
Service Provisioning at the Network Edge

A VNF-Sharing Approach

By Amir Mohamad

A thesis submitted to the

School of Computing

in conformity with the requirements for

the Degree of Doctor of Philosophy

Queen’s University
Kingston, Ontario, Canada

June, 2022

Copyright © Amir Mohamad, 2022

Abstract

The next generation of mobile networks (5G) is expected to address the perfor-

mance requirements of various use cases in different industries, including ultra-reliable

low latency communication (URLLC). The demand for URLLC requirements is fu-

eled by the growing popularity of real-time media, delay-sensitive, and time-critical

applications. Most services consist of virtual network functions (VNFs) stitched to-

gether in a specific order that form service function chains (SFCs). Premium SFCs

are time-critical, and their failure (pre- or post-deployment) could result in Quality of

Experience (QoE) degradation. Best-effort SFCs are prone to delay, and can tolerate

waiting for resource availability.

Edge computing is positioned to fulfill the aforementioned stringent latency re-

quirements. Due to edge limited resources, the tendency to reject service requests

-including time-critical ones- can be high, translating into unsatisfied customers, lost

revenue for service providers, and even safety hazards. Yet, existing work on the

provisioning of SFCs at the edge make unrealistic assumptions. Such assumptions

include: the edge has an abundance of resources; and SFCs have the same priority.

In this thesis, to improve the utilization of the service provider’s limited edge re-

sources and reduce the cost of service provisioning, we introduce the sharing of VNFs

i

among different SFCs. Taking advantage of operations dynamics, VNF sharing uti-

lizes the unused capacity of deployed VNFs before instantiating new ones when sat-

isfying new SFC requests. Specifically: 1) Using VNF sharing, the system utilization

is enhanced by satisfying more SFC requests and using fewer resources per request.

2) SFC placement schemes that prioritize premium over best-effort services are in-

troduced. 3) Prediction- and preemption-based placement schemes for time-critical

SFCs are proposed to mitigate the consequences of SFCs rejections.

Extensive simulations demonstrate the effectiveness ofVNF sharing-based schemes

in achieving significant improvements to system utilization and reducing the rate of

rejection of premium SFCs. The results indicate that VNF sharing helps service

providers lower the service provisioning cost while respecting the stringent delay bud-

get of time-critical applications and services.

ii

Co-Authorship

Journal Articles:

1. Amir Mohamad and Hossam S. Hassanein,“Preemptive Prediction-based SFC

Placement with VNF Sharing at the Edge,” 2022, (In preparation).

Conference Publications:

1. Amir Mohamad and Hossam S. Hassanein,“On Demonstrating the Gain of

SFC Placement with VNF Sharing at the Edge,” IEEE Global Communications

Conference (GLOBECOM), 2019, pp. 1-6, doi: 10.1109/GLOBECOM38437.20-

19.9014106.

2. Amir Mohamad and Hossam S. Hassanein, “PSVShare: A Priority-based

SFC placement with VNF Sharing,” IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN), 2020, pp. 25-30,

doi: 10.1109/NFV-SDN50289.2020.9289837.

3. Amir Mohamad and Hossam S. Hassanein, “At the Edge? Wait no More:

Immediate Placement of Time-Critical SFCs with VNF Sharing,” IEEE 8th

International Conference on Network Softwarization (NetSoft), 2022.

4. Amir Mohamad and Hossam S. Hassanein, “Prediction-based SFC Placement

iii

with VNF Sharing at the Edge,” IEEE 47th Conference on Local Computer

Networks (LCN), 2022.

iv

Acknowledgments

Praise to Allah, who has guided us to this; and we would never have been guided

if Allah had not guided us.

I will be my life indebted to my supervisor Prof. Hossam Hassanein, for giving

me the opportunity to join his lab and supporting me throughout the stressful PhD

journey.

I would like to thank my wife Samiha for the endless and unconditional support

she provided and for taking the burden of caring for our kids while I was traveling

and busy with submissions and deadlines. The gratitude and apology extends to my

kids Adham and Hana. They were the source of encouragement to continue in this

journey. The apology is for the many times I was not there for them and for not

being the father I should have been.

I would like to acknowledge my parents, brothers and sisters. This thesis, a

manifestation of the many sleepless nights, would not have been possible without

their support.

I would like to thank my colleagues and friends Adel Ibrahim, Abdullah Abdel-

rahman, Ahmad Nagib, and Mohannad Alharthi, for the fruitful discussions and for

the endless support and guidance I received throughout my time at the TRL.

v

Statement Of Originality

I hereby certify that this Ph.D. thesis is original and that all ideas and inventions

attributed to others have been properly referenced.

vi

Contents

Abstract i

Co-Authorship iii

Acknowledgments v

Statement Of Originality vi

Table of Contents vii

List of Tables xi

List of Figures xii

List of Acronyms xvii

Chapter 1: Introduction 1

1.1 Introduction . 1

1.2 Motivation . 3

1.3 Research Statement . 3

1.4 Contributions . 4

1.5 Outline . 6

vii

Chapter 2: Background 8

2.1 Edge Computing Overview . 8

2.1.1 Edge Computing Paradigms 9

2.1.2 Importance of Edge Computing 12

2.2 Enabling Technologies . 15

2.2.1 NFV and SFC . 15

2.2.2 Software-Defined Networking (SDN) 24

2.2.3 Edge Key Requirements and Challenges 27

2.3 Edge Computing Platforms . 28

2.4 Service Provisioning . 30

2.4.1 Service Placement and Resource Allocation 30

2.4.2 Service Migration and Replication 32

Chapter 3: Improving Edge Resource Utilization 36

3.1 Introduction . 36

3.2 Related Work . 40

3.2.1 VNF Sharing . 41

3.3 Proposed Placement scheme . 43

3.3.1 Substrate Network Model . 44

3.3.2 VNFs and SFC requests . 45

3.3.3 Problem Formulation . 46

3.4 Performance Evaluation . 51

3.4.1 Simulations . 52

3.5 Summary . 57

viii

Chapter 4: Priority-based Placement 59

4.1 Introduction . 59

4.2 Related Work . 60

4.2.1 Priority-based Placement . 60

4.3 System Model and Problem Formulation 61

4.3.1 System Model . 62

4.3.2 Problem Formulation . 62

4.4 Performance Evaluation . 70

4.4.1 Numerical Results and Analysis 71

4.5 Heuristic Placement Algorithm . 75

4.6 Heuristic Algorithm Results . 78

4.7 Summary . 80

Chapter 5: Prediction-based Placement 82

5.1 Introduction . 82

5.2 Related Work . 83

5.3 System Model and Problem Formulation 84

5.3.1 System Model . 87

5.3.2 Problem Formulation . 88

5.4 Performance Evaluation . 93

5.4.1 Simulation Framework . 93

5.4.2 Numerical Results and Analysis 94

5.5 Summary . 100

Chapter 6: Immediate Placement of Time-critical Services 101

ix

6.1 Introduction . 101

6.2 System Model and Problem Formulation 103

6.2.1 System Model . 105

6.2.2 Problem Formulation . 105

6.3 Simulation Framework . 114

6.4 Performance Evaluation . 116

6.4.1 Evaluation Metrics . 116

6.4.2 Numerical Results and Analysis 117

6.5 Preemptive Prediction-based Service Placement 124

6.5.1 Simulations and Results . 125

6.6 Summary . 133

Chapter 7: Conclusion and Future Directions 135

7.1 Summary . 135

7.2 Limitations . 137

7.3 Future Directions . 138

7.3.1 Diagnosis of failed service placement 138

7.3.2 Benchmarking-/profiling-aware placement 139

Bibliography 141

x

List of Tables

2.1 Comparison of Migration Techniques & their Relation with Replication 34

3.1 Substrate network parameters. 45

3.2 VNF and SFC request parameters. 47

3.3 Decision variables and Constants. 48

4.1 Parameters description. 63

5.1 System Parameters Description. 88

5.2 Queues, Decision Variables and Constants. 92

6.1 System Parameters Description . 106

6.2 Queues, Decision Variables and Constants 110

6.3 Preemption Performance (Red the is worst, Green is the best). 120

xi

List of Figures

2.1 Types of edge in edge continuum (error or omission) 10

2.2 A sample of edge computing use cases (error or omission) 12

2.3 Importance of both location and access/last-mile connectivity (error

or omission) . 14

2.4 ROIC: Telecom Providers vs Cloud and OTT Providers (error or omis-

sion) . 16

2.5 ETSI NFV Architecture Framework 17

2.7 Various end-to-end carrier networks and service functions sorted into

categories 1, 2 and 3. 21

2.8 Service function chains in data center 23

2.9 Basic SDN components . 25

2.10 LF Edge stack spanning different edge types and covers infrastructure

and application layers (error or omission) 29

3.1 Compute resources savings when sharing VNFs among SFCs 39

3.2 SFC request placement and the association of its VNFs with the sub-

strate network nodes. 44

3.3 VNFs of sfci and their required resources, max-flows, inflows and out-

flows. 46

xii

3.4 Satisfied SFC requests (percentage out of 30 requests) per network

model. Simulation for each network model is repeated five times, and

the averages are presented. 53

3.5 Average total utilization per network model. Simulation for each net-

work model is repeated five times, and the averages are presented. . . 54

3.6 Average percentage of required resources per SFC request. 55

3.7 Comparison of satisfied SFC requests (percentage out of 30 requests)

between 70%-based shareable VNFs and 30%-based shareable VNFs. 56

3.8 Comparison of closing utilization between 70%-based shareable VNFs

and 30%-based shareable VNFs. 57

4.1 PSVShare with 100% shareable VNFs vs 0% shareable VNFs. λ = 2

and shuffled 50 : 50% Pr-to-BE ratio. 71

4.2 Completed SFC at the end of simulation, under different loads for

PSVShare scheme vs the No-sharing scheme. 72

4.3 Running and new pending SFCs under different loads. All with 60%

shareable VNFs, and shuffled 50− 50% Pr-to-BE ratio. 73

4.4 Rejected SFC requests (%) for different queue sizes. 74

4.5 Satisfied SFC requests (%) of different Pr-to-BE ratios, shuffled. . . . 75

4.6 Heuristic Algorithm, step 1: initial solution. 77

4.7 Heuristic Algorithm, step 2: possible links. 78

4.8 Heuristic Algorithm, step 3: paths formation. 78

4.9 Utilization during simulation time and closing queue sizes. 79

4.10 Average waiting time (AWT) of sfcpr requests. 80

xiii

5.1 Rejection rate of Premium (Pr) SFCs using VNF non-sharing vs VNF-

sharing for different system configurations/loads (Simulation duration

is 200 TSs, arrival rate λ = 2 sfc requests/TS). 85

5.2 PSVS lookahead window, different queues (Recpr and Penbe), and

queued sfcpr/sfcbe requests. 86

5.3 PSVS scheme logical flow. 89

5.4 Rejected/Pending, running, and completed (%) of received sfcpr and

sfcbe requests for two system configurations. 95

5.5 Utilization throughout simulation time (200 TSs). 96

5.6 Left: sfcbe average waiting time (AWT). Right: percentage of pending

sfcbe requests. Prediction is using α = 2.8 for 50:50 systems and

α = 2.9 for 20:80 system. The var-α uses a varying safety margin

with lower-bound=2.8, upper-bound=2.9, the increase step=0.1 and

the decreasing step=0.01. 97

5.7 The impact of prediction error value and rates/probabilities on (a)

Rejected Pr SFCs requests and (b) Pending BE SFC requests, for

moderately- and highly-loaded systems. 98

5.8 The impact of safety margin on sfcpr requests rejection rate under

extreme prediction error values and rates/probabilities, (a) Rejected

Pr SFCs requests and (b) Pending BE SFC requests. 99

6.1 States a SFC request can take in IPTSV and order of priority and

deployment of queues (1→ 2→ 3). 104

6.2 IPTSV scheme Logical flow. 107

6.3 Promoting guest VNF to act as a host, part of sfcbe deportion 115

xiv

6.4 Resource utilization for different system loads for ‘All’ preemption cri-

terion . 118

6.5 End-of-simulation queue sizes for different system loads for ‘All’ pre-

emption criterion . 118

6.6 Gratuitously deported sfcbe. 120

6.7 Gratuitously deported sfcbe (No-Sharing). 121

6.8 AWT of sfcbe. 121

6.9 preemption Cost of preemption criteria 123

6.10 Fairness of preemption criteria . 124

6.11 Moderate-loaded system Utilization per time-slot 127

6.12 Highly-loaded system Utilization per time-slot 128

6.13 Closing premium and best-effort queues and lists (Comppr, Runpr,

Rejpr, Compbe, Runbe and Penbe), for prediction-based compared to

preemptive prediction-based placement (reported for different values of

the resource safety margin α), reported for Moderately-loaded (a)&(b)

and Highly-loaded system (c)&(d) . 129

6.14 Percentage of pending BE requests (Penbe) 130

6.15 Average waiting time (AWT) of sfcbe requests 131

6.16 (a) Average number of deported sfcbe to satisfy one sfcpr request.

(b) Average number of sfcbe deports to satisfy one sfcpr request. (c)

Average preemption cost to satisfy one sfcpr request. 131

xv

6.17 Closing premium and best-effort queues and lists (Comppr, Runpr,

Rejpr, Compbe, Runbe and Penbe), for VNF Sharing-based, prediction-

based, preemption-based, vs preemptive prediction-based placement

schemes, reported for ILP and Heuristic placement algorithms, and for

Moderately-loaded (a)&(b) and Highly-loaded system (c)&(d). 132

6.18 AWT of ILP and Heuristic-based placement schemes for (a) Moderately-

loaded and (b) Highly-loaded systems. 133

xvi

List of Acronyms

3GPP 3rd Generation Partnership Project.

ACL Access Control List.

AI Artificial Intelligence.

AR Augmented Reality.

ARPU Average Return Per User.

BBU Base-band Unit.

BSS Business Support System.

C-RAN Cloud RAN.

CAPEX Capital Expenditure.

CDN Content Delivery Network.

CDNaaS CDN as a Service.

CG-NAT Carrier-grade NAT.

CMS Cloud Management System.

xvii

CNF Cloud-Native Network Function.

CO Central Office.

CPE Consumer Premise Equipment.

CSPs Communications Service Providers.

CU Centralized Unit.

CUPS Control and User Plane Separation.

DPI Deep packet inspection.

DU Distributed Unit.

eMBB enhanced mobile broadband.

EMS Element Management System.

EPC Evolved Packet Core.

ETSI European Telecommunications Standards Institute.

FW Firewall.

HA Highly Available.

IDS Intrusion Detection System.

IETF Internet Engineering Task Force.

IIC Industrial Internet Consortium.

xviii

IIoT Industrial IoT.

ILP Integer Linear Program.

IoT Internet of Things.

IPS Intrusion Prevention System.

ISG Industry Specifications Group.

K8s Kubernetes.

LF-Edge Linux Foundation Edge.

LFN Linux Foundation Networking.

MANO Management and Orchestration.

MEC Multi-access Edge Computing.

MIP Mixed Integer Program.

mMTC massive machine-type communications.

MR Mixed Reality.

MWD Malware detection and elimination.

NBI Northbound Interface.

NETCONF Network Configuration.

NFV Network Function Virtualization.

xix

NFVI Network Function Virtualization Infrastructure.

NFVO Network Function Virtualization Orchestrator.

NSH Network Service Header.

O-RAN Open RAN.

ODL Open Daylight.

ONAP Open Network Automation Platform.

ONF Open Networking Foundation.

OPEX Operation Expenditure.

OSM Open Source Management and Orchestration.

OSS Operation Support System.

OTT Over-The-Top.

OVSDB Open Virtual Switch Database.

P-GW Packet gateway.

PBR Policy-based Routing.

PEP Performance Enhancement Proxy.

PNF Physical Network Function.

QoE Quality of Experience.

xx

QoS Quality of Service.

RAN Radio Access Network.

RoIC Return on Invested Capital.

RRU Remote Radio Unit.

RU Radio Unit.

SBI Southbound Interface.

SD-RAN Software-defined RAN.

SD-WAN Software-defined WAN.

SDN Software-Defined Networking.

SDN-C SDN Controller.

SFC Service Function Chain.

SLA Service Level Agreement.

TOSCA Topology Orchestration Specification for Cloud Applications.

URLLC ultra-reliable low-latency communications.

VIM Virtualized Infrastructure Manager.

VM Virtual Machine.

VMP VM Placement.

xxi

VNE Virtual Network Embedding.

VNF Virtual Network Function.

VNFM Virtual Network Function Manager.

VR Virtual Reality.

xxii

Chapter 1

Introduction

1.1 Introduction

Over the past decade, cloud computing has dominated the information technology

(IT) landscape. Cloud computing’s salient feature is the reduction in the required

time to market a new service as well as the reduction/savings in the total cost of

ownership (TCO) [104]. Thanks to the globally distributed data-centers and high

internet speeds, users tend to disregard the physical proximity to data-centres. The

false sense of disregarding physical proximity cannot stand anymore in the face of

the challenges posed by most delay-sensitive use cases, such as Internet of Things

(IoT), Industrial IoT (IIoT), multi-player gaming, and virtual, augmented and mixed

reality (VR/AR/MR) applications [38,104]. Cloud computing cannot provide for the

challenging requirements of the mentioned applications and use cases, such as

1. Unprecedented increase in generated data by end devices and the prohibitively

excessive back-haul bandwidth required to push such data to the core cloud.

2. Ultra-low latency required by delay-sensitive applications that cannot tolerate

the round-trip time between the data source and cloud data center.

1

1.1. INTRODUCTION 2

3. Privacy requirements of some applications that necessitate processing generated

data locally and not moving data beyond defined geographical boundaries which

is not always satisfiable by cloud data centers.

4. The need for an uninterrupted service even with intermittent internet/cloud

connectivity.

5. The cloud cannot provide the situational awareness that requires a timely ac-

quisition of knowledge about events and conceptual reasoning of those events

into a complete view related to a specific mission [102].

Edge computing is a distributed computing infrastructure close to data sources

that facilitates decentralized processing and is considered the enabling technology

positioned to satisfy the requirements of emerging applications where cloud computing

falls short. The interest and demand for edge computing are growing, fuelled by the

growing interest of both Communications Service Providers (CSPs) and Over-The-

Top (OTT) service providers. The edge computing market is projected to grow from

$36B in 2021 to $87B by 2026, at a compound annual growth rate of 19% during the

forecast period [83].

By adopting Network Function Virtualization (NFV) and Software-Defined Net-

working (SDN), service provisioning is more agile, scalable, and economical because

CSPs can reduce capital and operations expenditures [44]. To provision a service, an

orchestrator must make a placement decision to associate service functions (VNFs)

with physical hosting nodes. Most enterprise and network services consist of com-

ponent functions/VNFs forming service function chains (SFCs) and traffic traverses

these functions in a specific order.

Amir Mohamad - School of Computing

1.2. MOTIVATION 3

1.2 Motivation

While there are similarities between cloud and edge computing, edge computing

has several unique features such as the distributed resources across many sites that

need to be managed; limited resources compared to the abundant cloud resources;

and the challenging service provisioning with distributed and limited resources [95].

With the edge’s limited resources and the increasing demand for edge computing,

efficient resource utilization will play a major role. The majority of emerging 5G

use cases are time-critical, such as real-time media (VR/AR/MR), industrial control,

remote control, and mobility automation [43]. Time-critical, henceforth premium

(Pr), services and applications have stringent time constraints and would fail if such

constraints were not met [54, 61, 78]. Consequently, service placement must consider

delay-urgency/priority to minimize or eliminate the wait and/or rejection of premium

services. Enhancing the utilization of edge resources will help CSPs satisfy more

services and seize revenue opportunities.

This thesis demonstrates howVNF sharing-based service placement schemes tackle

the challenges arising from limited edge resources and the increasing demand for

delay-sensitive applications. Extensive simulations demonstrate the effectiveness of

our schemes in increasing the utilization and significantly reducing/eliminating the

premium services rejections.

1.3 Research Statement

Service placement, including VNF sharing-based placement, has been extensively

addressed in the literature; however, some unrealistic assumptions were used such as

setting a predefined number of flows that can share a deployed VNF [86], mixing the

Amir Mohamad - School of Computing

1.4. CONTRIBUTIONS 4

concept of infrastructure assets and VNF Sharing [76] and a priority that changes

based on the situation or the required resources [81, 105].

We believe that:

Priority-aware VNF sharing-based service placement will enhance edge resource uti-

lization, reduce premium services rejections, and help CSPs serve their customers

better and increase revenue.

1.4 Thesis Contributions

The main contributions of this thesis are as follows:

1. Improving Edge Resources Utilization: We present an SFC placement scheme

with VNF sharing to improve edge resource utilization and satisfy more SFC

requests while fulfilling the performance requirements (mainly maximum end-

to-end delay). Taking advantage of operation dynamics, common VNFs among

SFCs, and the shareability of some VNFs, we first utilize the free capacity of de-

ployed shareable VNFs when satisfying new SFC requests. The sharing decision

is based on the state of deployed VNFs at the time of placement decision-making

with no prior assumptions.

2. Priority-Based Service Placement : PSVShare is a priority-based SFC place-

ment scheme coupled with a VNF Sharing, prioritizing premium services over

best-effort services. Moreover, a migration scheme to handle situations where

a host VNF cannot accommodate traffic increase, as a result of sharing its ca-

pacity with guest VNF(s). VNFs are treated as ephemeral components not

infrastructure assets, the priority is known and fixed before deployment, and all

SFC’s VNFs have the same priority. Our results demonstrate that PSVShare

Amir Mohamad - School of Computing

1.4. CONTRIBUTIONS 5

satisfies more services, achieves lower rejection rates compared to placement

schemes without VNF Sharing, and is independent of the arrival order and

ratio of premium and best-effort services.

3. Prediction-Based Service Placement : Even though the VNF Sharing has in-

creased system utilization and satisfied more premium services, the rejections

of premium services are still concerning. To remedy this, we present PSVS, a

prediction-based SFC placement scheme with VNF Sharing to reduce the re-

jection rate of premium services significantly. Considering the predicted arrival

of premium services requests, PSVS will decide to satisfy best-effort requests

or defer the deployment to save resources for future premium requests. Even

though PSVS significantly reduces premium services rejection rate, premium

rejections are still concerning.

4. Immediate Placement of Time-Critical Premium Services : We investigate the

rejections that impact time-critical services due to resource limitations which

might cause terrible consequences. As such, we design IPTSV, a preemptive

placement scheme that reduces the premium services rejection rate to near zero,

define the baseline performance of preemption-based service placement, and

recommend which preemption criterion to use given the service domain context

and provider’s policies and priorities. Our results show an almost zero rejection

rate of time-critical premium services and the best preemption criterion that is

least disturbing to best-effort services.

Amir Mohamad - School of Computing

1.5. OUTLINE 6

1.5 Thesis Outline

In this chapter, we present the motivation of the primary research problem, and

highlight the major contributions toward VNF Sharing-based service placement at

the network edge. The rest of this thesis is organized as follows.

Chapter 2 introduces the background and related work. We review the impor-

tance, enabling technologies and fundamental concepts of edge computing as well as

edge platforms. At the end of this chapter, we explain popular service placement,

migration and replication techniques.

Chapter 3 introduces our VNF Sharing-based service placement scheme. We begin

with how VNF Sharing will better the edge resource utilization. We then describe

the system settings, based on which the VNF Sharing-based placement scheme is

formulated. We describe the assumptions, system and simulation settings, and discuss

results.

Chapter 4 highlights our priority-based service placement scheme (PSVShare).

We start with the reasons for prioritizing certain service categories over others, fol-

lowed by a review of related work and how our scheme is addressing the overlooked

important aspects of priority-based service placement with VNF Sharing. To validate

PSVShare claims, we compare the performance of PSVShare against priority-based

placement without VNF Sharing. A heuristic technique is presented to overcome the

computational complexity of ILP-based placement scheme.

Chapter 5 builds on the priority-based placement scheme and presents a prediction-

based service placement scheme (PSVS) to reduce premium service rejection rate due

to resource limitations. PSVS uses the same ILP-based placement as PSVShare but

utilizes predicted required resources of future premium service that will arrive in a

Amir Mohamad - School of Computing

1.5. OUTLINE 7

defined lookahead window. Indeed, PSVS significantly reduces the premium service

rejection rate; however, premium service rejections are not eliminated.

Chapter 6 introduces the zero rejections preemption-based service placement scheme

(IPTSV). To eliminate premium service rejections, when premium services requests

cannot be satisfied due to resource limitations, IPTSV utilizes a preemption crite-

rion to deport running best-effort services. Different preemption criteria are tested to

study the impact and disturbance to running/deployed best-effort services. To reduce

the side effects that preemption-based placement scheme has on best-effort services,

we introduce a preemptive prediction-based placement scheme (PPTS). Building on

the significant reduction in premium services rejections that PSVS achieved, we uti-

lize a preemption criterion for the remaining rejection cases to eliminate rejections

and cause less disturbance to deployed best-effort services.

Chapter 7 presents a summary of the topics addressed in this thesis and discusses

future research directions.

Amir Mohamad - School of Computing

Chapter 2

Background

“CSPs missed the Cloud

Revolution! Edge is 4X & will hit

$4 Trillion Economy”

Arpit Joshipura, GM LFN

2.1 Edge Computing Overview

As defined by the Linux Foundation’s State of The Edge report [17], edge comput-

ing is “The delivery of computing capabilities to the logical extremes of a network in

order to improve the performance, operating cost, and reliability of applications and

services. By shortening the distance between devices and cloud resources that serve

them, and also reducing network hops, edge computing mitigates the latency and band-

width constraints of today’s Internet.” Edge computing pushes the centralized cloud

infrastructure closer to the network edge. Edge computing is not meant to be a single

layer between end devices and the core cloud. Rather, it is a continuation that ex-

tends from where the core cloud infrastructure ends to the edge of the network, and

8

2.1. EDGE COMPUTING OVERVIEW 9

in some use cases extend to the consumer’s premises.

Currently there are three edge computing paradigm proposals: Fog Comput-

ing [31], Cloudlets (micro data centres) [103], and Multi-access Edge Computing

(MEC) [45, 108]. The main idea behind the different edge computing proposals is

to bring the cloud closer to where the end devices are; that is why edge computing

paradigms are considered next-generation cloud computing [112]. Alliances between

academia and industry have formed to promote and encourage the adoption of dif-

ferent edge computing paradigms, by providing use cases and extending some of the

cloud platforms to serve the new edge computing requirements. Open Fog Con-

sortium for Fog Computing, Open Edge Computing for Cloudlets, and European

Telecommunications Standards Institute (ETSI) manages MEC via the respective

Industry Specifications Group (ISG), are the alliances formed to date.

2.1.1 Edge Computing Paradigms

A cloudlet is a trusted single layer of resource-rich server or a cluster of servers

connected to the internet and available for use by nearby mobile devices. In such

architecture, services are instantiated at a nearby cloudlet, then users can start ac-

cessing services via a one-hop wireless connection [103]. Fog computing is proposed

as a continuum from cloud to things. This continuum fills the gap between cloud

and Internet of Things (IoT) devices, in an N-Tier architecture. To date, there is

no agreed-on definition of what a fog node is [82]. Open fog consortium, now Indus-

trial Internet Consortium (IIC), and their technical partners constructed a detailed

system architecture for fog nodes and networks [13]. ETSI MEC framework defines

the general entities involved at the system, host, and network levels. The reference

Amir Mohamad - School of Computing

2.1. EDGE COMPUTING OVERVIEW 10

architecture shows the functional elements that comprise the edge system and refer-

ence points between them [45]. MEC uses commodity servers deployed at the edge of

the Radio Access Network (RAN) to provide the promised 5G ultra-low latency, user

experience and cognition continuity, and reliability for mobile, IoT, and Industrial

IoT (IIoT) applications/services [110]. Fog, Cloudlets, and MEC can complement

one another. For instance, fog can make use of cloudlets as fog nodes [42,82] and Fog

RAN is one of the proposals for Fog deployments in the RAN.

Edge computing means different things to different stack holders. To tackle this

ambiguity, the Linux Foundation’s “State of the Edge” project has developed a widely

accepted taxonomy of edge types [17], see Figure 2.1. Regardless of the type, edge

computing has two main components, edge infrastructure and edge software stack

and networking.

User Edge Service Provider Edge

In
te

rn
e

t Ed
ge

Microcontroller-based, Highly-
Distributed in the Physical World

Last M
ile

 N
e

tw
o

rks

Includes IoT (headless) and End User
Client Compute in Accessible

Locations
Server-based Compute in Secure

Locations

Constrained
Device Edge

On-Prem Data
Center Edge

Smart Device Edge

Server-based Compute in
Traditional Cloud Data Centers

Centralized
Data Center

Server-based Compute at Telco
Network and Edge Exchange Sites

Access Edge

Server-based Compute at Regional
Telco and Direct Peering Sitres

Regional Edge

Typically owned and operated by users / enterprises but also SPs via CPE

Increasing HW + SW customization, resource constraints and deployment scale Increasing HW + SW customization, resource constraints and deployment scale

Shared resources (XaaS), typically owned and operated by Service Providers (SPs)

Distributed in accessible to semi-secure locations Inside secure data centers / Modular Data Centers (MDCs)

Latency critical applications Latency sensitive applications

Embedded software Increasing cloud-native development practices

Figure 2.1: Types of edge in edge continuum, reproduced with permission from [17].

Amir Mohamad - School of Computing

2.1. EDGE COMPUTING OVERVIEW 11

Edge Infrastructure

The diversity of use cases addressable by edge computing has resulted in a wide

range of edge hardware that will continue to diversify [17]. Edge is a distributed cloud

and most cloud hardware vendors will add edge to their portfolio; however, the form

factor will be diverse to match the diversity of edge use cases. Edge is to support a

continuum of requirements that extends from where the cloud ends all to users’ end

devices. As such, edge hardware is to range from regular sized server racks in the

Central Office (CO) to a smart meter/camera. For example, micro edge data centers,

such as those attached to light poles and street-side cabinets, are especially suited for

smart city and IIoT use cases.

Edge Software

Specialized edge software is required for application delivery, managing edge hard-

ware, and moving workloads around edge locations [17]. Edge software is a complete

stack that is expected to benefit from the best practices learned from hyperscalers,

IoT, web-scale service provisioning, and Content Delivery Network (CDN). As will

be shown in Figure 2.10 in Section 2.3, the Linux Foundation Edge (LF-Edge) stack

is an example of an edge stack that spans vertically through infrastructure and ap-

plication layers and horizontally spans different types of edge [74]. On the one hand,

some edge workloads can run in the cloud and at the edge. On the other hand,

edge-native applications are a class of software that cannot operate without the edge,

such as wearable cognitive assistance which utilizes both Augmented Reality (AR)

and Artificial Intelligence (AI) [17].

