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Abstract

The surging demand for Edge Computing (EC) to cope with the proliferation of latency-

critical and data-intensive applications has inspired the concept of recycling ample yet un-

derutilized computational resources of end devices, also referred to as Extreme Edge Devices

(EEDs). However, maintaining data privacy and cost efficiency remain core challenges for

the viability of EED-enabled computing paradigms. In this thesis, we propose the Com-

munity Edge Platform (CEP). CEP exploits business, institutional, and social relationships

to build clusters and communities of requesters and EEDs to eliminate recruitment barriers

and preserve privacy. Furthermore, CEP utilizes a hierarchical control paradigm to prioritize

the enrollment of nearby devices as workers. CEP first seeks workers within the requester’s

cluster, which is composed of devices owned by the same user. In case of a lack of a suitable

device, CEP resorts to devices in other clusters that belong to the requester’s community. In

addition to the underlying architecture and structure of CEP, we also consider the fact that

community-imposed constraints on resource allocation can lead to unbalanced work distri-

bution. To address this issue, we introduce the Community-Oriented Resource Allocation

(CORA) scheme. CORA strives to resolve community restrictions, minimize the flowtime

and makespan for the allocated services, while retaining a reasonable scheduler runtime for

real-time resource allocation. Towards that end, we formulate the resource allocation prob-

lem as a Bipartite Graph Matching problem. Furthermore, we expose tuneable parameters

that allow prioritizing flowtime or makespan, which makes CORA suitable for a wide variety

of scenarios. A detailed comparative study demonstrates the leverage of CEP compared to

12 prominent edge computing platforms. Moreover, extensive simulations show that CORA

outperforms six prominent heuristic-based resource allocation schemes by up to 28% and 6%

in terms of average makespan and flowtime, respectively, while sustaining an adequate level

of runtime.
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1.1 Overview and Motivation

Chapter 1

Introduction

1.1 Overview and Motivation

With the progressively adopted vision of the Internet of Things (IoT), it is foreseen

that 125 billion IoT devices will be connected to the Internet by 2030 [1]. This prolifer-

ation is expected to increase the momentum of IoT applications and services that require

heavy processing and stringent Quality of Service (QoS), including machine learning, aug-

mented reality, tactile internet, and healthcare applications [2]. Cloud Computing (CC) fails

to accommodate the severe QoS requirements of such applications since CC requires full

transmission of an excessive amount of data to distant data centers, which can significantly

increase latency and cause a huge traffic influx at backhaul links [3].

Edge Computing (EC) is a promising paradigm that can resolve the aforementioned is-

sues by providing computing services closer to end users [4]. However, the dominant majority

of existing EC platforms and models fall solely under the control of cloud service providers

and/or network operators [5]. Challenging this monopoly by recycling ample yet underuti-

lized computational resources of Extreme Edge Devices (EEDs) can democratize the edge

and open a new market for more players to manufacture and administer their own edge

cloud. This market can enable individuals, businesses, enterprises, and even municipalities

to act as edge service providers themselves and/or monetize their computing resources. In

addition, EED-enabled computing paradigms can bring the computing service closer to end

users, drastically diminishing the delay [6].
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1.2 Objectives and Contributions

Despite its advantageous impact, EED-enabled computing is less secure than infrastructure-

based EC paradigms. This lack of security is due to relying on dubious machines that trigger

more privacy concerns. In addition, the need to recruit many EEDs for parallel execution

of a single partitioned task can trigger significant recruitment costs. Recently, EED-enabled

computing platforms, such as HomeEdge [7], have addressed these problems by offloading

tasks to other devices in the local network owned by the same user or entity. This approach

ensures a higher level of privacy since the devices and their applications are trusted and vin-

dicated by the user. Moreover, latency can be drastically reduced because of the proximity

factor. Finally, users do not pay to use their own devices. However, restricting the scope

to the local network severely limits the resource pool, reducing the utilization gains and the

chance of finding a suitable device for task offloading, which can significantly reduce the

quality of service (QoS). The problem of limiting the resource pool is further exacerbated

by overlooking the fact that nowadays most users own more than one smart device capable

of running software. The number of connected devices per person is estimated to be 9.27 by

the year 2025 [7]. The resources on those devices are not always utilized to the maximum.

Therefore, a significant amount of potential resources tends to be wasted.

1.2 Objectives and Contributions

Our objectives can be summarized as follows:

1. Achieving cost-efficient edge democratization by eliminating the recruitment cost of

underutilized EEDs without strictly limiting the resource pool.

2. Curtailing the data privacy and device security concerns associated with task offloading

in extreme edge computing.

3. Achieving a high quality of service (QoS) by minimizing the makespan and flowtime

of allocated services, while maintaining a practical and adequate scheduler runtime.
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1.2 Objectives and Contributions

4. Assessing existing edge computing platforms in terms of architecture and application

domain.

