
MONITORING ROAD SURFACE ANOMALIES 

TOWARDS DYNAMIC ROAD MAPPING FOR 

FUTURE SMART CITIES 

Abstract — The development of Smart Cities aims to 

transform city infrastructures and services through the 

use of information and communication technologies. One 

aspect of Smart City applications is the demand for more 

efficient and safe transportation systems. Specifically, 

road anomalies are some of the challenges that 

contribute to the increase in vehicle damage and 

decrease in driver safety. In this paper, we propose a 

road surface condition monitoring system that utilizes 

low cost MEMS acceleration sensors and GPS receivers 

within a tablet to detect and localize road surface 

anomalies. Several types of road information data were 

collected, analyzed, and processed using statistical and 

time domain analysis for feature extraction of the 

various events. We also propose a multi-level decision-

tree classifier to precisely distinguish between the events. 

In addition, the use of the tablet sensors to localize the 

monitored events is discussed. 

Keywords— Smart cities, intelligent transportation 

systems, road information monitoring, intra-vehicle 

sensing, statistical and time domain analysis  

I.  INTRODUCTION  

In light of the increase in global urban population, the 
demand to maintain organization, accessibility, and 
efficiency is prompting many cities around the world to 
implement smarter management systems [1]. A Smart City is 
an urban system that integrates information and 
communication technologies (ICT), and Internet of things 
(loT) technologies to ensure its public services and 
infrastructure are functioning accordingly [2]. Specifically in 
infrastructure, the expected growth in urban populations in 
the next few decades will lead to an increased need in 
efficient and smart transportation systems [3]. 

In the current technological era, the aim to develop smart 
transportation systems that processes data and uses 
applications to eliminate challenges and encourage 

sustainability is underway. A development that led to 
intelligent transportation systems (ITS) intends to save time, 
money, and energy on an economic, environmental, and 
social scale [4]. Specifically, ITS involved in detecting road 
conditions and driver behavior aims to provide a link 
between people and their vehicles [5, 6]. 

Clearly, surface road anomalies contribute to a decrease 

in driver safety and comfort, and an increase in traffic 

accidents and vehicle damage [7]. Poor road conditions, 

commonly potholes, manholes and cracks can produce costly 

consequences. For instance, in 2015 it was estimated that the 

cost of repairing broken vehicle parts in the United States 

cost an urban driver between five hundred to one thousand 

dollars [7, 8]. Similarly, in 2016, the Canadian Automobile 

Association (CAA) took data from two thousand drivers over 

five years, and it was estimated that potholes alone cost 

Canadians $1.4 billion a year [8]. Formerly, authorities 

monitored the road surface conditions utilizing specific 

instrumentation merged with simulation software. In 

addition, manual reporting was adopted as well [9, 10]. 

On the other hand, the evolution of smart phones and 

tablets led to their inclusion in the new ITS. The increased 

number of sensors and the computational capabilities of 

smart phones and tablets make them suitable to participate in 

various crowdsensing applications, specifically ones that are 

used in road information services [5, 11].   

Recently, smartphones and tablet devices were used in 

monitoring and assessing road conditions in the context of 

building dynamic road mapping that could benefit 

authorities, road operators, and drivers as well. The current 

generation of these smart devices is equipped with numerous 

sensors such as GPS, accelerometers, gyroscopes, 

magnetometers, barometers and others. Consequently, saved 

data can be analyzed and processed in order to give valuable 

information about road conditions and anomalies. In [12], 

multiple smart phones are utilized in the detection and 

classification of potholes and drain pits. A 3-axis 

accelerometer and a GPS receiver were 
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used in anomaly detection and localization. Yi in [5] 

proposed a system that used a smartphone vertical 

accelerometer and GPS receiver in detecting and localizing 

road anomalies. An anomaly indexing algorithm was 

developed to detect speed bumps, manholes, potholes and 

deceleration lines. However, the proposed algorithm showed 

significant results in speed bump detections only.  In [13], 

based on predetermined thresholds, the transverse and 

vertical accelerations of a smartphone were used together to 

detect road surface conditions with a data rate of 25-30 Hz. 

