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Abstract—With the increased dimensionality of datasets,
high-dimensional data decomposition models have become
essential data analysis tools. However, the decomposition
method usually suffers from the overfitting problem and,
consequently, cannot achieve state-of-the-art performance. This
motivates the introduction of various regularization terms. The
commonly applied Ridge regression has limited applicability for
the asperity dataset and reduces performance for sparse data,
while the Lasso regression has higher efficiency in the sparse
dataset. To address this challenge, we propose a modified
regularization term designed by integrating both the Lasso and
Ridge regressions. The different roles of these two regressions
are analyzed. By adjusting the weights of the regression in the
regularization term, the existing decomposition method can be
applied to the dataset with different degrees of sparsity. The
experiments show that the modified regularization term yields
consistent improvement in the performance of existing
benchmarks.

Keywords— high-dimensional data, regularization term,
Lasso regression, Ridge regression, tensor decomposition

L INTRODUCTION

With the increased dimensionality of real-world datasets,
high-dimensional data decomposition model has become an
essential data analysis tool. However, these decomposition
models are negatively affected by the overfitting problem and,
consequently, cannot achieve the state-of-the-art
performance. This often requires regularization terms to
enhance the decomposition performance. Commonly used
regularization techniques are Lasso, Ridge, and Elastic Net
regressions [1][2]. Lasso regression uses the L1 norm, and the
model that uses the L2 norm is called Ridge regression.
Elastic Net regression, also called elastic network regression,
combines Ridge regression and Lasso regression. Signoretto
et al. extend the matrix norm to tensor data and applied it for
supervised tensor learning to find low-rank projection
matrices [3]. The success of the matrix trace norm inspireds
Lacroix et al., and they propose a tensor p-norm regularization
term [4] [5]. The Ridge regression is a popular regularization
technique applied to the high-dimensional data decomposition
modes [6]. It is mostly used to prevent overfitting when all
features are extracted from the sample dataset [7]. However,
experiments have shown that Ridge regression might reduce
performance for sparse data, while the Lasso regression has
higher efficiency in the sparse dataset [8]. It is desirable to
consider a suitable regularization term to avoid overfitting
issues.

In this paper, we propose a modified regularization term
for high-dimensional data decomposition. The major novelty
is the integration of two norms for estimating prediction
results for sparse data recommendation, which simultaneously
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exploits Lasso and Ridge regression. The different roles of
these two regressions are analyzed to solve the overfitting
problem. The main contributions are:

1. Identify the Lasso and Ridge regression and find an
effective  way to help with high-dimensional data
decomposition.

2. By combining the Lasso and Ridge regressions, the
modified regularization term enhances the prediction
performance and reduces the overfitting issue.

The rest of the paper is structured as the followings:
Section I introduces the motivation and reviews some
previous related work. Section II introduces tensor
decomposition and regressions: Lasso, Ridge regression, and
Elastic Net regression, respectively. Section III presents the
modified regularization term to obtain the solution of the
factor matrix in the tensor decomposition. Section I'V applies
the proposed algorithm to web service prediction with the
experiment and analyzes the results. Finally, Section V
summarizes the work.

II.  PRELIMINARIES

This section introduces the tensor decomposition, the
notations of Lasso regression, Ridge regression, and Elastic
Net regression method.

Tensor decomposition:

Tensor decomposition is a method for high-dimensional
data analysis. For details of the algorithm, we refer can be
found Kolda’s related literature [9].

Given a 3-way tensor with rank-one X € R1*[2X--XIn anq
an approximation tensor X corresponding to X, where R is
the set of real numbers, [, is the dimension of the tensor, and
n is the number of dimensions. An approximation tensor X
from decomposition satisfies the following equation (1),

X=X =[uUDUu®,. ., v"] )

where U™ n = 1,2, ...,n denotes the regular factor matrix.
The symbol [[¢] denotes the collection of factor matrices. The
goal of the decomposition of X is to find the regular factor
matrix U™ which produces the best approximation tensor X.

Tensor decomposition is a complex model. Generally, a
more complex model usually leads to overfitting. It might fail
to predict future observations reliably [10]. To solve this
problem, a regularization term needs to be added to the loss
function to handle more complex learning tasks. The
commonly used regularization terms are the Ridge regression
of each factor matrix of a tensor.
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Least absolute shrinkage and selection operator
regression (Lasso):

Lasso regression is a regression model that uses the L1
norm ||W||;. It is defined as the sum of the absolute values of
each element of the W. In feature selection, the L1 norm helps
us minimize the objective function by making W equal to zero
to remove these useless features and reduce the interference
with the prediction of the sample. The objective function for
the Lasso regression uses the L1 norm as shown in equation

2),
2

1 1 I
1y = £, S S s, |

Ridge regression:

Ridge regression is a regression model that uses the L2
norm ||[W]|,. The L2 norm is a square root of the sum of the
squares of the values W. The L2 norm makes each element of
W small and close to zero. The smaller the parameter, the
simpler the model, and the simpler it is, the less likely it is to
produce overfitting. The Ridge regression solves the objective
function, which is altered by adding a penalty equivalent to
the square of the coefficients as shown in equation (3),

= V(X X). (3)

et I I 2
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Elastic Net regression:

Elastic Net regression is a model that combines Ridge
regression and Lasso regression.