The contributions of this thesis are as follows:

1. Community Edge Platform (CEP): CEP addresses Objectives 1 and 2. In CEP, we

interweave the notion of community with edge computing. In particular, we exploit

the wide range of business, institutional, and social relationships among individuals to

harvest the underutilized computational resources of user/organization-owned EEDs

that form communities of trustworthy and cost-free devices. A community can be a

neighborhood, a group of friends, a hospital, or devices owned by an organization in

different geographic locations worldwide with different time zones or load peak times.

CEP fosters the concept of service for service exchange. The goal is to create a global

network where users are allowed to form separate communities of trusted users, each

owning one or more devices. This significantly expands the scope of the available pool of

resources while preserving privacy and eliminating any recruitment costs. In addition

to communities, CEP enables the grouping of adjacent devices into clusters. This

enables each device to prioritize offloading its tasks to other devices in its cluster for

lower latency and even higher security while having the fallback option of offloading

to devices anywhere in the world as long as they are included in one of the user’s

communities. CEP implementation consists of two applications, the client-side running

the users’ devices within the clusters and the server-side running on a server accessible

by all clusters. CEP is composed of several modules including user authentication,

cluster manager, community management portal, data manager, scheduler, benchmark

manager, notification handler, and service execution time estimator.

To the best of our knowledge, CEP is the first edge computing platform that leverages

the notion of communities. It is based on the notion that communities are everywhere

and using them can benefit all involved parties. For example, in a hospital setting,

CEP can ensure that patients’ data remain on-premises while providing the hospital

3



1.3 Thesis Organization

with the computational power needed for demanding applications. For a neighborhood

or a group of friends, CEP enables users to benefit from the concept of service exchange

that better utilizes the diverse EEDs capabilities and battery limitations. In the case

of corporate or industry, CEP can accelerate the work cycle by allowing employees to

access a much higher computational power. Additionally, they can offload jobs between

branches to work around peak load time and varying working hours.

2. Community-Oriented Resource Allocation (CORA): CORA addresses Objective 3. De-

spite its benefits, the notion of community adds another dimension to resource allo-

cation that can cause problems for off-the-shelf schemes that ignore the restrictions

imposed by communities in terms of the order of assignment. In order to achieve ob-

jective 3, we propose the Community-Oriented Resource Allocation (CORA) scheme.

CORA is a new resource allocation scheme using a graph-directed approach to al-

locate container-based services in community-oriented EED-enabled edge computing

environments. CORA also exploits the use of Minimum Cost Maximum Flow (MCMF)

to achieve near-optimal results in a reasonable time.

3. Comparative Study : To address Objective 4, we conduct a comparative study by intro-

ducing a total of 14 features grouped into three categories, namely System architecture

and deployment features, Application features, and Performance features. Then, we

discuss those features in detail and use them to compare CEP with 12 other prominent

extreme edge computing platforms.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides a literature review

of edge computing paradigms, relevant edge computing systems and tools, and resource

allocation at the edge. Chapter 3 provides a description of the Community Edge Platform

(CEP), an overview of the underlying system, community use cases, system architecture,

4



1.3 Thesis Organization

information flow, and a comparative study of CEP with respect to existing edge computing

platforms. Chapter 4 introduces CORA, and provides a detailed discussion of its performance

evaluation compared to six prominent heuristic-based resource allocation schemes. Finally,

Chapter 5 concludes this thesis and outlines some potential future directions.
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2.1 Edge Computing

Chapter 2

Edge Computing Platforms, Systems, and Resource

Allocation Schemes

2.1 Edge Computing

The tremendous growth in capable end devices is unprecedented. This paves the way for

new high-demand services and applications running on end-user devices. We are witnessing

a data revolution. This is reflected by the fact that almost 90% of the world population cur-

rently has smart devices, while the number of devices worldwide exceeds double the world

population [8]. Around 53% of the world population are active mobile internet subscribers,

and this number is expected to reach 60% by 2025 [9]. Meanwhile, services that require rela-

tivity heavy processing are gaining momentum, including video streaming, machine learning,

gaming, virtual reality, augmented reality, and other interactive applications. The usage of

mobile applications is expected to further contribute to this trend. Data traffic growth is

predicted to reach an all-time high and a 3-fold increase in mobile network speed growth from

2018 to 2023 [10]. Furthermore, the emerging Machine-type Communications (MTC) and

Internet of Things (IoT) are expected to introduce a huge number of machine connections.

Due to the fact that this thriving range of diverse services is becoming an essential part of

our work and entertainment, the expectations for outstanding Quality of Service (QoS) are

also increasing exponentially [2].