The conditions were classified into four classes: bumps, 

potholes, rough, and smooth, achieving an overall accuracy 

of 85.6%. The smartphone GPS receiver was used for event 

localization. RoADS system proposed in [14] used the 

smartphone’s 3-axis accelerometers and gyroscopes to 

categorize road anomalies into three groups of severe, mild, 

and span anomalies achieving an average accuracy of 91%.  

Road anomaly detection systems based on analyzing the 

vertical acceleration of multiple smartphones mounted on 

land vehicles was proposed in [15]. A machine learning 

technique was adopted to detect whether a land vehicle 

attended a road anomaly, with an accuracy of 70%. In 

addition, a GPS receiver was used for localizing the 

monitored anomalies.    

Smartphone based systems proposed for detecting and 

localizing road surface conditions and anomalies lack the 

ability of being comprehensive systems. These systems 

focused on describing only one type of anomaly or simply 

presented general classifications for anomalies based on 

similarities in their behaviors without distinguishing events 

from each other [14]. In addition, some systems utilized low 

data rate sensors which are insufficient for capturing certain 

features that classify multiple anomaly types [13]. 

Furthermore, the entire smartphone based road surface 

monitoring system relied on GPS for localizing the 

monitored anomalies, which is not sufficiently accurate due 

to error at high speeds or in urban canyons. Considering GPS 

signal blockage and multipath, localization errors are 

dramatically increased in downtown cores and urban areas 

[16-18].            

      In this paper, we propose a system that adopt tablet 

based low cost MEMS accelerometers for monitoring road 

surface conditions and its embedded GPS receiver for 

localizing the monitored events. Consequently, to build and 

assess the system capabilities, we utilized 3 land vehicles to 

perform more than 25 road trajectories that span multiple 

road surface conditions and anomalies. In addition, we 

provide feature extraction techniques using statistical, time 

and frequency domain analysis. Based on the extracted 

features, we propose a simple tree-classifier to identify the 

type of the detected anomaly. This proposed classifier 

enables the detection of various types of anomalies such as 

smooth road, potholes, manholes, transverse cracks, 

decelerating strips, and railroad crossings. In this context, 

we present and compare the performance of the proposed 

system over the sensed data using the tablet and integrated 

navigation system running at 100 Hz and 20 Hz 

respectively. Highlighting the localization accuracy, we 

provide results and discuss the capabilities of the tablet and 

integrated navigation systems in localizing the detected 

events at a data rate of 1 Hz.  This proposed road anomaly 

monitoring system leads to distinguishing and localizing 

multiple anomaly types.  

II. METHODOLOGY AND SYSTEM CONFIGURATION  

In order to design a durable road anomaly monitoring 
system we considered many aspects. Firstly, as shown in 
Figure 1. 

 
 
 
 
 
 
 
 
      

The linear acceleration data of the tablet was collected at 
the fastest rate, which is approximately equal to 100 Hz. 
Also, for assessing the tablet capabilities for anomaly 
localization we used an integrated positioning unit to 
compare the performance of them together. After the data 
was collected, extensive statistical and time domain analyses 
were carried out at each time window of l second. 
Consequently, based on the gathered features we adopted a 
simple and efficient decision-tree classifier to determine the 
type of anomaly detected. As a first classification step, we 
classify the road condition into two classes: smooth road 
driving and anomaly road driving. Afterwards, based on the 
nature of the event, we classify the anomalies into two sub-
classes: single sided or double-sided event. Single sided 
anomalies (potholes and manholes) are attended by either the 
right wheels or the left wheels of a land vehicle, while double 
sided events (transverse cracks, deceleration strips, and 
railroad crossings) are attended by all 4 wheels of a land 
vehicle. Each sub-class has also been subdivided to 
distinguish each road anomaly from the others. The 
detection, classification, and sub-classification of road 
anomalies are held based on multiple extracted features for 
each event. Features include peak-to-peak thresholds, RMS, 

Figure 1: Road surface anomalies proposed monitoring system. 
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standard deviation, variance, normalization of the 3-axis 
linear acceleration, zero and threshold crossing rates, and 
cross correlation between the vertical and transversal linear 
acceleration. Once an event is detected and classified, a GPS 
based location is labelled to each event. Finally, a record of 
the detected and localized event is used to update a database 
that maintains the event type and location. 