III. RELATED WORK

Commonly used regularization techniques include Lasso,
Ridge, and Elastic Net regressions [11] [12]. Lasso regression
uses the L1 norm, and the model that uses the L2 norm is
called Ridge regression. Elastic Net regression, also called
elastic network regression, combines Ridge and Lasso
regression. Signoretto et al. extends the matrix norm to tensor
data and uses it for supervised tensor learning to find low-rank
projection matrices [13]. The success of the matrix trace norm
inspires Lacroix et al., and they propose a tensor p-norm
regularization term [14] [15]. The Ridge regression is a
popular regularization technique applied to the tensor
decomposition modes [16].

The Ridge regression is mainly used to prevent overfitting
when all features are extracted from the sample dataset [17].
However, experiments show that Ridge regression might
reduce performance for sparse data while the Lasso regression
has higher efficiency in the sparse dataset [18]. Since the web
service dataset is sparse, it is desirable to consider a suitable
regularization term for the efficiency of the algorithms.

In recent studies, we also note that researchers use the N3
method to calculate the norm [19]. It is not suitable for a more
general models. We have also conducted corresponding
experiments, and the results show there are no significant
difference between those using the N3 method to compute
paradigms and ours.

IV.  METHODS

In this section, the solution for optimizing the loss function
is introduced.
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A. Basic regularization term

Computing an approximation tensor X to satisfy X ~ X
is essentially an optimization problem. The alternating least
squares algorithm (ALS) is the most used optimization
algorithm for tensor decomposition. The algorithm is applied
in that one of the decomposition elements is optimized when
other elements are kept fixed at each iteration. ALS estimates
the factor matrices U™ at each step by minimizing a loss
function in the least squares.

For an original tensor X € R'*'2%-*In and an
approximation tensor X, the goal is to minimize the loss
function L defined as shown in equation (4),

L=1x- X|I> +22(X) “)
where X' denotes an original tensor, X denotes an
approximation tensor. A2(X) is the regularization term to
avoid overfitting, which 4 is the regularization parameter.

N(X) denotes regularization term. || o || denotes the norm of
the tensor.

To avoid the overfitting issue, tensor decomposition
commonly uses Ridge regression as the regularization term,
which is shown in equation (5),

0@ = LA(JWO + U+t ) )

where X denotes an approximate tensor, U Mn=12..,n
denotes the regular factor matrix. A are parameters of the
factor matrix in the regularization term.

B. Modified regularization term

The recommendation performance based on tensor
decomposition is usually negatively affected by the overfitting
problem and, consequently, cannot achieve state-of-the-art
performance. This often requires regularization terms to
enhance decomposition performance.

Motivated by the Elastic Net regression, we propose a
modified regularization term that benefited the advantages of
both Lasso and Ridge regressions as shown in equation (6):

DX new = A== 11X113 + plIX111) (6)
where X denotes an approximation tensor, ||¢|| denotes the
tensor norm, A > 0 is the regularization parameter. The
parameter p = 0 corresponds to the ridge method |||, and
p = 1 to the lasso method ||e||;. 4 denotes the regularization

parameter, and its default value is 35. 2(X),,, denotes
modified regularization term.

An optimization task for the objective function L(X, X) is
performed as shown in equation (7),

minL (X, X) = min(||X — X||? + 22(X),ew)
= min(|1X = X2 + 2 (52 11X113 + plIX] 1)

= min(]|X — X||%) +A(%”( U@ + |u@|” + -+
lv@IF) +p (Jv@l + lu@ )+ + IIU("’IIZ)) (7
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where U™ n = 1,2, ..., n denotes the regular factor matrix.

The regularization can be treated as a compromise
between finding a small penalty and minimizing the loss
function L(X, X). The regularization parameter A controls the
compromise: the smaller the A., the more it minimizes the loss
function, and conversely, the smaller the penalty.

The setting of the regularization parameters is related to
the size of the dataset. Usually, the regularization parameters
are set larger for large datasets and smaller for small datasets.
To facilitate comparison with other methods, we use the
default value A = 35 in the experiment.