Despite new IoT devices becoming increasingly powerful in terms of the central processing

6



2.1 Edge Computing

units (CPUs), they cannot keep up with demanding applications that require massive pro-

cessing in a short time. In addition, older and smaller devices that cannot compete against

modern applications, and battery consumption on portable devices, still pose a major ob-

stacle for users to run highly demanding applications on their own devices fully. This has

led to the development of cloud computing (CC) technologies that enable cloud computing

for mobile users. CC concept revolves around having user equipment that can exploit the

computing and storage resources of powerful remote centralized clouds, accessible through

the mobile network and the Internet [11]. The main advantages of CC include extending

battery lifetime by offloading energy-consuming computations to cloud computers, enabling

complicated applications to run on mobile devices, and providing users with higher data stor-

age capabilities [12]. However, CC imposes excessive load at backhaul links and introduces

high latency, since data is extensively sent to remote data centers [3].

Edge computing has emerged as a promising computing paradigm that enables data

processing at the edge of the network. In response to the fast-growing demand and interest

in high-demanding and latency-critical applications, edge computing is gaining extensive

momentum [13]. Additionally, edge computing platforms and tools are blooming on the

industry front [14]. Offloading the tasks to EEDs is significantly more cost-effective than

CC, and it can have lower latency depending on the density of devices in a user’s area. The

idea behind edge computing is to bring the computing service closer to the end user [15].

Edge computing deals with critical infrastructure issues like bandwidth constraints, excessive

latency, and network traffic. On the other hand, there are several important factors that

can influence the adoption of edge computing, such as limited capability, connectivity, and

security [16].

Edge computing is frequently compared to cloud computing. Edge computing provides

low latency to mobile end users’ applications compared to cloud computing. Furthermore,

edge computing becomes essential as data-heavy applications increase in popularity [17].

Cloud computing is typically used when businesses need storage and computing power to run

7



2.2 Edge Computing Systems and Platforms

specific applications and processes, as well as to visualize telemetry data from any location.

On the other hand, edge computing is the best option when low latency, local autonomous

actions, low backend traffic, and confidential data are involved. In comparison to cloud

computing, several users have adopted the use of edge computing since this technology

reduces the amount of data that has to travel over a network hence reducing the bandwidth

costs.

Most existing EC paradigms and platforms depend on infrastructure-based edge nodes

that are solely controlled by cloud service providers and/or network operators [14]. Recently,

capitalizing on the pervasive proliferation of IoT devices also referred to as EEDs, and their

collectively profuse computational capabilities have gained significant momentum [18]. In

this extreme edge computing paradigm, the underutilized computational resources of EEDs

are solicited for parallel processing [19]. This can help democratize the edge and revolutionize

the tech market by enabling more players to build their own edge cloud and/or monetize their

resources. In addition, it can ameliorate the offloading service by expanding the resource

pool and drastically reducing latency and data traffic. However, the heterogeneity of the

computation and communication resources of EEDs, their dynamic nature, cost-efficiency

requirements, and privacy concerns, make it crucial to design new customized systems, tools,

and solutions to overcome each of these challenges.

2.2 Edge Computing Systems and Platforms

In this section we provide a comprehensive overview of current edge computing systems

and tools. Starting with Cloudlet [20], which is a good representation of utilizing micro data

centers at the edge. Cloudlet was first introduced by Carnegie Mellon University (CMU) in

2009 [20]. The formal definition of a Cloudlet is a trusted, powerful computer or cluster of

computers that are nearby, available to mobile devices, and well-connected to the Internet.

Hence, it promotes a three-tier architecture “Mobile Device-Cloudlet-Cloud.” Cloudlet can

be implemented on a personal computer, a small cluster, or a low-cost server. It can be

8



2.2 Akraino Edge Stack

deployed at a convenient location for end users (e.g., a school, a hospital, or a library).

Cloudlet has three defining features, namely, soft state, rich resources, and proximity to

users. A soft state means it does not maintain long-term state information for interactions,

unlike the Cloud. Instead, it holds a temporary cache for some state information [20]. Rich

resources translate to sufficient computing resources, and a stable efficient power supply,

which ensures its ability to handle offloaded tasks from mobile devices. Lastly, Cloudlet

must be close to users on a network and physical level. This ensures higher Qos and allows

for customized services based on location context [20]. Cloudlet is limited to a specific

geographical location. Therefore, it is better suited as a service provided by a public place

for its users rather than a way to share resources between members of a community. The

existing systems and platforms are classified into three categories depending on the owner

of the worker; Organization-owned Workers, Requester-owned Workers, and User-owned

Workers. We present each of these categories in the following subsections.

2.2.1 Organization-owned Workers

In this section, platforms rely on enterprise-owned machines as workers. Those machines

can be owned by network providers, data centers, or cloud providers. This category involves

three platforms, namely, Akraino Edge Stack, Mutable, and MobiledgeX.