Amir Mohamad - School of Computing

2.1. EDGE COMPUTING OVERVIEW 12

2.1.2 Importance of Edge Computing

Edge Computing is no longer a hype; it is a reality and most network operators

and enterprises are investing in either building their own edge infrastructure, provide

edge offerings or planning to integrate and utilize edge computing as an integral part

of their operations. The edge computing market is projected to grow from $36B in

2021 to $87B in 2026 [83]. From 2019 to 2028, a cumulative Capital Expenditure

(CAPEX) of up to $800B is expected to be allocated to edge infrastructure [17].

Example Use Cases

Autonomous
Devices

Immersive
Experience

Internet of
Things (IoT)

Enabling Technologies

Drones
Assisted
Driving

Robots Medical

Virtual
Reality

Augmented
Reality 360

Video

Wearable
Cognitive
Assistance

Industrial Smart
Homes

Retail Healthcare

Cloud-native
Development

5G AI/ML
Hardware

Acceleration
(e.g., FPGA)

On-demand
NFV

Figure 2.2: A sample of edge computing use cases, reproduced with permission from
[74].

The phenomenal growth of edge computing is attributed to the roll-out of 5G

and other communication business use cases, see Figure 2.2. The next-generation

cellular network 5G requires innovation both on the network core and the radio sides.

Amir Mohamad - School of Computing

2.1. EDGE COMPUTING OVERVIEW 13

The network core is fully virtualized utilizing the Network Function Virtualization

(NFV) [44]. Also, network core functional modules are redesigned to make scaling

and provisioning more agile and flexible. Control and User Plane Separation (CUPS)

is a step towards achieving such agility. Control plane functions are split and kept

central in the core, while the user plane functions are pushed closer to end users.

This goes hand-in-hand with the service-based architecture (SBA) adopted by the

3rd Generation Partnership Project (3GPP) for the 5G core and the adoption of

cloud-native principles [53]. Scaling out, up and down, will provide more flexibility

for control and user plane functions, independently. Pushing the virtualized user

plane functions closer to end users requires a distributed compute infrastructure,

management, and orchestration mechanisms, provided by edge computing platforms.

On the radio side, the same edge computing is required to host the Open RAN (O-

RAN) disaggregated and virtualized components Distributed Unit (DU), Centralized

Unit (CU), and near real-time RAN intelligent controllers (nRT-RICs) [93]. The

disaggregated RAN functions must be provisioned with stringent time constraints [63].

Even though Telecom use cases represent the major driver behind the development

of edge computing, Virtual Reality (VR)/AR/Mixed Reality (MR) and autonomous

and connected vehicles are the leading use cases for prospective edge service providers.

However, the Communications Service Providers (CSPs) focus will be on optimizing

the network cost [115]. Edge computing is not only for CSPs but also for enterprises,

Over-The-Top (OTT) service providers, and cloud providers. Edge computing will

be an integral part of the future internet, which is why network operators and cloud

providers are keen to have a share in that future. Edge is mainly characterized

by location and last-mile connectivity. As shown in Figure 2.3, the same service

Amir Mohamad - School of Computing

2.1. EDGE COMPUTING OVERVIEW 14

is deployed in both a CO (green) and an AWS CloudFront location (red). For the

same user equipment (UE), because it has one-hop access to the green service it is

considered an edge service. Despite its physical proximity to the UE, the red service

is a core cloud service because the cellular operator cannot directly access the fixed

broadband assets. Even though the AWS CloudFront is considered an edge for the

devices connected via fixed broadband, it is considered a core cloud for cellular UE.

PDN/InternetPDN/Internet

C
e

llu
la

r
A

cc
e

ss

CDNCDN

AWS ClountFron
EL1

AWS ClountFron
EL1

AWS ClountFron
ELn

AWS ClountFron
ELn

AWS ClountFron
EL2

AWS ClountFron
EL2

Public loud (AWS,...)Public loud (AWS,...)

S

CO (vRAN)

EPC

CUCU SGW-USGW-U

MMEMME

SGW-CSGW-C

PGWPGW

HSSHSS

CG-NATCG-NAT

Fi
xe

d
 B

ro
ad

b
an

d

UEUEUEUE

RRURRU

S

Figure 2.3: Importance of both location and access/last-mile connectivity.

On the one hand, cloud providers (hyperscalers) are deploying distributed local

data centers/clusters in metro areas, intending to neutralize network operators access

network ownership advantage [99]. On the other hand, utilizing their unique location

with natural distributed existence and the ability to support mobility, network oper-

ators are utilizing NFV, Software-Defined Networking (SDN) [51], and cloud-native

technologies to cloudify and transform their access network. With the cloudified

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 15

access network, network operators will be able to host their own Virtual Network

Function (VNF) as well as third-party/enterprise workloads. Which explains why

most CSPs are counting on edge as a key to monetize 5G and is regarded as their

beach-front property [60]. Both network operators and cloud providers are missing

parts of the full edge picture and no single side can provide edge services without

collaborating with the other side. Over the past year, many MEC collaborations

between CSPs and hyperscalers have been announced [24,25,113].

2.2 Enabling Technologies

Edge computing itself is an enabler for most 5G use cases. Edge computing just

like cloud computing is powered by virtualization technologies such as hypervisor-

based virtualization (Virtual Machine (VM)) and OS-based virtualization (contain-

ers). VNFs and their rising successor Cloud-Native Network Function (CNF) are the

main deployment block over edge infrastructure. Most enterprise and network ser-

vices consist of component functions/VNFs forming a Service Function Chain (SFC)

and traffic should traverse these functions in a specific order. Finally, and despite

not being mandatory, SDN complements NFV and provides a single pane of glass

management, resulting in smoother and cheaper operation.

2.2.1 NFV and SFC

The monotonic increase in Operation Expenditure (OPEX) and CAPEX are driv-

ing CSPs to adopt innovative solutions and technologies to either stifle the increase

or reduce the OPEX and/or CAPEX. Moreover, CSPs are facing fierce competition

from OTT service providers, e.g. Netflix and YouTube, and cloud service providers,

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 16

which resulted in a continuous decline in both Average Return Per User (ARPU) and

Return on Invested Capital (RoIC), shown in Figure 2.4. Even worse, to cope with

the increasing traffic demands and to retain their current customer base, CSPs must

continuously roll out services and yet be able to achieve revenue to remain competi-

tive. However, rolling out services is not cheap and is usually coupled with increased

CAPEX and OPEX.

Figure 2.4: ROIC: Telecom Providers vs Cloud and OTT Providers ©Dell Technolo-
gies.

In 2012, to solve the dilemma, six of the world’s leading CSPs, with the help of

ETSI, introduced the NFV call to action [44]. Disaggregation is a key in the network

transformation journey that started in 2009 with the introduction of SDN. By decou-

pling/disaggregating the network function software from the specially-built hardware,

NFV enables the network function software to progress separately from the hardware

and vice versa. NFV disrupts and introduces many differences in how services are pro-

visioned. The instantiation of network function will be easily automated by utilizing

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 17

already available and mature cloud and virtual network technologies.

Orchestrator
NFVO

VNF
Manager(s)

NFV MANO

Virtualized
Infrastructure

Manager(s)

OSS/BSS

Service, VNF and Infrastructure Description

EMS3

VNF3VNF2

EMS2

VNF1

EMS1

NFVI

Figure 2.5: ETSI NFV Architecture Framework, reproduced with permission from
[47].

ETSI’s NFV ISG is responsible for creating standardization documents to give

CSPs and vendors a reference NFV architecture that can be used to develop plat-

forms and seamlessly interoperable tools. Since its inception, the NFV ISG has

produced four releases of NFV specifications, the fourth release targets enhancing

the NFV framework and providing support for 5G and novel fixed access network

deployments. The most important document is the NFV Architecture Framework

shown in Figure 2.5 [47]. The ETSI NFV architecture consists of four components,

Network Function Virtualization Infrastructure (NFVI) and the related Virtualized

Infrastructure Manager (VIM), the Management and Orchestration (MANO) mod-

ule, and the VNFs. The architecture defines and standardizes the interfaces between

different components, those founded by the architecture, (e.g. VIM and MANO),

and the already existing conventional components such as the Element Management

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 18

System (EMS) and the Operation Support System (OSS)/Business Support System

(BSS). NFVI represents all hardware and software components that represent the

environment on top of which VNFs will be deployed and managed [47]. NFVI could

span single or multiple sites/locations called NFVI-points-of-presence (NFVI-PoPs).

A virtualization layer is required to abstract the hardware resources and disaggregate

VNFs from the underlying hardware.

VIM is responsible for controlling and managing the interaction between the

VNFs, Network Function Virtualization Orchestrator (NFVO) or Virtual Network

Function Manager (VNFM) and the NFVI different compute resources. On the one

hand, VIM is responsible for managing the resources by monitoring the available in-

ventory of resources belonging to different hypervisors, resource allocation to VNFs

VMs, resource reclamation and energy efficiency. On the other hand, VIM reports to

north bound components, (e.g. MANO), regarding the status of deployed and running

VNFs, analysis of performance issues causes, and infrastructure fault information.

The VNFM manages VNFs life-cycle management, from instantiation to termina-

tion going through migration and replication. A VNFM can serve single or multiple

VNFs. NFVO manages the life-cycle of network services (SFCs). The orchestrator

interfaces with VNFM to follow the status of deployed VNFs and takes corrective

actions as required. The orchestrator also interfaces and communicates with OSS to

receive network services deployment requests and with BSS updates billing and other

business-related information. The trigger for deploying network services comes from

the OSS by sending the service descriptor. The service descriptor is typically writ-

ten in one of data modeling/orchestration languages such as the YANG modelling

language used with Internet Engineering Task Force (IETF) Network Configuration

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 19

(NETCONF) Protocol or the Topology Orchestration Specification for Cloud Applica-

tions (TOSCA) language. ETSI hosted Open Source Management and Orchestration

(OSM), an open-source project that uses NETCONF YANG [96], and TOSCA is

used with Linux Foundation Networking (LFN) Open Network Automation Platform

(ONAP) project [75].

Service Function Chaining (SFC)

Network, enterprise and OTT services consist of a set of functions which are more

useful if not confined and restricted by location. Taking advantage of the agility that

NFV introduced, enables service providers to deploy service functions wherever and

whenever needed. SFCs provide the ability to define an ordered list of physical and

virtual service functions. These service functions/VNFs are stitched together to form

the service chain. Service chaining is a set of processes and technologies that CSPs

utilize to softwarize network services configuration [33]. Unlike the pre-NFV era,

software-based service chaining provides the agility to dynamically design and deploy

SFCs. Sometimes SFC is referred to as the SDN version of Policy-based Routing

(PBR) [16].

IETF has put together an SFC architecture, shown in Figure 2.6, that applies

to a single network administrative domain [59]. The architecture consists of three

main components, the classifier, control plane, service functions and the Network

Service Header (NSH). The classifier receives and identifies if a traffic flow should

be forwarded to the service chain processing path. Control plane is responsible for

setting up the chain path. Classifiers are deployed at both ends of bidirectional

chains to route ingress and returning traffic. NSH is a data-plane encapsulation used

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 20

to determine the service functions/VNFs that make up a chain. NSH defines a new

data-plane protocol that adds an extra header between the transport layer header

and the network/internet layer header.

Classifier 1

Control Plane

(SDN-C)

2 3 Classifier

Figure 2.6: Service Function Chaining Architecture, reproduced from [59] per the
IETF Trust Legal Provisions (TLP).

There are many example use cases of using SFCs both in mobile cellular networks

and in data centers [58, 68]. The user traffic, in mobile networks, is tunnelled and

terminates at the Packet gateway (P-GW). Usually the IP traffic is not directly for-

warded to the application platform such as social network platform, but is steered

through an SFC. Doing so, CSPs are distinguishing their services to their customer

base, which tells how crucial SFCs are to CSPs business.

CSPs utilize different categories of SFCs, see Figure2.7:

Packet inspection: used to protect CSPs’ network as well as subscribers’ privacy.

Service functions used in this category are: Access Control List (ACL), Intrusion

Prevention System (IPS), Intrusion Detection System (IDS), Firewall (FW),

encryption/decryption, and others.

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 21

Traffic optimization: used to guarantee the contracted Quality of Experience (QoE)

and uses Performance Enhancement Proxy (PEP), such as TCP and video op-

timizers, video transcoding, traffic shaping, and Deep packet inspection (DPI).

Protocol proxies: functions that are used for certain purposes, such as Carrier-

grade NAT (CG-NAT), DNS cache, HTTP proxy/cache, parental control, ses-

sion border controllers (SBCs), and Malware detection and elimination (MWD).

Value-added services (VAS): such as Ad insertion, header enrichment, WAN ac-

celeration, URL filtering, and parental control.

UE

Access Services

UE

UE

UE

3GPP

xDSL

FTTH

CATV

P-GW

BNG

OLT

Application

Platforms

(e.g. IMS)

CMTS Internet

Service Functions

1 2 3

FW

NAT

LB

MWD

Par.

CTRL

Head.

Enr.

TCP

Opt.

Vid.

Opt.

LI
DPI

- UE: User Equipment - 3GPP: 3rd Generation Partnership Project - P-GW: Packet Gateway - DSL: Digital Subscriber Line

- BNG: Broadband Network Gateway - FTTH: Fiber to the Home - OLT: Optical Line Terminal - CATV: Cable TV

- CMTS: Cable Modem Termination System - NAT: Network Address Translator - LB: Load Balancer - DPI: Deep Packet Inspection

- MWD: Malware Detection - LI: Lawful Interception

Figure 2.7: Various end-to-end carrier networks and service functions sorted into
categories 1, 2 and 3, reproduced from [58] per the IETF Trust Legal Provisions
(TLP).

In data centers, SFCs can be categorised in two broad categories, access SFCs and

Application SFCs. Access SFCs are designated to service entering and leaving traffic

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 22

from data center while the traffic targeting applications is served by application SFCs,

see Figure 2.8.

As can be seen in Figures 2.7 and 2.8, both mobile network and data center use

cases are mostly sequential SFCs (without branching). As such, our focus in this

thesis will be on the placement of sequential SFCs. The realization of SFCs is a two-

step process, first, the service functions are instantiated and deployed, and second, a

mechanism is used to configure the forwarding plane devices to steer the SFC traffic

in the specified order as described by the SFC descriptor. Two mechanisms are used

for SFC traffic steering, either using the IETF NSH [100] or an SDN-based method

that utilizes port pairs, port pair groups and port chains [16]. On the one hand, NSH

necessitates that forwarding devices (classifier or service function forwarder) in the

service domain be aware of the new header to parse and process the NSH header

properly. On the other hand, NSH can exchange meta-data along the service chain

path as well as provide a proof-of-transit for packets in virtualized environments [32].

The SDN-based approach, aka bump-in-the-wire, does not require any added headers

and hence any SDN-aware forwarding device can handle and correctly forward the

SFC traffic.

NFV Drawbacks and Problems

Since its inception, NFV technology has faced many challenges and problems that

resulted in a decline in NFV adoption [40, 89]. The main reason is that CSPs were

utilizing NFV as a way of running specially-built network appliances in VMs, as

a result of vendors packaging the conventional network functions in VMs. In this

transformation, CSPs overlooked the operations side in hopes of utilizing their legacy

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 23

Access SFCs

EP/WL

WOC

Border Router

Edge-FW

MON

Seg-FW

ADC ADC ADC

MON MON MON

App-FW App-FWApp-FW

WL/WEB WL/WEB WL/WEB

Application

SFCs

- EP: End Point - WL: Workload - MON: Monitoring

- WOC: Web Optimization Control - ADC: Application Delivery Center

- Edge-FW: Edge FW - Seg-FW: Segment FW - App-FW: Application FW

Figure 2.8: Service function chains in data center, reproduced from [68] per the IETF
Trust Legal Provisions (TLP).

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 24

management and operation; this resulted in difficulties in streamlining operation and

zero-touch management [72]. Provisioning SFCs has also been challenged due to

restrictions on the number and variety of VNFs in SFCs [52]. The main reason for

this drawback is that back in 2012, when operators presented the NFV call to action

[44], most cloud-native tools such as Kubernetes, Helm, Terraform and others were

generally unavailable. As a remedy, a corrective action has started to turn the wrong

direction CSPs started building a “Teclo cloud” to the right direction of building a

“Cloud-native Telco” [72]. That is to adopt a complete cloud-native paradigm and

technological tool chain; instead of lifting the network functions software from their

specially-built hardware, package them in virtualized containers, and build the Telco

cloud to host them. In April 2022, Google and LFN announced the Nephio project

that envisions providing cloud-native Kubernetes (K8s)-based carrier-grade platform

that simplifies the VNFs provisioning over large-scale edge deployments [2]. Nephio

is planned to provide scalability, reliability, and efficiency for all network operations

based on true cloud-native automation.

2.2.2 Software-Defined Networking (SDN)

The term Software-Defined Networking was coined in an MIT Technology Review

article in 2009 [55]. However, network programmability started before in 1995, with

active networks which proposed including the forwarding instructions in a capsule (in-

band programming) or using out-of-band programmable switches and routers [51].

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 25

SDN Application SDN Application

Network

Element

SDN controller

Network

Element

Network

Element

SDN northbound interfaces (NBIs)

SDN southbound interfaces

Application layer

Application plane

Control layer

Controller plane

Infrastructure layer

Data plane

A-CPI: Application-controller plane interface

D-CPI: Data-controller plane interface

Figure 2.9: Basic SDN components.

In 2008, the control/configuration protocol OpenFlow was introduced in [84], as

an experimentation tool for researchers without having the network equipment ven-

dors expose the details of their switches. The authors realized the potential that

OpenFlow opened and how it can be used to control and define data flow using

software and hence came the SDN concept. SDN makes the network/internet pro-

grammable by disaggregating/decoupling the control plane from the data plane and

consolidating the network control software in a logically centralized Highly Available

(HA) way. The SDN Controller (SDN-C) is where all network control logic is consoli-

dated, as illustrated in Figure 2.9 it has two standardized interfaces, the Northbound

Interface (NBI) and the Southbound Interface (SBI). The NBI is to communicate

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 26

with SDN/network programming applications and is typically done using RESTful

API calls. The SBI is used for communication between SDN-C and data/forwarding

plane switches and routers. Several protocols have been used and standardized for

SBI, such as OpenFlow, NETCONF, Open Virtual Switch Database (OVSDB) and

Cisco’s OpFlex. With SDN, the automation of network control, management and op-

eration is much easier and less error-prone. The SDN-C is continuously updated with

the status and topology of data/forwarding plane elements. The SDN applications

need only to request high-level intents/goals, such as packets from source IP address

X to destination IP address Y should be dropped. The SDN-C uses its topology

knowledge to translate these high-level intents into low-level forwarding rules and

install them into the respective switches. Indeed, SDN is not a necessity when it

comes to adopting NFV, however, the integration of SDN in an NFV environment

has many benefits, the most valuable is inheriting the flexible programmability of

forwarding elements. In an NFV architecture, the SDN-C can be deployed part of

the VIM, virtualized and deployed as a VNF, part of the NFVI, part of the OSS, or

as a conventional Physical Network Function (PNF) [46].

Several SDN industry consortia and initiatives were formed, Open Networking

Foundation (ONF) [12] and Open Daylight (ODL) initiative [10], then many more

network vendors and operators joined. Since its inception, SDN has gained popularity

in many industries (cloud providers and Telecom providers and vendors) with many

successful realizations like Google’s wide-area traffic management system [62] and

Nicira’s network virtualization platform [92]. Progression on the SDN side has never

stopped and continued at a fast pace. For example, ONF launched several new SDN

projects like Stratum, µONOS and the next generation SDN (NG-SDN) [11]. The

Amir Mohamad - School of Computing

2.2. ENABLING TECHNOLOGIES 27

SDN pattern/design philosophy has been adopted in many technological advances

such as Software-defined WAN (SD-WAN) and Software-defined RAN (SD-RAN).

2.2.3 Edge Key Requirements and Challenges

In addition to the requirements and challenges facing cloud service providers,

due to its distributed nature, edge computing service providers are tasked to address

additional requirements. The main requirements an edge computing platform/offering

should fulfil are:

• Efficient resource utilization: With the rising demand on edge resources,

efficient resource utilization will play a crucial role in edge computing offerings.

• Edge computing resources distribution: Edge computing location should

extend beyond cloud computing and data centres closer to end users and data

sources. To provide the promised high performance and low latency, edge loca-

tions should be deployed on a large-scale but be small-sized.

• Converged edge platform: Edge sites should be a converged platform of

compute, storage, networking, and application resources. Which will enable

edge sites to provide the edge intelligence that covers use cases requiring real

time, optimized, secured and private, and localized processing.

• Zero-touch provisioning and automation: Edge sites/locations, will be

vastly distributed and hence automating the infrastructure monitoring and trou-

ble shooting, service provisioning, self-healing, upgrading and remote manage-

ment and operation is necessary to have.

Amir Mohamad - School of Computing

2.3. EDGE COMPUTING PLATFORMS 28

2.3 Edge Computing Platforms

Since edge computing is a distributed version of cloud computing, it is normal

to start with the same virtualization technologies that has been used for a decade

in cloud computing, in particular VMs or hypervisor-based virtualization. Most

early edge computing platforms, adopted the same virtualization technology along

with its tool chain. Openstack is the most adopted open source Cloud Management

System (CMS). With the introduction of micro-services architecture for designing

cloud-hosted applications and utilizing the containers as a lighter packaging com-

pared to VMs, the world witnessed the rise of containers and container orchestration

engines, such as K8s [41]. Since the introduction of K8s and service mesh among

other tools, the cloud-native term was coined to refer to the culture and design prin-

ciples of applications designed to be hosted and operate, specifically in the cloud.

Containers are the formal best virtualization/packaging mechanism for cloud-native

applications. Since edge computing sites are resource limited compared to cloud data

centers, the cloud-native ecosystem is the best fit for developing edge computing plat-

forms and workloads. As a result, most of the edge computing platforms are based on

container/OS-based virtualization and utilize K8s for orchestrating platforms’ micro-

services and containerized workloads/edge-native applications. It is worth mentioning

that the next wave of VNFs will be the CNFs. CNF is a cloud-native application that

implements network functionality. Each CNF consists of one or more micro-services

and is deployed and managed using cloud-native principles.

LF-Edge is an umbrella that hosts a variety of edge platforms that fulfil several

variations of edge use cases [3], with the aim of building open, interoperable frame-

work for edge computing, see Figure 2.10. Some platforms are tailored towards home

Amir Mohamad - School of Computing

2.3. EDGE COMPUTING PLATFORMS 29

MCU-based
Devices

Smartphones, PCs, ruggedized
IoT gateways and servers in

accessible to semi-secure areas

Servers in Secure on-prem
data centers, MDCs

 User Edge

Server-based Compute at Telco
Network and Edge Exchange Sites

Server-based Compute at Regional
Telco and Direct Peering Sites

Last M
ile

 N
e

tw
o

rks

Regional EdgeRegional EdgeAccess EdgeAccess Edge

On-Prem Data

Center Edge

On-Prem Data

Center Edge

Smart Device

Edge

Smart Device

Edge

Constrained Device

Edge

Constrained Device

Edge

Embedded
Devices Servers in traditional

cloud data centers

Access
Networks

Aggregation
Hubs/COs

Regional Data
Centers

Centarlized
Data CentersDistributed Devices and Systems Buildings / Factories / Smart Homes

 Service Provider Edge

Dedicated, Operated Shared, XaaS

Lo
catio

n
s

Infrastructure

Applications

Figure 2.10: LF Edge stack spanning different edge types and covers infrastructure
and application layers, reproduced with permission from [74]

and IoT edge solutions, like Baetyl [5], Home Edge [8], and EdgeX Foundry [6]. Fledge

is another project that is focused on industrial and mission-critical use cases. Fledge

project [7] works and collaborates with another LF Edge project EVE [9]. Fledge is

also integrated with the LF Edge flagship project Akraino Edge Stack [4]. Launched

in 2018, Akraino project targets edge solutions for Telco, enterprise, and IIoT, and has

many blueprint families, each is a declarative configuration of a complete end-to-end

edge stack and addresses specific edge use cases with common/relevant specifications

and requirements. With the seed code submitted by WindRiver, StarlingX is a fully

integrated edge cloud stack that addresses the needs of various use cases [14]. Many

general purpose platforms are not tailored to specific set of use cases, they provide

Amir Mohamad - School of Computing

2.4. SERVICE PROVISIONING 30

the required software stack for managing the infrastructure of distributed edge loca-

tions, each with resource-limited devices such as Raspberry Pi. Rancher K3S [15], is

a lightweight K8s distribution built for IoT and edge computing that require a fully-

contained cluster at the network edge. KubeEdge [1], is a K8s native edge computing

framework that has its control plane located in the cloud and can manage more than

one edge location. Virtual Kubelet [18], is positioned between K3s’ fully-contained

edge clusters and KubeEdge’s cloud-based control plane,thus providing a hierarchy of

edge servers/locations and controllers. Virtual Kublete enables edge providers to ex-

tend their operation and collaborate with external infrastructure providers including

user devices.

2.4 Service Provisioning

At the edge, the service provider is closer to the user and has the visibility and

the granularity which are not always available at the core cloud. Taking actions to

enhance the quality of experience of a user is much easier, more feasible and can

be done at a millisecond scale. Compared to the core cloud where all users look

the same, taking action is more likely to be seconds after the triggering event took

place. Therefore, the edge is the place where service providers can instantly control

the quality of the services delivered. Also, it is the place to accurately and properly

manage and enhance the user experience.

2.4.1 Service Placement and Resource Allocation

When it comes to service provisioning at the edge, numerous factors are involved

such as, optimal placement of services, resource allocation for services [80, 116, 120],

Amir Mohamad - School of Computing

2.4. SERVICE PROVISIONING 31

service migration [80,116], service replication [48], user mobility, continuous end user

and service monitoring, continuous infrastructure monitoring, to name a few. While

most of these factors seem to be independent of each other, they are closely re-

lated and affect each other. For example, service placement is dependent on resource

provisioning and allocation. Also, service placement, replication, and migration are

closely related. User mobility and the ability to profile and then predict user mobility

affects placement, replications, and later migration decisions. Service placement al-

gorithms must consider the agreed-on Service Level Agreement (SLA). Furthermore,

placement algorithms should consider the trade-off between the SLA requirements

and resource utilization (the cost) [30]. Most of the proposed placement algorithms,

viz. [19,23,29,94], formulate the placement as an optimization problem and use either

integer linear or dynamic programming. A game theoretic algorithm could also be

used to produce a solution that addresses the trade-off between SLA requirements

and resource utilization/cost.

Since the operational environment is more dynamic at the edge compared to the

core cloud, services should be designed for failure, be robust and more reliable [34].

The micro-services architecture is gaining popularity as a software architecture for

cloud-hosted applications [41].

Service orchestrator manages the life-cycle of different components that comprise

the main service and ensures that the main service is continually available, even

is a failure is detected [114]. For example, in reference [30], the authors propose

provisioning CDN as a Service (CDNaaS), by decomposing the CDN into four services:

virtual transcoders, virtual streamers, virtual caches, and CDN-slice coordinator.

Treating the four services as VNFs and utilizing the network slicing technology, they

Amir Mohamad - School of Computing

2.4. SERVICE PROVISIONING 32

were able to provision the CDNaaS service over an isolated distributed network of

edge nodes across a multi-cloud domain.

According to the work in [111], there is an inevitable convergence of NFV, 5G,

and edge computing. On the one hand, the ETSI MEC is considered to be one of

the enabling technologies to the next-generation 5G mobile network. On the other

hand, ETSI also introduced the NFV to convert the networking infrastructures into

commodity servers with VNFs deployed on top. MEC, NFV, and SDN [37], are the

technologies through which network slicing is enabled [21, 90]. In addition to NFV

and SDN, edge computing, especially MEC, is an integral part of network transfor-

mation. Edge computing extends the NFVI to the access network and complements

the continuum from COs or Evolved Packet Core (EPC) the whole way to RAN and

can extend further to Consumer Premise Equipment (CPE).

2.4.2 Service Migration and Replication

Migration of workloads hosted in VMs and/or containers is an example of a so-

lution that is to be customized to fit the edge’s distributed nature. Typically, in

the cloud, resource utilization/consolidation and performance requirements are the

main triggers for migration, while at the edge, latency, user mobility and data privacy

are additional triggers. Moreover, resource-constrained edge nodes and bandwidth-

limited links, add challenges to the migration process. At the edge, take MEC as an

example, user mobility represents the main challenge that degrades service quality,

even in small set-ups [49, 50, 57]. To guarantee service continuity and satisfy ser-

vice performance requirements, migration is how the service providers can fulfill the

performance requirements.

Amir Mohamad - School of Computing

2.4. SERVICE PROVISIONING 33

Since the introduction of NFV, many research papers have addressed the ser-

vice migration and replication problem from different perspectives, with different

assumptions, and with many overlooked realistic details. While most of the papers

acknowledge the resource-constrained nature of edge servers, the majority are propos-

ing service replication (over-provisioning) as a form of proactive migration [48–50].

Also, some papers, for example [49], are considering a one-to-one cardinality of a

user-service relationship. Indeed, triggering a mobile call hand-over is done on a

single user basis, this should not be the case when it comes to services at the edge.

The number of replicas and the efficient placement of those replicas is another side

to investigate, it was briefly discussed as a challenge in [49].

Migration techniques can be divided into two categories, reactive and proactive

migration, as summarized in Table 2.1. Proactive migration is further divided into

multiple replicas and prediction-based (predicting user mobility). Some factors are

critical to the migration process and to which type of migration to choose. First, how

the service/function maintains its state data. Stateful services, are those services

whose state data is tightly coupled with the service itself. Consequently, state data

migration is a crucial part of the service migration process and impacts the duration of

service downtime until restarted in its new host. Second, whether the service/function

is VM-hosted or container-hosted. Containerized services are more suitable for both

reactive and multiple replicas proactive migration.

