the aforementioned approach can be optimal for the non-convex P2, but it might

2Taylor series expansion of (26) can be either derived by starting with ex−1
x =

∑∞
n=0

xn

(n+1)! and

finding the derivatives of the other terms, or by using software such as MATLAB.
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Figure 3.2: Optimization in MEL system

not be the case for P1 due to the integer variable relaxation. Last but not least,

the optimization algorithm is too computationally expensive to be performed at an

IoT node, and it is impractical for an IoT node to have information about the whole

system. Thus, as demonstrated in Fig 3.2, the optimization problem has to be solved

at a cloud or an edge server, where orchestrators can gather their information about

the system and the available learners and send it to the server to solve. Then the

latter return the solution of the optimization problem to the orchestrators to start

the training process.

3.3.2 Partially Decentralized Heuristics

In this work, we propose partially decentralized heuristics, where orchestrators need

to cooperate and communicate by sharing the information (i.e., dataset size, channel

qualities with learners...etc.) to realize the association with the learners. Once the
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association is done, each orchestrator can optimize the task allocation, the number

of local training iterations for each associated learner, and the number of the global

cycles.

The Associate-Allocate-Train Decomposition Approach

First, we propose the Associate-Allocate-Train (AAT) algorithm, where the MOP P1

is broken down into three simpler sub-problems as follows:

SP1 : min.
λl,o

∑
l,o

λl,oEl,o

s.t. (20b), (20c), λl,o ∈ {0, 1}

(3.30)

SP2 : min.
nl,o

∑
l∈Lo

nl,oGo(ζ
2
l,oτo + ζ1l,o)

s.t. (20b), (20d), nl,o ∈ [0, 1]

(3.31)

SP3 : min.
τo,Go

α
∑
l∈Lo

El,o + (1− α)
c1

Goτ c2o

s.t. (20b), (20e), (20g)

(3.32)

This decomposition is driven by the fact that both task allocation and training are

dependent on the association. Hence, in the first sub-problem SP1, the orchestrators

assume equal task allocation for all the learners (i.e., nl,o =
1
|L|) and a fixed number of

local iteration and global cycles so that the energy consumption for each association is

known. SP1 then optimizes the associations such that the total energy consumption

is minimized. One can clearly see that SP1 is a binary integer Linear Program (LP),
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and efficient methods to obtain global solutions to such programs already exist in the

literature [66, 67]. After obtaining the association variables, the task allocation sub-

problem SP2 can be solved. In fact, SP2 is a simple LP that can be solved efficiently

by each orchestrator to determine the task size nl,o for each learner. Finally, each

orchestrator is left with the training sub-problem SP3 to solve, which determines the

number of local iterations and global cycles and also controls the energy-accuracy

trade-off. Since SP3 contains only two integer variables, we can employ exhaustive

search to find the optimal values for τo and Go. However, to achieve a faster search,

we opt to find an optimal upper bound on both variables in order to reduce the search

space. First, within a group of associated learners, we express l∗ as the learner index

with the maximum training time in that group such that l∗ = arg textmax
l∈Lo

tl,o.

Lemma 2. For c2 = 1 and Go ∈ [1, 1
ξ
), the optimal upper bounds for Go and τo can

be given by:

Gmax∗

o =

1−
√

ξaθ2

bξ−θc

ξ

 (3.33)

τmax∗

o = min

(⌊
1− ξGmax∗

o

θGmax∗
o

⌋
, τmax

)
(3.34)

where

a = (1−α)c1
Umax

, b =
α
∑

l ζ
2
l∗,onl∗,o

Emax|Lo|

c =
α
∑

l(ζ1l∗,onl∗,o+ζ1
l∗,o)

Emax|Lo| , θ =
A2

l∗,onl∗,o

Tmax
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ξ =
(A1

l∗,onl∗,o+A0
l∗,o)

Tmax

Proof. The proof is detailed in Appendix B.

Lemma 2 shows that the maximum number of global cycles and the maximum

local iterations are both dependent on the learner with the least capabilities, which

thus takes the longest training time. Moreover, in practice, the regression parameter

c2 depends on the learning parameters (i.e., βo and ηo). We can thus set empirical

upper bounds on these values which set the parameter c2 to 1. As a result, the

optimal values for the number of local iterations and global cycles can be found by

searching over the intervals [1, τmax
o ] and [1, Gmax

o ] for τo and Go, respectively.

Nevertheless, the two sub-problems SP2 and SP3 in the above heuristics are

coupled together as the number of iterations and global cycles are optimized based

on how much data each learner received, and vice versa, such that the training time

does not exceed the limit. Moreover, solving each sub-problem separately might

result in inefficient task allocation and poor choices for the number of local iterations

and global cycles. As such, we propose an iterative procedure for jointly optimizing

SP2 and SP3 by repeatedly alternating the minimization over the task allocation

variables on one side, and the number of local iterations and global cycles on the

other side. This procedure is as follows: 1) Initialize values for τo and Go, solve the

task allocation LP in SP2 to obtain the task size for each learner; 2) Determine the

optimal values for Go and τo according to SP3 by searching over the intervals that

are defined by (33) and (34); 3) Repeatedly alternate the optimization between the

two sub-problems until convergence (i.e., until the objective value of P1 converges).

The full details of the AAT algorithm are provided in Algorithm 1. Since the first
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Algorithm 2: Assign-Allocate-Train (AAT) heuristic

Initialize: α, Tmax, τmax, τo, Go

At each orchestrator o :
Assume equal task allocation for all the learners nl,o =

1
|L| ;

Acquire other orchestrators information;
Solve the association problem (30);
Obtain the set of associated learners Lo and inform them;
while no convergence do

Solve the task allocation problem in (31);
Obtain the optimal upper bounds Gmax∗

o and τmax∗
o according to (33) and

(34);
Perform exhaustive search to solve (32) and find the optimal number of
iterations and global cycles;

end
return nl,o, τo, Go

phase requires centralization, one of the orchestrators can facilitate the association

phase by performing Algorithm 1, and then inform other orchestrators about their

associations.