C. Algorithm

The tensor decomposition algorithm is given as the
following Algorithm. Each iteration computing is performed
in two steps: computing the feature factor matrices and
updating the iteration.

Algorithm: Tensor decomposition with a modified
regularization term

.. I xIrx..xI
Input: an original tensor X € R'172 n

parameter A, the weight parameter p.

, the regularization term

Output: an approximate tensor X.
Step 1. Initialize regular factor matrices U™Wn=12 .., n

Step 2. Fixing the U@, U®, ..., U™ to estimate the factor matrices U®,
Uo.

Step 3. Compute the corresponding regularization A02(X), update the
approximate tensor X.

Step 4. Reduce the objective function L(X, X) = ||X — X||? + 12(X).

Step 5. Fixing the UD, U@, ..,U®=D to estimate the factor matrices
ANTION

Step 6. Compute the corresponding regularization A2(X), update the
approximate tensor X.

Step 7. Reduce the value of objective function L(X, X) = [|X — X||* +
20(X).

Step 8. Repeat the above steps and update the approximate tensor X until
convergence is exhausted.

Step 9. Return the final approximation tensor X.

The algorithm fixes the U®,U®, ..., U™ to find the
factor matrix U™ and compute the approximate tensor X. If
the convergence criterion minL(X, X) is not satisfied, the
algorithm continues to fix UV, U®, .., U™ to calculate the
matrix U® . The iteration continues to repeat the same
procedure, which fixes UD,U®, . U™ to find the
matrix U™ The convergence within the same loop requires
multiple iterations until the convergence criterion is satisfied.

V.

In this subsection, we implement the prediction
experiments on the web service dataset to evaluate the novel
regularization term for tensor decomposition.

EXPERIMENTS

A. Experimental settings

To evaluate the proposed QoS attribute prediction method,
we use the web service dataset offered by Zheng et al. [20].
This dataset describes real-world QoS attribute prediction
results from 142 users on 4,500 web services over 64 different
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time slices. This experiment focused on the response time and
proposed a method to predict missing QoS attribute values.

The experiment is conducted on a Lenovo ThinkCentre
M58 desktop with a 3.0 GHz Intel Core™ 2 Duo CPU and an
8 GB RAM, running an Ubuntu operation system. The
program is implemented with Python 3.4 and Microsoft C++.

We use the standard mean absolute error (MAE), and root
mean square error (RMSE) to compare the quality of our
prediction.

MAE is defined as shown in equation (8):

MAE = 2Tl ®)
RMSE is defined as shown in equation (9):
s (s —Ps )2
RMSE = i j(ri =7 ;) (9)

N

where 7; ; denotes the expected QoS attribute of web
service j observed by user i, #; ; is the predicted QoS attribute,
and N is the number of the predicted value.

We verify the effectiveness of the proposed method, and
the comparison is based on service collaboration with the
following other methods.

Web service QoS attribute prediction framework
(WSPred):

As a benchmark tensor decomposition method, this is a
recommendation with a time-aware personalized QoS
attribute prediction service for different service users [20].
WSPred uses Ridge regression as the regularization term and
A = 35 as the default value.

Traversal-tensor method (TTM):

TTM remedies the shortage of low prediction accuracy
rates caused by the lack of initial data samples. The method
integrates the feature factor matrices to construct more data
samples for tensor decomposition in our previous work [21].
When A = 0, this tensor decomposition method is executed
without the regularization term.

TTM with regularization term method (TTMwR):

Based on TTM, our research employs the modified
regularization term, which integrates the Lasso and Ridge
regressions.

The above methods predict the response time and compute
the MAE and RMSE values. The smaller value means the
method has high performance.

Since a user does not revoke all web services, the dataset
is usually sparse in the real world. The implement will
randomly remove QoS attribute with different density from
5%, 10%,15%, 20%, 25%, and 30%. The 5% density means
that 5% of the data is used for training, and 95% of the data is
used for testing. We randomly set the parameter p in TTMwR
corresponding to the Lasso and Ridge regressions. For
example, the parameter p = 0 is to the Ridge, p = 1 to the
lasso, and p = 0.25 means that result is generated by combing
25% by Ridge and 75% by Lasso regression.
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B. Main results

We set the different parameter 4 value: when setting 4
default value is 35, the TTM has the regularization term.
When 4 = 0, it means that TTM has no regularization term.
TTMwR shows better predictive performance than TTM
without regularization and WSPred methods in TABLE I and
TABLE II.