III. EXPERIMENTAL ANALYSIS AND RESULTS 

A. Experimental Setup and Trajectory Planning  

In this section, we describe the equipment and the 
approach used in our trajectories. Through the multiple 
sensors shown in Figure 2, to assess our proposed system we 
utilized a Samsung Galaxy Note GT-N8010 Tablet, VTI 
integrated positioning unit developed by Trusted Positioning 
Inc., and MiVue 388 Dash Cam. For the tablet, we used its 
MEMS grade LSM330DLC 3-axis accelerometers at an 
approximate data rate of 100 Hz for trajectories involving 
linear acceleration data collection. In addition, we used the 
built-in GPS receiver of the tablet for positioning and 
localization. The VTI integrated positioning unit was adopted 
at a data rate of 20 Hz and it was used for data collection and 
providing an integrated navigation solution for the 
trajectories. Moreover, we used the camera for marking the 
ground truth of the attended anomalies through the recorded 
trajectories.  

 

 

 

 

 

 

Figure 2: Testbed mounted in one of the land vehicles utilized for 

25 trajectories. 

For the trajectory planning, we used the previously 
mentioned setup for holding more than 25 trajectories. In 
these trajectories, we utilized one sedan Nissan Sentra and 
two crossover SUVs (Toyota Venza and Hyundai Tucson). 
The position of the testbed was placed in different spots 
through the three car models used (on the front passenger 
seat, in the trunk, and at the center of the car). In the 
trajectories, we attended multiple roads in Kingston, ON, 
Canada that spanned various road types and anomalies. Some 
of the trajectories were used in building the proposed 
anomaly detection system and the others were adopted for 
the system testing purposes.   

B. Results and Discussion  

To assess the capabilities of our proposed system, we 
used the experimental setup explained in section III. A for 
more than 25 trajectories. The most significant road 
anomalies detected were the manholes, potholes, transverse 

cracks, railroad crossings, and deceleration strips. The 
orientation of the tablet and VTI unit were aligned with the 
vertical linear acceleration in the +Z direction, the 
longitudinal and transverse linear accelerations in the +Y and 
+X directions, respectively. However, the data collected from 
the tablet was only used for building and assessing the event 
detection portion of the road monitoring proposed system. 
The comparison between the tablet and VTI data from 
multiple road anomalies and conditions showed that the VTI 
data lacks rich features, which can be used to identify and 
classify each event. This is because of the lower resolution of 
the VTI unit (20 Hz). Figures 3 and 4 show the 3-axis linear 
acceleration for the tablet and VTI unit during a severe 
pothole event. Statistical and time domain analysis showed 
that there are many distinguishing features that can be 
extracted from the tablet data for each anomaly type.     

 Figure 3: 3-axis linear acceleration of the (tablet) data during a 

(pothole) driving event. 

Figure 4: 3-axis linear acceleration of the (VTI) data during a 

(pothole) driving event. 

Some data sets collected from the trajectories were used 
for building the detection algorithm, and others were used for 
testing it. A total of 68 events and anomalies were attended 
for the training trajectories using the previously mentioned 3 
land vehicles. The attended anomalies are 32 manholes, 18 
potholes, 6 deceleration strips, 3 railroad crossings and 9 
transverse cracks. The motivation behind using multiple land 
vehicles and trajectories is that the driver is not attending the 
same events with the same behavior and speed every time. 
Also, vehicles’ model and size affects the behavior of the 
anomaly over the sensed acceleration data which creates 
challenges in anomaly detection. The highest accuracy 
achieved is 100 % true positive of the railroad crossing. This 
is due to the significant behavior of the anomaly over the 
acceleration data as shown in Figure 5. The lowest accuracy 
achieved is 66 %, which is achieved by the deceleration 
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strips as sensing such anomaly might be mixed with smooth 
road driving for big-wheeled land vehicles.  