Factor-Based Association and Allocation

We present another heuristic approach that we refer to as the Factor-Based Associ-

ation and Allocation (FBA). The FBA is based on an association factor (AF) Λl,o,

which is expressed as:

Λl,o =
f̄l
d̄l,o

(3.35)

where f̄l and d̄l,o, both ∈ [0, 1], are the normalized processor frequency of learner l and

the distance between learner l and orchestrator o, respectively. The AF characterizes

each learner’s computing capability and its distance-based connection quality to each

orchestrator. Each orchestrator can obtain this factor from all the available learners
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and share it with other orchestrators. Based on these AFs, the FBA first performs

a centralized turn-based association, where in each turn an orchestrator is selected

fairly to get its chance to associate with a learner, and the learner with the maximum

AF to that orchestrator gets associated with it. After an orchestrator is aware of

its associated learners, each learner will be allocated a task size according to the

following:

nl,o = No ×
Λl,o∑

l∈Lo
Λl,o

(3.36)

The rationale behind such task allocation is that learners with higher AF will get allo-

cated larger amounts of data samples for training. Indeed, such learners will execute

their tasks faster and have better channel quality for data and model transmissions

with closer orchestrators. After determining the task size for each learner, orchestra-

tors can do the same exhaustive search to solve (32) over the intervals that can be

defined by (33) and (34) in order to obtain the optimal number of local iterations and

global cycles. The FBA algorithm is detailed in Algorithm 2.

3.3.3 Fully Decentralized Heuristic

Lastly, we propose a fully decentralized approach, namely, the Learner-driven FBA

(L-FBA). In L-FBA algorithm, the learners initiate the association by calculating

their AFs for each orchestrator, selecting and associating with the orchestrator with

the highest AF, and informing their selected orchestrators about their AF value. After

an orchestrator receives the list of associated learners along with their AF values, it

can determine the task sizes based on each learner AF similarly to the original FBA

algorithm according to the task allocation equation (36). Finally, the orchestrator

can perform the same exhaustive search with the specified bounds to find the optimal
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number of local iterations and global cycles. The L-FBA algorithm is summarized in

Algorithm 3.

Algorithm 3: Learner-driven FBA (L-FBA) heuristic

Initialize: α, Tmax, τmax

At each learner:
Look for the available orchestrators;
Calculate the AF for each orchestrator Λl,o ;
Associate with an orchestrator Oi where: i = argmax

o
Λl,o ;

At each orchestrator:
Receive the list of associated learners with their AF’s Λl,o;
Perform the task allocation according to (36);
Obtain the optimal upper bounds Gmax∗

o and τmax∗
o according to (33) and

(34);
Perform exhaustive search to solve (32) and find the optimal number of
iterations and global cycles;
return nl,o, τo, Go

3.4 Complexity Analysis

In this section, we study the complexity of each proposed algorithm, namely, the

centralized optimization (COPT), the AAT, the FBA and the L-FBA algorithms.

For the ease of reading, some variables will be reused and redefined in this section.

3.4.1 The COPT Algorithm:

First, the COPT employ the BnB algorithm to find a global solution, which worst

case complexity is known to be O(bk), where b is the number of branches per node,

and k is the maximum number of iterations for the BnB algorithm, i.e., the depth

of the constructed BnB tree. In each node, the COPT solves a convex sub-problem

using the interior point method, which has a complexity of O(
√
n log

(
µ0n
ε

)
), where n
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is the dimension of the domain D and expressed in our problem as n = 2|O|(|L|+1),

ε is the tolerance variable, and µ0 is a hyper parameter [68]. Thus, the complexity of

the COPT is given by O(
√
n log

(
µ0n
ε

)
× bk).

3.4.2 The AAT Algorithm:

As for the AAT, we first analyze each sub-problem complexity. For SP1, an integer

linear program is solved, which has complexity O(c+log (c) ρ), where c is the number

of constraints in the program, and ρ is the bit precision hyperparameter [67]. In fact,

the number of constraints for SP1 is c = 2|L|. The sub-problem SP2 is a simple

linear program, and its solving complexity is given by O(C
√
c), where C represents

the bit complexity 3 [69]. The complexity of SP3 is the complexity of the exhaustive

search and can be expressed as O(τmaxGmax), where τmax and Gmax represents the

upper bounds of the search interval. As a result, the overall complexity for the AAT

algorithm can be given by O(c+ log (c) ρ+ k(C
√
c+ τmaxGmax)).

3.4.3 The FBA and L-FBA Algorithms:

The FBA algorithm first associates each learner to an orchestrator, then each orches-

trator performs the task allocation for each associated learner, and the exhaustive

search to obtain the number of local iterations and global cycles. Hence, its complex-

ity can be expresses as O(2|L| + τmaxGmax). Lastly, the L-FBA approach is totally

decentralized, where learners only do basic operations to determine the AF for each

orchestrator, and then the orchestrator do the task allocation and the exhaustive

search. Therefore, its complexity is given by O(|L|+ τmaxGmax).

3Bit complexity is the number of single operations (of addition, subtraction, and multiplication)
required to complete an algorithm.
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Algorithm Complexity
COPT O(

√
n log

(
µ0n
ε

)
× bk)

AAT O(c+ log (c) ρ+ k(C
√
c+ τmaxGmax))

FBA O(2|L|+ τmaxGmax)
L-FBA O(|L|+ τmaxGmax)

Table 3.1: Algorithms Complexity

One can see that the COPT approach is the most complex approach. In fact,

as the number of learners and orchestrators increase in the system, its complexity

can grow exponentially. This is due to the fact that the number of needed iterations

or branches for the BnB algorithm can increase as the dimensions of the domain

increase, which is not the case for the other algorithms. On the other extreme, the

FBA and L-FBA are the least complex ones, as the orchestrator is only required to

do the task allocation and search for the optimal number of iterations and global

cycles, and their complexity scale linearly as the number of learners increases. All in

all, the COPT approach is too impractical to be deployed in an MEL system with

the absence of an edge server that is able solve the optimization problem with no

computation overhead. Whereas the other approaches can be easily deployed as they

are light-weight and can be decentralized, but with cost of losing the optimality in

the solution.

3.5 Simulation Results

In this section, we first show the energy-accuracy trade-offs for the proposed algo-

rithms, and then compare our approaches with the recent state-of-art MEL approach

in [8], which we will refer to as the Energy-Unaware (EU) approach. Afterward, we

show the performance of the algorithms in different scenarios where we: 1) Fix the
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Table 3.2: Simulation parameters

Node Bandwidth W 5 MHz
Transmission Power Pl,o 200 mW
Distance range for dl,o [5, 50] m
Processors frequencies fl’s [0.5, 0.7, 1.2, 1.8] GHz
On chip capacitance µ 1× 10−19

Learning parameters ηo, ϕ [0.01,0.0001]
Maximum weights divergence δo 5
Maximum gradients divergence βo 0.5
Bit precision for Γw

o and Γd
o 32 bits

Dataset size for all datasets 60,000

number of orchestrators and vary the number of learners; 2) Vary the number of

orchestrators and fix the number of learners in the system. The comparison and the

performance evaluation are done considering 3 orchestrators and 50 learners, where

the orchestrators have similar multiple learning tasks (i.e., similar datasets and mod-

els architecture) for the sake of convenience in the results. We first utilize the MNIST

dataset for performance comparison and evaluation. Subsequently, we evaluate the

learning performance considering multiple and different tasks and datasets. The

simulations were run considering the parameters shown in Table 3.2. The learning

parameters values are taken from [7] as is.