The authors of [28] propose a service migration of stateful Telecom services. They

proposed to migrate a complete service chain by utilizing the service orchestrator

and service functions managers. Also, they proved that decoupling the state from the

Amir Mohamad - School of Computing

2.4. SERVICE PROVISIONING 34

Table 2.1: Comparison of Migration Techniques & their Relation with Replication

Reactive Proactive Migration
Migration Multiple

Replicas
Mobility Pre-
diction

Utilization & Overhead Efficient (least
overhead)

Inefficient
(Over-
provisioning)

Moderate
(prediction
overhead)

Stateless vs Stateful services Better with
stateless

Good for both Stateless is
better for very
short looka-
head window

Down time Stateful (con-
siderable),
Stateless (neg-
ligible)

Negligible Depends on
lookahead win-
dow length

Total migration time Relatively long Negligible Should be neg-
ligible to work

Containerized Promptly re-
sponsive

best fit Better for short
lookahead win-
dow

Performance
VM-based Longer migra-

tion time
Not practical
(overhead)

Requires longer
lookahead win-
dow

service logic, results in a smooth and more predictable migration time. Service replica-

tion as a proactive service migration mechanism is proposed in [50] which is valid only

for container-hosted lightweight services. This service migration technique achieves

almost zero downtime but at the expense of a slightly higher over-provisioning over-

head. Migration based on user mobility prediction represents a compromise between

the resource efficient reactive migration and the downtime efficient replication-based

proactive migration. The success of this technique depends on the prediction accu-

racy, which in turn depends on the length of the lookahead window among other

things.

Indeed, efficient resource utilization is critical for edge computing; however, we

Amir Mohamad - School of Computing

2.4. SERVICE PROVISIONING 35

found there is a shortage of papers addressing this aspect. As well, very few of

the surveyed papers addressed sharing VNFs when deploying SFCs considering the

varying traffic demand and operation dynamics. Moreover, none of the surveyed

papers considered a practical priority-based SFC placement and the time urgency

of time-critical premium services. As such, our research is focused on satisfying

SFC requests the most resource-efficient way by utilizing VNF sharing and partial

fulfilment of SFC requests.

Amir Mohamad - School of Computing

Chapter 3

Improving Edge Resource Utilization

“NFV was Training Wheels,

Cloud-Native is the Real Deal”

Peter Worndle, Ericsson

3.1 Introduction

The next generation of mobile networks (5G) is expected to address the perfor-

mance requirements of diverse use cases in different industries, massive machine-type

communications (mMTC), enhanced mobile broadband (eMBB), and ultra-reliable

low-latency communications (URLLC), are the categories of addressed use cases. 5G

requires innovation both on the network core side as well as the radio side. The

network core is going to be fully virtualized utilizing the Network Function Virtual-

ization (NFV) [44]. Control and User Plane Separation (CUPS) of the cellular core is

a step to achieving service agility. Control plane functions are split and kept central

in the core, while the user plane functions are pushed as close as possible towards

end-users. Scaling out will be more flexible for control and user plane functions,

36

3.1. INTRODUCTION 37

independently. This goes hand-in-hand with the service-based architecture (SBA)

adopted by the 3rd Generation Partnership Project (3GPP) for the 5G core and the

adoption of cloud-native platforms and tools [53]. On the radio side, Radio Access

Network (RAN) components are disaggregated into Radio Unit (RU), Distributed

Unit (DU), and Centralized Unit (CU). DU is installed at cell sites, and CU is pooled

and deployed in Base-band Unit (BBU) Hotels, or Central Office (CO). Edge Com-

puting is witnessing phenomenal growth [115] and is a major player in 5G and some

enterprise use-cases. Edge computing will provide the required platform which will

host the separated and virtualized user plane functions [111]. Likewise, edge comput-

ing secures the required infrastructure to host the open RAN (O-RAN) disaggregated

and virtualized components: DU, CU, and near real-time RAN intelligent controllers

(nRT-RICs) [93]. On both core and RAN sides, NFV, Software-Defined Networking

(SDN), and edge computing are to play a principal role [111].

A virtualized infrastructure of Telco clouds extending from the network core to

the perimeter of the access network, forms a layer that can be used to host delay-

sensitive network services and applications of service providers. The layer could even

be extended to the cell-sites. With the growing interest in delay-sensitive applications,

such as Augmented Reality (AR)/Virtual Reality (VR), telehealth, online gaming,

autonomous vehicles, and content delivery services, the demands put on the edge will

be high and no doubt will continue to grow significantly as the field deployment of

5G networks progresses.

In Multi-access Edge Computing (MEC) as the mobile networks version of edge

computing, hosted services will have access to user mobility data as well as wireless

channel-related measurements. With such visibility, service providers will be able to

Amir Mohamad - School of Computing

3.1. INTRODUCTION 38

take actions to enhance both the Quality of Service (QoS) and users’ perceived Quality

of Experience (QoE) at a millisecond scale. Having access to such information would

not be viable anywhere else; that is why network edge, especially MEC, is regarded

as the monetization arm that Communications Service Providers (CSPs) will utilize

to profit and cover the cost of upgrading their infrastructure and services. Edge

has limited resources compared to the core cloud. Considering the anticipated high

demand for edge resources and the importance of the edge being a precious asset for

CSPs, the efficient utilization of edge resources will play a pivotal role in the fulfilment

of delay-sensitive requirements of services and applications.

Virtual Network Function (VNF)s that are assigned all required compute and

bandwidth resources, are expected to operate at their full capacity. However, due

to changing operation conditions, some VNFs might be underutilized, that is to re-

ceive and process traffic less than its full capacity. With SFC requests continuously

arriving, it would be more resource-efficient to utilize/share the unused capacity of

deployed underutilized VNFs first and only deploy a new VNF instance if no deployed

underutilized VNF of the same type exists. As shown in Figure 3.1, there are three

SFCs with different number of VNFs and the total number of CPU cores required

per each SFC. SFCs may have common VNFs; for example, in Figure 3.1(b), sfc1

and sfc2 have V3 in common, and V4 is common between sfc2 and sfc3.

The VNF sharing should be done while being mindful of the SFC performance

requirements. We assume that both transmission and processing delays are negli-

gible. Therefore, we decide to use maximum end-to-end delay as the performance

requirement that has to be satisfied.

Amir Mohamad - School of Computing

3.1. INTRODUCTION 39

V1 V2 V3 V4 V5

V1 V2 V3

V4

V4 V5

SFC1

SFC2

SFC3

V1 V2 V3

V4 V3

V1 V2 V4 V5

SFC1

SFC2

SFC3

VNFs and required CPU cores

9

cores

4

cores

13

cores

5

cores

9

cores

3

cores

5 cores 3 cores 1 core 3 cores 2 cores

Shareable

VNF

Non-shareable

VNF

No-sharing

Sharing

(a)

(b)

(c)

Figure 3.1: Compute resources savings when sharing VNFs among SFCs

Amir Mohamad - School of Computing

3.2. RELATED WORK 40

To this end, we

• demonstrate the gain in efficient resource utilization and the number of satisfied

Service Function Chain (SFC) requests by sharing VNFs across different SFCs.

• introduce VNF sharing-based SFC placement. We formulated the SFC place-

ment and sharing as an integer linear program (ILP) model to demonstrate the

VNF sharing gain. The objective is to minimize the total deployment cost,

optimize resource utilization and satisfy QoS requirements/constraints.

• Compare the number of satisfied requests and average required resources per

SFC request of our sharing-based placement against no-sharing placement.

The remainder of this chapter is structured as follows. In Section 3.2, we present

related work. Proposed sharing-based SFC placement, network model, VNFs, SFCs

and problem formulation are detailed in Section 3.3. Performance evaluation, sim-

ulation settings, simulations and results will be covered in Section 3.4, Section 3.5

summarizes chapter findings.

3.2 Related Work

With the introduction of NFV [44], service provisioning became more agile, and

the placement of service functions/VNFs as the building block of SFCs started to

gain traction. The wheel was not reinvented; researchers started by building on an

already existing body of research on cloud computing, VM Placement (VMP), and

Virtual Network Embedding (VNE). Due to the differences between VNFs placement

and VMP [35], more research into the area was still needed.

Amir Mohamad - School of Computing

3.2. RELATED WORK 41

Since 2012, considerable research work has been conducted; some are generic

VNF/SFC placement [20,27,65,67,69,79,86,94,106,117], while others are more into

specific settings and use cases, like VNF placement at the edge-central cloud and

service placement and replication in 5G edge [29,48,50,64,73]. The main goal in [73]

is to minimize both end-to-end delay and deployment cost of mission-critical delay-

sensitive service chains, and the SFC placement is formulated as a Mixed Integer

Program (MIP) and further approximated using the tabu search algorithm. The work

in [29] proposes VNF placement on the edge-central cloud in a way that optimizes

resource utilization and satisfies QoS requirements using analytic queuing and MIP

models. In [64], the authors propose optimizing the QoS of Cloud RAN (C-RAN) by

dynamically configuring Remote Radio Unit (RRU) to proper BBU sectors according

to the varying traffic conditions. For further details on VNF placement, [70] is a

survey on VMP and VNF placement.

3.2.1 VNF Sharing

“VNF sharing” is one of the techniques used to reduce the cost and efficiently

utilize resources. For example, as shown in Figure 3.1(c), the required resources to

satisfy sfc1, sfc2, and sfc3 are 26 cpu cores compared to only 17 cores when VNF

sharing is used. Unlike some surveyed VNF sharing papers, which consider all VNFs

are shareable, in this example, having V4 as non-shareable, the VNF sharing is still

able to use 35% fewer resources.

We remark that in the literature, more than one term is used to refer to the VNF

sharing concept. For example, the authors of [77] and [85] used the term “multi-

tenancy” and “VNF merging,” in [76] the authors used “VNF reuse” (VM reuse),

Amir Mohamad - School of Computing

3.2. RELATED WORK 42

task and request scheduling are used in [101] and [119], and the most common term

was “VNF sharing,” used in [39,81,87,88,118].

There is an increasing interest in VNF sharing among CSPs and OTT service

providers. For example, deploying evolved packer core (EPC) VNFs on the public

cloud used to be a deserted and excluded idea; however, there is increasing deployment

of EPC VNFs on the public cloud. Moreover, sharing non-security-critical VNFs such

as mobility management across end-to-end 5G slices is getting attention [87]. In [39],

the authors proposed sharing the same CDN cache VNF (vCache) among ISPs with

common infrastructure. Consequently, VNF sharing can play an imperative role in

reducing the cost-of-service provisioning by efficiently utilizing resource-limited edge

environments. Excluding security reasons, not sharing VNFs may result in inefficient

resource utilization because of the idle/redundant capacity that is never used and

resource fragmentation [118].

In the majority of surveyed papers, the VNF/SFC placement is formulated as an

Integer Linear Program (ILP) model. After demonstrating the bottom-line perfor-

mance, a more practical heuristic placement algorithm is then presented. Sharing of

VNFs by more than one SFC flow is triggered by the fact that some VNFs could be

shared by SFC flows, such as anti-virus. At the time of this work, with the exception

of [86], none of the surveyed papers considered sharing deployed underutilized VNFs

while deploying new SFC requests. The work in [86] proposes sharing VNF among

SFC flows based on a predefined number of flows that a VNF can handle. The fixed

number of flows a VNF can handle does not reflect the changing operating condi-

tions and will still leave some VNFs underutilized. To the best of our knowledge, the

sharing/utilization of already deployed underutilized VNFs based on the currently

Amir Mohamad - School of Computing

3.3. PROPOSED PLACEMENT SCHEME 43

unused capacity in a way that adapts to operations dynamics was never proposed as

a way of satisfying more SFC requests with fewer resources and yet satisfying the

performance/QoS requirements.

3.3 Proposed Placement scheme

In our sharing-based placement scheme and upon the arrival of an SFC request,

the priority is to use already deployed, underutilized VNFs of the same type as those

in the SFC request at hand. At some point in the future, currently underutilized

VNFs will get fully utilized even without hosting guest SFCs; hence, any sharing

mechanism should take this into consideration. However, for demonstrating the ben-

efits of sharing-based placement, we assume that currently underutilized host VNFs

will remain so until the guest SFC(s) are concluded. We do not specify explicit start

and termination points for SFC requests; rather, the first and last VNFs of each SFC

are regarded as the source and destination, respectively. Moreover, we assume the

existence of an SDN Controller (SDN-C), which will take care of configuring forward-

ing plane switches to forward traffic according to the SFC selected path. An SFC

mechanism is assumed to be used in the CSPs’ service domain, either using Network

Service Header (NSH) or bump-in-the-wire technique that uses port-pairs, port-pair

groups, and port chains to configure SFCs.

It is worth mentioning that we mainly address and support sequential SFC re-

quests. However, to add the support of non-sequential SFCs to proposed placement

scheme, some preprocessing steps are needed. First, decompose the non-sequential

chain into two or more sequential chains. Second, do the placement of sequential

chains. Finally, merge the individual placement solutions at the branching VNFs to

Amir Mohamad - School of Computing

3.3. PROPOSED PLACEMENT SCHEME 44

4

1

8

32

6

5

V1 V2 V3

SFC Request

C1

C2

Figure 3.2: SFC request placement and the association of its VNFs with the substrate
network nodes.

get the solution for non-sequential SFC.

In the rest of this section, we will explain substrate network model and problem

formulation.

3.3.1 Substrate Network Model

The substrate network is modeled as a graph G(N,E), where N is the set of nodes

and E is the set of links. To be more generic, we modeled all our network nodes to

be capable of hosting VNFs. The links between nodes are directional, as shown in

Fig. 3.2, a link between nodes 1 and 2 means there are two links, one link from node

1 to node 2 and another link from node 2 to node 1.

Each node has its own compute resources, CPU cores and RAM. Each link has its

bandwidth capacity as well as its propagation delay, which is a function of its length.

When created, resources are assigned randomly to nodes and links. The substrate

network topology is fixed and described by a connectivity matrix. The description of

substrate network parameters is provided in Table 3.1.

Amir Mohamad - School of Computing

3.3. PROPOSED PLACEMENT SCHEME 45

Table 3.1: Substrate network parameters.

Parameter Description

N Set of substrate network nodes

E Set of substrate network links

cpuc(n) CPU capacity in cores of node n ∈ N

ramc(n) RAM capacity in GBs of node n ∈ N

cpuav(n) Available CPU cores at node n ∈ N

ramav(n) Available RAM GBs at node n ∈ N

Lnn′ A link exists from node n to node n′, n, n′ ∈ N

bwc(Lnn′) BW capacity in Mbps of link Lnn′

bwav(Lnn′) Available BW at link Lnn′

Del(Lnn′) Propagation delay of link Lnn′

3.3.2 VNFs and SFC requests

An SFC request consists of an ordered list of VNFs. VNFs are selected from a list

V of available already on-boarded VNFs. In the list of available VNFs, each VNF

has a type, CPU and memory requirements, and the maximum traffic flow it can

handle if assigned the resources required. Some VNFs, like firewalls, drop packets;

in that case, outflow should reflect such dropping. The outflow will be equal to the

inflow if a VNF does not drop or compress the inflow. As mentioned previously, some

VNFs can be shared among SFC flows while others are non-shareable. S(vi) is a flag

to determine whether VNF vi is shareable or not. Take, for example, request sfcj

shown in Figure 3.3; it consists of 3 VNFs. The resources required as well as other

parameters of each VNF, are shown (real numbers from our simulation). As we can

see, the max-flow is proportional to the resources assigned to VNFs. For example

Amir Mohamad - School of Computing

3.3. PROPOSED PLACEMENT SCHEME 46

V1 V2 V3

- S (Shareable) - D (Drops)
- NS (Not-Shareable) - ND (No Drops)

Max-Flow=146
Inflow=88
Outflow=88

Max-Flow=182
Inflow=88
Outflow=68

Max-Flow=109
Inflow=68
Outflow=50

CPU: 4
RAM: 8
S & ND

CPU: 5
RAM: 10
S & D

SFC j

CPU: 3
RAM: 6
NS & D

Figure 3.3: VNFs of sfci and their required resources, max-flows, inflows and out-
flows.

v2, v1 and v3 require 5, 4, and 3 CPU cores and can handle 182, 146 and 109 max-

flows, respectively. Once selected in sfcj, the inflow and outflow of VNFs should be

determined. As shown in Figure 3.3, the inflow of VNF vji+1, Fin(v
j
i+1), is the outflow

of the preceding VNF vji , Fout(v
j
i), for all vi ∈ sfcj. Description of VNF and SFC

request parameters are in Table 3.2.

3.3.3 Problem Formulation

We formulate our problem as an ILP model, where all decision variables are binary,

and some constraints are quadratic. With SFC request sfcj consisting of VNFs

vi, i ∈ [1, |sfcj|], our decision variables are; Xj
in if equals to one means a new instance

of VNF vi of sfcj is to be placed at substrate node n and Rj
in means that VNF vi of

sfcj is to share its traffic flow with already deployed underutilized VNF of the same

type at substrate node n. Decision variables and other parameters descriptions are

Amir Mohamad - School of Computing

3.3. PROPOSED PLACEMENT SCHEME 47

Table 3.2: VNF and SFC request parameters.

Parameter Description

V Set of available/on-boarded VNFs

vi Is a VNF, where vi ∈ V

cpu(vi) CPU cores required for VNF vi ∈ V

ram(vi) RAM GBs required for VNF vi ∈ V

Fmax(vi) Maximum inflow VNF vi can handle

S(vi) Flag to indicate VNF vi is shareable

Drop(vi) Flag to indicate that VNF vi drops/compresses inflow

sfcj SFC request j

|sfcj| Number of VNFs in sfcj

vji The ith VNF of sfcj

Fin(v
j
i) Actual inflow that VNF vi will be serving

Fout(v
j
i) Outflow VNF v will produce

Del(sfcj) Maximum end-to-end delay of sfcj

in Table 3.3.

Objective Function

The objective is to select the placement that minimizes the overall cost, hence

optimizing resource utilization. The cost of instantiating a new instance of VNF vji

includes the total required cpu, ram and bw costs. But when an already deployed

VNF of the same type vji exists, the cost only includes total required bw cost. The

objective function in equation (3.1) is formulated in a way to favor sharing over

instantiating and placing new VNF instances. The first term represents the cost of

compute resources in case of deploying a new instance of a VNF. The second term

Amir Mohamad - School of Computing

3.3. PROPOSED PLACEMENT SCHEME 48

Table 3.3: Decision variables and Constants.

Variable Description

Xj
in Binary decision for placing VNF vi of sfcj at node n

Rj
in Binary decision for sharing the flow of VNF vi of sfcj

with already deployed VNF of same type at node n

Di
n VNF of same type as vi already deployed at node n

Fav(D
i
n) Available unused flow of vi at node n

Uc(cpu) Unit cost of cpu at all nodes

Uc(ram) Unit cost of ram at all nodes

Uc(bw) Unit cost of bw at all links

is for the cost of bandwidth, either in the case of sharing or the case of deploying a

new VNF instance. Using different weights for objective function’s cost components,

may yield slightly different results. However, using equal weights does not affect the

generality of the analysis.

min

|sfcj |∑
i=1

∑
n∈N

[cpu(vji)Uc(cpu) + ram(vji)Uc(ram)]Xj
in+

Fout(v
j
i)Ucbw[X

j
in +Rj

in]

(3.1)

Constraints

Constraints are needed to ensure that our model will converge to a feasible solu-

tion. A feasible solution must have each VNF of an SFC request mapped only once

to a physical node. Moreover, the mapping should be either to place a new instance

or to share an already deployed instance, see (3.2).

Amir Mohamad - School of Computing

3.3. PROPOSED PLACEMENT SCHEME 49

∑
n∈N

Xj
in + Rj

in = 1 , ∀i ∈ [1, |sfcj|] (3.2)

Constraints (3.3) and (3.4) ensure that, when a sharing decision is to be taken,

there has to be an already deployed shareable VNF of the same type as the one in

hand, and there is enough available/unused flow that is enough for the current VNF

inflow.

∑
n∈N

Xj
in + Dj

i S(vi) R
j
in = 1, ∀i ∈ [1, |sfcj|] (3.3)

Fin(v
j
i) R

j
in ≤ Fav(D

i
n), ∀i ∈ [1, |sfcj|] (3.4)

For the placement decision Xj
in to be valid, there must be enough cpu and ram

resources at node n, constraints (3.5) and (3.6) ensure the availability of such compute

resources.

|sfcj |∑
i=1

cpu(vji) X
j
in ≤ cpuav(n), ∀n ∈ N (3.5)

|sfcj |∑
i=1

ram(vji) X
j
in ≤ ramav(n), ∀n ∈ N (3.6)

For any two consecutive VNFs vji and vji+1 of sfcj to be placed on two nodes n

and n′: first, there has to be a link Lnn′ connecting the two nodes, constraint (3.7);

second, the outflow of first VNF Fout(v
j
i) should not exceed available bandwidth at

that link bwav(Lnn′), constraint (3.8). In both constraints, the two terms (Xj
in + Rj

in)

and (Xj
(i+1)n′ + Rj

(i+1)n′) represent the four possible placement decisions our model

Amir Mohamad - School of Computing

3.3. PROPOSED PLACEMENT SCHEME 50

might take. First decision, to deploy new instances of vji and vji+1 at nodes n and n′,

respectively. Second, to share already deployed instances of vji and vji+1 at nodes n

and n′. Third, deploy a new instance of vji at node n and share a deployed instance

of vji+1 at n′. Fourth, share a deployed instance of vji at node n and deploy a new

instance of vji+1 at node n′.

Lnn′ (Xj
in + Rj

in)(X
j
(i+1)n′ + Rj

(i+1)n′) = 1

∀n, n′ ∈ N & ∀i ∈ [1, (|sfcj| − 1)]

(3.7)

∑
n∈N

∑
n′∈N

Fout(v
j
i)(X

j
in + Rj

in)(X
j
(i+1)n′ + Rj

(i+1)n′)

≤ bwav(Lnn′), ∀i ∈ [1, (|sfcj| − 1)]

(3.8)

Finally, the performance requirements (end-to-end latency) of sfcj must be satis-

fied. Even though end-to-end latency has many components, such as processing delay,

queuing delay, propagation delay and virtualization delay [94], for simplicity, the only

component we opted for is the fixed propagation delay, see constraint (3.9). The end-

to-end delay of an SFC placement solution equals to the summation of propagation

delay of individual links.

|sfcj |−1∑
i=1

∑
n∈N

∑
n′∈N

Del(Lnn′) (Xj
in + Rj

in)

(Xj
(i+1)n′ + Rj

(i+1)n′) ≤ Del(sfcj)

(3.9)

Amir Mohamad - School of Computing

3.4. PERFORMANCE EVALUATION 51

3.4 Performance Evaluation

To evaluate and demonstrate the performance gain of the VNF sharing-based

SFC placement scheme, we developed a Java-based simulation environment. The

simulation environment generates a substrate network model, creates SFC requests,

executes the placement decisions, and tracks the network model’s total utilization as

well as other measurements. The ILP model is solved using the Gurobi solver [56].

All simulations executed on Dell OPTIPLEX 9020 machine of Intel Core i7@3.6 GHz,

16 GB RAM with Windows 10 Enterprise. We used the NSFNET network topology

with 14 nodes and 21 bidirectional links.

Each time a substrate network model is created, the topology is fixed, but the re-

sources cpu, ram, and bw are drawn randomly from the ranges [8, 64] cores, [16, 128]GB

and [100, 1000]Mbps, respectively. These ranges at the time were based on the avail-

able compute resources in AWS VM flavors. Moreover, the link length that determines

propagation delay, is also random and drawn from the range [50, 1000]m.

SFC requests are also generated randomly. The SFC request length, resource

requirements of each VNF, each VNF shareability and if it drops/compresses inflow,

and VNFs inflow and outflow; all these parameters are random and drawn from

predetermined ranges, as follows:

• SFC length range [2, 10] vnfs.

• SFC end-to-end latency = (|sfcj| − 1) ∗ average-link-delay.

Amir Mohamad - School of Computing

3.4. PERFORMANCE EVALUATION 52

• VNF cpu range [2, 8] cores.

• VNF ram range [4, 16]GB.

• VNF maxflow is a function of required/assigned cpu and ram.

• VNF inflow range [0.15∗maxflow,maxflow]Mbps (based on sensitivity anal-

ysis of the results.)

• If VNF drops/compresses, outflow range [0.4∗inflow, inflow]. If not, outflow

= inflow.

We chose to set Uc(cpu) = 2.5, Uc(ram) = 1.7, Uc(bw) = 2, these arbitrary values

have no effect on the results as they are the same on both sides of any comparison.

3.4.1 Simulations

For the purpose of demonstrating the gain, more requests satisfied with less aver-

age required resources per request, we design two simulations. In the first, we compare

the proposed VNF sharing-based placement versus no-sharing-based placement. In

the second, we study the impact of increasing the number of shareable VNFs in the

list of on-boarded VNFs, hence the number of deployed shareable VNFs.

Sharing vs No-Sharing

In this first simulation, 10 random network models are generated. For each net-

work model, an identical copy is cloned, one is used to satisfy SFC requests using

VNF sharing-based placement and the other with no-sharing-based placement. For

each identical pair of network models, 30 SFC requests are generated of the same VNF

list. Each SFC request is cloned, and the VNFs of the clone are set to non-shareable,

Amir Mohamad - School of Computing

3.4. PERFORMANCE EVALUATION 53

one used for sharing-based placement and the clone for no-sharing-based placement,

respectively. Each network model pair trial is repeated five times, and the averages of

the number of satisfied SFC requests and closing cpu utilization are recorded. Since

the amount of ram resources is double the cpu resources both in substrate nodes and

VNFs, we will only report and compare the cpu utilization. The bw utilization is ig-

NM1 NM2 NM3 NM4 NM5 NM6 NM7 NM8 NM9 NM10
Experiments

0

20

40

60

80

100

Sa
tis

fie
d

SF
C

Re
qu

es
ts

 (%
)

Sharing
No-Sharing

Figure 3.4: Satisfied SFC requests (percentage out of 30 requests) per network model.
Simulation for each network model is repeated five times, and the averages are pre-
sented.

nored as it will be the same for sharing-based and no-sharing-based placement. As the

results reveal, in Figure 3.4, sharing the allocated capacity of already deployed VNFs,

resulted in a significant increase in the percentage of satisfied SFC requests ranging

from 9% to 47%, yet, as expected, using less compute resources. That is, accepting

Amir Mohamad - School of Computing

3.4. PERFORMANCE EVALUATION 54

NM1 NM2 NM3 NM4 NM5 NM6 NM7 NM8 NM9 NM10
Network Models

0

20

40

60

80

Sy
st

em
 U

til
iza

tio
n

(%
)

Sharing
No-Sharing

Figure 3.5: Average total utilization per network model. Simulation for each network
model is repeated five times, and the averages are presented.

the same number of service requests, the required resources are lower for sharing-

based placement compared to no-sharing-based placement. In network models NM8

and NM10, the utilization of sharing is less than that of no-sharing this is attributed

to the possibly lower number shareable VNFs in the sharing-based placement and to

the factor that link bandwidth and delay play in the feasibility of placement solution.

The sharing-based utilizes deployed underutilized VNFs, however, it consumes link

bandwidth which may result in making subsequent sharing solutions unfeasible.

System utilization does not tell the true story as in situations where the number

of satisfied requests is the same, resource utilization in sharing-based is less than that

of no-sharing (see utilization NM8 in Figure 3.5). As a result, the average utilized

resources per satisfied SFC requests will tell the true story. To show the average

Amir Mohamad - School of Computing

3.4. PERFORMANCE EVALUATION 55

percentage of required/utilized resources per satisfied SFC request; in each network

model trial, we divide the closing utilization by the number of satisfied SFC requests.

As shown in Figure 3.6, on average, the required/utilized resources per request for

sharing-based placement is 14% to 46% less compared to no-sharing-based placement.

NM1 NM2 NM3 NM4 NM5 NM6 NM7 NM8 NM9 NM10
Network Models

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Av
er

ag
e

Re
so

ur
ce

s/
SF

C
re

qu
es

t

Sharing
No-sharing

Figure 3.6: Average percentage of required resources per SFC request.

Number of Shareable VNFs (70%-based vs 30%-based)

In this second simulation, we study the impact of the number of shareable VNFs

in the list of on-barded VNFs. To do so, we create one typical pair of network models,

Amir Mohamad - School of Computing

3.4. PERFORMANCE EVALUATION 56

and create a typical pair of on-boarded VNFs list. The first list is with 70% of its

VNFs are shareable, and the other list is with 30% shareable VNFs. Using the two

VNF lists, we generate two sets of SFC requests, each with 30 requests. Peer SFC

requests in the two sets are of the same length, i.e., the same number of VNFs.

For each network model pair, we repeat this simulation ten times and reported the

averages. The total number of accepted requests and the resources utilized are shown

in Figures 3.7 and 3.8. We can observe that the number of shareable VNFs impacts

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10
Experiments

0

20

40

60

80

100

Sa
tis

fie
d

SF
C

Re
qu

es
ts

 (%
)

70% Shareable VNFs
30% Shareable VNFs

Figure 3.7: Comparison of satisfied SFC requests (percentage out of 30 requests)
between 70%-based shareable VNFs and 30%-based shareable VNFs.

number of satisfied requests and the required resources. Over the ten simulations, the

number of accepted SFC requests is 13% to 26% higher for the 70%-based requests

than for the 30%-based requests. On the other hand, the utilized resources of the 70%-

based accepted requests range from 11% lower to only 5% higher than the 30%-based

Amir Mohamad - School of Computing

3.5. SUMMARY 57

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10
Experiments

0

20

40

60

80

Sy
st

em
 U

til
iza

tio
n

(%
)

70% Shareable VNFs
30% Shareable VNFs

Figure 3.8: Comparison of closing utilization between 70%-based shareable VNFs and
30%-based shareable VNFs.

requests. When the same number of requests are accepted, the amount of resources

utilized is 11% less for the 70%-based requests than for the 30%-based requests.

3.5 Summary

To take advantage of the changing operating conditions and the fluctuation in

traffic flow over different periods, we demonstrate the performance gain of VNF shar-

ing-based SFC requests placement scheme. The demonstrated gain is in the form of

an increased number of satisfied SFC requests and a reduction of resources required

to satisfy these requests. Indeed, the VNF sharing-based placement scheme has to be

done with the current network load and individually deployed VNFs’ available flow

in mind. Unlike previous related work, our VNF sharing-based placement scheme

Amir Mohamad - School of Computing

3.5. SUMMARY 58

takes the decisions by considering the current utilization status of deployed VNFs,

not based on a predetermined number of SFC flow a VNF can handle. The latter

may still leave some VNFs underutilized. Our findings will help CSPs efficiently uti-

lize their edge resources. This gain will translate into more earnings and better user

satisfaction due to more satisfied/fewer blocked requests.