2.2.1.1 Akraino Edge Stack

Akraino Edge Stack, initiated by AT&T and now hosted by Linux Foundation, is a

project creating an open-source software stack that supports high-availability cloud services

optimized for edge computing systems and applications [21]. For example, Akraino can be

used with TARS architecture for Vehicle-to-everything (V2X) applications [21]. Figure 2.1

shows the network architecture of the Akrino stack in that case. This highlights the ability

of the edge to communicate with other edges, as well as the remote data center. In addition,

the policy of data offload is configurable based on different applications [21]. From the
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Figure 2.1: Akranio Edge Stack Architecture. Adapted from [21]

architecture viewpoint, the blueprint consists of three layers, the Infrastructure as a Service

(Iaas) layer, which allows the deployment of community hardware, virtual machines, as well

as containers. The platform as a Service (PaaS) layer uses the TARS framework [21]. Thus,

it can support high-performance Remote Procedure Calls (RPCs), deploy services in scale-

out scenarios, and provide user-friendly service management features. Lastly, the Software

as a Service (SaaS) layer is on top, which contains the available applications. Akrino requires

the collaboration of multiple organizations and users’ data is shared with network providers.

In contrast, CEP can be deployed by the user directly and it provides higher security and

privacy.

2.2.1.2 Mutable

Mutable [22] is another prominent organization-owned workers platform. Mutable intro-

duces the concept of Public Edge Cloud, which utilizes the network operators’ servers by
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Figure 2.2: Accedian-MobiledgeX Architecture. Adapted from [23]

turning them into edge workers for next-generation applications in video and audio recog-

nition, Virtual Reality (VR), Augmented Reality (AR), IoT, robotics, autonomous vehicle,

and drones [22]. By handling the end users’ requests with the network providers’ servers,

Mutable can achieve lower latency and higher security. Additionally, Mutable can utilize

Advanced RISC Machines (ARM) and Graphics Processing Unit (GPU) architectures for a

wider range of applications and offer competitive pricing compared to cloud computing [22].

2.2.1.3 MobiledgeX

Accedian and MobiledgeX [23] joined forces to enable enterprises to deliver applications

to the end user on a large scale with consistent performance and maintain an acceptable

level of security by utilizing the edge. The MobiledgeX Edge-Cloud R2.0 platform provided

by MobiledgeX acts as the application environment deployed at data centers and commodity

clouds [23]. Accedian contributes to the common trust model of network and application

performance monitoring. MobiledgeX maintains ubiquitous computing by granting devel-
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opers access to Application Programming Interfaces (APIs) that can utilize the underlying

infrastructure capabilities and orchestration across any environment. Developers can use the

provided SDK to write their application once, and then it can be deployed anywhere the

MobiledgeX platform is deployed. As illustrated in Figure 2.2, Accedian and MobiledgeX

provide an open-source ecosystem for low latency 5G digital experiences by utilizing edge

devices. The MobiledgeX control plane unifies the management and development for dif-

ferent vendors and bridges the gap between EEDs, On-Premise Edge, Telcom Edge, and

Centralized Cloud Edge [23].

The previously mentioned platforms, Akraino Edge Stack, MobiledgeX Edge-Cloud plat-

form, and Mutable Public Edge Cloud, rely on enterprise-owned machines as workers. Those

machines can be owned by network providers, data centers, or cloud providers. This is one

step away from cloud computing because worker devices are closer to the end user and the

workers are at the edge of the network. This falls under the umbrella of edge computing.

Nonetheless, this group still shares some cloud computing limitations, such as privacy risk

from sharing data with corporate-owned devices and relatively high costs. Those approaches

provide a significantly lower latency depending on the density of available servers in the ge-

ographical location of end users and how close they are compared to cloud servers [3]. This

can vary depending on the region and time, which severely limits the range and scalability

of such platforms. In contrast, our proposed platform, CEP, provides a flexible deployment,

good scalability, and better data privacy.

2.2.2 Requester-owned Workers

The platforms in this category utilize the requester’s machines to do their own work.

They only provide a way to facilitate deployment, management, and monitoring of deployed

services, in addition to some prebuilt modules that can be adapted to suit the requester’s

needs. This category involves six platforms, namely, EdgeX Foundry, Azure IoT Edge,

Apache Edgent, Kubernetes, AWS IoT Greengrass, and HomeEdge.
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Figure 2.3: Architecture of EdgeX Foundry. Adapted from [24]

2.2.2.1 EdgeX Foundry

EdgeX Foundry is a standardized open-source interoperability framework for IoT edge

computing, best suited for edge nodes, such as routers, gateways, and hubs [24]. It has the

ability to connect, manage and collect data from various sensors and devices via a variety of

protocols, as well as the ability to export the data to local applications at the edge of the

cloud for further processing. EdgeX is agnostic to hardware, CPU architecture, operating

system, and environment. Figure 2.3 illustrates the architecture of EdgeX foundry. It starts

with the ”South Bound” at the bottom, where all EEDs and IoT objects operate. The

network connects with those devices and sensors to collect data. At the other end of the

architecture, we have the ”North Bound”, which contains the cloud used to store, aggregate,

and analyze data to turn it into useful information. EdgeX Foundry acts as a link between

these two sides regardless of the differences in hardware, software, and network. EdgeX

utilizes the concept of a device profile to define key information about the EED; the object
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type, the collected data format, the stored data format, and the commands that can be used

to manipulate this object. In addition to storage, EdgeX has an SDK that allows third-party

developers to create and manage device services. The device service handles data formatting

and translation of commands to operations that are executable by the devices specified by

the service. As shown in Figure. 2.3, EdgeX consists of a total of six layers. Four of those

are service layers, accompanied by two augmenting layers. The layers in a bottom-up order

are as follows [24]:

• Device Services Layer: This layer converts the data format from collected to stored,

forwards the formatted data to the core services layer, and translates the commands

from the core services layer. All of those operations are done according to the profile

of each device.