3.5.1 Energy-Accuracy Tradeoff

Objectives Pareto trade-off curves are generated using different values for the MOP

weight, namely, α. These curves help us to find Pareto optimal solutions for the

weights such that it can balance the performance between the energy consumption

and the accuracy. Each point on the curves represents a solution for a single value

of the weight. The trade-off curves for the proposed algorithms are shown in Fig.
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Figure 3.3: Energy-accuracy trade-offs curves considering Tmax = 660s and

3.3. We can see that the COPT approach achieves the best trade-off as it achieves

the highest accuracy with a low energy consumption. Moreover, the AAT approach

is the best energy conservative approach, but it underperforms in terms of accuracy.

This is due to the fact that the AAT algorithm optimizes the association and the task

allocation energy consumption only first, and then it considers the energy-accuracy

trade-off when deciding the number of local iterations and global cycles. As for the

FBA, it performs slightly better than the LFBA approach, but they have similar

performance where they have better accuracy than the AAT and worse than the

COPT, but more energy consumption in general. Moreover, for α = 0, the point is

an outlier with 99% accuracy and very high energy consumption. Lastly, it can be

noticed the Pareto optimal values will lay in the range of α between 0.2 and 0.4, where
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decreasing the weight will increase the accuracy without significantly increasing the

energy consumption.

3.5.2 Performance Comparison with the EU Approach

We compare our approach with the EU technique that is presented in [8] with distance

based association. The EU approach optimizes the task allocation and the number of

training iterations between heterogeneous learners such that the learning experience

is maximized under global time constraints. We have conducted the comparative

study using Monte Carlo simulation with 50-100 runs. The comparisons in terms of

energy consumption and accuracy are depicted in Fig. 3.4 (a) and (b), respectively,

considering different values of the time constraint Tmax . In Fig. 3.4 (a), we can see

that, as we increase Tmax, all approaches consumes more energy, since increasing Tmax

adds more degree of freedom to do more local iterations and global cycles. However,

the energy consumption for all the proposed approaches is significantly lower than the

EU approach, and the optimization approach consumes slightly less energy than both

the FBA and LFBA approaches, while the AAT approach consumes the least energy

in the system. Fig. 3.4 (b) shows that the EU approach achieved the highest accuracy,

but the proposed COPT approach only falls behind within 2% accuracy range for the

different values of Tmax. On the other hand, the proposed heuristics underperform for

smaller Tmax values, but it only falls behind within 3% range for larger Tmax values.

In addition, for the same accuracy (e.g., 96%), the COPT approach also consumes

less energy consumption but it takes more time to achieve the same accuracy.
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Figure 3.4: Performance comparison between approaches in terms of (a) energy con-
sumption (b) learning accuracy with 3 orchestrators and 50 learners
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Figure 3.5: Performance evaluation with different number of learners in terms of (a)
energy consumption (b) learning accuracy while considering 3 orchestra-
tors and Tmax = 660s.
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Figure 3.6: Performance evaluation with different number of orchestrators in terms
of (a) energy consumption (b) learning accuracy while considering 50
learners and Tmax = 660s.



3.5. SIMULATION RESULTS 52

3.5.3 Performance Evaluation in Different Scenarios

We first show the performance of our proposed algorithms in terms of energy con-

sumption and accuracy when varying the number of learners while fixing the number

of orchestrators in Fig. 3.5. Then in Fig. 3.6 we show the performance when varying

the number of orchestrators while fixing the number of learners. In Fig. 3.5 (a),

we can see that as the number of learners is increased, the energy consumption de-

creases gradually for all the algorithms. Since increasing the number of learners can

potentially allow orchestrators to associate with more learners, the learning task is

distributed to more learners and each learner will have a smaller task size. Hence, the

communication and computation energy consumption will be less for each learner. As

for the accuracy, as shown in Fig. 3.5 (b), it starts to increase but then it decreases

gradually as we increase the number of learners. In fact, smaller task sizes lead to

less data transmission time between the orchestrator and the learners and less com-

putation time at the learner, which can allow for more local iterations and global

cycles. However, if the task size for each learner (i.e., the number of data samples) is

small, it might not be sufficient to do the learning task and results in lower learning

accuracy. On the other side, increasing the number of orchestrators means increasing

the amount of data available for learning, which leads to a larger task size for each

learner. As we can see in Fig. 3.6 (a), the energy consumption increases at first due

to the aforementioned fact, which leads to more computing and communication en-

ergy consumption. However, the task size for each learner can become large enough

to throttle the learning process, since increasing the task size results in increasing

the time needed for data transmission between the orchestrators and the learners,

and more training time at the learner side. Therefore, the number of local iterations
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and global cycles will be decreased so that the total training time does not exceed

its limit, which explains the sharp drop in the energy consumption after we increase

the number of orchestrators. Similarly, in Fig. 3.6 (b), we can see that the accuracy

at first increases since larger task sizes for the learners result in a better learning

experience. However, by limiting the number of local iterations and global cycles, the

accuracy drops abruptly since the learners can not train sufficiently.

3.5.4 Evaluation with Different Learning Tasks

Lastly, we consider different multiple learning tasks with different datasets, namely,

MNIST [70], FMNIST [71], and CIFAR-10 [72]. We show the performance metrics for

each learning task, specifically, the global accuracy, the global loss value, the weights,

and the gradients divergence between the orchestrators’ models and the associated

learners’ models. The global accuracy and loss value are plotted in Fig. 3.7 (a) and

(b), respectively. We can notice for the MNIST and FMNIST datasets, the global

models started to converge after 4 global cycles. Being a more complex learning

task, the CIFAR-10 model did not converge within the same number of global cycles.

However, if compared to the centralized training with the same number of total

learning iterations which has an accuracy ∼ 73%, it only falls behind by ∼ 4%. As

for the weights and gradients divergence, we claimed that these parameters can be

empirically fixed to an upper bound to facilitate the analysis as provided in Table 1,

where during training the actual values do not exceed this bound. The weights and

gradients divergence are depicted in Fig. 3.7 (c) and (d), respectively. We noticed

that during training, the values for both weights and gradients divergence are always

below the upper bound for all the learning tasks, and the divergence gets smaller as
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the training progresses.