As a next step, we plan to consider different service categories. For example, a

premium category service should not wait for resource availability. Moreover, we will

make our scheme more adaptive to operations dynamics which affects the shareable

capacity of shareable VNFs. Finally, a migration scheme is needed to handle situa-

tions where a host VNF cannot stand a traffic increase of its own or of one of the

guest VNFs.

Amir Mohamad - School of Computing

Chapter 4

Priority-based Service Placement

“Edge Is Key to Monetizing 5G,

and Telcos Have Beach-Front

Property”

Bikash Koley, Juniper Nets CTO

4.1 Introduction

As mentioned in Chapter 3, edge has limited resources compared to the core

cloud. Services and applications are not created equal in terms of delay sensitivity

and deployment urgency once the service request is received. With the anticipated

high demand for edge resources and the importance of the edge being a precious asset,

Communications Service Providers (CSPs) should offer service categories to satisfy

varying delay requirements and urgency, which is reflected in the cost.

To date, only a few research works with limited scope exist on Virtual Network

Function (VNF) sharing. Previous studies either consider a predefined number of

59

4.2. RELATED WORK 60

traffic flows a VNF can handle, ignoring the operation dynamics or proposing prior-

itization mechanisms that dynamically assign priorities based on the current system

state. Building on findings of Chapter 3, we propose PSVShare, a priority-based SFC

placement scheme with VNF sharing. PSVShare takes Service Function Chain (SFC)

placement decisions at the point-of-presence (PoP) level, and supposed to be part of

the Network Function Virtualization Orchestrator (NFVO).

The main contributions of this chapter are the introduction of PSVShare, a

priority-based VNF sharing-based SFC placement scheme, prioritizing premium (Pr)

services over best-effort (BE) services; and a migration scheme to handle situations

where a host VNF cannot accommodate traffic increase as a result of sharing its capac-

ity with guest VNFs. Furthermore, we design HPA, a heuristic placement algorithm

to overcome the complexity of NP-hard Integer Linear Program (ILP) placement

algorithm used in PSVShare.

The remainder of this chapter is structured as follows. Section 4.2 covers related

work. Proposed sharing-based SFC placement, system model, and problem formu-

lation are detailed in Section 4.3. Performance evaluation and results analysis are

covered in Section 4.4. The HPA and its performance evaluation are explained in

Sections 4.5 and 4.6, respectively. Lastly, conclusions and future works are presented

in Section 4.7.

4.2 Related Work

4.2.1 Priority-based Placement

In the literature on priority-based SFC and VNF placement, the concept and han-

dling of priority are diverse. The work in [81] utilizes priority that is dynamically

Amir Mohamad - School of Computing

4.3. SYSTEM MODEL AND PROBLEM FORMULATION 61

assigned to SFCs, VNFs or flows, depending on the situation, rather than a predeter-

mined priority before deployment. In [105], the priority is determined after receiving

the SFC request and is based on the resources required by SFC; the more resources

required, the higher the priority. While these priority assignment techniques may

sound practical, we believe that the SFC request priority should be the same for all

SFC’s VNFs; the priority should not change and should be known before satisfying

the SFC request. For example, for a time-critical SFC request, the same higher prior-

ity should be assigned to all its VNFs before arriving at an orchestrator; the priority

should not change and should be independent of the required resources.

4.3 System Model and Problem Formulation

In a typical service domain, services are not equal in terms of priority and prefer-

ences. It has been pointed out, including the work in [91], that services come in two

types/classes: Pr service that is provisioned with the highest expected load, not over-

subscribed, and served with dedicated high-priority queues; and BE service is sent

and queued with lower priority. Moreover, due to operation dynamics, the traffic flow

that deployed services/SFCs receive and process continuously varies up and down.

A practical and efficient SFC placement scheme should consider both the aforemen-

tioned practical service domain aspects. To do so, PSVShare is a priority-based SFC

placement with VNF sharing, which will have to handle the varying traffic load that

SFCs and their VNFs serve. The capacity of a host VNF is distributed among its

guest VNFs. Any increase in the traffic flow of the host VNF or any of its guest

VNFs, may require one or more VNFs, hence SFCs, to be deported to accommodate

Amir Mohamad - School of Computing

4.3. SYSTEM MODEL AND PROBLEM FORMULATION 62

the traffic increase. Doing so in light of two service categories should strive to min-

imize the migrations a Pr SFC will have to experience. Out of limited resources at

that time, an SFC that is deported may end up in a queue, waiting to be redeployed

once resources become available. Even though PSVShare is designed for edge service

provisioning at the network edge, it is also usable for core/cloud-hosted services.

4.3.1 System Model

An SFC request consists of an ordered list of VNFs and comes with a service

category, Pr or BE. VNFs are selected from a list V of on-boarded VNFs. In this

list, each VNF has resource requirements and a maximum traffic flow it can handle

once assigned the resources required. Some VNFs can be shared among SFC flows

while others not. S(vi) is a flag to determine whether VNF vi is shareable or not.

Once selected in sfcj, the inflow and outflow of VNFs should be determined. The

substrate network is modeled as a graph G(N,E), where N is the set of nodes with

compute resources, and E is the set of links. Each link has bandwidth capacity

and propagation delay. The substrate network topology is fixed and described by a

connectivity matrix. The description of the substrate network and SFC parameters

is provided in Table 4.1. The placement algorithm and system model have some

similarities with those in Chapter 3, for completeness we are listing some repeated

details.

4.3.2 Problem Formulation

The PSVShare scheme utilizes an integer quadratically-constrained program (IQCP)

model. The objective is to minimize the total deployment cost by optimizing resource

Amir Mohamad - School of Computing

4.3. SYSTEM MODEL AND PROBLEM FORMULATION 63

Table 4.1: Parameters description.

Parameter Description

N Set of substrate network nodes

E Set of substrate network links

cpuc(n) CPU capacity in cores of node n ∈ N

ramc(n) RAM capacity in GBs of node n ∈ N

cpuav(n) Available CPU cores at node n ∈ N

ramav(n) Available RAM GBs at node n ∈ N

Lnn′ A link exists from node n to node n′, n, n′ ∈ N

bwc(Lnn′) BW capacity in Mbps of link Lnn′

bwav(Lnn′) Available BW at link Lnn′

Del(Lnn′) Propagation delay of link Lnn′

V Set of available/on-boarded VNFs

vi Is a VNF, where vi ∈ V

cpu(vi) CPU cores required for VNF vi ∈ V

ram(vi) RAM GBs required for VNF vi ∈ V

Fmax(vi) Maximum inflow VNF vi can handle

S(vi) Flag to indicate VNF vi is shareable

Drop(vi) Flag to indicate that VNF vi drops/compresses inflow

sfcj SFC request j

cat(vi) Category of VNF vi’s SFC , BE = 1 & Pr = 2

|sfcj| Number of VNFs in sfcj

vji The ith VNF of sfcj

Fin(v
j
i) Actual inflow that VNF vi will be serving

Fout(v
j
i) Outflow VNF v will produce

ID(vki) Unique identifier of deployed instance vi of sfck

Del(sfcj) Maximum end-to-end delay of sfcj

Amir Mohamad - School of Computing

4.3. SYSTEM MODEL AND PROBLEM FORMULATION 64

utilization while satisfying QoS requirements/constraints. PSVShare prioritizes Pr

SFCs over BE SFCs and handles migration situations arising from VNF sharing and

traffic increase. PSVShare, listed in Algorithm (4.1), considers SFC requests arriving

at the beginning of each time slot (TS). Once received, PSVShare uses the IQCP

to find the least-cost deployment solution. If a solution exists, the state of satisfied

SFC changes from received to running and gets added to the Pr or BE running queue

Runpr|be. Runpr queue is for Pr SFCs and Runbe queue is for BE SFCs. In case of no

solution, the SFC state will change to waiting and gets added to the Newpr|be queue.

Once deployed, a running SFC is subject to one of three possible state changes. If the

SFC’s time-to-live (TTL) is zero at the start of a TS, its state changes from running

to completed and gets moved from the Runpr|be queue to the Comppr|be list. If traffic

flow increase cannot be accommodated either because the host VNF’s own flow or due

to an increase of any of its guest VNF flows, one or more migrations are unavoidable.

If an SFC migration is successful, SFC ends in the running state but passes by a

terminated/suspended state. Otherwise, the state changes to pending migration and

the SFC moves from the Runpr|be to the Migpr|be queue.

Besides the TTL checks/decrements, PSVShare starts with satisfying the Pr SFCs

pending migration in the Migpr, then BE SFCs in the Migbe. For those SFCs waiting

in the Newpr|be queue, PSVShare attempts to satisfy Pr SFCs then BE SFCs. Finally,

it checks if there is any migration is triggered because of traffic flow increase. To do

so, and for all SFCs in the Runpr|be queues, PSVShare checks if the traffic increase

is not applicable. The SFC under investigation, with inapplicable traffic increase, is

sent to the migReqrd module, detailed in Algorithm (4.2), to return a list of SFCs

to be deported to accommodate the traffic increase. If a host VNF of the SFC under

Amir Mohamad - School of Computing

4.3. SYSTEM MODEL AND PROBLEM FORMULATION 65

Algorithm 4.1: PSVShare
Input : netM, No.TSs
Init. : queues:Newpr|be, Migpr|be, Runpr|be, Comppr|be
Output: Different queues

1 for i← 1 to No.TSs do
2 if i > 1 then
3 foreach SFC rspr|be in Runpr|be do
4 if ttl(rspr|be) = 0 then
5 remove(rspr|be,Runpr|be)

6 add(rspr|be,Comppr|be)

7 else decTTL(rspr|be)

8 foreach SFC mspr|be in Migpr|be do
9 sol ←satisfy(mspr|be,netM)

10 if sol ̸= ∅ then
11 remove(mspr|be,Migpr|be)

12 deploy(mspr|be,netM)

13 add(mspr|be,Runpr|be)

14 foreach SFC nspr|be in Newpr|be do
15 sol ←satisfy(nspr|be,netM)

16 if sol ̸= ∅ then
17 remove(nspr|be,Newpr|be)

18 deploy(nspr|be,netM)

19 add(nspr|be,Runpr|be)

20 foreach SFC rspr|be in Runpr|be do
21 if traffChange(rspr|be,nIF) ̸= true then
22 migList ←migReqrd(rspr|be,nIF)

23 if contains(migList,rspr|be)= true then terminate(rspr|be)

24

25 else foreach SFC mspr|be in migList do
26 terminate(mspr|be)

27

28 ApplyTraffChange(rspr|be,nIF)

29 foreach SFC mspr|be in migList do
30 sol ←satisfy(mspr|be,netM)

31 if sol ̸= ∅ then
32 deploy(mspr|be,netM)

33 add(mspr|be,Runpr|be)

34 else add(mspr|be,Migpr|be)

35

36 else foreach new SFC naspr|be do
37 sol ←satisfy(naspr|be,netM)

38 if sol ̸= ∅ then
39 deploy(naspr|be,netM)

40 add(naspr|be,Runpr|be)

41 else add(naspr|be,Newpr|be)

42

43

Amir Mohamad - School of Computing

4.3. SYSTEM MODEL AND PROBLEM FORMULATION 66

investigation cannot handle the traffic increase, first migReqrd tries to add VNF’s

BE guest SFCs with highest inFlow and TTL to SFC migration list migList. If all

the guest BE SFCs of host VNF are not enough to accommodate the traffic increase,

migReqrd will resort to completing the remaining required flow by looking to VNF’s

guest Pr SFCs. If a guest VNF of the SFC cannot accommodate the traffic increase,

the SFC under-investigation itself is added to the migList. PSVShare checks if the

migList contains the SFC under investigation; if so, only that SFC is terminated.

Otherwise, all SFCs in the migList are terminated. After accommodating the traffic

increase, PSVShare attempts to re-satisfy all terminated SFCs.

IQCP

To satisfy an SFC, new or deported, the satisfy function in Algorithm (4.1):

lines[9,30, and 37] are implemented as an IQCP, in which decision variables are binary

and some constraints are quadratic. With SFC request sfcj consisting of VNFs

vi, i ∈ [1, |sfcj|], our decision variables are: Xj
in to place new instance of VNF vi of

sfcj at node n; and Rj
in means that VNF vi of sfcj is to share and become the guest

of a deployed underutilized VNF of the same type at node n. Decision variables and

other parameters descriptions are in Table 3.3.

Objective Function The objective is to select the placement that minimizes the

overall cost, hence optimizing resource utilization, and minimizing the number of mi-

grations of Pr SFCs. Therefore, the objective function in equation (4.1) is formulated

to prefer sharing over instantiating new VNF instances.

Amir Mohamad - School of Computing

4.3. SYSTEM MODEL AND PROBLEM FORMULATION 67

Algorithm 4.2: migReqrd function
// nIF: newInFlow & nOF: newOutFlow

Input : rspr|be, nIF
Output: migList: if migration required, null: otherwise

1 Function migReqrd(rspr|be, nIF):
2 foreach VNF vi in rspr|be do
3 if isHost(vi)= true then
4 if (nIF-Fin(vi)) > Fav(vi) then
5 add(vi,diagList)

// vi is a guest VNF

6 else if (nIF-Fin(vi)) > Fav(hostVNF(vi)) then
7 add(vi,diagList)

8 if (nOF-Fout(vi)) > bwav(outLink(vi)) then
9 add(vi,diagList)

10 if diagList isn’t empty then
11 foreach VNF vi in diagList do
12 if isHost(vi)= true then

// Add BE SFCs sorted with ↑ inFlow and ↓ TTL

13 add(SFCsbe,migList)
14 if Added SFCs’ inFlow isn’t enough then

// Add Pr SFCs sorted with ↑ inFlow and ↓ TTL

15 add(SFCspr,migList)

16 else add(rspr|be,migList)
17

18

19 return migList
// No migration(s) required

20 else return null
21

Amir Mohamad - School of Computing

4.3. SYSTEM MODEL AND PROBLEM FORMULATION 68

min

|sfcj |∑
i=1

∑
n∈N

[cpu(vji)U
c
cpu(n) + ram(vji)U

c
ram(n)]X

j
in+

Fout(v
j
i)Ucbw[X

j
in +Rj

in]

(4.1)

Constraints First, a feasible solution has to have each VNF of SFC request mapped

only once to a physical node. Moreover, the mapping should either place a new or to

share a deployed VNF instance, equation (4.2). Second, when a sharing decision is

to be taken, there has to be a deployed shareable VNF of the same type as the one

in hand, equation (4.3), and there is unused capacity enough for new VNF inflow,

equation (4.4). Third, for the placement decision Xj
in to be valid, there must be

enough cpu and ram resources at node n, equations (4.5 & 4.6). Fourth, for any two

consecutive VNFs vji and vji+1 of sfcj to be placed on two nodes n and n′: first, there

has to be a link Lnn′ connecting the two nodes, equation (4.7); second, the outflow

of first VNF Fout(v
j
i) should not exceed available bandwidth at that link bwav(Lnn′),

equation (4.8). To minimize the number of migrations of Pr SFCs, Pr SFCs should

only be hosted by Pr SFCs, while BE SFCs can be a guest of Pr and BE SFCs,

equation (4.9). Finally, the performance requirements (end-to-end latency) of sfcj

must be satisfied, equation (4.10).

∑
n∈N

Xj
in + Rj

in = 1 , ∀i ∈ [1, |sfcj|] (4.2)

∑
n∈N

Xj
in + Dj

i S(vi) R
j
in = 1, ∀i ∈ [1, |sfcj|] (4.3)

Amir Mohamad - School of Computing

4.3. SYSTEM MODEL AND PROBLEM FORMULATION 69

Fin(v
j
i) R

j
in ≤ Fav(D

i
n), ∀n ∈ N & ∀i ∈ [1, |sfcj|] (4.4)

|sfcj |∑
i=1

cpu(vji) X
j
in ≤ cpuav(n), ∀n ∈ N (4.5)

|sfcj |∑
i=1

ram(vji) X
j
in ≤ ramav(n), ∀n ∈ N (4.6)

Lnn′ (Xj
in + Rj

in)(X
j
(i+1)n′ + Rj

(i+1)n′) = 1

∀n, n′ ∈ N & ∀i ∈ [1, (|sfcj| − 1)]

(4.7)

∑
n∈N

∑
n′∈N

Fout(v
j
i)(X

j
in + Rj

in)(X
j
(i+1)n′ + Rj

(i+1)n′)

≤ bwav(Lnn′), ∀i ∈ [1, (|sfcj| − 1)]

(4.8)

cat(vji) R
j
in ≤ cat(Di

n), ∀n ∈ N & ∀i ∈ [1, |sfcj|] (4.9)

|sfcj |−1∑
i=1

∑
n∈N

∑
n′∈N

Del(Lnn′) (Xj
in + Rj

in)

(Xj
(i+1)n′ + Rj

(i+1)n′) ≤ Del(sfcj)

(4.10)

Amir Mohamad - School of Computing

4.4. PERFORMANCE EVALUATION 70

4.4 Performance Evaluation

To evaluate and demonstrate the performance of PSVShare, we develop a Java-

based simulation environment. The simulation environment generates a substrate

network model, creates SFC requests, executes the placement decisions, and tracks

SFCs different state/queue transitions. SFC requests arrival follows a Poisson distri-

bution. The service time, i.e., SFC duration in TSs, follows an exponential distribu-

tion. The average length of generated SFC requests is 5 VNFs. The IQCP model

is solved using the Gurobi solver [56]. All simulations executed on Dell Inspiron 15

7000 laptop with Intel(R) Core i5-8250U CPU@1.6 GHz, 24 GB RAM with Windows

10 Home. We used a network model with 28 nodes and 42 directional links.

All simulations utilized the same network model, with the same topology, nodes

resources, and links bandwidth. Unless we are experimenting with the arrival rate λ,

simulations are done with λ = 2 SFCs per TS. With simulation time set to 100 TSs,

we generated and saved SFCs for 100 TSs, i.e., the number of SFC requests per TS and

the length of each SFC. Unless otherwise stated, SFCs generated are 50% Pr and 50%

BE with shuffled order of arrival. The only difference between these simulations is the

type of VNFs each SFC is comprised of as well as the QoS requirements. SFC requests

are generated with VNFs in the list of on-boarded VNFs. The list contains VNFs

of different flavours and requirements. Unless stated otherwise, in all simulations,

PSVShare utilizes 60% shareable VNFs. Finally, if not evaluating the queue sizes or

SFC expiration, the queue sizes are not bounded, and SFCs never expire.

Amir Mohamad - School of Computing

4.4. PERFORMANCE EVALUATION 71

4.4.1 Numerical Results and Analysis

To assess the proposed PSVShare under extreme cases, we compare PSVShare

with SFCs created from ”100%” shareable VNFs vs SFCs created from ”0%” share-

able VNFs. Figure 4.1 shows the different queue sizes as a percentage of received

SFCs at the end of the simulation. Having ”100%” shareable VNFs resulted in sat-

isfying, completed and running, 26% more SFCs than the ”0%” shareable case. This

reveals the positive impact PSVShare has over efficient resource utilization and the

provisioning cost of services. This is attributed to VNF sharing that PSVShare uti-

lizes, which increases the effective capacity of the network and hence satisfies more

SFCs.

Completed Running New Pending Migration Pending
Satatus of SFC Requests

0

10

20

30

40

50

60

70

80

SF
C

Re
qu

es
ts

 (%
)

PSVShare
No-Sharing

Figure 4.1: PSVShare with 100% shareable VNFs vs 0% shareable VNFs. λ = 2 and
shuffled 50 : 50% Pr-to-BE ratio.

To assess the performance of PSVShare under different loads, we experimented

Amir Mohamad - School of Computing

4.4. PERFORMANCE EVALUATION 72

with different arrival rates λ = {1, 1.5, 2, 2.5, 3, 4}, using the same network model

(same capacity). Results in Figures 4.2 and 4.3, show that PSVShare started to shine

at higher loads. As we can see, at λ = 1, the satisfied (Completed and running) and

pending SFCs are the same both for PSVShare and No-Sharing schemes. Once the

load increased to λ = 1.5 and higher, the percentage of PSVShare satisfied SFCs is

14% to 25% more than No-Sharing. Again, this is attributed to VNF sharing before

deploying new VNF instances when satisfying SFC requests.

1 1.5 2 2.5 3 4
SFC requests arrival rate per time-slot

0

10

20

30

40

50

60

70

80

Co
m

pl
et

ed
 S

FC
s (

%
)

PSVShare
No-Sharing

Figure 4.2: Completed SFC at the end of simulation, under different loads for
PSVShare scheme vs the No-sharing scheme.

Amir Mohamad - School of Computing

4.4. PERFORMANCE EVALUATION 73

1 1.5 2 2.5 3 4
SFC requests arrival rate per time-slot

0

5

10

15

20

Ru
nn

in
g

SF
Cs

 (%
)

PSVShare
No-Sharing

1 1.5 2 2.5 3 4
SFC requests arrival rate per time-slot

0

10

20

30

40

50

60

Ne
w

SF
Cs

 P
en

di
ng

 D
ep

lo
ym

en
t (

%
) PSVShare

No-Sharing

Figure 4.3: Running and new pending SFCs under different loads. All with 60%
shareable VNFs, and shuffled 50− 50% Pr-to-BE ratio.

The rejection rate is a very important aspect that impacts real-time and time-

critical services that need to be deployed once requested. In all previous simulations,

the queue sizes were not bounded. We limit the NewPr &Newbe queues to a finite

size equal to a percentage of the total number of received SFC requests for this study.

We experiment with queue sizes equal to 0, 2, 4, and 6% of received SFC requests.

In Figure 4.4, results show that PSVShare maintained a stable superior performance

against the No-Sharing scheme with a 95% confidence interval considered. The re-

jection rate of PSVShare range from 45% to more than 50% less compared to that

of No-Sharing. The reason for such behaviour is that, at the time the No-Sharing

network model started to saturate, i.e., no more resources were available for satisfy-

ing new SFCs, the PSVShare is still able to satisfy SFC requests. This is due to the

efficient resource utilization of PSVShare.

To check whether PSVShare still outperforms the No-Sharing scheme when most

of the received SFCs are Pr or BE, we experiment with different Pr-to-BE ratios.

Amir Mohamad - School of Computing

4.4. PERFORMANCE EVALUATION 74

0 2 4 6
Newpr|be queue size as % of received sfcbe|pr requests

0

5

10

15

20

25

30

35

40

Re
je

ct
ed

 S
FC

s (
%

)

PSVShare
No-Sharing

Figure 4.4: Rejected SFC requests (%) for different queue sizes.

Figure 4.5 shows similar behaviour in the extreme cases with ’0-100’ and ’100-0’ Pr-

to-Be ratio, with about 20-23% more satisfied Pr SFCs for PSVShare. The same

applies to the ’20-80’ and ’80-20’ cases. For the ’40-60’, ’50-50’, and ’60-40’ cases, Pr

SFCs have a higher priority, so PSVShare and No-Sharing satisfied almost the same

percentage of received Pr SFCs. The advantage of PSVShare over the No-Sharing

scheme is evident in the percentage of satisfied BE SFCs. This is mainly because, No-

Sharing depleted a large share of network model resources satisfying most Pr SFCs

and almost half of the BE SFCs and left not enough resources for the rest of BE

SFCs. Although, PSVShare satisfied the same percentage of Pr SFCs, it is still able

to satisfy more BE SFCs. This is due to the efficient resource utilization, both when

satisfying Pr and then BE SFCs.

Amir Mohamad - School of Computing

4.5. HEURISTIC PLACEMENT ALGORITHM 75

0:100 20:80 40:60 50:50 60:40 80:20 100:0
Premium to Best-Effort Ratio

0

20

40

60

80

100

Sa
tis

fie
d

SF
Cs

 (%
)

sfcpr PSVShare
sfcpr No-Sharing
sfcbe PSVShare
sfcbe No-Sharing

Figure 4.5: Satisfied SFC requests (%) of different Pr-to-BE ratios, shuffled.

4.5 Heuristic Placement Algorithm

The placement algorithm used in PSVShare is modeled as an ILP. It is proven

that the VNF/SFC placement is an Np-hard problem [22], hence a heuristic algorithm

is needed to overcome the complexity of solving the placement problem at scale. As

such, we design a heuristic placement algorithm (HPA), in Algorithm 4.3, to find a

feasible placement of SFC request sfcj. The inputs to HPA are the network model

current state (deployed VNFs, VNFs utilization, and available resources in nodes

and links), the SFC request at hand sfcj, and the best solution criterion, i.e., least

Amir Mohamad - School of Computing

4.5. HEURISTIC PLACEMENT ALGORITHM 76

Algorithm 4.3: HPA: Heuristic Placement
// Unit cost of cpu, ram is node dependent, BW unit cost is the same for all links.

Input : Net Model, sfcj, Uc(bw), bestSolCriterion
Output: solPath

1 foreach VNF vji in sfcj do
2 foreach Node n in N do

// If a shareable VNF of the same type as v
j
i is deployed at node n, with Fav(D

i
n) ≥ Fin(v

j
i)

3 if shrbleVNFExists(vji , n) then

4 Sol [vji][n] = −1 ∗ ID(vki); // vk
i is a VNF of sfck

5 else if cpu(vji) ≤ cpuav(n) then

6 Sol [vji][n] = 1
7 else

8 Sol [vji][n] = 0

// Maximum number of iterations = 7, the maximum |sfcj |

9 for i← 0 to |sfcj| − 1 do
10 foreach Node n in N do
11 foreach Node n′ in N do
12 if Sol [i][n] ̸=0 & Sol [i][n′] ̸=0 then
13 if isLinked(n , n′) then
14 Links [i].addLink(lnn′)

15 Paths ← getPaths(Links, sfcj)
16 foreach Path p in Paths do
17 if isFeasible(p,Del(sfcj)) then
18 feasiblePaths.addPath(p)

19 solPath ← bestSol(feasiblePaths, bestSolCriterion)

delay/cost. The HPA starts with an initial solution in a matrix form as shown in

Figure 4.6, with rows representing SFC’s VNFs and columns representing hosting

nodes. For each VNF vi ∈ sfcj, HPA checks if a node n ∈ N has a deployed

shareable VNF of the same type as vi and if that VNF has free capacity that is

enough for the inflow of vi (fin(vi)), the solution cell at [vi, n] is set to (−1∗vnfid). If

there is no such deployed shareable VNF or the VNF exists but cannot accommodate

Amir Mohamad - School of Computing

4.5. HEURISTIC PLACEMENT ALGORITHM 77

the fin(vi), HPA checks if the node has enough resources to host vi. If resources are

enough, solution cell at [vi, n] is set to 1, otherwise it is set to 0. The complexity of

this step is O(c.n), c ≤ |sfcj|, which leads to O(n).

N0 N1 N2 N3 N4 … Nv

V0 0 1 1 1 0 … 0

V1 1 0 0 1 0 … 0

V2 1 1 -4 0 1 … 1

V3 0 0 0 1 -7 … 1

… … … … … … … …

Vn 1 1 1 1 1 … 1

SFCj

Network Model Nodes 0 -> N4 available CPU Cores <
required cores to accommodate V0

1 -> N4 available CPU Cores ≥
required cores to accommodate V2

-ve (-7) -> N4 hosts a shareable VNF of the
same type as V3 and has unused capacity
that can accommodate the inflow of V3 . -7
is the VNF ID of deployed shareable VNF.

Figure 4.6: Heuristic Algorithm, step 1: initial solution.

In the next step, HPA uses the the initial solution to form possible solutions in

the form of possible links. It does so by building another matrix of hops (a link/path

that connects a node hosting vi and vi+1) as rows and nodes as columns, shown in

Figure 4.7. For each node n in a row (representing a hop), if a link exists between

node n and node n′, a link enn′ is added to that row/hop. The complexity of this step

is O(n2).

Finally, using the matrix of links in the previous step, HPA creates complete paths

using all possible combinations of links at each row/hop, shown in Figure 4.8. Then,

all formed complete paths are tested for completeness and feasibility according to

the given performance/QoS requirements of sfcj. The best solution is the path that

satisfies the defined best solution criterion. The overall complexity of HPA is O(n2).

Amir Mohamad - School of Computing

4.6. HEURISTIC ALGORITHM RESULTS 78

N0 N1 N2 N3 N4 … Nv

V0 0 1 1 1 0 … 0

V1 1 0 0 1 0 … 0

V2 1 1 -4 0 1 … 1

V3 0 0 0 1 -7 … 1

… … … … … … … …

Vn 1 1 1 1 1 … 1

SFCj

Network Model Nodes

L0 …

L1 …

L2 …

… … … … … …

Ln-1 …

L0

L1

L2

Ln-1

L10 L13

Links

L04 L02

L03 L04

L30

L31 L32

L23

L43

Figure 4.7: Heuristic Algorithm, step 2: possible links.

L0 …

L1 …

L2 …

… … … … … …

Ln-1 …

L10 L13

Links

L04 L02

L03 L04

L30

L31 L32

L23

L43

L10 -> L04 -> --------- Incomplete path

L10 -> L02 -> L23 -> … -> L31

L10 -> L02 -> L23 -> … -> L32

L13 -> L30 -> L03 -> … -> L31

L13 -> L30 -> L03 -> … -> L32

L13 -> L30 -> L04 -> … -> L43

[1] -> [0] -> [2] -> [3] -> … -> [1] Path as Nodes

Figure 4.8: Heuristic Algorithm, step 3: paths formation.

4.6 Heuristic Algorithm Results

To evaluate the performance of HPA-based placement scheme vs the ILP-based

placement scheme, we use the same simulation setup as in Section 4.4 for lightly

and moderately-loaded systems. The results in Figure 4.9, shows an overall similar

performance of HPA compared to ILP-based placement schemes. The system utiliza-

tion of HPA, in Figure 4.9a, is almost the same as that of ILP for both lightly and

Amir Mohamad - School of Computing

4.6. HEURISTIC ALGORITHM RESULTS 79

moderately-loaded systems. The percentage of running SFCs of ILP is slightly higher

than the HPA-based scheme (ILP is 1.6% and 1.8% higher than HPA for lightly and

moderately-loaded systems, respectively), shown in Figures4.9b. Similarly, as shown

in Figure 4.9c, the percentage of completed SFCs of ILP is 2−5.8% higher than HPA.

The percentage of rejected sfcpr requests of ILP is 11% less than the HPA for the

moderately-loaded system.