• Core Services Layer: This layer includes four components, core data, command, meta-

data, and configuration. Core data stores and manages the data collected from the

EEDs. Command offers the API for command requests from the northbound to EEDs.

Metadata holds and manages the metadata, such as device profiles and services. Reg-

istry and configuration allow configuration and modifications to all other microservices

operating parameters.

• Supporting Services Layer: Supporting services provide edge analytics and intelligence.

The rules engine handles cases where some commands need to be triggered for a spe-

cific range of collected data. Meanwhile, alerting and notifications provide the ability

to notify other people or systems by email or using a Representational State Transfer

(REST) callback. The scheduling component can trigger periodic operations on a spec-

ified schedule to clean the data for example. Logging stores the running information

and warnings.

• Export Services Layer: This layer acts as the connecting bridge between EdgeX and

the northbound. Client registration allows cloud or other applications to be included
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in the data recipients list of one or more devices, While Distribution delivers the actual

data to those registered clients.

• System Management: This augmenting layer handles the management operations for

EdgeX, such as installation, upgrade, starting, stopping, and monitoring.

• System Security: This augmenting layer is implemented to protect the data and device

information within EdgeX.

In this thesis, we use EdgeX foundry as a single module in our platform for centralized

data storage. However, we build several other modules to give users the ability to run

custom code inside services and not just synchronize and react to data. Additionally, we

aim to enable devices to offload work to other devices in geographically remote areas if

needed.

2.2.2.2 Azure IoT Edge

Azure IoT Edge is a cloud service provider managed by Microsoft Azure [25]. Its purpose

is to migrate cloud analytics to edge devices. These edge devices can be gateways, routers,

or any other device that can provide computing resources. The programming model of

Azure IoT Edge is similar to other Azure IoT services. That is, it allows users to move

their existing application hosted on Azure to the edge for lower latency. The convenience

simplifies the development of edge applications. Furthermore, combined with other Azure

services, it can be used to deploy advanced tasks on edge devices, such as machine learning

and image recognition [25].

As depicted in Figure 2.4, Azure IoT Edge consists of three components; IoT Edge

modules, IoT Edge runtime, and IoT Edge cloud interface. IoT Edge modules and IoT Edge

runtime run on edge devices. Meanwhile, IoT Edge cloud-based interface runs in the cloud.

IoT Edge modules are containerized instances running the user code. A module image is

a docker image containing the customer code. IoT Edge runtime is the local manager on
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EEDs. It includes two modules, IoT Edge hub, and IoT Edge agent. The IoT Edge hub is

a local proxy for the hub and is a central message hub in the cloud. It allows modules to

communicate with each other and send data to the IoT hub. The IoT Edge agent handles

the deployment and monitoring of the IoT Edge modules. IoT Edge cloud interface acts as

a portal for users to manage their applications by creating, deploying, and monitoring the

applications on edge devices.

CEP differs from Azure IoT Edge, as it depends on generic containerized docker images

instead of predefined templates, which opens the innovation space to include any program-

ming language or service. Also, any public docker container can be treated as a service in

CEP, whereas in IoT Edge, users are limited to a specific marketplace or their own custom

code that follows a specific template available in a few programming languages. Further-

more, we do not rely on other paid services to run our system. Additionally CEP allows

users to execute services on other devices not owned by the requester as long as they are

part of the same community.
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2.2.2.3 Apache Edgent

Apache Edgent [26], an Apache Incubator project, is an open-source programming model

and lightweight runtime for data analytics. It can be run on small devices, such as routers and

gateways at the edge. Apache Edgent focuses on data analytics at the edge, thus accelerating

the development of data analysis. Edgent provides API to build edge applications. Figure 2.5

demonstrates the model of such an application. Edgent uses topology as a graph to represent

the processing transformation of streams of data. A connector is used to pass streams of

data between the application on one side and edge devices, such as sensors and devices, or

the cloud on the other side. Since Apache Edgent is focused on data analysis, the primary

API allows streams to be filtered, split, transformed, or processed by any other operation

in a topology. The strength of Apache Edgent as a data stream analysis tool comes at the

cost of its weakness as a general platform. Edgent cannot run other types of applications

and services besides stream analysis. In contrast, CEP has no restrictions on workloads or

application types.
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2.2.2.4 Kubernetes

Kubernetes [27], also known as K8s, is an open-source system for automating the de-

ployment, scaling, and management of containerized applications. It was originally designed

by Google but is now maintained by the Cloud Native Computing Foundation. Figure 2.6

depicts a Kubernetes cluster that consists of a set of worker devices (i.e., nodes). These

nodes run the containerized Docker applications and there is at least one node per cluster.