3.5.5 Federated Learning Evaluation and Discussion

In this section, we evaluate the FL in our model using the COPT approach for task

allocation and FedAvg algorithm for distributed learning [73] with different cases as

follows: 1) case 1: The data is independent and identically distributed (IID) among

all the learners, 2) case 2: The local datasets are not IID, with different amounts

of data for each learner (e.g., randomly distributed between 30%-80% per class ),

3) case 3: The data is completely non-IID and the distributions are skewed among

learners. The accuracy evaluation of the FL cases compared to the PL is depicted in

Fig 3.8. It can be noticed that the FL with IID data performs similarly to the PL. In

fact, since the orchestrator in the PL can control the data distribution, it can allocate

the learning task to the learners such that the data is IID among them, which makes

it identical to the FL in the first case. In the second case, it can be seen that the

performance of FL drops at first, but as the training progresses the performance is

improved and gets closer to the IID case. In the last case, it can be seen that the

performance suffers from a sharp drop in accuracy with respect to the other cases. In

fact, the FedAvg algorithm in the complete non-IID case fails to deliver any learning

experience to the learners. Such downfall is already discussed in the literature [13, 14],

and can be mitigated by improving the distributions of the learners’ local datasets

by sharing a small portion of data from each local dataset between the learners or

selecting a subset of the associated learner to participate in the training. This can

come at the cost of violating the data privacy the main feature of FL, or missing

learners with high capabilities that can speed up the training.
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Figure 3.7: Learning metrics evaluation in terms of (a) global accuracy (b) global loss
value (c) weights divergence (d) gradients divergence

Figure 3.8: Accuracy evaluation of PL and FL with different cases.
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3.6 Summary

In this chapter, we studied the problem of an energy-aware, multi-task and multi-

orchestrator MEL system. We first formulated a multi-objective optimization prob-

lem for learners-orchestrator association and task allocation that aims to minimize

the total energy consumption and maximize the learning accuracy. Being NP-hard

and non-convex problem, the problem is relaxed and covexified via exponential vari-

able transformation and linear approximations for the non-convex terms, and then

solved via the BnB algorithm. Since the optimization approach is centralized and

computationally expensive, we then proposed a set of lightweight partially and fully

decentralized heuristics for the association and task allocation. The proposed heuris-

tics let the orchestrators simply solve the association and the task allocation prob-

lems via convex optimization, and then determines the number of local iterations and

global cycles via exhaustive search. To reduce the complexity and achieve a faster

search, optimal upper bounds are derived for the number of local iterations and global

cycles. The conducted experiments show that the proposed approaches reduce the

energy consumption significantly while executing multiple learning tasks compared to

recent state-of-art methods while falling behind the benchmark by 2%-3% in terms

of accuracy.
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Chapter 4

Motivating Learners in Mobile Edge Learning

4.1 Designing the Incentives Mechanism: Formulating A Stackelberg

Game

In this paper, we consider a multi-orchestrator multi-task MEL system. Each of these

orchestrators can be either 1) a governing node for learners that have private data

for the same learning task in the case of FL, or 2) an edge node that is incapable of

doing the training of its learning problem due to the lack of its computing resources

in the case of PL. Nevertheless, our formulations are generic and applicable for both

cases, but we will focus on the PL case in this work and point out the difference in

the formulation whenever needed.

4.1.1 Learning Settings

We denote the set of learners by L and the set of learners that are associated with

orchestrator o by Lo, and each orchestrator has a dataset with No samples. After

the association, an orchestrator o sends to a participating learner l the learning task
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in terms of the model parameters wl,o, and nl,o data samples to train on 1. After-

ward, each participating learner l performs τl,o local training iterations employing

Stochastic Gradient Descent (SGD) to minimize its local loss function. Once done,

the learners send back to the orchestrator the training model parameters, where the

latter aggregates these parameters by performing weighted averaging on the received

models.

Each orchestrator then keeps sending back the data and the updated model for

Go global cycles until a stopping criterion is satisfied such as the exhaustion of the

resources, e.g., energy. Moreover, we consider the system is globally synchronous and

locally asynchronous as in [9]. In other words, at each global cycle, all the models

from all the learners are collected and aggregated, but between the global cycles, each

learner performs a different number of local training iterations on their local models.

By considering so, the effect of the ”straggler’s dilemma” is reduced, which represents

how the learning process is throttled by the learner with the least capabilities [4]. Last

but not least, we adopt the presented model in [74] to define the learning objective

as a function of the local iterations and global cycles as follows:

F̃o(τl,o, Go) =
c1

Goτ c2l,o
(4.1)

where τl,o ∈ [1, τmax] to ensure the convexity of the objective, c1 and c2 are constants

that depend on learning parameters, namely, the divergence between the learners’ lo-

cal models and the global model, and the learning rates. The objective function (4.1)

represents the distributed learning convergence bounds over the edge network. The

convergence bounds refer to how much the trained global model in the distributed

1In case of FL, nl,o represents the number of data samples from the local dataset of the learner.
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learning is deviating from the optimal model. Therein, we denote the distributed

learning quality as Fo(τl,o, Go) = −F̃o(τl,o, Go). Since the objective function is obvi-

ously convex for c1, c2 > 0, it follows that the learning quality Fo(τl,o, Go) is a concave

function.

4.1.2 Mobile Edge Settings

We introduce the communication and computation models for wireless edge learning

in this part. First, the number of bits that a learner l receives from an orchestrator

o can be defined as:

Bdata
l,o = nl,oXoΓ

d
o (4.2)

Bweights
o = Sw

o Γ
w
o (4.3)

where Xo is the feature vector length, Sw
o the total number of weights in the model,

and Γd
o and Γw

o represent the bits/feature and bits/weight values, respectively. Conse-

quently, the transmission time needed for both the data and the model weights from

the orchestrator, and the updated model weights from the learner can be given by,

respectively2:

tSl,o =
Bdata

l,o +Bweights
o

W log2(1 +
hl,oP

σ2 )
(4.4)

tUl,o =
Bweights

o

W log2(1 +
hl,oP

σ2 )
(4.5)

where P is the devices’ transmission power, W is the channel bandwidth, σ2 is the

channel noise variance, and hl,o is the channel gain expressed as hl,o = d−ν
l,o g

2 where

ν is the path loss exponent, dl,o is the distance between the orchestrator and the

2In case of FL, the term Bdata
l,o is set to 0.
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learner, and g is the fading channel coefficient. It is worth noting that we assume

the bandwidth and the transmission power are fixed during the training, as well as

channel reciprocity. We then define learner’s training time as follows:

tCl,o =
τl,onl,oCo

fl
(4.6)

where fl is the learner’s CPU frequency and Co is the model computational complexity

(i.e., the number of CPU cycles needed to train on a single data sample).