0 25 50 75 100 125 150 175 200
Time-slots (TSs)

10

20

30

40

50

60

70

80

Sy
st

em
 U

til
iza

tio
n

(%
)

ILP_50:50_7_20
Heuristic_50:50_7_20
ILP_50:50_VarDuration
Heuristic_50:50_VarDuration

(a) Utilization per TS

50:50 | VarDuration
 Lightly-loaded

50:50 | 7,20TSs
 Moderatly-loaded

System Configuration/Load

0

1

2

3

4

5

6

Ru
nn

in
g

SF
Cs

 (%
)

ILP
Heuristic

(b) Running SFCs

50:50 | VarDuration
 Lightly-loaded

50:50 | 7,20TSs
 Moderatly-loaded

System Configuration/Load

0

20

40

60

80

Co
m

pl
et

ed
 S

FC
s (

%
)

ILP
Heuristic

(c) Completed

50:50 | VarDuration
 Lightly-loaded

50:50 | 7,20TSs
 Moderatly-loaded

System Configuration/Load

0

10

20

30

40

50

60

sf
c p

r r
ej

ec
tio

n
ra

te
(%

)

ILP
Heuristic

(d) sfcpr rejections

Figure 4.9: Utilization during simulation time and closing queue sizes.

The performance hit that HPA received in the form of 11% more rejections of

Amir Mohamad - School of Computing

4.7. SUMMARY 80

sfcpr requests compared to ILP-based schemes, is balanced by the 28x fold reduction

in AWT of sfcpr, shown in Figure 4.10.

50:50 | VarDuration
 Lightly-loaded

50:50 | 7,20TSs
 Moderatly-loaded

System Configuration/Load

0

10

20

30

40

50
sf

c p
r A

W
T

(m
se

c)

ILP
Heuristic

Figure 4.10: Average waiting time (AWT) of sfcpr requests.

4.7 Summary

To take advantage of the changing operations dynamics and common VNFs among

services, we design PSVShare, a priority-based SFC placement scheme with VNF

sharing. PSVShare handles migration situations arising from sharing VNFs and traffic

variation. Simulation results show a consistent out-performance of PSVShare over the

Non-sharing scheme under different loads, with varying Pr-to-BE ratios, and with

different queue sizes. The heuristic placement algorithm (HPA)-based placement

Amir Mohamad - School of Computing

4.7. SUMMARY 81

scheme performance is comparable to the ILP-based placement schemes. The HPA-

based schemes excel at the execution time compared to the ILP-based, hence the

AWT of Pr SFCs is significantly reduced.

Generally, Pr SFCs are very critical and need to be immediately deployed once

received, with no tolerance for waiting for deployment. In future work, we will work

on a priority-based SFC placement utilizing VNF sharing with preemption. When

resources are not available to satisfy Pr SFCs, a criterion should be in place to preempt

resources by deporting lower-priority BE SFCs. The preemption criterion should

strive to balance between immediately satisfying Pr SFCs and minimizing the number

of interrupted BE SFCs.

Amir Mohamad - School of Computing

Chapter 5

Prediction-based Service Placement

“We believe in clouds, not cloud”

Bryn Worgan, JPMorgan Chase

5.1 Introduction

The majority of emerging 5G use cases are time-sensitive in nature, such as real-

time media (augmented reality (AR) and virtual reality (VR)), industrial control,

remote control, and mobility automation [43]. Time-sensitive, henceforth premium

(Pr), services and applications are a class of software that have stringent time con-

straints, and a service would fail if such constraints were not met [54,61,78]. The un-

bounded delay and jitter results in motion sickness and other discomforts to VR/AR

users [36, 109]. Edge computing, especially multi-access edge computing (MEC), is

the distributed cloud to fulfill the ultra-low latency and high-reliability requirements

of use cases mentioned earlier.

The Quality of Experience (QoE) that consumers of Pr SFCs perceive degrades if

services have to wait for resource availability. If a Pr SFC (sfcpr) request is received

82

5.2. RELATED WORK 83

and no resources are available, the request will be rejected. Conversely, lower-priority

best-effort (BE) SFC (sfcbe) requests can tolerate waiting for resource availability.

Prioritizing sfcpr requests over sfcbe requests will help in slightly reducing the rejec-

tion rate of sfcpr requests. However, such prioritization will not significantly reduce

or even eliminate sfcpr requests rejection.

Hence, we propose a prediction-based SFC placement scheme with VNF sharing

(PSVS) to reduce the rejection rate of sfcpr requests. Taking advantage of shareable

common VNFs among SFCs and the predictability of sfcpr requests arrival, PSVS

will decide to satisfy sfcbe requests pending deployment or to defer the deployment

to save resources for future sfcpr requests. PSVS uses a safety margin to mitigate

the unavoidable prediction errors. The main contributions are:

• Introduction of a prediction-based placement scheme that significantly reduces

the rejection rate of sfcpr requests.

• Introducing the safety margin that provides the desirable resiliency against

prediction errors including extreme errors with a high error rate/probability.

The remainder of this chapter is structured as follows. Section 5.2 covers re-

lated work. Proposed prediction-based SFC placement, system model, and problem

formulation are described in Section 5.3. Section 5.4 details the simulation frame-

work, performance evaluation, and results analysis. Conclusions and future work are

presented in Section 5.5.

5.2 Related Work

To better serve customers, service providers utilize prediction in different aspects.

The service provider can use models/tools to predict service arrivals which can help

Amir Mohamad - School of Computing

5.3. SYSTEM MODEL AND PROBLEM FORMULATION 84

reserve resources for Pr SFCs to avoid rejection/failures [98], traffic demand and

user mobility that both help with proactive replication and/or migration [71,97], the

resources to allocate to guarantee performance requirements (profiling) [66], finally,

to predict the degradation and/or failure of physical nodes hosting SFC’s VNFs that

help mitigate service interruptions and downtimes.

We utilize service request arrival predictions to reduce the rejection rate of pre-

mium services. In addition, we utilize a VNF sharing-based SFC placement that

considers operations dynamics when taking VNF sharing decisions and prioritizes

premium over best-effort services. PSVS, the proposed scheme, considers one pri-

ority for all SFC components, and that priority is known prior to receiving SFC

requests.

5.3 System Model and Problem Formulation

Similar to the PSVShare scheme in Chapter 4, we utilize two service categories

premium (Pr) and best-effort (BE) services. PSVS is nevertheless applicable to service

domains with more than two service categories.

Due to operations dynamics, traffic processed by SFC’s VNFs vary, and VNFs

can be underutilized at times. VNF sharing-based SFC placement scheme takes

advantage of operation dynamics and shareable VNFs to enhance resource utilization

and reduce SFC deployment cost, and rejection rate. To satisfy a new SFC request,

the placement scheme searches running VNFs for similar underutilized VNFs which

can serve the required load of peer VNF of SFC requests being satisfied. The scheme

will only instantiate a new VNF when: considered VNF is non-shareable; there are

no similar previously deployed VNFs or a similar VNF(s) deployed but fully utilized.

Amir Mohamad - School of Computing

5.3. SYSTEM MODEL AND PROBLEM FORMULATION 85

Lightly-loaded Moderately-loaded Highly-loaded
System Configuration/Load

0

20

40

60

80

sf
c p

r R
ej

ec
tio

n
Ra

te
No-Sharing
VNF-Sharing

Figure 5.1: Rejection rate of Premium (Pr) SFCs using VNF non-sharing vs VNF-
sharing for different system configurations/loads (Simulation duration is 200 TSs,
arrival rate λ = 2 sfc requests/TS).

According to the results achieved from our PSVShare extensive simulations [88],

SFC placement with VNF sharing reduced the rejection rate of sfcpr requests, but it

is still concerning. As shown in Figure 5.1, the best-case scenario is ‘lightly-loaded.’

Using VNF sharing-based placement results in a 50% reduction in sfcpr requests

rejection rate. However, the rejection rate of the VNF sharing-based placement is

still about 19%. It is worse for higher system loads, with longer duration and/or

higher number of sfcbe requests. These rejections lead to unsatisfied customers and

lost revenue for CSPs.

Amir Mohamad - School of Computing

5.3. SYSTEM MODEL AND PROBLEM FORMULATION 86

To address such concerning rejections, we propose a prediction-based SFC place-

ment with VNF sharing (PSVS) to help CSPs better the edge resource utilization and

minimize lost revenue opportunities. To minimize the situations where resources are

not available to satisfy sfcpr requests, PSVS will utilize predicted sfcpr requests to ar-

rive in a lookahead window of length ω to decide to satisfy the pending sfcbe requests

or not. To the best of our knowledge, prediction-based SFC placement has never been

used in the context of SFC placement with VNF sharing at the resource-limited edge

environments.

3/4/2022 1:00 AM3/4/2022 1:00 AM3/4/2022 2:00 AM3/4/2022 2:00 AM3/4/2022 3:00 AM3/4/2022 3:00 AM3/4/2022 4:00 AM3/4/2022 4:00 AM3/4/2022 5:00 AM3/4/2022 5:00 AM3/4/2022 6:00 AM3/4/2022 6:00 AM

 ω time-slots

Lookahead window

sfct-2
be2sfct

be1 sfct-1
be1sfct

be2

sfct
pr1sfct

pr2

Recpr

Penbe

tt-1 t+1

- Recpr : a queue holding sfcpr requests received in current time-slot (TS)

- Penbe : a queue holding sfcbe requests received in current TS plus those requests received in

previous TSs but never deployed due to resource limitations

Figure 5.2: PSVS lookahead window, different queues (Recpr and Penbe), and queued
sfcpr/sfcbe requests.

As shown in Figure 5.2, in each time slot (TS), arriving sfcpr and sfcbe requests

are placed in Recpr and Penbe queues, respectively. While sfcbe requests can tolerate

waiting for deployment if not satisfied in the same TS they were received, the sfcpr

requests cannot tolerate waiting and are rejected if not satisfied (in Figure 5.2, unlike

Amir Mohamad - School of Computing

5.3. SYSTEM MODEL AND PROBLEM FORMULATION 87

sfcbe requests in Penbe, there are no sfcpr requests older than current TS in Recpr).

We assume that a simple prediction technique/model exists that can predict the sfcpr

requests to arrive in the next ω TSs and their required resources with 100% accuracy

(in Section 5.4, we demonstrated the performance under different prediction errors

and error rates). It is known that the longer the lookahead window, the less accurate

the predictions, which is why we experimented with ω ∈ [1, 3] TSs.

5.3.1 System Model

Each SFC request consists of a list of VNFs. SFC’s VNFs are selected from

a list of on-boarded VNFs V . Each VNF type v ∈ V has resource requirements

like CPU cores and memory. A VNF is expected to operate at maximum capaci-

ty/throughput, Fmax(v), if assigned the required resources. As outlined earlier, not

all VNFs are shareable, S(v) is a flag to determine if a VNF v is shareable. The

time a VNF becomes part of sfcj, that VNF’s inflow Fin(v
j
i) and outflow Fout(v

j
i)

are determined. Due to operations dynamics, both inflow and outflow are subject

to change, and for VNFs that drop or compress, like firewalls, Fout(v
j
i) ≤ Fin(v

j
i).

The substrate network of nodes that hosts VNFs is represented as a graph G(N,E),

where N is the set of nodes and E is the set of links. Each node n ∈ N has compute

resources, CPU cores, and memory, and each link e ∈ E has bandwidth capacity

bwc and propagation delay Del. Table 5.1 lists a detailed description of the substrate

network and SFC parameters.

Amir Mohamad - School of Computing

5.3. SYSTEM MODEL AND PROBLEM FORMULATION 88

Table 5.1: System Parameters Description.

Parameter Description

cpuc|av(n) CPU capacity | available in cores of node n ∈ N

ramc|av(n) RAM capacity | available in GBs of node n ∈ N

enn′ A link exists from node n to node n′, n, n′ ∈ N

bwc|av(enn′) BW capacity | available in Mbps of link enn′

Del(enn′) Propagation delay of link enn′

cpu(vi) CPU cores required for VNF vi ∈ V

ram(vi) RAM GBs required for VNF vi ∈ V

Fmax(vi) Maximum inflow VNF vi can handle

S(vi) Flag to indicate VNF vi is shareable

sfcj SFC request j

|sfcj| Number of VNFs in sfcj

vji The ith VNF of sfcj

Fin(v
j
i) Actual inflow that VNF vi will be serving

Fout(v
j
i) Outflow VNF v will produce

Del(sfcj) Maximum end-to-end delay of sfcj

5.3.2 Problem Formulation

Algorithm 5.1 describes the proposed PSVS scheme, a flowchart of the scheme is

shown in Figure 5.3. The scheme hinges on the placement algorithm and the required

resources prediction component. The placement algorithm is modeled as an integer

program with binary decision variables and utilizes VNF sharing. PSVS utilizes a

discretized time scale of TSs. First, at the beginning of each TS, PSVS terminates

and releases utilized resources of running sfcpr|be ∈ Runpr|be whose time-to-live (TTL)

is zero and moves them to Compr|be list. If SFC’s TTL is not zero, PSVS decreases the

TTL by one. Second, to prioritize sfcpr, PSVS attempts to satisfy received requests

Amir Mohamad - School of Computing

5.3. SYSTEM MODEL AND PROBLEM FORMULATION 89

in the Recpr queue. Finally, if there are requests in the Penbe queue, the predicted

required resources in the next ω TSs are utilized to either satisfy some or all of the

requests in Penbe or defer deployment to leave room for sfcpr requests to arrive.

We utilize no Penpr queue because sfcpr requests get rejected if not immediately

satisfied. Similarly, no Rejbe list is used, since sfcbe requests can tolerate waiting for

deployment.

start

Ǝ sfc in

Runpr|be & TTL

not updated?

Ǝ sfc in Recpr

sfc satisfied?

Move to

Runpr

Reject Pr sfc,

move to Rejpr

Ǝ sfc in Penbe Last time-slot?

End

TTL(sfc) = 0 ?

Move sfc to

Compr|be

TTL(sfc) - 1

Yes

Yes

Yes

YesYes

No

No

No No

No

No

Yes

No

- Runpr|be: 2 separate lists of running Pr & BE SFCs

- Compr|be: 2 separate lists of finished Pr & BE SFCs

- Penbe: a queue of new BE SFCs requests waiting for deployment

- Recpr: a queue of received new Pr SFCs

- Rejpr: a list of rejected Pr SFCs

- ω is prediction window in TSs.

- α is a resource safety margin in [1-3]

Next time-slot

Predict required resources

for next ω TSs. Available

resources = free resources

in current TS and released

resources in next ω TSs

Available resource ≥

α *Req. resources

Keep sfcs

in Penbe

Satisfy sfcbe requests whose

req. resources = Available

resource – (α *Req. resources)

Yes

Figure 5.3: PSVS scheme logical flow.

Placement Algorithm

With an SFC request sfcj consisting of VNFs vi, i ∈ [1, |sfcj|], the decision vari-

ables are: χj
in: if a new instance of VNF vi belonging to sfcj is to be placed at node

Amir Mohamad - School of Computing

5.3. SYSTEM MODEL AND PROBLEM FORMULATION 90

Algorithm 5.1: PSVS
// SimDur: Simulation duration in time slots (TSs), ω ∈ [1, 3] TSs Lookahead window length, and α ∈ [1, 3] Resource safety margin

(a scaling factor)

Input : net-Model, SimDur, ω, α
Init. : Recpr, Runpr|be, P enbe, Rejpr, Compr|be
Output: Different queues\lists and collected statistics

1 for i← 1 to SimDur do
2 Recpr ← received sfcpr requests
3 Penbe ← received sfcbe requests

// Update TTL of running SFCs

4 foreach sfcpr|be in Runpr|be do
5 if ttl(sfcpr|be) = 0 then

// Releases resources utilised by finished sfc

6 Compr|be ← sfcpr|be

7 else decTTL(sfcpr|be)

8 foreach sfcpr in Recpr do
// Using IQCP & Gurobi solver

9 sol ←satisfy(sfcpr,net-Model)
10 if sol ̸= ∅ then
11 deploy(sfcpr,net-Model)
12 Runpr ← sfcpr

13 else // sfcpr can not tolerate waiting for deployment

14 Rejpr ← sfcpr
// Required resources/sfcpr requests expected to arrive in ω TSs

15 ReqrdRespr ← predReqResources(ω)
// AvailRes: free resource in current TS and in next ω TSs

16 AvailRes ← getAvailResources(ω)
17 ExtraResbe ← 0
18 if AvailRes > (α * ReqrdRespr) then
19 ExtraResbe ← AvailRes − (α *ReqrdRespr)

20 while (∃ sfcbe in Penbe)&(ExtraResbe ̸=0) do
21 sol ←satisfy(sfcbe,net-Model)
22 if sol ̸= ∅ then
23 deploy(sfcbe,net-Model)
24 Runbe ← sfcbe
25 ExtraResbe ←ExtraResbe-usedRes(sfcbe)

// else sfc stays in Penbe

Amir Mohamad - School of Computing

5.3. SYSTEM MODEL AND PROBLEM FORMULATION 91

n; and Rj
in: if VNF vi of sfcj is to share and become the guest of a deployed under-

utilized VNF of the same type at node n. Queues, decision variables, and parameter

descriptions are in Table 5.2.

Objective Function The objective function, equation (5.1), is designed to favour

the placements that minimize the overall cost and resource utilization by preferring

sharing underutilized VNFs over instantiating new ones. The feasible solution has to

satisfy constraints 5.2-5.9. Objective function and some constraints are the same as

those used in previous chapters, however, they are listing here for completeness.

min

|sfcj |∑
i=1

∑
n∈N

[cpu(vji)U
c
cpu(n) + ram(vji)U

c
ram(n)]χ

j
in+

Fout(v
j
i)Ucbw[χ

j
in +Rj

in]

(5.1)

∑
n∈N

χj
in + Rj

in = 1 , ∀i ∈ [1, |sfcj|] (5.2)

∑
n∈N

χj
in + Di

n S(vi) R
j
in = 1, ∀i ∈ [1, |sfcj|] (5.3)

Fin(v
j
i) R

j
in ≤ Fav(D

i
n), ∀n ∈ N & ∀i ∈ [1, |sfcj|] (5.4)

|sfcj |∑
i=1

cpu(vji) χ
j
in ≤ cpuav(n), ∀n ∈ N (5.5)

|sfcj |∑
i=1

ram(vji) χ
j
in ≤ ramav(n), ∀n ∈ N (5.6)

enn′ (χj
in + Rj

in)(χ
j
(i+1)n′ + Rj

(i+1)n′) = 1

∀n, n′ ∈ N & ∀i ∈ [1, (|sfcj| − 1)]

(5.7)

Amir Mohamad - School of Computing

5.3. SYSTEM MODEL AND PROBLEM FORMULATION 92

Table 5.2: Queues, Decision Variables and Constants.

Variable/Queue Description

χj
in For placing a new VNF vi of sfcj at node n

Rj
in For sharing the flow of VNF vi of sfcj with already de-

ployed VNF of same type at node n

Di
n VNF of same type as vi is deployed at node n

Fav(v
i
n) Available unused flow of vi at node n

U c
cpu(n) Unit cost of cpu at node n

U c
ram(n) Unit cost of ram at node n

Uc(bw) Unit cost of bw at all links

Recpr Queue of new Pr SFCs until deployed

Penbe Queue of new BE SFCs until deployed

Rejpr List of rejected Pr SFCs

Runpr|be List of deployed Pr or BE SFCs

Compr|be A list of finished Pr or BE SFCs

∑
n∈N

∑
n′∈N

Fout(v
j
i)(χ

j
in + Rj

in)(χ
j
(i+1)n′ + Rj

(i+1)n′)

≤ bwav(enn′), ∀i ∈ [1, (|sfcj| − 1)]

(5.8)

|sfcj |−1∑
i=1

∑
n∈N

∑
n′∈N

Del(enn′) (χj
in + Rj

in)

(χj
(i+1)n′ + Rj

(i+1)n′) ≤ Del(sfcj)

(5.9)

Required Resources Prediction

The assumption here is that a simple prediction model exists and based on the

historical data, it can predict the number of sfcpr requests to arrive in the next

ω TSs and their required resources. As can be seen in line 18 of Algorithm 5.1,

when comparing predicted required resources (ReqrdRespr) to available resources

(AvailRes) we utilize a safety margin α.

Amir Mohamad - School of Computing

5.4. PERFORMANCE EVALUATION 93

The main purpose of using α is to compensate for the difference in TSs between the

size of the lookahead window ω ∈ [1, 3] and the duration of sfcbe requests (typically

10 or 20 TSs). For example, for α = 1, if the AvailRes is greater than predicted

ReqrdRespr, a deployed sfcbe in the current TS will have a lasting impact on resources

availability that will extend beyond the lookahead window, hence the sfcpr requests

rejections. The value of safety margin α should be empirically selected/tuned. On

the one hand, small values of α will lead to a higher rejection rate. On the other hand,

large values can cause starvation for the pending sfcbe requests as it will result in

overbooking resources for future sfcpr requests, resulting in lower system utilization

and prolonged waiting times for sfcbe requests. It is worth noting that, the AvailRes

are those resources free in the current TS in addition to resources that will be released

in the next ω TSs as running SFCs are finished, TTL=0, and moved to Compr|be list.

Extra resources (ExtraResbe) are those available resources that exceed the α-scaled

AvailRes and are utilized to satisfy one or more requests pending in the Penbe queue

(see Algorithm 5.1 lines 19-25).

5.4 Performance Evaluation

5.4.1 Simulation Framework

We utilize the same Java-based simulation environment used in previous chapter to

synthetically generate SFC requests and the network model. The SFC requests arrival

rate per TS follows a Poisson distribution with an average rate λ = 2. SFC length,

number of VNFs, is drawn from a uniform distribution |sfcj| ∼ U [4, 7] [58]. The

service time, i.e., SFC duration in TSs, is fixed, where sfcpr = 7 and sfcbe ∈ {10, 20}.

The ratio of sfcpr:sfcbe requests is either ‘50:50’ or ‘20:80,’ and the order of arrival is

Amir Mohamad - School of Computing

5.4. PERFORMANCE EVALUATION 94

shuffled. Each simulation is repeated ten times where the network model, nodes, and

links’ resources are the only constant. Across the ten repetitions, the variations are

number and type of requests per TS, the length and type of VNFs in sfc requests, and

sfc requests performance requirements (maximum end-to-end delay). We utilized a

list of onboarded VNFs that contains 16 VNFs, 60% of which are shareable. The

placement scheme is solved using the Gurobi solver [56].

5.4.2 Numerical Results and Analysis

To assess the impact of both lookahead window size ω and safety margin α on the

Rejpr%, we experiment with different values of ω and α, and with different system

loads. As can be seen in Figures 5.4a and 5.4b, themoderately-loaded system witnesses

an increase in completed requests (Compr|be), significantly fewer rejected requests

(Rejpr), and about the same percentage of received requests that are in the running

state (Runpr|be). When comparing the rejection rate of α = {1, 2, 2.8, 2.9} and ω = 3,

we can conclude that the safety margin has a significant impact on reducing the sfcpr

rejection rate. The same effect is carried over to the highly-loaded system, as shown in

Figures 5.4c and 5.4d. Even though the +50% reduction in the rejection rate of sfcpr

requests, the Penbe queue did not expand that much (compare the size of Penbe of

ω = 3 and α = 2.9 for the highly-loaded system. The best values that α converged to

might seem a magic number. However, we can easily find simpler, more deterministic

systems that use the same empirical methodology to determine the best value/range

for a probability/factor that maximizes an important KPI. For example, how the

‘p’ in p-persistent carrier sense multiple access (CSMA) is calculated to maximize

throughput [107].

Amir Mohamad - School of Computing

5.4. PERFORMANCE EVALUATION 95

1 2 3
Prediction/Lookahead Window (TS)

0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C p
r

SFCpr : SFCbe 50:50 | 7:20 TSs

Comppr| = 1
Runpr| = 1
Rejpr| = 1

Comppr| = 2
Runpr| = 2
Rejpr| = 2

Comppr| = 2.8
Runpr| = 2.8
Rejpr| = 2.8

(a) Moderately-loaded

1 2 3
Prediction/Lookahead Window (TS)

0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C b
e

SFCpr : SFCbe 50:50 | 7:20 TSs

Compbe| = 1
Runbe| = 1
Penbe| = 1

Compbe| = 2
Runbe| = 2
Penbe| = 2

Compbe| = 2.88
Runbe| = 2.88
Penbe| = 2.88

(b) Moderately-loaded

1 2 3
Prediction/Lookahead Window (TS)

0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C p
r

SFCpr : SFCbe 20:80 | 7:20 TSs

Comppr| = 1
Runpr| = 1
Rejpr| = 1

Comppr| = 2
Runpr| = 2
Rejpr| = 2

Comppr| = 2.9
Runpr| = 2.9
Rejpr| = 2.9

(c) Highly-loaded

1 2 3
Prediction/Lookahead Window (TS)

0

20

40

60

80

100
Pe

rc
en

t o
f R

ec
ei

ve
d

SF
C b

e
SFCpr : SFCbe 20:80 | 7:20 TSs

Compbe| = 1
Runbe| = 1
Penbe| = 1

Compbe| = 2
Runbe| = 2
Penbe| = 2

Compbe| = 2.9
Runbe| = 2.9
Penbe| = 2.9

(d) Highly-loaded

Figure 5.4: Rejected/Pending, running, and completed (%) of received sfcpr and
sfcbe requests for two system configurations.

The utilization of both moderately and highly-loaded systems, shown in Figure 5.5,

reveals that PSVS does not increase the completion and reduces the rejection rates of

sfcpr requests by totally ignoring the sfcbe requests and leaving the system resources

idle. Furthermore, PSVS enhances the overall utilization of the moderately-loaded

system. For the system utilization of different ω and α, we can consult Figure 5.4

to see that the size of Runpr|be of both system loads is almost the same for different

Amir Mohamad - School of Computing

5.4. PERFORMANCE EVALUATION 96

0 25 50 75 100 125 150 175 200
Time-slots

20

30

40

50

60

70

80

90
Ut

iliz
at

io
n

(%
)

20:80, without-Prediction
20:80, Prediction-based
50:50, without-Prediction
50:50, Prediction-based

Figure 5.5: Utilization throughout simulation time (200 TSs).

values of ω and α.

There are two faces to the PSVS schemes, the impact on the rejection rate of

sfcpr requests and on the AWT and pending sfcbe requests. Both the AWT and

percentage of pending sfcbe requests are reported in Figure 5.6. PSVS increased the

average waiting time (AWT) and the percentage of pending sfcbe requests by 43%

and 38%, respectively.

In addition to compensating for the difference between the short lookahead window

(for accurate predictions) and the 20TS-long sfcbe requests, the safety margin α helps

address the uncertainty arising from the VNF sharing (the used resources to satisfy

requests varies depending on the current snapshot of deployed SFCs) and increases the

Amir Mohamad - School of Computing

5.4. PERFORMANCE EVALUATION 97

No-Prediction Prediction Prediction-var-
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
SF

C b
e A

W
T

(T
S)

No-Prediction Prediction Prediction-var-
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
n b

e (
%

)

Pr:BE 50:50|7:20TSs Pr:BE 20:80|7:20TSs

Figure 5.6: Left: sfcbe average waiting time (AWT). Right: percentage of pend-
ing sfcbe requests. Prediction is using α = 2.8 for 50:50 systems and α = 2.9 for
20:80 system. The var-α uses a varying safety margin with lower-bound=2.8, upper-
bound=2.9, the increase step=0.1 and the decreasing step=0.01.

robustness of PSVS and its resilience to prediction errors. To evaluate the robustness

of PSVS results and demonstrate the importance of safety margin α, we experiment

with error rates/probabilities up to 70% of predicted required resources and with a

prediction error value of ε up to ±50%. As shown in Figure 5.7a, the biggest increase

in the highly-loaded system’s rejection rate is only 17% in the face of extreme error

values and rates. As shown in Figure 5.7b, the Penbe queue size did not grow.

Figure 5.8 shows the impact of safety margin α on sfcpr requests rejection rate

under extreme prediction error values and rates/probabilities. For both system loads,

the higher the value of α, the less the rejection rate. In the same vein, the increase

in the Penbe queue size is not concerning; see Figure 5.8b.

Amir Mohamad - School of Computing

5.4. PERFORMANCE EVALUATION 98

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Prediction Error Rate/Probability

25

30

35

40

45

50

Re
j p

r (
%

)

= 3, = 2.8|2.9

Moderately-loaded, = ± 0.3
Moderately-loaded, = ± 0.5

Highly-loaded, = ± 0.3
Highly-loaded, = ± 0.5

(a) Moderately-loaded

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Prediction Error Rate/Probability

5

10

15

20

Pe
n b

e (
%

)

= 3, = 2.8|2.9

Moderately-loaded, = ± 0.3
Moderately-loaded, = ± 0.5

Highly-loaded, = ± 0.3
Highly-loaded, = ± 0.5

(b) Highly-loaded

Figure 5.7: The impact of prediction error value and rates/probabilities on (a) Re-
jected Pr SFCs requests and (b) Pending BE SFC requests, for moderately- and
highly-loaded systems.

Amir Mohamad - School of Computing

5.4. PERFORMANCE EVALUATION 99

1 2 2.8|2.9
Safety-margin

40

50

60

70

Re
j p

r (
%

)
= ± 0.5, Error_Rate/Prob.= 0.7

Moderately-loaded Highly-loaded

(a) Moderately-loaded

1 2 2.8|2.9
Safety-margin

0

5

10

15

20

Pe
n b

e (
%

)

= ± 0.5, Error_Rate/Prob. = 0.7

Moderately-loaded Highly-loaded

(b) Highly-loaded

Figure 5.8: The impact of safety margin on sfcpr requests rejection rate under extreme
prediction error values and rates/probabilities, (a) Rejected Pr SFCs requests and (b)
Pending BE SFC requests.

Amir Mohamad - School of Computing

5.5. SUMMARY 100

5.5 Summary

In this chapter, we present PSVS to reduce the rejection rate of time-sensitive

Pr services at the edge. PSVS utilizes both the predicted required resources and a

safety margin to address the difference between ω and sfcbe request duration and

to provide resiliency against prediction errors. We experiment and evaluate different

lookahead window sizes ω and safety margin α and conclude the best values to balance

the reduction in sfcpr requests rejection rate and sfcbe requests AWT. Finally, more

reduction in the rejection rate is attainable; however, the sfcbe requests will suffer

more starvation. This might be desirable in emergencies where time-critical premium

services must be immediately satisfied.

Rejections of sfcpr requests are unavoidable with a prediction window size ω

smaller than sfcbe requests’ average duration. However, to get accurate predictions,

we had to continue using small lookahead window sizes. In an environment where

lower-priority services can be suspended, and the preemption cost is bearable, a zero

sfcpr rejections might be achievable by suspending one or more running BE services

and preempting resources to premium services. Future research includes a preemption

criterion that preempts resources for sfcpr requests and minimizes the disturbance to

BE services.