The control plane manages the worker nodes and the Pods in the cluster. The control plane

can run across multiple computers with multiple nodes per cluster, resulting in fault tol-

erance and high availability. The API server exposes the Kubernetes API to communicate

with nodes. Etcd is a consistent key-value store used for backing up all cluster data [27].

Scheduler watches for new unassigned pods and selects a node for them to run on. The

controller manager is responsible for management tasks, such as responding when nodes go

down and populating the endpoints object. The Cloud controller manager links the control
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plane to a cloud provider’s API.

Kubernetes focuses on managing long-running services like servers or microservices, and

handling reliability and scalability issues. It needs to be preconfigured on a list of servers

with specific running and scaling conditions. That makes it better for software development

lifecycle and hosting live applications on dedicated servers owned by the service entity, com-

pared to our model, which focuses on short-lived services and a constantly changing network

of clusters, communities, and benchmarks.

2.2.2.5 AWS IoT Greengrass

AWS IoT Greengrass [28] is an open-source edge runtime and cloud service for building,

deploying, and managing device software, created and managed by Amazon. It can bring

cloud processing and logic locally to edge devices and operate even with intermittent or no

connection. Moreover, it can deploy and manage device software and configuration remotely

and at scale without firmware updates. Greengrass relies on a core device to rally the

communication between EEDs and the AWS cloud. Figure 2.7 illustrates how the data flows

in the deployment architecture: first, a producer Lambda function collects the data and

writes it to the local data stream. Then, an aggregator Lambda function reads the data,

aggregates it, and saves the results to another local data stream. After local processing, the

data can be displayed on a local display by a reader application, sent to the cloud using a

stream manager, or both. In the cloud, other AWS services can be used to further analyze,

combine and store the data.

Greengrass’s main focus is to develop and deploy edge-ready applications to test devices

of end users, it is configured to work with a list of tested device models. It requires following

a structured pattern of templates and artifacts, which extends the process of developing a

compatible application, by adding extra steps for developers to learn and implement. In ad-

dition, it requires paying a monthly fee per device to facilitate management and deployment.
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2.2.2.6 HomeEdge

HomeEdge is an open-source edge computing framework and ecosystem that runs on a

variety of devices at home or in a local network environment [29]. HomeEdge relies on Docker

containers as distributed applications that can be offloaded to other machines on the same

network. All the devices connected to the HomeEdge Network are considered HomeEdge

devices. However, only some of the devices are considered HomeEdge, which are the devices

that are capable of running containerized applications due to having enough computational

power. Some devices run the orchestrator module continuously, scan the network for new

devices, and assign them to nodes so other devices can communicate and offload tasks. The

decentralized nature of HomeEdge allows the ecosystem to be robust and resilient against

sudden device disconnects.

The decentralized control paradigm of HomeEdge limits its scalability since, for any

container to be offloaded, the requester needs to query all devices benchmarks, calculate

20



2.2 Golem Network

scores and select the worker by itself. This process severely limits the pool of resources to

select from, which can significantly affect the QoS. In contrast, our proposed platform, CEP,

utilizes a hierarchical control paradigm to provide better scalability without sacrificing the

QoS, since the resource pool is not limited to local devices.

The systems and tools mentioned above utilize the client’s (i.e., requester’s) machines

to do their own work. They provide the users with platforms, frameworks, and services

to facilitate the communication, scheduling, and monitoring of varying devices in different

environments. However, the user with the work to be done still needs to rent or purchase,

maintain all of the workers, and have administrative privileges over those machines in order

to set up and maintain the work environment. This results in significantly better privacy

and security since the data can be kept on the user’s own machines in most cases. Some

of the platforms eventually offload the data to external clouds, which can be maintained by

the user as well for an extra fee. The systems in this category are expensive since all of the

workers need to be owned or rented. Moreover, limiting the resources to devices on the same

network or owned by the same user hinders the system’s reliability and resource utilization

potential, especially when involving inconsistent workloads. Thus, the next category of edge

systems can provide a better fit for users with occasional or varying workloads searching for

more affordable alternatives to cloud computing.

2.2.3 User-owned Workers

In this section, platforms execute workloads on user-owned worker machines. They allow

any user to exchange their machine computational power for profit, usually, in the form of

a cryptocurrency, and offer those resources to the requesters. This category involves three

platforms, namely, Golem Network, iExec, and OTOY.

2.2.3.1 Golem Network

Golem Network is a global, open-source, decentralized supercomputer available to the
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public [30]. This supercomputer is a combination of the computing power of the user’s

devices, which can vary from personal PCs to data centers. Users in Golem are classified

into two roles; requesters and providers. Figure 2.8 depicts the different possibilities for

each role and how the communication between roles can be done regardless of machine type.