Subsequently, we define the energy consumption models in the system. As the

energy consumed for communications is the product of the transmission power with

the transmission time, a learner’s communication energy consumption can be given

by:

EU
l,o = PtUl,o =

Pl,oB
weights
o

W log2(1 +
hl,oPl,o

σ2 )
(4.7)

We also denote the reception energy consumption as ES
l,o, which we consider it as a

constant and is coupled with the number of data samples nl,o to be received from

the orchestrator3. As for the learner’s computation energy consumption, it can be

defined in our system as:

EC
l,o =

µτl,onl,oCo

f ξ
l

(4.8)

where µ and ξ are hardware-related constants.

3In case of FL, the term ES
l,o is set to 0.
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4.1.3 Incentive Mechanism Formulation

We formulate the incentive mechanism for multi-orchestrator MEL as a static 2-

rounds Stackelberg game for the whole learning process, where the players are the

orchestrators and the learners. There are two stages in each round, where the orches-

trators are the leaders which act in the first stage, and the learners are the followers

which act in the second stage.

In the first round, the orchestrators first decide the initial payment and broadcast

their learning task details including: 1) the time frame of the whole learning process

Tmax, 2) the initial monetary service price ρio (i.e., $/CPU cycle), 3) the minimum

number of local iterations τmin and global cycles Gmin to guarantee a learning expe-

rience for the task. The learners then choose which orchestrator to associate with,

and send their computing and communication capabilities information. In the second

round, each orchestrator o then announces its strategy including the final monetary

service price for each learner ρl,o in the first stage, followed by the second stage where

each learner determines its strategy in terms of the number of data samples nl,o such

that their utility is maximized. We express an orchestrator’s strategy in the second

round as the number of local iterations to be performed by each associated learner and

the monetary service price. Consequently, we can define the utility of the orchestrator

o as:

Uo(τl,o, ρl,o) =
∑
l

λl,o (Fo(τl,o, Go)−GoCoρl,oτl,onl,o) (4.9)

where the λl,o is the association variable, and the first term represents the task learning

quality, while the second term represents the total payment to the learners. However,

the orchestrators cannot determine the number of global cycles since the considered

MEL system is globally synchronous, and the learners have heterogeneous capabilities.
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Hence, the learning time will be dependent on the weakest learner that causes the

maximum computation and communication delay. As a result, the orchestrator has

to set the number of global cycles according to that learner to accommodate all the

learners in the training process and increase the level of participation. In fact, by

considering the weakest learner, the number of global cycles will be limited, but the

orchestrator will have more degrees of freedom in determining its strategy in terms of

the monetary service price and the number of local iterations for the other learners.

After determining the number of global cycles, an orchestrator needs to determine its

strategy by maximizing its utility, i.e., max .
τl,o,ρo

Uo(τl,o, ρl,o), while being constrained to

its budget as follows: ∑
l

ρl,oConl,o = bo (4.10)

where bo is the orchestrator’s o budget. We assume that orchestrators have similar

budgets or vary a little, and no orchestrator has a huge budget. In fact, even though

this might be a limitation to our approach, but generally, IoT devices usually are not

expected to have huge budgets. As for the learners, their strategy is expressed as

the association with an orchestrator, which will be done in the first round, and the

amount of participation if decided in terms of the data samples in the second round.

Moreover, we assume the distribution of the decided training data is representative of

the whole data distribution, and the data at each learner have the same quality, i.e.,

independently and identically distributed. We define the service cost for the learners

as their computation and communication energy consumption, which are proportional

to the amount of training data. Therein, we can define a learner l utility as follows:

Ul(λl,o, nl,o) =
∑
o

λl,oGo

(
Coρl,oτl,onl,o − (ES

l,o + EU
l,o + EC

l,o)
)

(4.11)
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where the first term represents the total revenue from the learning process. We

assume that a learner can associate with only one orchestrator for a single learning

task, and it has to finish the training within the learning task time frame. Accordingly,

the learners can decide their optimal strategy by solving the following optimization

problem:

P1 : max .
λl,o,nl,o

Ul(λl,o, nl,o) (4.12a)

s.t.
∑
o

λl,o

(
tSl,o + tUl,o + tCl,o

)
≤ Tmax (4.12b)

∑
o

λl,o = 1 (4.12c)

0 ≤ nl,o ≤ nmax (4.12d)

λl,o ∈ {0, 1} (4.12e)

where Tmax is the learning time period, and nmax is a hyperparameter that indicates

the maximum allowed number of data samples to receive from the orchestrator if any,

where nmax ∈ (0, 1]. Lastly, to simplify the formulations in the reminder of the paper,

we define the following coefficients:

A0
l,o =

2Bweights
o

Tmax×W log2(1+
hl,oPl,o

σ2 )
, ζ0l,o =

Pl,oA
0
l,o

Emax

A1
l,o =

NoFoΓd
o

Tmax×W log2(1+
hl,oPl,o

σ2 )
, ζ1l,o = ES

l,o
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A2
l,o =

NoCw
o

Tmax×fl
, ζ2l,o = (

Coρl,o
Rmax

− µCo

fξ
l Emax

)

where Emax and Rmax are the maximum energy consumption and revenue for the

learners, respectively.

4.2 Solution Approach

In this section, we first present a heuristic approach for the learners-orchestrator

association problem. Afterward, we analyze the learners’ and orchestrators’ behavior

and derive the optimal learner strategy in the second round.

4.2.1 First round: Factor-Based Association

Since the learners in the first round determine the association given the learning task

details, the optimization problem P1 can be first solved to determine the association

by assuming a fixed arbitrary nl,o for all the learners. Herein, we define the association

sub-problem SP1 as follows:

SP1 : max .
λl,o

∑
o

λoGo

(
nl,o(ζ

2
l,oτl,o − ζ1l,o)− ζ0l,o

)
(4.13a)

s.t.
∑

λoGo(A
2
l,oτl,onl,o + A1

l,onl,o + A0
l,o) ≤ 1 (4.13b)∑

o

λl,o = 1 (4.13c)

λo ∈ {0, 1} (4.13d)

It can be noticed that SP1 is a binary integer linear program (BILP), which is

eventually a minimization knapsack problem, and is known to be NP-hard. As a re-

sult, employing algorithms to derive an equilibrium based on estimating the learners’
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strategy is not feasible in the first round. Thus, we first present a heuristic algorithm

for learners-orchestrators association that we refer to as the Factor-Based Associa-

tion (FBA). We define the association factor (AF) with learner l and orchestrator o

as follows:

Γl,o =
ρ̃ioC̃o

d̃l,o
(4.14)

where the term ρ̃ioC̃o represents the normalized initial payment per data sample from

the orchestrator , and d̃l,o is the normalized distance between learner l and orchestrator

o, respectively, and both ∈ [0, 1]. The AF is calculated at the learners’ side in order

for them to decide the association with which orchestrator. The AF characterizes

the potential revenue for the learner, and since the game is played only once and

does not capture the communication channel dynamics, the AF also characterizes the

connectivity by the distance. Each learner then associate with orchestrator õ such that

õ = argmax
o

Γl,o. After the association is done, each learner sends to its associated

orchestrator information about its computation and communication capabilities.