Amir Mohamad - School of Computing

Chapter 6

Immediate Placement of Time-critical Services

“5G cell networks create a whole

new wave of distributed and edge

computing”

Michael Dell

6.1 Introduction

Time-critical premium (Pr) services and applications are a class of software that

have strict time constraints, that if such constraints were not met a Pr service would

fail [54, 61, 78]. Catastrophic consequences might follow as a result of service fail-

ure; for example, a collision warning service failure might result in more collisions

and more fatalities. Edge computing is a distributed version of the cloud, and its

resources are limited compared to the cloud. The demand generated by time-critical

applications necessitates the efficient utilization of edge resources. With the stringent

time constraints of time-critical applications and services, there must be a mechanism

by which time-critical service requests are immediately satisfied.

To address these two needs, efficient utilization of edge resources and immediate

101

6.1. INTRODUCTION 102

satisfaction of Pr service/SFC requests, we propose an immediate placement of time-

critical SFCs with VNF sharing (IPTSV). This is accomplished by taking advantage

of the common VNFs across SFCs and the operations dynamics that might leave

some deployed VNFs underutilized. The IPTSV satisfies SFC requests by sharing

underutilized shareable VNFs. With limited resources at the edge, when a Pr SFC

request cannot be satisfied, a preemption criterion is used to stop and deport some

or all of the deployed best-effort (BE) lower priority SFCs to release resources and

successfully deploy the Pr SFC. The preemption criterion is designed to address the

trade-off between releasing the resources to deploy a Pr SFC and minimizing the

number of disturbed BE SFCs. As a remedy to the side effects of IPTSV, we design a

preemptive prediction-based placement scheme that only utilizes preemption in cases

where the prediction fails to secure the required resources for sfcpr requests.

The main contributions of this chapter are:

• Introduction of the preemptive placement scheme that reduces Pr SFC requests

rejection rate to near zero.

• Defining the baseline performance of preemption-based service placement.

• Recommending which preemption criterion to use given the service domain

context and provider’s policies and priorities.

• Introduction of preemptive prediction-based placement scheme to reduce the

side effects of preemptive-based placement on running sfcbe.

The remainder of this chapter is structured as follows. Proposed time-critical

SFC placement, system model, and problem formulation are detailed in Section 6.2.

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 103

In Section 6.3, we detail the simulation framework. Performance evaluation and re-

sults analysis are covered in Section 6.4. The preemptive prediction-based placement

scheme is detailed in Section 6.5. Conclusions and future work is presented in Section

6.6.

6.2 System Model and Problem Formulation

In the NFV-based service domain, some services of both CSPs and third-party

service providers come in different quality of service (QoS) categories. Indeed, there

could be more than two service categories; however, as in previous two chapters, we

are utilizing only two service categories, Pr and best-effort (BE) service categories.

Despite using VNF sharing, there is a possibility that a received Pr SFC request

cannot be satisfied due to insufficient resources. Based on extensive simulations of

SFC placement with VNF sharing, the rejection rate of Pr SFCs is unavoidable and

concerning. As shown in Figure 5.1, the best-case scenario is ‘50:50—VarDuration’

the lightly-loaded system. Utilizing VNF sharing resulted in a 50% reduction in Pr

SFCs rejection rate; however, the rejection rate of the VNF sharing-based placement

scheme is still about 19%. It is even worse for higher system loads, where there

are either longer duration BE SFCs or more BE SFCs. These rejections represent

unsatisfied customers and lost revenue for CSPs.

We propose the immediate placement of time-critical SFCs with VNF sharing

(IPTSV) to help CSPs manage their resource utilization in an efficient manner and

seize revenue opportunities. In situations where resources are not available to satisfy

Pr SFCs, a criterion should be in place to preempt resources for Pr SFC by deporting

lower-priority running BE SFC(s). The preemption criterion should strive to balance

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 104

between immediately satisfying Pr SFCs and minimizing the number of disturbed

BE SFCs. Priority-aware preemptive scheduling is not a new idea; it has been used

extensively, especially in the context of process scheduling for CPU . To the best of our

knowledge, priority-aware preemptive scheduling has never been used in the context

of SFC placement with VNF sharing at the resource-limited edge environment.

In our system, Pr SFCs can be in one of these states: received, rejected, running,

or completed. Due to its lower priority, BE SFCs can be in states: received, running,

pending redeployment or completed. The states and actions that trigger state changes

of SFCs are detailed in Figure 6.1.

Received

Running

Rejected
Completed

Pending
Redeployment

No resources (BE)

No resources (Pr)

TTL = 0

Deported

RedeployedDeployed

New SFC
Request

Pr queue

BE queueBE queue

...

..
.

...
...

...

Pr SFC

BE SFC

Pr SFC

BE SFC

Pr SFCs deployed first

Pr SFCs can’t tolerate
waiting

BE SFCs can wait
for deployment

...

11

22
33

Figure 6.1: States a SFC request can take in IPTSV and order of priority and de-
ployment of queues (1→ 2→ 3).

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 105

6.2.1 System Model

The list of on-boarded VNFs list V is from where SFC’s VNFs are selected. Each

VNF vi ∈ V has resource requirements, and once these requirements are provided,

the VNF is expected to process a maximum flow of traffic Fmax(vi). S(vi) is a flag

to determine whether VNF vi is shareable or non-shareable. Once selected in sfcj,

the actual inflow and outflow (subject to change due to operation dynamics) of VNFs

should be declared. The substrate network is represented as a graph G(N,E), where

N is the set of nodes and E is the set of links. Each node n ∈ N has its compute

resources, cpu cores, and memory, and each link e ∈ E has bandwidth capacity bwc

and propagation delay Del. The topology of the substrate network is determined

by a configurable connectivity matrix. Table 6.1 lists a detailed description of the

substrate network and SFC parameters (very few differences between this chapter’s

tables and previous chapters, however, they are listed here for completeness).

6.2.2 Problem Formulation

The logic flow the IPTSV scheme is shown in Figure 6.2 and in Algorithm 6.1.

The IPTSV scheme hinges critically on two main components, the placement algo-

rithm and the preemption criterion. The different scores used in the preemption

criteria are detailed below in the (Preemption Criteria) subsection. The VNF shar-

ing-based placement algorithm is modelled as an integer quadratically-constrained

program (IQCP) with binary decision variables. The IPTSV scheme manages SFC

requests arriving at each time slot (TS). First, IPTSV looks for deployed SFCs in list

Runpr|be with time-to-live (TTL), in TSs, value equal to zero to terminate and release

the resources; otherwise, it decreases TTL value by one. Second, IPTSV considers

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 106

Table 6.1: System Parameters Description

Parameter Description

cpuc(n) CPU capacity in cores of node n ∈ N,∼ U [8, 64]

ramc(n) RAM capacity in GBs of node n ∈ N,∼ U [16, 128]

cpuav(n) Available CPU cores at node n ∈ N

ramav(n) Available RAM GBs at node n ∈ N

enn′ A link exists from node n to node n′, n, n′ ∈ N

bwc(enn′) BW capacity in Gbps of link enn′ ,∼ U [2, 5]

bwav(enn′) Available BW at link enn′

Del(enn′) Propagation delay in µsec of link enn′ ,∼ U [0.5, 4]

V Set of available/on-boarded VNFs

vi Is a VNF, where vi ∈ V

cpu(vi) CPU cores required for VNF vi ∈ V,∼ U [2, 8]

ram(vi) RAM GBs required for VNF vi ∈ V,∼ U [4, 16]

Fmax(vi) Maximum inflow VNF vi can handle, function of cpu(vi)
and ram(vi)

S(vi) Flag to indicate VNF vi is shareable

Drop(vi) Flag to indicate that VNF vi drops/compresses inflow

sfcj SFC request j

|sfcj| Number of VNFs in sfcj, ∼ U [4, 7]

vji The ith VNF of sfcj

Fin(v
j
i) Actual inflow that VNF vi will be serving

Fout(v
j
i) Outflow VNF v will produce

Del(sfcj) Maximum end-to-end delay of sfcj=(|sfcj| −
1) ∗ AvgLinkDelay, where AvgLinkDelay =

1
|E|

|N |∑
n=1

|N |∑
n′=1

Del(enn′)

Vdiff (sfcj,k) number of VNFs in sfcj not in sfck

Gst(sfcj) total number SFCs hosted by sfcj

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 107

start

Ǝ sfc in

Runpr|be & TTL

not updated?

Ǝ sfc in Recpr

sfc satisfied?

Move to

Runpr

Ǝ sfc in Runbe

Score and sort Runbe

Deport 1/all BE sfc(s)

& move to Penbe

Reject Pr sfc,

move to Rejpr

Ǝ sfc in Penbe

sfc satisfied?

Move to

Runbe

Keep sfc in Penbe

Ǝ sfc in Recbe

sfc satisfied?

Keep sfc in Recbe

Last time-slot?

End

TTL(sfc) = 0 ?

Move sfc to

Compr|be

TTL(sfc) - 1

Yes

Yes

Yes

YesYesYes

Yes Yes

No

No

No No No

No

No

No

Yes

No

Yes

No Move to

Runbe

- Runpr|be: 2 separate lists of running Pr & BE SFCs

- Compr|be: 2 separate lists of finished Pr & BE SFCs

- Penbe: a queue of deported BE SFCs pending redeployment

- Recpr/Recbe: 2 separate queues of received new Pr & BE SFCs

- Rejpr: a list of rejected Pr SFCs

Next time-slot

Figure 6.2: IPTSV scheme Logical flow.

requests in the received Pr queue (Recpr). After trying to satisfy Pr SFC requests,

IPTSV attempts to satisfy the BE SFCs in the Penbe queue, which holds the BE

SFCs that were previously deported to accommodate a Pr SFC and were not suc-

cessfully redeployed. Finally, IPTSV addresses those SFC requests in the received

queue Recbe. There is no Penpr queue because Pr SFCs cannot tolerate being queued

in a received waiting queue (Recpr) beyond the TS they were received in or being

deported and waiting for redeployment. There is no Rejbe list, as we assume that BE

queues are infinite, and the BE SFCs are to stay indefinitely in queues waiting for

deployment or redeployment.

Placement Algorithm

With SFC request sfcj consisting of VNFs vi, i ∈ [1, |sfcj|], the decision variables

are: Xj
in, meaning a new instance of VNF vi belonging to sfcj is to be placed at

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 108

Algorithm 6.1: IPTSV
// netModel: network Model, No.TSs: Simulation time in time-slots

Input : netModel, No.TSs
Init. : Recpr|be, Runpr|be, P enbe, Rejpr, Compr|be
Output: Different queues

1 for i← 1 to No.TSs do
2 Recpr ← received Pr requests
3 RecBE ← receivedBE requests

// Update TTL of running SFCs

4 foreach sfcpr|be in Runpr|be do
5 if ttl(sfcpr|be) = 0 then
6 Compr|be ← sfcpr|be

7 else decTTL(sfcpr|be)

8 foreach sfcpr in Recpr do
// Using IQCP & Gurobi solver

9 sol ←satisfy(sfcpr,netModel)
10 if sol ̸= ∅ then
11 deploy(sfcpr,netModel)
12 Runpr ← sfcpr

13 else // Check preemptCPU algorithm for details

// sfcpr is only used with ’similar’ preemption criterion

14 sol,Penbe ←preemptCPU(criterion,Runbe)

15 if sol ̸= ∅ then
16 deploy(sfcpr,netModel)
17 Runpr ← sfcpr

18 else Rejpr ← sfcpr

19 foreach sfcbe in Penbe do
20 sol ←satisfy(sfcbe,netModel)
21 if sol ̸= ∅ then
22 deploy(sfcbe,netModel)
23 Runbe ← sfcbe

// else sfc stays in Penbe

24 foreach sfcbe in Recbe do
25 sol ←satisfy(sfcbe,netModel)
26 if sol ̸= ∅ then
27 deploy(sfcbe,netModel)
28 Runbe ← sfcbe

// else sfc stays in Recbe

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 109

node n; and Rj
in means that VNF vi of sfcj is to share and become the guest of a

deployed underutilized VNF of the same type at node n. Queues, decision variables,

and parameter descriptions are in Table 6.2.

Objective Function The objective is to select the placement that minimizes the

overall cost, hence, optimizing resource utilization. The objective function in equa-

tion (6.1) is formulated to prioritize sharing over deploying new VNF instances. Ob-

jective function and constraints are the same as those in chapter 5, however, we are

listing them here for completeness.

min

|sfcj |∑
i=1

∑
n∈N

[cpu(vji)U
c
cpu(n) + ram(vji)U

c
ram(n)]X

j
in+

Fout(v
j
i)Ucbw[X

j
in +Rj

in]

(6.1)

Constraints A feasible solution must have each VNF of SFC assigned only once to

a substrate node, where each VNF is realised by a new instance or by sharing the free

capacity of a deployed VNF, equation (6.2). If sharing is the decision, a shareable

VNF of the same type must have been deployed, equation (6.3), and its free capacity

is a sufficient amount for SFC’s VNF inflow, equation (6.4). If a new instance is

to be deployed, Xj
in to be valid, substrate node n must have the required resources,

i.e., cpu and ram, equations (6.5 & 6.6). Equations (6.7) and (6.8) are to ensure

continuity of both SFC’s VNFs and the substrate nodes hosting them, and make sure

that available bandwidth in the physical link enn′ is enough for the outflow VNF vji .

Finally, equation (6.9) is to guarantee that the quality-of-services (QoS) requirements

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 110

Table 6.2: Queues, Decision Variables and Constants

Variable/Queue Description

Recpr A queue holding new Pr SFCs until deployed in the same
TS

Recbe A queue holding new BE SFCs until deployed

Rejpr A list of rejected Pr SFCs

Penbe A queue holding deported BE SFCs to be redeployed

Runpr|be A list of deployed Pr or BE SFCs

Compr|be A list of finished Pr or BE SFCs

Xj
in Binary decision for placing VNF vi of sfcj at node n

Rj
in Binary decision for sharing the flow of VNF vi of sfcj

with already deployed VNF of same type at node n

Di
n VNF of same type as vi already deployed at node n

Fav(D
i
n) Available unused flow of vi at node n

U c
cpu(n) Unit cost of cpu at node n

U c
ram(n) Unit cost of ram at node n

Uc(bw) Unit cost of bw at all links

(end-to-end latency) of sfcj are satisfied.

∑
n∈N

Xj
in + Rj

in = 1 , ∀i ∈ [1, |sfcj|] (6.2)

∑
n∈N

Xj
in + Dj

i S(vi) R
j
in = 1, ∀i ∈ [1, |sfcj|] (6.3)

Fin(v
j
i) R

j
in ≤ Fav(D

i
n), ∀n ∈ N & ∀i ∈ [1, |sfcj|] (6.4)

|sfcj |∑
i=1

cpu(vji) X
j
in ≤ cpuav(n), ∀n ∈ N (6.5)

|sfcj |∑
i=1

ram(vji) X
j
in ≤ ramav(n), ∀n ∈ N (6.6)

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 111

enn′ (Xj
in + Rj

in)(X
j

(i+1)n′ + Rj

(i+1)n′) = 1

∀n, n′ ∈ N & ∀i ∈ [1, (|sfcj| − 1)]

(6.7)

∑
n∈N

∑
n′∈N

Fout(v
j
i)(X

j
in + Rj

in)(X
j

(i+1)n′ + Rj

(i+1)n′)

≤ bwav(enn′), ∀i ∈ [1, (|sfcj| − 1)]

(6.8)

|sfcj |−1∑
i=1

∑
n∈N

∑
n′∈N

Del(enn′) (Xj
in + Rj

in)

(Xj

(i+1)n′ + Rj

(i+1)n′) ≤ Del(sfcj)

(6.9)

Preemption Criteria

In a conventional preemptive resources allocation algorithm, deporting a running

process/service always releases a fixed number of resources. With VNF sharing, de-

porting a running SFC does not necessarily release the exact same number of resources

that the SFC is supposed to be utilizing. This is why we propose to study a different

number of scoring and preemption criteria to produce a recommendation for the best

criterion for certain contexts.

As in Algorithm 6.2, IPTSV deports BE SFCs one at a time from a list sorted

according to the calculated scores. The simplest preemption criterion that IPTSV

could use is ‘All,’ in which all running BE SFCs are deported to release resources

for the Pr SFC at hand. This criterion represents a baseline performance and will

be used as a benchmark to evaluate other criteria. Some of the deported BE SFCs

will be successfully redeployed, which means they were gratuitously deported, while

others cannot be deployed and will be put in a redeployment-pending queue Penbe.

On the one hand, the ‘All’ criterion is very simple and does not require executing

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 112

the placement algorithm for the Pr SFC more than once. On the other hand, it

unnecessarily disturbs all running BE SFCs, and consequently, to redeploy BE SFCs,

we have to execute the placement algorithm as many times as the number of deported

BE SFCs.

Algorithm 6.2: preemptCPU

Input : netModel, criterion, sfcpr, Runbe

Output: sol, Penbe

1 if criterion ̸= Random then
// sfcpr is needed for ’similar’ criterion

// sort() sorts ’as.’ ↑ or ’dec.’ ↓ based-on given criterion

2 Runbe ← sort(score(Runbe,criterion, sfcpr),[as|dec])
3 sol ← ∅
4 while sol = ∅ and len(Runbe)̸= 0 do
5 if criterion = Random then

// Runbe isn’t sorted

6 sfcbe ← getRandSfc(Runbe)

7 else
// Runbe is sorted

8 sfcbe ← Runbe[0]

9 deport(sfcbe)
10 Penbe ← sfcbe
11 sol ← satisfy(sfcpr,netModel)

12 return sol, Penbe

To solve the negative effects of the ‘All’ criterion, we propose alternate preemp-

tion criteria. The main goal is to minimize both the number of disturbed BE SFCs

(reduce gratuitously deported SFCs) and the number of placement algorithm exe-

cutions. First, a score is calculated per BE SFC then the list of scores is sorted in

a descending or ascending order depending on the criterion. Finally, BE SFCs are

deported one at a time until the Pr SFC is successfully deployed. The best-case sce-

nario is to deport only one BE SFC, and the worst-case scenario is to deport all BE

SFCs. In the latter scenario, there is a chance that the Pr SFC cannot be deployed,

Amir Mohamad - School of Computing

6.2. SYSTEM MODEL AND PROBLEM FORMULATION 113

as the resources utilized by BE SFCs were not enough for the Pr SFC, or there were

no deployed BE SFCs.

The successful deployment of SFC requests depends on the availability of re-

sources, especially the cpu cores. That is why the score calculation should either

directly or indirectly involve cpu cores utilized by deployed BE SFCs and can use

cpu cores required by the new Pr SFC. The scores we decided to use are: SFC-

Length (number of VNFs in SFC), SFC-CPU (number of cpu cores utilized by SFC),

SFC&Node-CPU (number of cpu cores utilized by SFC plus the number of free cores

at nodes hosting SFC’s VNFs), Similar (similarity measure between deployed BE

SFCs and the new Pr SFC), and Random (no scores calculated, the list of deployed

BE SFCs used as-is).

The ‘longer-first’ and ‘shorter-first’ criteria sort the list of length scores in de-

scending and ascending order, respectively. The ‘SFC-CPU-first’ and ‘SFC&Node-

CPU-first’ criteria use descending sorted CPU scores lists. The ‘most-similar-first’

criterion is the only one that depends on the new Pr SFC in calculating the similarity

score. The premise here is to search for the most similar BE SFC to the new Pr SFC,

which should minimize the number of deported BE SFCs. As in equation (6.10), the

similarity score is the inverse of the difference score, which includes: the number of

different VNFs, Pr-length minus BE-length, Pr-max-outflow minus BE-max-outflow,

the difference in required CPU cores, and the total number of SFCs that BE SFC

is hosting. Each difference term in equation (6.10) is normalized against its peers

Amir Mohamad - School of Computing

6.3. SIMULATION FRAMEWORK 114

calculated for all BE SFCs before calculating the similarity score.

SIM(sfcpr, sfcbe) = 1/{Vdiff (sfcpr,be)+

(|sfcpr| − |sfcbe|) + [max(fout(v
pr
i))−max(fout(v

be
i))]+

[

|sfcpr|∑
i=1

cpu(vpri)−
|sfcbe|∑
i=1

cpu(vbei) +Gst(sfcbe)} (6.10)

The deport(sfcbe) procedure, in Algorithm 6.2 line 9, is accomplished with VNF

sharing considered. In VNF-sharing, shareable VNFs are either host or guest. For

example, in Figure 6.3, VNF V2 of sfc1 is a host VNF sharing its unused capacity

with two similar guest VNFs belonging to sfc3 and sfc4. In cases where a guest

VNF’s SFC is to be deported, and the shared capacity is simply returned to the host

VNF. If the host VNF’s SFC is to be deported, then a guest VNF must be promoted

to assume the host role. The simplest scenario is when there is only one guest VNF, it

will take the host role automatically. If more than one guest VNFs exist, the one that

has the highest TTL will be promoted to avoid the overhead of frequent promotions

if we have selected a shorter-living VNF.

6.3 Simulation Framework

Because the development of edge computing and MEC is relatively new, there are

no edge/MEC demand and workload traces that are publicly available and sufficiently

suitable for our system setup [26,101]. Therefore, we decided to synthetically generate

SFC requests per each TS. The arrival of SFC requests per TS follows a Poisson

distribution with an average rate λ = 2.

We utilize the Java-based simulation environment used in previous chapters. In

Amir Mohamad - School of Computing

6.3. SIMULATION FRAMEWORK 115

V2: Host VNF
SFC1 TTL=4

guest vnf

guest vnfSFC3 TTL=3

SFC4 TTL=7

Outflow 34 Inflow 44

Inflow 20 Inflow 20

Inflow 16+44+20 = 80 Outflow 16+34+20 = 70

V2: Host VNF
SFC4 TTL=7

guest vnfSFC3 TTL=3

Outflow 34 Inflow 44

Inflow 20+44 = 64 Outflow 20+34 = 54

Deport SFC1

MaxIn/OutFlow 100

MaxIn/OutFlow 100

Figure 6.3: Promoting guest VNF to act as a host, part of sfcbe deportion

which, we generate a substrate network model, synthetically generate demand by

creating SFC requests at time slots, execute the placement decisions, and track SFCs’

different state/queue transitions. SFC length is drawn from a uniform distribution

|sfcj| ∼ U [4, 7] [58, 68]. The service time, i.e., SFC duration in TSs, is fixed, where

sfcpr = 7 and sfcbr ∈ {5, 20}. If SFC duration is to be variable, it is randomly

sampled from a uniform distribution U [5, 18]. The ratio of Pr to BE SFC requests is

either ‘50:50’ or ‘20:80,’ and the order of arrival is randomly shuffled.

In our simulations, for all simulations, we used the same network model and the

same topology used in previous chapter. With the simulation time set to 200 TSs, we

generated around 415 SFCs, taking care of the number of SFC requests per TS; type

Amir Mohamad - School of Computing

6.4. PERFORMANCE EVALUATION 116

of VNFs of each SFC; actual inflow and outflow of each VNF; and the cap end-to-end

delay of each SFC as the QoS requirement. This process was repeated ten times, and

generated data were saved in files and used to experiment with different preemption

criteria. The list of on-boarded VNFs contains 16 VNFs of different flavors and

requirements, where 60% of VNFs are shareable. The IQCP model is solved using

the Gurobi solver [56].

6.4 Performance Evaluation

6.4.1 Evaluation Metrics

Similar to other SFC placement schemes, IPTSV uses metrics such as resource

utilization, rejection rate, and percentage of SFCs waiting for deployment or pending

redeployment. In addition, the preemption related metrics are the following: the per-

centage of gratuitously deported BE SFCs; the average number of deported BE SFCs

to satisfy one Pr SFC; the average number of deportations per BE SFC; the maxi-

mum and the minimum number of deportations of one BE SFC; and the percentage

of received Pr SFC requests that needed preemption to be satisfied. To assess the im-

pact on deported BE SFCs, we use the average waiting time (AWT) and turn-around

time (TAT). AWT is the time an SFC spends in the system, not in the running state,

before completed, and is calculated for SFCs in Recbe, Penbe, and Combe queues and

lists. The TAT is the total time spent from reception to completion and is calculated

for and averaged over completed SFCs only. Due to the sensitivity to uncontrollable

processes running in the background, we chose to use TS, instead of system time in

milliseconds, as the unit to report AWT and TAT.

The purpose of these simulations is not to crown a winning preemption criterion;

Amir Mohamad - School of Computing

6.4. PERFORMANCE EVALUATION 117

rather first, it is to demonstrate the plausibility of preemption in the context of

time-critical SFC placement with VNF sharing (using the ‘All’ criterion). Second,

to study how successful other criteria are in addressing the side effects of the ‘All’

criterion. Lastly, check if the almost overhead free ‘Random’ criterion’s performance

is comparable to the best criterion and in which circumstances.

6.4.2 Numerical Results and Analysis

To ensure that we are deriving results and conclusions from a steady/stable sys-

tem, we experiment with different system loads by varying the Pr:BE ratio and SFC

duration in TSs. We experiment with the Pr:BE ratio of ‘50:50’ and ‘20:80,’ and

for SFC duration, we experiment with variable duration (average of 10 for both Pr

and BE SFCs), Pr 7 and BE of 5, 7, and 20 TSs. In this simulation, the preemption

criterion used is the ‘All.’ For this simulation, we reported the utilization throughout

the simulation duration (200 TSs).

As shown in Figure 6.4, the ‘Pr:BE% 50:50|7-5 TSs’ case sustains the least utiliza-

tion, that is because the system never gets to the point where resources are used up.

Deployed SFCs, especially BE SFCs, complete their job quickly and release resources

sooner. As we increase the duration of BE SFCs, more resources will be used up, and

hence, the queues Recbe and Penbe will start to build up, and the rejection rate will

start to increase.

The idea here is that the longer SFCs will have to stay in the system, the higher

the rejection rate will be. As illustrated in Figure 6.5, the ‘Pr:BE% 50:50|7-5 TSs’

is a trivial case with almost no Pr SFCs needing preemption to be satisfied and the

‘Pr:BE% 50:50| VarDuration’ is where we begin to see a rise of Pr SFCs needing

Amir Mohamad - School of Computing

6.4. PERFORMANCE EVALUATION 118

0 25 50 75 100 125 150 175 200
Time-slots (TSs)

0

20

40

60

80

Ut
iliz

at
io

n
(%

)
All

Pr:BE_50:50_VarDur.
Pr:BE_50:50_7-5TSs
Pr:BE_50:50_7-20TSs
Pr:BE_20:80_7-20TSs

Figure 6.4: Resource utilization for different system loads for ‘All’ preemption crite-
rion

50:50|7,5TSs 50:50|VarDur. 50:50|7,20TSs 20:80|7,20TSs
System Configuration/Load

0

20

40

60

80

100

%
 o

f S
FC

s R
eq

ue
st

s

All

sfcpr needing preemption
Completed
Recbe

Penbe

Figure 6.5: End-of-simulation queue sizes for different system loads for ‘All’ preemp-
tion criterion

Amir Mohamad - School of Computing

6.4. PERFORMANCE EVALUATION 119

preemption. It is even more serious for the ‘Pr:BE% 50:50|7-20 TSs’ and ‘Pr:BE%

20:80|7-20 TSs’ cases. As such, and due to the many configurable knobs in our system,

for the remaining simulations, we will be using the ‘Pr:BE% 50:50|7-20 TSs’ as a

moderately-loaded system, and ‘Pr:BE% 20:80|7-20 TSs’ as a highly-loaded system.

To evaluate the performance of preemption criteria, we measure the number of

deported BE SFCs to deploy one Pr SFC and the average number of deportations a BE

SFC has to endure. As detailed in Table 6.3, taking the ‘All’ criterion as a reference,

the ‘SFC-CPU-first’ criterion is ahead in most measures. This is attributed to the

sometimes misguided ‘SFC&Node-CPU-first’ criterion when the number of utilized

cores by a BE SFC is low, but one of its VNFs’ hosting node has a very high number

of free cores. In such a case, this SFC will climb to the top of the sorted list and will

be deported first. The ‘Longer-first’ criterion is not as good since it depends on the

length, in which longer SFCs do not necessarily utilize more cpu cores. Moreover, the

longer the SFC, the higher the probability that more VNFs are either host or guest

VNFs. In either case, deporting those VNFs, will not release any resources. The

‘most-similar-first’ criterion is closely competing; even better in one column (average

deportations/sfcbe); however, unlike other criteria, it recalculates scores of BE SFCs

for every Pr SFC. Yet, the results do not parallel the burden of processing overhead.

Gratuitously deported BE SFCs are those SFCs deported to satisfy a Pr SFC

and were successfully redeployed in the same TS. Figure 6.6 reports gratuitously

deported SFCs as a percentage of all deported BE SFCs. The ‘SFC-CPU-first’ cri-

terion yields the best performance both in the moderately-loaded and highly-loaded

systems. When deporting the SFC that utilizes the highest number of CPU cores,

Amir Mohamad - School of Computing

6.4. PERFORMANCE EVALUATION 120

Table 6.3: Preemption Performance (Red the is worst, Green is the best).

Pr:BE 50:50,7-20 TSs Pr:BE 20:80,7-20 TSs

Avg de-
ported
BE/Pr

Avg de-
portation-
s/BE

Avg de-
ported
BE/Pr

Avg de-
portation-
s/BE

All 19.75±0.33 16.79±0.56 25.81±0.17 6.76±0.28
Longer 2.53±0.11 4.47±0.24 2.87±0.14 2.01±0.1
Shorter 4.55±0.2 6.2±0.26 5.66±0.23 2.97±0.09
SFC-CPU 1.94±0.07 2.59±0.11 2.37±0.09 1.35±0.03
SFC&Node
CPU

2.11±0.07 2.57±0.09 2.42±0.1 1.40±0.03

Similar 2.17±0.07 2.57±0.06 2.59±0.14 1.41±0.05
Random 2.72±0.07 2.70±0.1 3.45±0.15 1.45±0.03

All Longer
Shorter

SFC-CPU
SFC&Node-CPU

Most-Similar
Random

Preemption Criteria

0

5

10

15

20

25

30

35

Gr
at

ui
t.

De
po

rte
d

sf
c b

e (
%

)

Pr:BE_50:50_7-20TSs
Pr:BE_20:80_7-20TSs

Figure 6.6: Gratuitously deported sfcbe.