The payment is handled using Polygon, a decentralized Ethereum scaling platform. All of

the work requests and available machines are listed in a decentralized market, where users

can exchange services by offering or taking other users on their offers. This model allows

users to run their workloads on other people’s machines for less cost compared to the cloud.

Moreover, the market can scale up to a very large number of users.

Despite the clear benefits, Golem has technical barriers for new users as they have to

re-implement their workload to use the provided Golem SDK. Moreover, the privacy of

requesters’ data and the security of providers’ machines could be at risk due to running un-

verified workloads on untrusted machines. In contrast, CEP supports unrestricted workloads

in the form of containers and ensures a higher level of security and privacy.
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2.2.3.2 iExec

The iExec platform [31] acts as a bridge between cloud resource sellers with cloud resource

buyers, encouraging an ecosystem of decentralized and autonomous, privacy-preserving ap-

plications. iExec’s technology relies on Ethereum smart contracts and builds a virtual cloud

infrastructure with high-performance computing services on-demand. iExec cloud resource

providers are classified into three types; application providers, computing providers, and

data providers. Application providers can monetize their applications by setting a fixed fee

per usage of their software. Currently, iExec only supports tasks that run once and return

a single result compared to long-running services. Dataset providers offer a fixed dataset

or AI-trained model that can be used to generate data. Computing providers, also known

as workers, provide their machine’s computing powers to execute computational tasks in

exchange for a reward in Run on Lots of Computers (RLC) tokens. Worker machines are

grouped into worker pools led by Pool managers. A pool manager is a lead entity that

organizes the workload, signals how many tasks it can process, and determines the price

for each task. The pool manager receives a fee for managing the worker pool despite not

executing the actual workload. Pool managers compete to attract workers to their worker

pool by providing efficient management and guaranteeing earnings for workers.

The iExec pool managers approach lifts the burden of scheduling from the system to

users acting as pool managers. However, it reduces the system’s reliability even more since

the pool manager acts as a single point of failure for all connected workers. iExec is also

more prone to privacy and security risks due to the nature of the system’s openness to new

requesters and providers without a real way of verifying workloads and workers. In contrast,

CEP utilizes a more robust hierarchical control paradigm, eliminates recruitment costs, and

ensures a higher level of security and privacy.

2.2.3.3 OTOY

OTOY [33] was founded in 2009 with the vision of providing GPU-based software solu-
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tions that enable the delivery of cutting-edge digital content, such as Computer-Generated

Imagery (CGI) in movies and video games. Rendering is a task that takes a long time to

process and can be easily distributed across different threads or machines. Thus, it is logical

to make use of underutilized EEDs with ideal GPUs for rendering. OTOY, currently the

leading company in cloud-based rendering, is planning on expanding to edge computing us-

ing Render Token as the primary unit to exchange rendering and streaming services. OTOY

utilizes blockchain with Ethereum smart contracts technology with proof-of-render work on

the OctaneRender Cloud (ORC) as illustrated in Figure 2.9. Limiting the workload to ren-

dering reduces the risk of malicious workloads. Additionally, splitting the work into render

tokens reduces the possibility of data leaks. OTOY is limited to rendering tasks and cannot

be used for general tasks or services and it still requires a payment to execute the workload.

In contrast, CEP does not impose restrictions on workload format or application types.

2.3 Resource Allocation at the Edge

In recent years, Docker container technology has been widely popular [34]. Commercial

container orchestrators, such as Docker Swarm [35] and Google Kubernetes [27], guarantee

users the freedom to execute a wide range of jobs and services. However, these orchestrators

rely on simple and generic resource allocation algorithms.
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Google Kubernetes [27] uses a scheduler and a work queue to assign resources. The

scheduler selects a random task and assigns it to the device that has the minimum workload

and maximum available resources. Another common resource allocation approach is binpack

[36]. This strategy places containers on the host that has the most assigned load and that

still has enough resources to run the given workload. Binpack drives resource usage up and

maintains a spare capacity for running containers with significant resource requirements.

Docker Swarm [35] has a more complicated scheduling strategy, referred to as spread. The

spread strategy is a heuristic approach that attempts to schedule a service based on resources

available on cluster nodes; This means that services are evenly distributed across the cluster

nodes as much as possible. For example, if a service is created with multiple replicas, each

replicated task will be scheduled on a separate node. Scaling an existing service is the only

case where the spread scheduler deviates from the normal spread procedure. The scheduler

will look for a node, if one exists, that is not currently running any task for the same service

being scheduled, regardless of the number of other tasks it is running overall. If no node

matches these criteria, then the node with fewer tasks from the same service is selected. This

approach is focused on the replicas case, where the same service belonging to the same user

is run on multiple machines. This case differs from resource allocation of diverse services,

each belonging to a different user.