TABLE L PERFORMANCE COMPARISON IN MAE
Density Density Density Density Density Density
Methods | 2 | P 5% 10% 15% 20% 25% 30%
WSPred 35 0.7913 0.7603 0.7535 0.7629 0.7520 0.7687
TT™ 0 0.8183 0.7745 0.7417 0.7415 0.7345 0.7382
TIMwR | 35 | O 0.6850 | 0.6806 | 0.6723 | 0.6683 | 0.6604 | 0.6693
0.25 0.6892 0.6721 0.6663 0.6672 0.6594 0.6763
0.5 0.6859 0.6695 0.6721 0.6665 0.6635 0.6629
0.75 0.6872 0.6711 0.6680 0.6682 0.6667 0.6619
1 0.6884 0.6679 0.6675 0.6676 0.6647 0.6670
TABLE II. PERFORMANCE COMPARISON IN RMSE
Density | Density | Density | Density | Density Density
Methods s P 5% 10% 15% 20% 25% 30%
WSPred 35 1.8006 1.7741 1.7695 1.7764 1.7780 1.7823
TT™M 0 1.8569 1.7852 1.7408 1.7366 1.7226 1.7214
TIMwR | 35 | 0 15891 | 15788 | 15687 | 15680 | 15609 | 1.5645
025 | 1.5989 1.5710 1.5669 1.5637 1.5617 1.5637
05 1.5959 1.5721 1.5681 1.5635 1.5614 1.5590
0.75 | 1.5950 1.5738 1.5673 1.5643 1.5633 1.5595
1 1.6010 1.5725 1.5666 1.5631 1.5601 1.5621

C. Accuracy comparison

The TTMwR method has smaller MAE and RMSE values
for all densities than the other methods in Fig. 1 and Fig. 2.
The prediction accuracy can also be improved with the
training matrix density increase from 5% to 30%. The total
average MAE of the TTMwR method (0.67) has 14% more
than the WSPred method (0.7648). Thus, the TTMwR method
can significantly improve the accuracy result.

Response-Tine
0.9

WSPred
TTM k=0
w- TTMwR P=0
—a-TTMwR P=0.25

A

0.6

3 10 15 20 5 30
Density (%]

Fig. 1. Impact of density on prediction accuracy MAE
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We also illustrate the evaluation results in the different
values of the parameter p separately in Fig. 3 and Fig. 4 for
the TTMwR method. The result shows that the method has the
worst prediction accuracy for 5% density. With density
increasing, the accuracy performance curve drop-down from
5% to 25% density. The best accuracy result appears when the
density is 25% for both MAE and RMSE, and the MAE result
generates a sharp decline curve at the point. Then the curve
rises slightly after 25% density and the accuracy decrease for
30% density.

Response-Titme

WSPred
TTM A=0

TTMwR P=0.75

RMSE

— g

10 15 20 25 an
Density [%]

Fig. 2. Impact of density on prediction accuracy RMSE

D. Weight impaction comparison

We focus on the impact of the regression parameter p for
the TTMwR method in Fig. 3 and Fig. 4.

The high MAE result is shown In Fig. 3 for a density 10%
when p =1, which means the Lasso regression help to
achieve a better MAE result. As well as the best RMSE result
appears when p = 0.25. Conversely, the minimum MAE
result is shown when p = 0.25, and the minimum RMSE
result is shown when p = 1 from a density of 15% to 25%.
For density 30%, the best MAE result is shown when p =
0.75, and the best RMSE result is shown when p =

Response-Thaw

T MwE
o TTMwR P=t

TTMwR P=
o TTVwR Pmil T3
- TThwR P=1

MAE

0.5 0r 0.75.
Fig. 3. mpact of the parameter p on MAE
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For the lower data densities (less than 25%), with the
parameter p increases, the accuracy value rises. The Ridge
regression contributes more to improving the performance of
the method. However, when data density is higher, the
performance depends on the contributions of the Lasso and
Ridge regression. The best regularization ratio is 25% by the
Lasso and 75% by the ridge, or an equal split.

Thus, from the experimental results, it can be observed
that the impact of the parameter p is insignificant.

A
TN
N

-a TTMwh P=i)
w TTMwI 25

UPMwR Pasil 5
= TTMwR Pumlli
-8 TTMwh P=1

———

RMSE

1 5 D %5 0
Doy [5]

Fig. 4. Impact of the parameter p on RMSE
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A modified regularization term incorporating two basic
regressions for tensor decomposition is proposed. This
method aims to reduce the possibility of overfitting and
enhance the recommendation performance. Experimental
validation is conducted on the web service dataset to discuss
and evaluate the weights of the different regressions. The
results show that the modified regularization term can
effectively improve estimation performance and support web
service prediction. In the future, conducting more evaluation
on new data sets is essential, especially under various network
environment scenarios [22] [23].

CONCLUSION AND FUTURE WORK
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