4.2.2 Second round: Deriving the Learners and Orchestrators’ Strategies

In the second round, we employ the backward-induction method to derive the Stackel-

berg equilibrium, where the second stage in this round is solved to obtain the learners’

optimal strategy, which is then used for solving the first stage to obtain the associated

orchestrator’s optimal strategy. Since the variable nl,o is an integer, we relax it to a

continuous variable to solve the problem, then we round it to the nearest integer in

the solution.

For a given association λl,o, monetary service price ρl,o, local training iterations
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τl,o and global cycles Go, the learner can determine its strategy by solving the partic-

ipation sub-problem SP2 which can be given as the following :

SP2 : max .
nl,o

nl,o(ζ
2
l,oτl,o − ζ1l,o) (4.15a)

s.t. Go(A
2
l,oτl,onl,o + A1

l,onl,o + A0
l,o) ≤ 1 (4.15b)

0 ≤ nl,o ≤ nmax (4.15c)

Lemma 1. The problem P2 is concave and the learner’s optimal strategy is given by:

n∗
l,o =


0 ζ2l,oτl,o − ζ1l,o < 0

ζ2l,o(1−GoA0
l,o)

Go(ζ1l,oA
2
l,o+ζ2l,oA

1
l,o)

nl,o ∈ [nmin, nmax)

nmax nl,o ≥ nmax

(4.16)

where:

nmin =
ζ0l,o

ζ2l,oτl,o − ζ1l,o
(4.17)

Proof. It is readily obvious that the optimization problem P2 is a Linear Program,

and hence, it follows directly that it is concave. Moreover, the term ζ2l,oτl,o−ζ1l,o in the

objective is the variable linear coefficient, and it can represent the net utility given

the orchestrator’s strategy. As a result, if the net utility is positive, the learner will

try to maximize it by maximizing the amount of participation until the time frame

period is finished. The rest of the proof can be found in Appendix C.

Recall that the number of global cycles will be set according to the weakest learner

in the group, given the fact that it utilizes its full-time period. Consequently, the
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constraint (14b) becomes equality, and the number of global cycles can be given by:

Go = max

(
Gmin,

1

A2
l̃,o
τl,on∗

l̃,o
+ A1

l̃,o
n∗
l̃,o

+ A0
l̃,o

)
(4.18)

where l̃ is the index of the weakest learner, and it can be determined as follows

l̃ = argmin
l

f̃l
d̃l,o

, as the learner with the less CPU frequency and greater distance to

its associated orchestrator causes more delay in the learning process.

Afterward, we derive the orchestrator’s strategy set for the service monetary price.

To ensure learners participation, the net utility term from (15) has to be positive,

and it follows that:

τl,o ≥
ζ1l,o(

Coρl,o
Rmax

− µCofl
Emax

) (4.19)

Since we know that τmin ≤ τl,o ≤ τmax, we can thus define the lower and upper bounds

for the monetary price as follows:

ρl,o =
ζ1l,o
τmax

− Rmaxµfl
Emax

, ρl,o =
ζ1l,o
τmin

− Rmaxµfl
Emax

(4.20)

According to the above analysis, the orchestrator, which is the leader in the second

round of the Stackelberg game, knows that there exists a Nash equilibrium among

learners given any monetary service price and the number of local iterations within

its strategy set. Therefore, by considering the learners’ participation from (15) as a

function of the service price, i.e., n∗
l,o(ρl,o), and setting the number of global cycles

according to (17), the orchestrator can maximize its utility and determines its strategy
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by solving the following optimization:

P3 : max .
τl,o,ρl,o

−1
Fmax|Lo|

∑
l

c1

Goτ c2l,o
− GoCo

Pmax

∑
l

ρl,oτl,on
∗
l,o (4.21a)

s.t. τmin ≤ τl,o ≤ τmax (4.21b)

ρl,o ≤ ρl,o ≤ ρl,o (4.21c)∑
i

ρl,oCon
∗
l,o ≤ bo (4.21d)

where Pmax is the maximum possible payment and Fmax is the maximum loss value.

Lemma 2. For GoCoρl,oτl,onl,o ≥ 2, the problem P3 is concave, and hence, there ex-

ists a Nash equilibrium for the second round of the game (τ ∗l,o, ρ
∗
l,o, n

∗
l,o), where (τ

∗
l,o, ρ

∗
l,o)

is the maximizer of the orchestrator’s utility.

Proof. The proof can be found in Appendix D.

It can be noticed that the term in the condition represents the participation rev-

enue of the learner, and is verified to hold practically and shown in the result. Nev-

ertheless, the optimization problem P3 has no closed-form solution for τ ∗l,o and ρ∗l,o.

Hence, the orchestrator can find the optimal strategy using any optimization tech-

nique (e.g., gradient ascent, interior point method...etc.).

4.3 Simulation Results

4.3.1 Environment Setup

We have conducted the experiments with 3 orchestrators and 50 learners. The learn-

ers’ distances to the orchestrators were distributed uniformly randomly in the range

of [5-50]m, and each learner can have one of the following processor frequencies
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Figure 4.1: Orchestrators’ performance comparison in terms of (a) utility trade-off
(b) learning accuracy

[2.4,1.4,1.0] GHz. We have utilized the MNIST dataset for all the learning tasks.

The learning models are Convolutional Neural Networks with [2,3,4] convolution lay-

ers, where higher number of layers represents higher model complexity. In the results,

we show the average performance, e.g., the average learner utility and the average

energy consumption.
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Figure 4.2: Learners’ performance comparison in terms of (a) utility (b) total revenue
(c) energy consumption