Amir Mohamad - School of Computing

6.4. PERFORMANCE EVALUATION 121

All Longer
Shorter

SFC-CPU
SFC&Node-CPU

Most-Similar
Random

Preemption Criteria

0

2

4

6

8

10
Gr

at
ui

t.
De

po
rte

d
sf

c b
e (

%
)

Pr:BE_50:50_7-20TSs
Pr:BE_20:80_7-20TSs

Figure 6.7: Gratuitously deported sfcbe (No-Sharing).

No All Longer
Shorter

SFC-CPU
SFC&Node-CPU

Most-Similar
Random

Preemption Criteria

0

5

10

15

20

25

sf
c b

e A
W

T
(T

S)

Pr:BE_50:50_7-20TSs
Pr:BE_20:80_7-20TSs

Figure 6.8: AWT of sfcbe.

Amir Mohamad - School of Computing

6.4. PERFORMANCE EVALUATION 122

the probability is higher that this is the best-case scenario, i.e., deporting only one

BE SFC or the fewest number of BE SFCs. We are using the word ‘probability’ since

VNFs are shared, and there is a chance that an SFC utilizing the highest number of

cpu cores, but upon deportation, few to zero cpu cores are released. The reason is

(as explained in subsection(Preemption Criteria) and in Figure 6.3) when deporting

a host VNF that has one or more guest VNFs, the cpu cores will not be released. To

prove this, we measured the same metric with non-sharing, shown in Figure 6.7. The

overall percentage of gratuitously deported BE SFCs significantly dropped by about

79%− 81% in the ‘50:50’ system and 69%− 89% in the ‘20:80’ system. This signif-

icant drop is due to the absence of sharing and the guaranteed release of resources

once an SFC is deported. Furthermore, the non-sharing version of ‘Shorter-first’ is

better than that of the IPTSV version, which is almost as bad as the ‘All’ criterion.

The AWT of BE SFCs, reported per TS, increases almost linearly as time pro-

gresses and load increases. The Result of the ‘No-preemption’ criterion is used as a

reference lower-bound of BE SFC AWT. The concluding results of the simulation are

shown in Figure 6.8, the best, least, AWT is that of ‘No’ and the worst as expected

is that of ‘All’ criterion. In both ‘50:50’ and ‘20:80’ systems, the ‘Longer-first’ and

‘SFC-CPU-first’ exchange best AWT. In the ‘20:80’ system, the AWT of the ‘No’

criterion started to increase as a result of having more BE SFCs staying 20 TSs,

yet ‘SFC-CPU-first’ criterion maintains consistent least AWT (second after the ‘No’

criterion). Since the TAT is almost equal to SFC duration plus the AWT; we did not

include the average TAT of BE SFCs figure.

We formulate equation (6.11) as the preemption cost function. It is a function of

j and k, where j ∈ [0, |Runbe|] is the number of deported BE SFCs to satisfy one Pr

Amir Mohamad - School of Computing

6.4. PERFORMANCE EVALUATION 123

SFC and k ∈ [4 ∗ |Runbe|, 7 ∗ |Runbe|] is the total number of VNFs in deported SFCs.

The cost function has three components: c1 the cost of lost revenue when deporting

one BE SFC; c2 cost of a single execution of placement algorithm; and c3 cost of

caching the state of a single VNF until redeployment. For simplicity, we used equal

costs, c1 = c2 = c3 = 1.

Cost(j, k) =

 c1.j + c2(1 + j) + c3.k , ‘All′ criterion

c1.j + 2c2.j + c3.k , otherwise
(6.11)

As shown in Figure 6.9, the criteria that has the least preemption cost for ‘50:50’

All Longer
Shorter

SFC-CPU
SFC&Node-CPU

Most-Similar
Random

Preemption Criteria

0

200

400

600

800

1000

1200

Pr
ee

m
pt

io
n

Co
st

Pr:BE_50:50_7-20TSs
Pr:BE_20:80_7-20TSs

Figure 6.9: preemption Cost of preemption criteria

system are ‘All’, ‘SFC-CPU-first’, and ‘Most-similar-first’. Surprisingly, the ‘All’

criterion has the least cost since it needs to run the placement algorithm only once

to deploy the Pr SFC and as many times as the deported BE SFCs for redeployment.

Amir Mohamad - School of Computing

6.5. PREEMPTIVE PREDICTION-BASED SERVICE PLACEMENT 124

Other criteria, on the other hand, will need to run the placement algorithm twice the

number of deported BE SFCs. One run to try deploying the Pr SFC, and the other for

redeploying the deported BE SFC. As expected, because of the unpredictable nature

All Longer
Shorter

SFC-CPU
SFC&Node-CPU

Most-Similar
Random

Preemption Criteria

0

5

10

15

20

25

30

35

M
ax

 D
ep

or
ts

/s
fc

be

Pr:BE_50:50_7-20TSs
Pr:BE_20:80_7-20TSs

Figure 6.10: Fairness of preemption criteria

of the ‘Random’ criterion, it fairly deports SFCs in Runbe, as shown in Figure 6.10.

Using the ‘Random’ criterion as a fairness reference, we can see that ‘SFC&Node-

CPU-first’ of the ‘50:50’ system is as good as the ‘Random.’ The overall fairness of

‘20:80’ system is way better than that of ‘50:50’ system because the number of BE

SFCs is 60% more in ‘20:80’.

6.5 Preemptive Prediction-based Service Placement

Both prediction-based and preemption-based service placement suffer from short-

comings/drawbacks. On the prediction-based placement side, due to the restricted

length of the lookahead window compared to sfcbe duration in TSs, there is no way

Amir Mohamad - School of Computing

6.5. PREEMPTIVE PREDICTION-BASED SERVICE PLACEMENT 125

to achieve a near zero rejection rate of sfcpr requests without causing severe starva-

tion to the sfcbe requests. On the preemption-based placement side, the preemption

cost and side effects on sfcbe services can be mitigated. As such, taking the best of

both worlds, we introduce the preemptive prediction-based placement of time-critical

services with VNF sharing. On the one hand, it reduces the rejection rate of sfcpr

requests to near zero. On the other hand, it only utilizes preemption in cases where

prediction failed to secure the required resources to satisfy sfcpr requests, which in-

clines the preemption side effects for about 50% of cases compared to the 100% of

preemption-based placement scheme.

The proposed scheme is listed in Algorithm 6.3. This scheme is the same as

the prediction-based scheme in Section 5.3.2, Algorithm 5.1, but instead of placing

the unsatisfied sfcpr request directly into the Rejpr list it utilizes the preemptCPU

procedure as in Algorithm 6.2.

6.5.1 Simulations and Results

We use the same set of simulations as in chapter 5 and chapter 6 and compare

this scheme against prediction-based and preemption-based placement schemes. The

preemption criterion used for the proposed scheme as well as for the preemption-

based placement is the best criterion ‘SFC-CPU-first.’ For the comparison against

the prediction-based scheme, we report the percentage of received SFC requests that

are completed, running, and pending for both categories premium and best-effort.

Also, we report the average waiting time of best-effort requests. For the comparison

against preemption-based scheme, we report preemption related metrics such as aver-

age deported sfcbe per sfcpr that needed preemption to be satisfied, average deports

Amir Mohamad - School of Computing

6.5. PREEMPTIVE PREDICTION-BASED SERVICE PLACEMENT 126

Algorithm 6.3: Preemptive Prediction-based Placement (PPSP)
// SimDur: Simulation duration in time slots (TSs), ω ∈ [1, 3] TSs Lookahead window length, and α ∈ [1, 3]

Input : net-Model, SimDur, ω, α
Init. : Recpr, Runpr|be, P enbe, Rejpr, Compr|be
Output: Different queues\lists and collected statistics

1 for i← 1 to SimDur do
2 Recpr ← received sfcpr requests
3 Penbe ← received sfcbe requests

// Update TTL of running SFCs

4 foreach sfcpr|be in Runpr|be do
5 if ttl(sfcpr|be) = 0 then
6 Compr|be ← sfcpr|be // Releases resources utilised by finished sfc

7 else decTTL(sfcpr|be)

8 foreach sfcpr in Recpr do
9 sol ←satisfy(sfcpr,net-Model)

10 if sol ̸= ∅ then
11 deploy(sfcpr,net-Model)
12 Runpr ← sfcpr

13 else
// Check preemptCPU algorithm for details

14 sol,Penbe ←preemptCPU(criterion,Runbe)

15 if sol ̸= ∅ then
16 deploy(sfcpr,net-Model)
17 Runpr ← sfcpr

18 else Rejpr ← sfcpr

19 ReqrdRespr ← predReqResources(ω)
// AvailRes: free resource in current TS and in next ω TSs

20 AvailRes ← getAvailResources(ω)
21 ExtraResbe ← 0
22 if AvailRes > (α * ReqrdRespr) then
23 ExtraResbe ← AvailRes − (α *ReqrdRespr)

24 while (∃ sfcbe in Penbe)&(ExtraResbe ̸=0) do
25 sol ←satisfy(sfcbe,net-Model)
26 if sol ̸= ∅ then
27 deploy(sfcbe,net-Model)
28 Runbe ← sfcbe
29 ExtraResbe ←ExtraResbe-usedRes(sfcbe)

// else sfc stays in Penbe

Amir Mohamad - School of Computing

6.5. PREEMPTIVE PREDICTION-BASED SERVICE PLACEMENT 127

per sfcpr, and the average preemption cost per sfcpr.

0 25 50 75 100 125 150 175 200
Time-slots

10

20

30

40

50

60

70

80

90
Ut

iliz
at

io
n

(%
)

SFCpr : SFCbe 50:50 | 7:20 TSs

VNF Sharing
Prediction-based
Preemption-based
Preemptive-Prediction

Figure 6.11: Moderate-loaded system Utilization per time-slot

As shown in Figures 6.11 and 6.12, the utilization of the preemptive prediction-

based scheme is overall better than that of the prediction-based and as good as that

of the preemption-based scheme in both system loads/configurations. Figure 6.13 de-

picts the status of received SFC requests at the end of the simulation. The moderately-

loaded system statistics are in Figures 6.13a and 6.13b; these show that, on the one

hand, the preemptive prediction-based placement scheme reduced the premium re-

jection to zero, even using the smallest safety margin α = 1. On the other hand,

the percentage of pending best-effort requests, with α = 1, is almost the same as

the best prediction-based placement with α = 2.88. The same impact of preemptive

prediction-based scheme can be seen in the reported highly-loaded system results in

Figures 6.13c and 6.13d. However, it is more impressive as the best prediction-based

Amir Mohamad - School of Computing

6.5. PREEMPTIVE PREDICTION-BASED SERVICE PLACEMENT 128

0 25 50 75 100 125 150 175 200
Time-slots

20

40

60

80
Ut

iliz
at

io
n

(%
)

SFCpr : SFCbe 20:80 | 7:20 TSs

VNF Sharing
Prediction-based
Preemption-based
Preemptive-Prediction

Figure 6.12: Highly-loaded system Utilization per time-slot

placement, with α = 2.9, still has around +40% rejected sfcpr requests, yet the

preemptive prediction-based scheme is able to totally eliminate premium services re-

jections with almost no increase to the pending BE SFCs (compare the Penbe of the

preemptive prediction-based with α = 1 to that of prediction-based with α = 2.9).

There are two faces to the placement schemes that we are comparing in this section,

the impact on the rejection rate of sfcpr requests and on the AWT and pending

sfcbe requests. Both the AWT and percentage of pending sfcbe requests are re-

ported in Figures 6.14 and 6.15, respectively. For reference, we report the AWT and

Penbe for VNF sharing-based, preemption-based, prediction-based, and preemptive

prediction-based schemes. As can be seen in Figure 6.14, the Penbe of the preemptive

prediction-based scheme is better, lower than that of the preemptive scheme ,and

almost the same as that of the prediction-based of the highly-loaded system. As

Amir Mohamad - School of Computing

6.5. PREEMPTIVE PREDICTION-BASED SERVICE PLACEMENT 129

Prediction Preemptive-Prediction
0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C p
r

SFCpr : SFCbe 50:50 | 7:20 TSs, =3

Comppr| = 1
Runpr| = 1
Rejpr| = 1

Comppr| = 2
Runpr| = 2
Rejpr| = 2

Comppr| = 2.88
Runpr| = 2.88
Rejpr| = 2.88

(a)

Prediction Preemptive-Prediction
0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C b
e

SFCpr : SFCbe 50:50 | 7:20 TSs, =3

Compbe| = 1
Runbe| = 1
Penbe| = 1

Compbe| = 2
Runbe| = 2
Penbe| = 2

Compbe| = 2.88
Runbe| = 2.88
Penbe| = 2.88

(b)

Prediction Preemptive-Prediction
0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C p
r

SFCpr : SFCbe 20:80 | 7:20 TSs, =3

Comppr| = 1
Runpr| = 1
Rejpr| = 1

Comppr| = 2
Runpr| = 2
Rejpr| = 2

Comppr| = 2.9
Runpr| = 2.9
Rejpr| = 2.9

(c)

Prediction Preemptive-Prediction
0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C b
e

SFCpr : SFCbe 20:80 | 7:20 TSs, =3

Compbe| = 1
Runbe| = 1
Penbe| = 1

Compbe| = 2
Runbe| = 2
Penbe| = 2

Compbe| = 2.9
Runbe| = 2.9
Penbe| = 2.9

(d)

Figure 6.13: Closing premium and best-effort queues and lists (Comppr, Runpr, Rejpr,
Compbe, Runbe and Penbe), for prediction-based compared to preemptive prediction-
based placement (reported for different values of the resource safety margin α), re-
ported for Moderately-loaded (a)&(b) and Highly-loaded system (c)&(d)

Amir Mohamad - School of Computing

6.5. PREEMPTIVE PREDICTION-BASED SERVICE PLACEMENT 130

VNF Sharing Preemption-based Prediction-based Preemptive-
Prediction

0

5

10

15

20

25

Pe
n b

e (
%

)

Medium-loaded
Highly-loaded

Figure 6.14: Percentage of pending BE requests (Penbe)

shown in Figure 6.15, the moderately-loaded system’s AWT of sfcbe is the same in

preemption-based, prediction-based, and preemptive prediction-based schemes. This

is not the case with the highly-loaded system because of the higher ratio of sfcbe

requests,80%, and the compound contribution to the AWT from both prediction’s

safety margin and from preemption’s sfcbe deports.

If the preemption-based placement achieves zero sfcpr rejections, a valid question

would be why use a preemptive prediction-based scheme over a pure preemption-

based scheme? To answer this question, we compare the preemption related metrics

of both schemes as shown in Figure 6.16. The average number of deported/suspended

sfcbe to satisfy one sfcpr request of preemptive prediction-based scheme is lower than

the preemption-based scheme for both moderately- and highly-loaded systems, see

Figure 6.16a. The same applies to the average number of sfcbe deports to satisfy one

Amir Mohamad - School of Computing

6.5. PREEMPTIVE PREDICTION-BASED SERVICE PLACEMENT 131

VNF Sharing Preemption-based Prediction-based Preemptive-
Prediction

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
SF

C b
e A

W
T

(T
S)

Medium-loaded
Highly-loaded

Figure 6.15: Average waiting time (AWT) of sfcbe requests

Preemption-based Preemptive-
Prediction

0.0

0.5

1.0

1.5

2.0

2.5

AV
G.

 D
ep

or
te

d
SF

C b
e/S

FC
pr

Medium-loaded
Highly-loaded

(a)

Preemption-based Preemptive-
Prediction

0.0

0.5

1.0

1.5

2.0

2.5

AV
G.

 D
ep

or
ts

/S
FC

be

Medium-loaded
Highly-loaded

(b)

Preemption-based Preemptive-
Prediction

0

100

200

300

400

500

600

AV
G.

 P
re

em
pt

io
n

Co
st

/S
FC

pr

Medium-loaded
Highly-loaded

(c)

Figure 6.16: (a) Average number of deported sfcbe to satisfy one sfcpr request. (b)
Average number of sfcbe deports to satisfy one sfcpr request. (c) Average preemption
cost to satisfy one sfcpr request.

Amir Mohamad - School of Computing

6.5. PREEMPTIVE PREDICTION-BASED SERVICE PLACEMENT 132

sfcpr requests (see Figure 6.16b), except for the highly-loaded system, the reason is

that having 80% sfcbe requests and using the ‘SFC-CPU-first’ preemption criterion,

deployed BE SFCs with a higher number of CPU cores are more likely to be deported.

When it comes to preemption cost (based on Equation 6.11), shown in Figure 6.16c,

the preemptive prediction-based scheme is a distant first.

VNF-Sharing Prediction,
= 2.8

Preemption Preemptive-
Prediction, = 1

0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C p
r

Moderately-loaded system, = 3

Comppr| ILP
Runpr| ILP
Rejpr| ILP

Comppr| Heuristic
Runpr| Heuristic
Rejpr| Heuristic

(a)

VNF-Sharing Prediction,
= 2.8

Preemption Preemptive-
Prediction, = 1

0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C b
e

Moderately-loaded system, = 3

Compbe| ILP
Runbe| ILP
Penbe| ILP

Compbe| Heuristic
Runbe| Heuristic
Penbe| Heuristic

(b)

VNF-Sharing Prediction,
= 2.9

Preemption Preemptive-
Prediction, = 1

0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C p
r

Highly-loaded system, = 3

Comppr| ILP
Runpr| ILP
Rejpr| ILP

Comppr| Heuristic
Runpr| Heuristic
Rejpr| Heuristic

(c)

VNF-Sharing Prediction,
= 2.9

Preemption Preemptive-
Prediction, = 1

0

20

40

60

80

100

Pe
rc

en
t o

f R
ec

ei
ve

d
SF

C b
e

Highly-loaded system, = 3

Compbe| ILP
Runbe| ILP
Penbe| ILP

Compbe| Heuristic
Runbe| Heuristic
Penbe| Heuristic

(d)

Figure 6.17: Closing premium and best-effort queues and lists (Comppr, Runpr, Rejpr,
Compbe, Runbe and Penbe), for VNF Sharing-based, prediction-based, preemption-
based, vs preemptive prediction-based placement schemes, reported for ILP and
Heuristic placement algorithms, and for Moderately-loaded (a)&(b) and Highly-
loaded system (c)&(d).

Amir Mohamad - School of Computing

6.6. SUMMARY 133

As shown in Figure 6.17, the sfcpr statistics are almost the same for ILP and

heuristic-based placement schemes for the moderately and highly-loaded systems. On

the one hand, we can see that for the highly-loaded system, the ILP-based placement

schemes are resulting in 6− 11% more completed BE SFC requests Compbe, and the

heuristic-based placement resulted in 25−33% more pending BE SFC requests Penbe.

On the other hand, as shown in Figure 6.18, the heuristic-based placement schemes

reduced the AWT of sfcpr requests of the moderately-loaded systems to 31− 72 fold

compared to the ILP-based placement schemes, and 37−149 fold of the highly-loaded

systems.

VNF-Sharing Prediction,
= 2.8

Preemption Preemptive-
Prediction, = 1

0

20

40

60

80

100

SF
C p

r A
W

T
(m

se
c)

Moderately-loaded system, = 3
ILP
Heuristic

(a)

VNF-Sharing Prediction,
= 2.8

Preemption Preemptive-
Prediction, = 1

0

25

50

75

100

125

150

175

SF
C p

r A
W

T
(m

se
c)

Highly-loaded system, = 3
ILP
Heuristic

(b)

Figure 6.18: AWT of ILP and Heuristic-based placement schemes for (a) Moderately-
loaded and (b) Highly-loaded systems.

6.6 Summary

In this chapter, we propose preemption-based and preemptive prediction-based

schemes for immediate placement of time-critical services with VNF sharing. The

simulation results of different preemption criteria show that ‘SFC-CPU-first’ is the

Amir Mohamad - School of Computing

6.6. SUMMARY 134

least to unnecessarily deport BE SFCs even when VNF sharing is not used, ‘Most-

similar-first’ and ‘SFC&Node-CPU-first’ came as a close second and third, respec-

tively. Again ‘SFC-CPU-first’ is best for giving the least BE SFC AWT and is in

close competition with ‘Longer-first’ and ‘Most-similar-first’ for the least TAT. Using

equal costs, the ‘All’ gives the least cost for both moderate and high loads, while the

‘SFC-CPU-first’ criterion performs better in moderate load settings. The ‘SFC-CPU-

first,’ ‘Most-similar-first,’ and ‘SFC&Node-CPU’ deport BE SFCs as possibly-fair as

the ‘Random’ criterion. It is clear that the ‘SFC-CPU’ criterion is in the top-three

if not the winner, in all evaluation metrics. In environments where compute re-

sources are scarce and would be preferably used to process actual services/workloads,

the ‘Random’ criterion works just fine. Finally, we conclude that the preemptive

prediction-based scheme is better than both prediction-based and pure preemption-

based schemes provided that we have a simple predictor that can produce accurate

predictions using a relatively short lookahead window. If such predictor is hard to

find except with longer lookahead windows or is not simple, the cost of that predictor

should be added to the cost equation 6.11.

We realize that the gratuitous deports of BE SFCs are unavoidable, even when

using the best preemption criterion. This is because of VNF sharing and the unknown

number of resources released as a result of deporting BE SFCs. Being able to diagnose,

in detail, the reason behind failing to satisfy the Pr SFC in the first place would give us

some guidance to design a better, less disturbing to BE SFCs, preemption criterion.

For future work, we will diagnose the failure of Pr SFC placement and use such

diagnosis to relocate single/few VNFs or deport at most a single BE SFC.

Amir Mohamad - School of Computing

Chapter 7

Conclusion and Future Directions

“Reasoning draws a conclusion, but

does not make the conclusion

certain, unless the mind discovers it

by the path of experience”

Roger Bacon

7.1 Summary

In this thesis, we addressed the service placement at the network edge using VNF

sharing to increase the efficiency of edge resource utilization. This was motivated

by the fact that some network functions can serve multiple traffic flows belonging

to different services, and the operations dynamics, which sometimes leaves deployed

VNFs underutilized. As a result, we proposed service placement schemes that utilized

VNF sharing and achieved comprehensive improvements to system utilization, service

provisioning cost, and significantly reduced premium services rejections.

Chapter 1 gave an overview of the research problem and our contributions to this

area of edge resource utilization. Chapter 2 detailed the background and related

135

7.1. SUMMARY 136

work, where we explained the concepts, importance, and types of edge computing.

We covered the enabling technologies of edge computing and existing edge platforms.

Finally, we reviewed several service provisioning schemes, including service placement

and resource allocation, service migration, and replication.

Chapter 3 presented our proposed scheme to improve edge resource utilization,

taking into consideration the performance/QoS requirements of service requests. With

limited edge resources, system utilization and the number of satisfied service requests

are the main metrics used to measure the performance gain of our proposed scheme.

The proposed placement schemes achieve such gains by taking advantage of common

functions among services, shareable functions, and operations dynamics. The results

showed an increase in the number of satisfied services using the same amount of edge

resources indicating better resource utilization and reduced service provisioning cost.

In Chapter 4, we broadened our focus to include different service QoS cate-

gories/priorities, specifically premium and best-effort priorities. We designed PSVShare,

a priority-based service placement with VNF sharing scheme. PSVShare handles mi-

gration situations arising from sharing function and traffic variation. Simulation

results show that PSVShare is consistently outperforming the non-sharing service

placement scheme under different loads, and with different queue sizes with varying

premium to best-effort ratios.

Chapter 5 expand on the foundation laid in Chapter 4. We introduced PSVS,

a prediction-based service placement scheme to reduce the rejection rate of real-

time/time-sensitive premium services at the edge. PSVS utilizes the predicted re-

quired resources and a safety margin to address the difference between lookahead

window size and premium services duration and resiliency against prediction errors.

Amir Mohamad - School of Computing

7.2. LIMITATIONS 137

We experimented and evaluated different lookahead window sizes and safety margin

and concluded the best values to balance the reduction in premium service requests

rejection rate and the best-effort service requests average waiting time. We found

that more reduction in the rejection rate is attainable; however, the best-effort ser-

vice requests suffer more starvation. This outcome is desirable in emergencies where

time-critical premium services must be immediately satisfied.

Chapter 6 builds on the findings of chapter 5 to immediately satisfy time-critical

services. To mitigate the consequences of a failure to satisfy a time-critical service

request, we proposed IPTSV for the immediate placement of time-critical services

with VNF sharing. First, we proposed a pre-emptive service placement that pre-empts

CPU by deporting deployed best-efforts services in situations where no resources

are available to satisfy the premium services. We experimented and found the best

criterion that is the least likely to unnecessarily deport best-effort services even when

VNF sharing is not used. Second, to soothe the side effects of pre-emption on deployed

best-effort services, we combined prediction and pre-emption by taking the best of

both worlds and designed a pre-emptive prediction-based placement of time-critical

services. The default is to use prediction-based placement, and the pre-emption kicks

in when the prediction fails to secure the required resources to satisfy a premium

service. The results showed zero rejections of premium services and reduced the side

effects pre-emption has on best-efforts services.

7.2 Limitations

Our priority in system modelling is to mimic realistic edge computing scenarios.

Although several efforts have been made, including simulation platforms for cloud

Amir Mohamad - School of Computing

7.3. FUTURE DIRECTIONS 138

computing, NFV, and SDN, these are still simulation environments that may not be

able to replicate the exact real-world settings. We could not find MEC or edge traces

for realistic service requests and traffic traces. We decided to use synthesised service

requests and traffic traces to replicate possible real edge environments. Each use case,

IIoT and AR/VR, has unique requirements and constraints. We designed a solution

that can be customized to fit each of these use cases.

7.3 Future Directions

This thesis has presented a novel direction in service provisioning using VNF

sharing at the network edge. Our proposals achieve comprehensive improvements

both for end-users and service providers. However, there are still open challenges and

potential implementation opportunities that can be explored to enhance some of the

proposed schemes further and complete the knowingly abstracted details. A few of

these avenues are listed as follows.

7.3.1 Diagnosis of failed service placement

Using VNF sharing-based placement has its advantages and some drawbacks.

The slightly complicated interrelation between host and guest VNFs has difficulties

in situations where the host VNF cannot tolerate the aggregate traffic load. When

addressing the immediate placement of premium time-critical services, diagnosing the

exact reason the scheme failed to satisfy a specific request would help provide the right

solution. Without such diagnoses, the proposed solutions, such as prediction-based

scheme with safety margin and preemption-based scheme, will have undesirable yet

avoidable drawbacks.

Amir Mohamad - School of Computing

7.3. FUTURE DIRECTIONS 139

If the placement scheme fails to satisfy an SFC request, this mean none of the

found placement solutions is feasible. A placement solution is unfeasible if one or more

nodes on the solution path does not have the required resources or the end-to-end

delay of solution path is greater than the maximum delay of the SFC request. There

is nothing we can do for the latter. Taking into account resources availability, we can

inspect the solution path nodes whose available resources are less than the required

and migrate/relocate one or more of the deployed BE VNFs on that node. Relocating

a single VNF should be easier and less disturbing to deployed SFCs compared to the

whole SFC deportation.

To evaluate such scheme, we would use metrics like Pr rejection rate, the average

number of relocated VNFs to satisfy one Pr SFC, and the AWT of BE SFCs. The

comparison of evaluation metrics should be of the proposed scheme against plain VNF

sharing-based, prediction-based, and preemption-based placement schemes.

7.3.2 Benchmarking-/profiling-aware placement

As mentioned in Section 7.2, all our proposed schemes are evaluated using simula-

tion based evaluation. With such promising results, the next logical step is to utilize

benchmarking, profiling, test-beds, and real SFCs and VNFs. Both profiling and

benchmarking will help us ensure that VNFs accurately satisfy the performance/QoS

requirements when assigned a specific amount of resources. Profiling and benchmark-

ing will help in determining the required resources (varies by edge node) to satisfy

VNF’s performance requirements.

We will need a data set that correlates the resources required to fulfill certain per-

formance requirements. This is achievable by using a test-bed with varying hardware

Amir Mohamad - School of Computing

7.3. FUTURE DIRECTIONS 140

configurations of compute nodes, or by utilizing previous findings in the literature, if

exist, about the resources required to address the performance requirements of specific

workloads on specific hardware configuration. Moreover, we plane to use readily avail-

able open source VNFs of different flavors and requirements, i.e. computationally-

intensive VNFs, input/output intensive VNFs, and VNFs of the same type/flavor but

with different resources and/or performance requirements. Using the data set, we will

train an ML model with the goal of being able to accurately determine the required

resources to achieve a certain performance requirements, or the expected achievable

performance if a VNF is assigned a certain number of resources.

Using the trained ML model and the test-bed, we will re-evaluate and report the

results of all the proposed VNF sharing-based placement schemes in previous chapters,

with real VNFs that are deployed in a real compute nodes and processing varying

traffic loads. The moral of this proposal is to report the performance of VNFs, guest

or host, while sharing the resources with others, and to determine the factors that

control the maximum achievable performance with VNF sharing (is it only the unused

capacity, the number and load of guest VNFs, hosting node hardware configuration,

or a combination of these factors?). The metrics used to evaluate the performance of

the proposed placement schemes in previous chapters can be used here.

Amir Mohamad - School of Computing

Bibliography

[1] “KubeEdge, a Kubernetes Native Edge Computing Framework,” https://

kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/, accessed: 04-

03-2022.

[2] “Linux Foundation , Nephio Project,” https://nephio.org/, accessed: 04-15-

2022.

[3] “Linux Foundation Edge (LF Edge),” https://www.lfedge.org/, accessed: 04-

03-2022.

[4] “Linux Foundation Edge (LF Edge), Akraino Edge Stack Project,” https://

www.lfedge.org/projects/akraino/, accessed: 04-03-2022.

[5] “Linux Foundation Edge (LF Edge), Baetyl Porject,” https://baetyl.io/en/,

accessed: 04-03-2022.

[6] “Linux Foundation Edge (LF Edge), EdgeX Foundry Porject,” https://www.

edgexfoundry.org/, accessed: 04-03-2022.

[7] “Linux Foundation Edge (LF Edge), Fledge Porject,” https://www.lfedge.org/

projects/fledge/, accessed: 04-03-2022.

141

https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/
https://nephio.org/
https://www.lfedge.org/
https://www.lfedge.org/projects/akraino/
https://www.lfedge.org/projects/akraino/
https://baetyl.io/en/
https://www.edgexfoundry.org/
https://www.edgexfoundry.org/
https://www.lfedge.org/projects/fledge/
https://www.lfedge.org/projects/fledge/

BIBLIOGRAPHY 142

[8] “Linux Foundation Edge (LF Edge), Home Edge Project,” https://wiki.lfedge.

org/display/HOME/Home+Edge+Project, accessed: 04-03-2022.