Figure 5: 3-axis linear acceleration of the (tablet) data 

during (railroad crossing) driving. 

      Across 68 attended events, the anomaly detection and 
classification algorithm was able to successfully detect and 
classify 59 anomalies achieving average accuracy of 86.7 % 
of true positives. The main reason for not detecting an event 
is because some larger land vehicles are more stable and do 
not vibrate as much through certain types of anomalies. 
Regarding wrong event classifications, some anomalies have 
similar behaviors over the sensed acceleration data or due to 
how the event is attended. Typically, potholes and manholes 
are often confused. Likewise, transverse cracks and 
deceleration strips can be mistaken for each other as well. 
The presented results show higher average accuracy by 
approximately 17% than the results in [15]. In [19], the 
average true positive rate achieved was 85%, however, they 
only classified the monitored anomalies into “safe” or 
“dangerous” events. Such classification lacks description of 
the nature of the monitored events. “Roads” presented in [14] 
classified events into severe, mild and span classes achieving 
a true positive rate of 91% but they also lack the highly 
detailed classification of road events.        

Table 1: Types of attended anomalies and their corresponding True 

Positives, False Positives, and False Negatives. 

Anomaly 

Type 

Number of 

Attended 

Anomalies 

True 

Positive 

False 

Positive 

False 

Negative 

Manhole 32 28 4 4 

Pothole 6 6 0 1 

Paved Pothole 12 10 2 2 

Deceleration 

Strip 

6 4 2 2 

Rail Road 

Track (two 

adjacent 

tracks) 

3 3 0 0 

Transverse 

Crack 

9 8 1 2 

  

 Considering robust monitoring for road anomalies, an 
efficient and adequate localization for each anomaly should 
be present. In our proposed system, we utilized the 

embedded GPS receiver of the tablet and the integrated 
navigation solution provided by the VTI unit. Both systems 
provide localization of the monitored events at a data rate of 
1 Hz. Figure 6 shows the navigation solution of both systems 
in an urban area of Kingston, ON, Canada.  

 

Figure 6: Navigation solution for the tablet (red) and VTI (blue). 

     The solution of the integrated positioning system of the 
VTI (blue) provides a better solution than the one provided 
by the tablet’s GPS receiver (red). In the case of the VTI 
unit, the solution is continuous and within the right lane of 
the street, while the tablet solution drifts out of the street 
leading to increased errors in localizing the monitored events. 
In addition, for downtown and urban cores, the land vehicle 
speeds can reach 50 km/h, such speed can limit the 
localization resolution to approximately 14 meters. This 
resolution is not sufficient for precisely localizing the road 
anomalies, as in 14 meters many anomalies could be present 
specifically in deteriorated roads. In order to ensure rigorous 
and robust localization, integrated positioning systems 
should be adopted at higher data rates to assure solution 
continuity and higher localization resolutions.      

IV. CONCLUSION  

      In this paper, a road surface condition monitoring system 
was proposed and presented. The data of 25 trajectories were 
collected using a tablet and VTI unit utilizing three land 
vehicles across Kingston, ON, Canada. A feature extraction 
technique using statistical and time domain analysis was used 
at each time window to provide sufficient descriptions of 
each type of road anomaly. Also, a decision-tree based 
classifier was adopted to precisely classify each monitored 
event achieving an average accuracy of approximately 87% 
of true positives. In addition, with the aid of the GPS receiver 
and integrated positioning system, a location was labeled for 
each monitored event with updates to a database of the 
monitored events. Ultimately, this system maximizes benefits 
for the developing ITS, enabling dynamic mapping for the 
roads of future smart cities.       
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