4.3.2 Performance comparison

We compare our approach which employs factor-based association and the optimal

strategy (FBA-OPT) with the random strategy, and an energy-efficient technique

that minimizes the energy consumption by considering the minimum possible number

of iterations and global cycles, and employs a distance-based association, which we

will refer to (DBA-EE). We compare the performance with respect to different time

constraints, i.e., Tmax. The orchestrators’ performance in terms of utility trade-off

and learning accuracy is depicted in Fig. 4.1. In Fig. 4.1 (a), we observe the trade-

off curves for the utility function between the payment and the learning loss. Each

point on the curves represents a different Tmax. We can notice that, as we increase

the time constraint, the total payment increases for all the approaches with a slight

overpayment for our approach. However, the learning loss for the heuristic DBA-EE

and the random strategies improve but then saturate with no improvements, while our

approach keeps minimizing the learning loss. In Fig. 4.1 (b), the learning accuracy

of the tasks is shown. Our approach achieves higher accuracy and outperforms the

other approaches for all the time constraints since it minimized the learning loss much

more than the other approaches.
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The learners’ performance is depicted in Fig 4.2. In Fig 4.2 (a), the normalized

utility is shown. It can be seen that for all approaches, the utility increases as Tmax

increases. In fact, with more available time, the learner can increase the amount of

participation to maximize its utility. However, our approach grants the best utility

for the learners, while the random strategy is the worst. The heuristic DBA-EE

approach at first starts increasing the utility, but then it starts to saturate. In fact, it

limits the amount of participation in order to preserve its energy. The total revenue is

shown in Fig 4.2 (b). It can be noticed that our approach attains the best revenue for

the learners, while the random approach attains better than the heuristic, since the

latter limits its participation to preserve more energy. Lastly, the energy consumption

is presented in Fig 4.2 (c). Similarly, the energy consumption increases as Tmax

increases. However, the heuristic DBA-EE outperforms the other approaches and

preserves energy the most, while our approach is opportunistic in terms of the revenue

and consumes energy the most.

4.4 Summary

In this chapter, we proposed an incentive mechanism for multi-orchestrator MEL by

employing a 2-round Stackelberg game approach. In the first round, we employed a

heuristic algorithm for the learners-orchestrators association. Whereas in the second

round, we proved the existence of the Nash equilibrium in the game and derived

a learner’s optimal policy based on the associated orchestrator’s incentive. Finally,

numerical experiments have been conducted to show the performance of the proposed

mechanism while being compared to other heuristic techniques.
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Chapter 5

Future Work and Conclusion

5.1 Conclusion

In this work, we first studied the problem of an energy-aware, multi-task and multi-

orchestrator MEL system. We first formulated a multi-objective optimization prob-

lem for learners-orchestrator association and task allocation that aims to minimize

the total energy consumption and maximize the learning accuracy. Being NP-hard

and non-convex problem, the problem is relaxed and convexified via exponential vari-

able transformation and linear approximations for the non-convex terms, and then

solved via the BnB algorithm. Since the optimization approach is centralized and

computationally expensive, we then proposed a set of lightweight partially and fully

decentralized heuristics for the association and task allocation. The proposed heuris-

tics let the orchestrators simply solve the association and the task allocation prob-

lems via convex optimization, and then determines the number of local iterations and

global cycles via exhaustive search. To reduce the complexity and achieve a faster

search, optimal upper bounds are derived for the number of local iterations and global

cycles. The conducted experiments show that the proposed approaches reduce the
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energy consumption significantly while executing multiple learning tasks compared to

recent state-of-art methods while falling behind the benchmark by 2%-3% in terms

of accuracy.

Afterward, we proposed an incentive mechanism for multi-orchestrator MEL by

employing a two-round Stackelberg game approach. In the first round, we employed a

heuristic algorithm for the learners-orchestrators association. Whereas in the second

round, we proved the existence of the Nash equilibrium in the game and derived

a learner’s optimal policy based on the associated orchestrator’s incentive. Finally,

numerical experiments have been conducted to show the performance of the proposed

mechanism while being compared to other heuristic techniques.

5.2 Future Work

First, considering the device association and task allocation, one promising direction is

to consider the D2D data offloading between the learners to reduce the overhead on the

weak learners, and to achieve a better learning performance in the system. Moreover,

experience-driven algorithms that learn from the real-time experience can be a better

option, as it reduces the complexity overhead of optimization-based approaches, and

keeps learning as time progresses. This applies to both the task allocation and the

incentive mechanism. However, such algorithms may need more time to converge on

an acceptable performance, but afterwards, it will reduce the complexity overhead

and can achieve better performance in the long run.
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Appendix A

Lemma 1

First, we define the separation function between the concave term and its under-

estimator as follows:

∆(x) = −ex − (−L(x) ) (A.1)

= −ex +
(
xmaxe

xmin − xmine
xmax

xmax − xmin

+
exmax − exmin

xmax − xmin

x

)
(A.2)

The, we derive the first and second derivatives:

d∆

dx
= −ex + exmax − exmin

xmax − xmin

(A.3)

d2∆

dx2
= −ex (A.4)

It is readily obvious that ∆(x) is concave since its second derivative is always negative,

and by setting d∆
dx

= 0, its maximum point can be given as:

x∗ = log

(
exmax − exmin

xmax − xmin

)
(A.5)
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by plugging it in the separation function, we can get the maximum separation value

as follows:

∆(x∗) = −exmax − exmin

xmax − xmin

+
xmaxe

xmin − xmine
xmax

xmax − xmin

+
exmax − exmin

xmax − xmin

× log

(
exmax − exmin

xmax − xmin

) (A.6)

= exmin

(
1− exmax−xmin

xmax − xmin

+
xmax − xmine

xmax−xmin

xmax − xmin

+
exmax−xmin − 1

xmax − xmin

log

(
exmin(exmax−xmin − 1)

xmax − xmin

)) (A.7)

By considering ϑ = xmax − xmin we can have:

= exmin

(
1− eϑ

ϑ
+

xmax − xmine
ϑ + (eϑ − 1)xmin

ϑ

+
eϑ − 1

ϑ
log

(
eϑ − 1

ϑ

)) (A.8)

= exmin

(
1− eϑ

ϑ
+ 1 +

eϑ − 1

ϑ
log

(
eϑ − 1

ϑ

))
(A.9)

Finally, by considering Z = eϑ−1
ϑ

, we can have:

∆(x∗) = ∆max = exmin
(
1− Z + Z log(Z)

)
(A.10)
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Appendix B

Lemma 2

The sub-problem SP3 in (32) can be explicitly expressed as:

min .
Go,τo

α

Emax|Lo|
∑
l∈Lo

Go(ζ
2
l,oτonl,o + ζ1l,onl,o + ζ0l,o) +

(1− α)c1

UmaxτoGo
(B.1a)

s.t. Go(A
2
l,oτonl,o +A1

l,onl,o +A0
l,o) ≤ Tmax, ∀ l ∈ Lo (B.1b)

1 ≤ τo ≤ τmax (B.1c)

Go ≥ 1 (B.1d)

Constraint (47b) represents the time constraints for each learner. However, we can

substitute these constraint by a single one by considering the learner l∗ with the

maximum training time l∗ = arg max
l∈Lo

tl,o. Then, by using the following notations :

a = (1−α)c1
Umax

, b =
α
∑

l ζ
2
l∗,onl∗,o

Emax|Lo|

c =
α
∑

l(ζ1l∗,onl∗,o+ζ1
l∗,o)