[9] “Linux Foundation Edge (LF Edge), Porject EVE,” https://www.lfedge.org/

projects/eve/, accessed: 04-03-2022.

[10] “Open Daylight,” https://www.opendaylight.org/, accessed: 04-03-2022.

[11] “Open Networking Foundation, Next-Generation SDN,” https://www.

opennetworking.org/ng-sdn/, accessed: 04-03-2022.

[12] “Open Networking Foundation, SDN Projects,” https://www.opennetworking.

org/onf-sdn-projects/, accessed: 04-03-2022.

[13] “OpenFog Reference Architecture for fog computing,” https://www.

iiconsortium.org/pdf/OpenFog Reference Architecture 2 09 17.pdf, accessed:

04-03-2022.

[14] “Openstack Foundation, StarlingX Project,” https://www.starlingx.io/, ac-

cessed: 04-03-2022.

[15] “Rancher K3s, Certified Kubermetes distro for IoT & Edge Computing,” https:

//k3s.io/, accessed: 04-03-2022.

[16] “Service Function Chaining in Openstack,” https://docs.openstack.org/

newton/networking-guide/config-sfc.html, accessed: 04-03-2022.

[17] “State of The Edge Report,” https://project.linuxfoundation.org/hubfs/LF%

20Edge/StateoftheEdgeReport 2021.pdf, accessed: 04-03-2022.

Amir Mohamad - School of Computing

https://wiki.lfedge.org/display/HOME/Home+Edge+Project
https://wiki.lfedge.org/display/HOME/Home+Edge+Project
https://www.lfedge.org/projects/eve/
https://www.lfedge.org/projects/eve/
https://www.opendaylight.org/
https://www.opennetworking.org/ng-sdn/
https://www.opennetworking.org/ng-sdn/
https://www.opennetworking.org/onf-sdn-projects/
https://www.opennetworking.org/onf-sdn-projects/
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.starlingx.io/
https://k3s.io/
https://k3s.io/
https://docs.openstack.org/newton/networking-guide/config-sfc.html
https://docs.openstack.org/newton/networking-guide/config-sfc.html
https://project.linuxfoundation.org/hubfs/LF%20Edge/StateoftheEdgeReport_2021.pdf
https://project.linuxfoundation.org/hubfs/LF%20Edge/StateoftheEdgeReport_2021.pdf

BIBLIOGRAPHY 143

[18] “Virtual Kubelet,” https://virtual-kubelet.io/docs/architecture/, accessed: 04-

03-2022.

[19] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, “On the place-

ment of vnf managers in large-scale and distributed nfv systems,” IEEE Trans-

actions on Network and Service Management, vol. 14, no. 4, pp. 875–889, Dec

2017.

[20] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network functions

placement and routing optimization,” in IEEE 4th International Conference

on Cloud Networking (CloudNet), 2015, pp. 171–177.

[21] I. Afolabi, M. Bagaa, T. Taleb, and H. Flinck, “End-to-end network slicing en-

abled through network function virtualization,” in IEEE Conference on Stan-

dards for Communications and Networking (CSCN), Sep. 2017, pp. 30–35.

[22] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “Vnf placement

and resource allocation for the support of vertical services in 5g networks,”

IEEE/ACM Transactions on Networking, vol. 27, no. 1, pp. 433–446, 2019.

[23] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay-aware vnf

placement and chaining based on a flexible resource allocation approach,” in

13th International Conference on Network and Service Management (CNSM),

Nov 2017, pp. 1–7.

[24] Anthos For Telecom, https://cloud.google.com/blog/topics/anthos/

anthos-for-telecom-puts-google-cloud-partners-apps-at-the-edge, accessed:

20-10-2021.

Amir Mohamad - School of Computing

https://virtual-kubelet.io/docs/architecture/
https://cloud.google.com/blog/topics/anthos/anthos-for-telecom-puts-google-cloud-partners-apps-at-the-edge
https://cloud.google.com/blog/topics/anthos/anthos-for-telecom-puts-google-cloud-partners-apps-at-the-edge

BIBLIOGRAPHY 144

[25] AT&T and Azure, https://www.business.att.com/learn/top-voices/

at-t-integrates-5g-with-microsoft-azure-to-enable-next-generatio.html, ac-

cessed: 20-10-2021.

[26] T. Bahreini and D. Grosu, “Efficient placement of multi-component applications

in edge computing systems,” in Proceedings of the Second ACM/IEEE Sympo-

sium on Edge Computing, ser. SEC ’17. New York, NY, USA: Association for

Computing Machinery, 2017.

[27] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of service func-

tion chains,” in IEEE Conference on Network Function Virtualization and Soft-

ware Defined Networks (NFV-SDN), Nov 2016, pp. 128–133.

[28] P. Bellavista, A. Corradi, A. Edmonds, L. Foschini, A. Zanni, and T. Bohn-

ert, “Elastic provisioning of stateful telco services in mobile cloud networking,”

IEEE Transactions on Services Computing, pp. 1–1, 2018.

[29] F. Ben Jemaa, G. Pujolle, and M. Pariente, “Qos-aware vnf placement optimiza-

tion in edge-central carrier cloud architecture,” in IEEE Global Communications

Conference (GLOBECOM), Dec 2016, pp. 1–7.

[30] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Optimal vnfs placement in

cdn slicing over multi-cloud environment,” IEEE Journal on Selected Areas in

Communications, vol. 36, no. 3, pp. 616–627, March 2018.

[31] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role

in the internet of things,” in Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing, ser. MCC ’12. New York, NY, USA:

Amir Mohamad - School of Computing

https://www.business.att.com/learn/top-voices/at-t-integrates-5g-with-microsoft-azure-to-enable-next-generatio.html
https://www.business.att.com/learn/top-voices/at-t-integrates-5g-with-microsoft-azure-to-enable-next-generatio.html

BIBLIOGRAPHY 145

Association for Computing Machinery, 2012, p. 13–16. [Online]. Available:

https://doi.org/10.1145/2342509.2342513

[32] F. Brockners, S. Bhandari, S. Dara, C. Pignataro, J. Leddy, S. Youell, D. Mozes,

T. Mizrahi, A. Augado, and D. Lopez, “Proof of transit, draft-ietf-sfc-proof-of-

transit-02,” IETF, Internet-Draft, Tech. Rep., 2019.

[33] G. Brown, S. Analyst, and H. Reading, “White paper: Service chaining in

carrier networks,” 2015.

[34] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach for

the internet of things,” in IEEE 21st International Conference on Emerging

Technologies and Factory Automation (ETFA), Sep. 2016, pp. 1–6.

[35] J. Cao, Y. Zhang, W. An, X. Chen, J. Sun, and Y. Han, “Vnf-fg design

and vnf placement for 5g mobile networks,” Science China Information

Sciences, vol. 60, no. 4, p. 040302, Mar 2017. [Online]. Available:

https://doi.org/10.1007/s11432-016-9031-x

[36] P. Caserman, M. Martinussen, and S. Göbel, “Effects of end-to-end latency

on user experience and performance in immersive virtual reality applications,”

in Joint International Conference on Entertainment Computing and Serious

Games. Springer, 2019, pp. 57–69.

[37] J. Chen, X. Zheng, and C. Rong, “Survey on software-defined networking,” in

Second International Conference on Cloud Computing and Big Data in Asia.

Springer, 2015, pp. 115–124.

Amir Mohamad - School of Computing

https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1007/s11432-016-9031-x

BIBLIOGRAPHY 146

[38] M. Chiang and T. Zhang, “Fog and IoT: An overview of research opportunities,”

IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–864, Dec 2016.

[39] L. M. Contreras, A. Solano, F. Cano, and J. Folgueira, “Efficiency gains due

to network function sharing in cdn-as-a-service slicing scenarios,” in IEEE 7th

International Conference on Network Softwarization (NetSoft). IEEE, 2021,

pp. 348–356.

[40] Dave Greenfield, “The Pains and Problems of NFV,” https://www.

catonetworks.com/blog/the-pains-and-problems-of-nfv/, accessed: 04-12-2022.

[41] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,

R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and Tomorrow.

Cham: Springer International Publishing, 2017, pp. 195–216. [Online].

Available: https://doi.org/10.1007/978-3-319-67425-4 12

[42] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir, and E. Rivière,

“On using micro-clouds to deliver the fog,” IEEE Internet Computing, vol. 21,

no. 2, pp. 8–15, Mar 2017.

[43] Ericsson, “Time-Critical Communication: Leading the next wave of

5G innovation,” Ericsson, Technical-Overview, 2021. [Online]. Avail-

able: https://www.ericsson.com/4a9e9f/assets/local/internet-of-things/docs/

19102021-time-critical-communication-brochure.pdf

[44] ETSI, “Network function virtualization: An introduction, benefits, enablers,

challenges & call for action,” in SDN and OpenFlow World Congress, Oct.

2012, pp. 1–16.

Amir Mohamad - School of Computing

https://www.catonetworks.com/blog/the-pains-and-problems-of-nfv/
https://www.catonetworks.com/blog/the-pains-and-problems-of-nfv/
https://doi.org/10.1007/978-3-319-67425-4_12
https://www.ericsson.com/4a9e9f/assets/local/internet-of-things/docs/19102021-time-critical-communication-brochure.pdf
https://www.ericsson.com/4a9e9f/assets/local/internet-of-things/docs/19102021-time-critical-communication-brochure.pdf

BIBLIOGRAPHY 147

[45] ETSI GS MEC 003 V1.1.1 (2016-03), “Mobile Edge Computing (MEC) frame-

work and reference architecture,” https://www.etsi.org/deliver/etsi gs/MEC/

001 099/003/01.01.01 60/gs MEC003v010101p.pdf, accessed: 04-03-2022.

[46] ETSI, GSNFV, “Network Functions Virtualisation (NFV); Ecosys-

tem; Report on SDN Usage in NFV Architectural Framework,”

https://www.etsi.org/deliver/etsi gs/NFV-EVE/001 099/005/01.01.01 60/

gs NFV-EVE005v010101p.pdf, accessed: 05-06-2022.

[47] ETSI ISG NFV, “Network Functions Virtualisation (NFV) architectural

framework,” https://www.etsi.org/deliver/etsi gs/NFV/001 099/002/01.01.01

60/gs NFV002v010101p.pdf, accessed: 04-03-2022.

[48] I. Farris, T. Taleb, M. Bagaa, and H. Flick, “Optimizing service replication for

mobile delay-sensitive applications in 5g edge network,” in IEEE International

Conference on Communications (ICC), 2017, pp. 1–6.

[49] I. Farris, T. Taleb, H. Flinck, and A. Iera, “Providing ultra-short latency to user-

centric 5g applications at the mobile network edge,” Transactions on Emerging

Telecommunications Technologies, vol. 29, no. 4, p. e3169, 2018.

[50] I. Farris, T. Taleb, A. Iera, and H. Flinck, “Lightweight service replication for

ultra-short latency applications in mobile edge networks,” in IEEE Interna-

tional Conference on Communications (ICC), 2017, pp. 1–6.

[51] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellectual his-

tory of programmable networks,” ACM SIGCOMM Computer Communication

Review, vol. 44, no. 2, pp. 87–98, 2014.

Amir Mohamad - School of Computing

https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf

BIBLIOGRAPHY 148

[52] Fergus Wills, “Why Problems With Service Chaining Are

Stalling NFV,” https://www.sdxcentral.com/articles/contributed/

problems-with-service-chaining-stalling-nfv/2018/08/, accessed: 04-12-2022.

[53] A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, “5g evolution: A view

on 5g cellular technology beyond 3gpp release 15,” IEEE access, vol. 7, pp.

127 639–127 651, 2019.

[54] C. Grasso, K. E. KN, P. Nagaradjane, M. Ramesh, and G. Schembra, “Designing

the tactile support engine to assist time-critical applications at the edge of a 5g

network,” Computer Communications, vol. 166, pp. 226–233, 2021.

[55] K. GREENE, “TR10: software-defined networking. MIT Technology

Review (March/April),” http://www2.technologyreview.com/news/412194/

tr10-software-defined-networking/, accessed: 04-03-2022.

[56] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2018. [Online].

Available: http://www.gurobi.com

[57] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satyanarayanan,

“Adaptive vm handoff across cloudlets,” Technical Report CMU-CS-15-113,

2015.

[58] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro, “Service

Function Chaining Use Cases in Mobile Networks,” Internet Engineering Task

Force, Internet-Draft, Jan. 2019, work in Progress.

[59] J. Halpern, C. Pignataro et al., “Service function chaining (sfc) architecture,”

in RFC 7665, 2015, pp. 1–32.

Amir Mohamad - School of Computing

https://www.sdxcentral.com/articles/contributed/problems-with-service-chaining-stalling-nfv/2018/08/
https://www.sdxcentral.com/articles/contributed/problems-with-service-chaining-stalling-nfv/2018/08/
http://www2.technologyreview.com/news/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/news/412194/tr10-software-defined-networking/
http://www.gurobi.com

BIBLIOGRAPHY 149

[60] J. L. Hardcastle, “sdxCentral: Juniper CTO Says Edge

Is Key to Monetizing 5G, and telcos have ‘beach-

front property’,” https://www.sdxcentral.com/articles/news/

juniper-cto-says-edge-is-key-to-monetizing-5g-and-telcos-have-beach-front-property/

2019/02/, accessed: 04-03-2022.

[61] A. Jain and D. S. Jat, “An edge computing paradigm for time-sensitive appli-

cations,” in Fourth World Conference on Smart Trends in Systems, Security

and Sustainability (WorldS4), 2020, pp. 798–803.

[62] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-deployed

software defined wan,” ACM SIGCOMM Computer Communication Review,

vol. 43, no. 4, pp. 3–14, 2013.

[63] N. Kazemifard and V. Shah-Mansouri, “Minimum delay function placement

and resource allocation for open ran (o-ran) 5g networks,” Computer Networks,

vol. 188, p. 107809, 2021.

[64] M. Khan, R. S. Alhumaima, and H. S. Al-Raweshidy, “Qos-aware dynamic rrh

allocation in a self-optimized cloud radio access network with rrh proximity

constraint,” IEEE Transactions on Network and Service Management, vol. 14,

no. 3, pp. 730–744, 2017.

[65] S. Khebbache, M. Hadji, and D. Zeghlache, “Virtualized network functions

chaining and routing algorithms,” Computer Networks, vol. 114, pp. 95 – 110,

2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1389128617300087

Amir Mohamad - School of Computing

https://www.sdxcentral.com/articles/news/juniper-cto-says-edge-is-key-to-monetizing-5g-and-telcos-have-beach-front-property/2019/02/
https://www.sdxcentral.com/articles/news/juniper-cto-says-edge-is-key-to-monetizing-5g-and-telcos-have-beach-front-property/2019/02/
https://www.sdxcentral.com/articles/news/juniper-cto-says-edge-is-key-to-monetizing-5g-and-telcos-have-beach-front-property/2019/02/
http://www.sciencedirect.com/science/article/pii/S1389128617300087
http://www.sciencedirect.com/science/article/pii/S1389128617300087

BIBLIOGRAPHY 150

[66] H.-G. Kim, D.-Y. Lee, S.-Y. Jeong, H. Choi, J.-H. Yoo, and J. W.-K. Hong,

“Machine learning-based method for prediction of virtual network function re-

source demands,” in IEEE 5th International Conference on network softwariza-

tion (NetSoft), 2019, pp. 405–413.

[67] T. Kim, S. Kim, K. Lee, and S. Park, “A qos assured network service chaining

algorithm in network function virtualization architecture,” in 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, May 2015,

pp. 1221–1224.

[68] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma, “Service Func-

tion Chaining Use Cases In Data Centers,” Internet Engineering Task Force,

Internet-Draft, Feb. 2017, work in Progress.

[69] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains of

virtual network functions: On the relation between link and server usage,”

IEEE/ACM Transactions on Networking (TON), vol. 26, no. 4, pp. 1562–1576,

2018.

[70] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources and

virtual network functions,” IEEE Communications Surveys & Tutorials, 2018.

[71] S. Lange, H.-G. Kim, S.-Y. Jeong, H. Choi, J.-H. Yoo, and J. W.-K. Hong,

“Machine learning-based prediction of vnf deployment decisions in dynamic

networks,” in 20th Asia-Pacific Network Operations and Management Sympo-

sium (APNOMS), 2019, pp. 1–6.

Amir Mohamad - School of Computing

BIBLIOGRAPHY 151

[72] Larry Peterson, “Overtaken By Events: Whatever Came of the NFV Initia-

tive?” https://systemsapproach.substack.com/p/overtaken-by-events?s=r, ac-

cessed: 04-12-2022.

[73] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “Vnf placement

optimization at the edge and cloud,” Future Internet, vol. 11, no. 3, 2019.

[74] LF Edge, “Sharpening the Edge: overview of the lf edge taxon-

omy and framework,” https://www.lfedge.org/wp-content/uploads/2020/07/

LFedge Whitepaper.pdf, accessed: 04-13-2022.

[75] LFN ONAP, “Open Network Automation Platform (ONAP) architecture

overview white paper,” https://www.onap.org/wp-content/uploads/sites/20/

2019/07/ONAP CaseSolution Architecture 062519.pdf, accessed: 04-03-2022.

[76] D. Li, J. Lan, and P. Wang, “Joint service function chain deploying and path

selection for bandwidth saving and vnf reuse,” International Journal of Com-

munication Systems, vol. 31, no. 6, p. e3523, 2018.

[77] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function placement and

resource optimization in nfv and edge computing enabled networks,” Computer

Networks, vol. 152, pp. 12–24, 2019.

[78] C. Liu, K. Liu, S. Guo, R. Xie, V. C. S. Lee, and S. H. Son, “Adaptive offloading

for time-critical tasks in heterogeneous internet of vehicles,” IEEE Internet of

Things Journal, vol. 7, no. 9, pp. 7999–8011, 2020.

Amir Mohamad - School of Computing

https://systemsapproach.substack.com/p/overtaken-by-events?s=r
https://www.lfedge.org/wp-content/uploads/2020/07/LFedge_Whitepaper.pdf
https://www.lfedge.org/wp-content/uploads/2020/07/LFedge_Whitepaper.pdf
https://www.onap.org/wp-content/uploads/sites/20/2019/07/ONAP_CaseSolution_Architecture_062519.pdf
https://www.onap.org/wp-content/uploads/sites/20/2019/07/ONAP_CaseSolution_Architecture_062519.pdf

BIBLIOGRAPHY 152

[79] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function chain

deployment and readjustment,” IEEE Transactions on Network and Service

Management, vol. 14, no. 3, pp. 543–553, 2017.

[80] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live service

migration in mobile edge clouds,” IEEE Wireless Communications, vol. 25,

no. 1, pp. 140–147, February 2018.

[81] F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalosub, “Reducing

service deployment cost through vnf sharing,” IEEE/ACM Transactions on

Networking, vol. 27, no. 6, pp. 2363–2376, Dec 2019.

[82] E. Maŕın-Tordera, X. Masip-Bruin, J. Garćıa-Almiñana, A. Jukan, G.-J. Ren,

and J. Zhu, “Do we all really know what a fog node is? current trends towards

an open definition,” Computer Communications, vol. 109, pp. 117–130, 2017.

[83] MarketsandMarkets, “Edge computing market by component, ap-

plication, organization size, vertical and region - global forecast

to 2025,” https://www.marketsandmarkets.com/Market-Reports/

edge-computing-market-133384090.html, accessed: 03-30-2022.

[84] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus

networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,

pp. 69–74, 2008.

Amir Mohamad - School of Computing

https://www.marketsandmarkets.com/Market-Reports/edge-computing-market-133384090.html
https://www.marketsandmarkets.com/Market-Reports/edge-computing-market-133384090.html

BIBLIOGRAPHY 153

[85] A. M. Medhat, G. Carella, J. Mwangama, and N. Ventura, “Multi-tenancy for

virtualized network functions,” in Proceedings of the 1st IEEE Conference on

Network Softwarization (NetSoft), 2015, pp. 1–6.

[86] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains of

virtual network functions,” in IEEE 3rd International Conference on Cloud

Networking (CloudNet), 2014, pp. 7–13.

[87] C. Mei, J. Liu, J. Li, L. Zhang, and M. Shao, “5g network slices embedding with

sharable virtual network functions,” Journal of Communications and Networks,

vol. 22, no. 5, pp. 415–427, 2020.

[88] A. Mohamad and H. S. Hassanein, “Psvshare: A priority-based sfc placement

with vnf sharing,” in IEEE Conference on Network Function Virtualization and

Software Defined Networks (NFV-SDN), 2020, pp. 25–30.

[89] Nati Shalom, “70% Of NFV And Digital Transformation Projects

Fail: Cloudify’s 5 Key Lessons To Success,” https://cloudify.co/blog/

70-of-nfv-and-digital-transformation-projects-fail-cloudifys-5-key-lessons-to-success/,

accessed: 04-12-2022.

[90] V. Nguyen, A. Brunstrom, K. Grinnemo, and J. Taheri, “Sdn/nfv-based mobile

packet core network architectures: A survey,” IEEE Communications Surveys

& Tutorials, vol. 19, no. 3, pp. 1567–1602, thirdquarter 2017.

[91] K. Nichols, V. Jacobson, and L. Zhang, “Rfc2638: A two-bit differentiated

services architecture for the internet,” 1999.

Amir Mohamad - School of Computing

https://cloudify.co/blog/70-of-nfv-and-digital-transformation-projects-fail-cloudifys-5-key-lessons-to-success/
https://cloudify.co/blog/70-of-nfv-and-digital-transformation-projects-fail-cloudifys-5-key-lessons-to-success/

BIBLIOGRAPHY 154

[92] Nicira Inc., “NICIRA NETWORKS: DISRUPTIVE NETWORK VIR-

TUALIZATION 2012,” https://web.stanford.edu/class/ee204/2012/Nicira%

20Networks.pdf, accessed: 04-13-2022.

[93] O-RAN Alliance, “O-RAN Architecture Description v03.00,” O-RAN Alliance,

Tech. Rep., 2021.

[94] D. B. Oljira, K. Grinnemo, J. Taheri, and A. Brunstrom, “A model for qos-aware

vnf placement and provisioning,” in IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN), Nov 2017, pp. 1–7.

[95] Openstack, “Cloud Edge Computing: beyond the data center,” https:

//www.openstack.org/assets/edge/OpenStack-EdgeWhitepaper-v3-online.pdf,

accessed: 03-30-2022.

[96] OSM End User Advisory Group, “OSM White Paper osm scope, functional-

ity, operation and integration guidelines,” https://osm.etsi.org/images/OSM

EUAG White Paper OSM Scope and Functionality.pdf, accessed: 04-03-2022.

[97] S. Pandey, J. W.-K. Hong, and J.-H. Yoo, “Gru and edgeq-learning based traffic

prediction and scaling of sfc,” in IEEE 7th International Conference on Network

Softwarization (NetSoft), 2021, pp. 124–132.

[98] S. Park, H.-G. Kim, J. Hong, S. Lange, J.-H. Yoo, and J. W.-K. Hong, “Ma-

chine learning-based optimal vnf deployment,” in 21st Asia-Pacific Network

Operations and Management Symposium (APNOMS), 2020, pp. 67–72.

[99] L. Peterson, T. Anderson, S. Katti, N. McKeown, G. Parulkar, J. Rexford,

M. Satyanarayanan, O. Sunay, and A. Vahdat, “Democratizing the network

Amir Mohamad - School of Computing

https://web.stanford.edu/class/ee204/2012/Nicira%20Networks.pdf
https://web.stanford.edu/class/ee204/2012/Nicira%20Networks.pdf
https://www.openstack.org/assets/edge/OpenStack-EdgeWhitepaper-v3-online.pdf
https://www.openstack.org/assets/edge/OpenStack-EdgeWhitepaper-v3-online.pdf
https://osm.etsi.org/images/OSM_EUAG_White_Paper_OSM_Scope_and_Functionality.pdf
https://osm.etsi.org/images/OSM_EUAG_White_Paper_OSM_Scope_and_Functionality.pdf

BIBLIOGRAPHY 155

edge,” ACM SIGCOMM Computer Communication Review, vol. 49, no. 2, pp.

31–36, 2019.

[100] P. Quinn, U. Elzur, and C. Pignataro, “Network service header (nsh),” in RFC

8300. RFC Editor, 2018.

[101] K. Ray, A. Banerjee, and N. C. Narendra, “Proactive microservice placement

and migration for mobile edge computing,” in IEEE/ACM Symposium on Edge

Computing (SEC), 2020, pp. 28–41.

[102] M. Satyanarayanan, “Edge computing for situational awareness,” in 2017 IEEE

International Symposium on Local and Metropolitan Area Networks (LAN-

MAN), June 2017, pp. 1–6.

[103] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based

cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp.

14–23, Oct 2009.

[104] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50,

no. 1, pp. 30–39, 2017.

[105] N. Siasi and A. Jaesim, “Priority-aware sfc provisioning in fog comput-

ing,” in IEEE 17th Annual Consumer Communications Networking Conference

(CCNC), 2020, pp. 1–6.

[106] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted nfv service chain deploy-

ment based on affiliation-aware vnf placement,” in IEEE Global Communica-

tions Conference (GLOBECOM), 2016, pp. 1–6.

Amir Mohamad - School of Computing

BIBLIOGRAPHY 156

[107] H. Takagi and L. Kleinrock, “Throughput analysis for persistent csma systems,”

IEEE transactions on communications, vol. 33, no. 7, pp. 627–638, 1985.

[108] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On

multi-access edge computing: A survey of the emerging 5g network edge cloud

architecture and orchestration,” IEEE Communications Surveys & Tutorials,

vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.

[109] M. Torres Vega, C. Liaskos, S. Abadal, E. Papapetrou, A. Jain, B. Mouhouche,

G. Kalem, S. Ergüt, M. Mach, T. Sabol et al., “Immersive interconnected virtual

and augmented reality: a 5g and iot perspective,” Journal of Network and

Systems Management, vol. 28, no. 4, pp. 796–826, 2020.

[110] T. X. Tran, M.-P. Hosseini, and D. Pompili, “Mobile edge computing: Recent

efforts and five key research directions,” IEEE COMSOC MMTC Commun.-

Frontiers, 2017.

[111] F. van Lingen, M. Yannuzzi, A. Jain, R. Irons-Mclean, O. Lluch, D. Carrera,

J. L. Perez, A. Gutierrez, D. Montero, J. Marti, R. Maso, and a. J. P. Rodriguez,

“The unavoidable convergence of nfv, 5g, and fog: A model-driven approach to

bridge cloud and edge,” IEEE Communications Magazine, vol. 55, no. 8, pp.

28–35, Aug 2017.

[112] B. Varghese and R. Buyya, “Next generation cloud computing: New trends

and research directions,” Future Generation Computer Systems, vol. 79, pp.

849–861, 2018.

Amir Mohamad - School of Computing

BIBLIOGRAPHY 157

[113] Verizon and Wavelength, https://www.verizon.com/about/news/

verizon-private-mobile-edge-computing-enterprise-aws-outposts, accessed:

20-10-2021.

[114] M. Villari, A. Celesti, G. Tricomi, A. Galletta, and M. Fazio, “Deployment or-

chestration of microservices with geographical constraints for edge computing,”

in IEEE Symposium on Computers and Communications (ISCC), July 2017,

pp. 633–638.

[115] VMware Telco Cloud Blog, “Innovation at the Telco Edge,” https://blogs.

vmware.com/telco/innovation-at-the-telco-edge/, accessed: 04-03-2022.

[116] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, “Dynamic

service migration in mobile edge computing based on markov decision process,”

IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp. 1272–1288, June

2019.

[117] Z. Ye, X. Cao, J. Wang, H. Yu, and C. Qiao, “Joint topology design and

mapping of service function chains for efficient, scalable, and reliable network

functions virtualization,” IEEE Network, vol. 30, no. 3, pp. 81–87, 2016.

[118] B. Yi, X. Wang, and M. Huang, “A generalized vnf sharing approach for service

scheduling,” IEEE Communications Letters, vol. 22, no. 1, pp. 73–76, 2017.

[119] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint opti-

mization of chain placement and request scheduling for network function vir-

tualization,” in IEEE 37th International Conference on Distributed Computing

Systems (ICDCS), 2017, pp. 731–741.

Amir Mohamad - School of Computing

https://www.verizon.com/about/news/verizon-private-mobile-edge-computing-enterprise-aws-outposts
https://www.verizon.com/about/news/verizon-private-mobile-edge-computing-enterprise-aws-outposts
https://blogs.vmware.com/telco/innovation-at-the-telco-edge/
https://blogs.vmware.com/telco/innovation-at-the-telco-edge/

BIBLIOGRAPHY 158

[120] H. Zhu and C. Huang, “Cost-efficient vnf placement strategy for iot networks

with availability assurance,” in IEEE 86th Vehicular Technology Conference

(VTC-Fall), Sep. 2017, pp. 1–5.

Amir Mohamad - School of Computing

	Abstract
	Co-Authorship
	Acknowledgments
	Statement Of Originality
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Introduction
	Motivation
	Research Statement
	Contributions
	Outline

	Background
	Edge Computing Overview
	Edge Computing Paradigms
	Importance of Edge Computing

	Enabling Technologies
	NFV and SFC
	Software-Defined Networking (SDN)
	Edge Key Requirements and Challenges

	Edge Computing Platforms
	Service Provisioning
	Service Placement and Resource Allocation
	Service Migration and Replication

	Improving Edge Resource Utilization
	Introduction
	Related Work
	VNF Sharing

	Proposed Placement scheme
	Substrate Network Model
	VNFs and SFC requests
	Problem Formulation

	Performance Evaluation
	Simulations

	Summary

	Priority-based Placement
	Introduction
	Related Work
	Priority-based Placement

	System Model and Problem Formulation
	System Model
	Problem Formulation

	Performance Evaluation
	Numerical Results and Analysis

	Heuristic Placement Algorithm
	Heuristic Algorithm Results
	Summary

	Prediction-based Placement
	Introduction
	Related Work
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Performance Evaluation
	Simulation Framework
	Numerical Results and Analysis

	Summary

	Immediate Placement of Time-critical Services
	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Simulation Framework
	Performance Evaluation
	Evaluation Metrics
	Numerical Results and Analysis

	Preemptive Prediction-based Service Placement
	Simulations and Results

	Summary

	Conclusion and Future Directions
	Summary
	Limitations
	Future Directions
	Diagnosis of failed service placement
	Benchmarking-/profiling-aware placement

	Bibliography