Emax|Lo| , θ =
A2

l∗,onl∗,o

Tmax
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ξ =
(A1

l∗,onl∗,o+A0
l∗,o)

Tmax

The sub-problem SP3 in (32) can be re-written as the following:

min .
Go,τo

a

τoGo

+ bτoGo + cGo (B.2a)

s.t. θτoGo + ξGo ≤ 1 (B.2b)

1 ≤ τo ≤ τmax (B.2c)

Go ≥ 1 (B.2d)

Afterwards, we assume the learner with the maximum training time takes his full

time to train such that:

θτoGo + ξGo = 1 (B.3)

So we can have the following equation:

τoGo =
1− ξGo

θ
(B.4)

By utilizing the above equation, the problem in (48) can be re-expresses as a single

variable optimization problem F(Go) as follows:

min . F(Go) =
aθ

1− ξGo

+ (c− bξ

θ
)Go (B.5)

s.t. Go ≥ 1 (B.6)
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Next, we derive the first and second derivatives of the objective function:

dF
Go

=
aθξ

(1− ξGo)2
+ c− bξ

θ
(B.7)

d2F
G2

o

=
2aθξ2

(1− ξGo)3
(B.8)

From the above derivation, we can see that the second derivative is positive when

Go <
1
ξ
, and hence, the objective function is convex. The optimal point can be found

by setting the first derivative to zero as follows:

aθξ

(1− ξG∗
o)

2
+ c− bξ

θ
= 0 (B.9)

aθ2ξ

(1− ξG∗
o)

2
+ cθ − bξ = 0 (B.10)

(1− ξG∗
o)

2(cθ − bξ) + aθ2ξ = 0 (B.11)

(1− ξG∗
o)

2 =
aθ2ξ

bξ − cθ
(B.12)

G∗
o =

1−
√

ξaθ2

bξ−θc

ξ

 (B.13)

where we ignored the negative root since the value of (1 − ξG∗
o) has to be positive,

and floored the value since the number of global cycles is an integer. Moreover, one

can see that for this solution to be feasible the following conditions must be satisfied

βξ − θc > ξaθ2. Lastly, the number of local training iterations can found using (50)

and considering its maximum as follows:

τ ∗o = min

(⌊
1− ξG∗

o

θG∗
o

⌋
, τmax

)
(B.14)
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Appendix C

Lemma 3

It is readily obvious that the optimization problem P2 is a Linear Program, and

hence, it follows directly that it is concave. Moreover, the term ζ2l,oτl,o − ζ1l,o in the

objective is the variable linear coefficient, and it can represent the net utility given the

orchestrator’s strategy. As a result, if the net utility is positive, the learner will try to

maximize it by maximizing the amount of participation until the time frame period

is finished. Conversely, if the net utility is negative, the learner will not participate

in the learning process. Thus, we can have constraint (14b) as equality in case of

participation, and with some rearrangements we have the following:

τl,o =
1−Go(A

1
l,onl,o + A0

l,o)

nl,oGoA2
l,o

(C.1)

However, we know from that in order to participate the following condition τo ≥
ζ1l,o
ζ2l,o

must hold. Therein, we have:

1−Go(A
1
l,onl,o + A0

l,o)

nl,oGoA2
l,o

≥
ζ1l,o
ζ2l,o

(C.2)
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and by rearranging the terms, we can have the following upper bound on the amount

of participation:

nl,o ≤
ζ2l,o(1−GoA

0
l,o)

Go(ζ1l,oA
2
l,o + ζ2l,oA

1
l,o)

(C.3)

Finally, since we know the utility function (14a) for the learner has to be positive, we

can have the following lower bound:

nl,o ≥
ζ0l,o

ζ2l,oτl,o − ζ1l,o
(C.4)

If the amount of participation is less than the lower bound, it will result in a negative

utility, hence the learner will not participate. On the other hand, the learner cannot

participate with more than nmax, which is the maximum amount specified by the

orchestrator. □
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Appendix D

Lemma 4

In order to prove the concavity of the problem P3, we have to show that the Hessian

matrix of the utility function is negative semi-definite. In practice, we can be set set

the parameter c2 to 1, and assume Pmax = 1 and c1
Fmax|Lo| = 1. For the ease of reading,

we will present the variables without the subscripts, i.e., τl,o as τ and nl,o as n...etc.

Moreover, we present
dnl,o

dρl,o
as n′, and to avoid confusions we introduce the following

variables:

a = A2, b = A1, c = A0

A = ζ2, B = ζ1

α = Co

Rmax
, β = µCofl

Emax
such that: ζ2 = αρ− β

Therein, we can have the following first derivatives:

∂U

∂τ
= −GCρn+

1

τ 2G
(D.1)

∂U

∂ρ
= −GCτ(ρn′ + n) (D.2)
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where:

n =
A(1−Gc)

G(aB + bA)
(D.3)

n′ =
Baα(1−Gc)

G(aB + bA)2
(D.4)

Afterward, we can have the second derivatives as follows:

∂2U

∂τ 2
= − 2

τ 3G
(D.5)

∂2U

∂ρ2
= −GCτ(2n′ + ρn′′) (D.6)

∂U

∂τρ
=

∂U

∂ρτ
= −GC(ρn′ + n) (D.7)

where:

n′′ =
−2aα2bB(1−Gc)

G(aB + bA)3
(D.8)

We can notice that n′ ≥ 0 and n′′ ≤ 0. After that, we can express the Hessian matrix

as follows:

H =

 − 2
τ3G

−GC(ρn′ + n)

−GC(ρn′ + n) −GCτ(2n′ + ρn′′)

 (D.9)

For H to be negative semi-definite, its determinant and sub-determinant have to be
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negative, where the sub-determinant − 2
τ3G

is obviously negative. Therein:

det(H) = det

∣∣∣∣∣∣∣
− 2

τ3G
−GC(ρn′ + n)

−GC(ρn′ + n) −GCτ(2n′ + ρn′′)

∣∣∣∣∣∣∣
=

2C

τ 2
(2n′ + ρn′′)−G2C2(ρn′ + n)2 ≤

?
0

2C

τ 2
(2n′ + ρn′′) ≤

?
G2C2(ρn′ + n)2

2(2n′ + ρn′′) ≤
?
τ 2G2C

(
(ρn′)2 + 2ρn′n+ n2

)
4n′ ≤

?
τ 2G2C

(
(ρn′)2 + 2ρn′n+ n2

)
− 2ρn′′

(D.10)

Since n′ ≥ 0, n′′ ≤ 0 and τ,G ≥ 1, it is sufficient to show the following:

4n′ ≤ τ 2G2C2ρn′n (D.11)

or simply:

τGCρn ≥ 2 (D.12)

which completes the proof. □