In literature, resource allocation is typically modeled as an optimization problem [37],

which finds the solution by defining the optimization parameter and choosing the optimiza-

tion technique. Proposed approaches to solve the optimization problem are classified into four

categories [37]; Mathematical modeling [38, 39], Heuristic [40–45], Meta-Heuristic [46–49],

and Machine Learning (ML) [50,51].

2.3.1 Mathematical Modeling Techniques

One of the most prominent mathematical modeling techniques is Integer Linear Programming

(ILP) [37]. ILP is an iterative method that models the offloading problem as a linear function

25



2.3 Heuristic Techniques

with a set of linear constraints. By utilizing branch-and-bound algorithms [52], the global

optimal solution could be found.

Kaur et al. [38] introduce a Kubernetes-based Energy and Interference Driven Scheduler

(KEIDS), which is a multi-objective ILP formulation for Industrial Internet of Things (IIoT)

applications in edge computing ecosystems. KEIDS aims to minimize the emission of carbon

footprints, interference, and energy consumption; This is achieved by minimizing the energy

utilization of edge nodes in IIoT for optimal utilization of green energy. Thus, KEIDS

takes less time to schedule applications on the nodes maintaining minimum interference with

other applications, which in turn results in optimal performance for the end users. KEIDS

guarantees a significant carbon footprint and energy consumption reduction compared to the

classic Kubernetes scheduler.

Overhead-aware resource allocation is proposed and designed by Lu et al. [39] for cloud

container services. This resource allocation approach can be used efficiently in both offline

and online settings. A job is considered to be a combination of interruptible and uninter-

ruptible tasks limited by a specific deadline and resource requirements. Lu et al. formulated

an ILP for offline resource allocation optimization. Results show that given sufficient cloud

resources for job execution, the proposed approach can guarantee predefined deadlines for

all defined jobs while minimizing the total interruption overhead.

The main drawback of this approach is its computational expense. The problem of

scheduling resources for containers is NP-complete in complexity; hence, ILP is only suitable

for small-scale systems. However, edge computing systems deal with big data with hundreds

of gigabytes of information all of which are processed for time-sensitive tasks [37]. Con-

sequently, the computation cost renders overhead-aware resource allocation impractical for

large-scale systems.
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2.3.2 Heuristic Techniques

Multiple heuristics have been proposed to allocate containers [40–45]. These approaches

are generally faster and more scalable than the approaches mentioned above. Most of these

heuristics reuse, combine, and enhance existing techniques, such as bin packing, Min-min [40],

work queue [27], binpack [36], and spread [35]. However, the solutions are not guaranteed

to be optimal.

Min-min [40] uses the minimum completion time as a metric, meaning that the task that

can be completed the earliest is given a higher priority. Max-min [40] starts in the same way

as Min-min by calculating the minimum completion time for every job but then proceeds to

select the one rendering the maximum-minimum completion time.

LJFR SJFR [42] is a combination of both the Min-min and Max-min heuristics, as it

alternates between them by assigning the longest job to the fastest available device, then the

shortest job to the fastest available device. This sequence repeats until all jobs have been

assigned.

In the Sufferage heuristic [42], priority is given to the jobs that suffer the most from not

assigning them at the current step. This is done by calculating the difference between the

minimum and second minimum completion times for every job and choosing the one with

the maximum sufferage.

Mendes et al. [53] propose an extension to the Docker Swarm resource allocation algo-

rithm [35]. The oversubscribing resource allocation algorithm optimizes energy efficiency,

thus addressing the scarcity of resources in the edge computing environment. This opti-

mization is achieved by improving resource utilization to levels at which energy efficiency is

maximized. Oversubscribing has been shown to improve CPU and memory utilization over

Spread [35] and Binpack [36]. However, achieving better resource allocation results comes

at the expense of a complex decision-making algorithm that takes more time to generate a

solution.

The scheme proposed in [41] is also based on Min-min. However, the target function is
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custom designed to consider a physical machine’s energy consumption. The authors empiri-

cally prove their approach is preferable in heterogeneous edge data centers if each container

is placed on the physical machine with the least increase in energy consumption. They pro-

pose a hypothesis stating that resource utilization is balanced between two nodes when the

estimated minimum energy consumption is the same.

The authors in [43,44] propose optimization using the Technique for Order of Prioritisa-

tion by Similarity to Ideal Solution (TOPSIS) algorithm. In [43], the spread algorithm by

Docker, combined with bin packing strategies and TOPSIS, are used to compromise between

node parameters, the number of containers in each node, the number of available CPUs, and

available memory. In [44], the authors extend their work on Kubernetes and add aggregated

single rank parameters into the optimization criteria. This parameter is calculated by av-

eraging the utilization rates of CPU, memory, disk space, and power consumption on each

node.

Fu et al. [45] a progress-based scheme, called ProCon, for short-lived applications. Prior

to offloading, the proposed scheme relies on instant resource utilization, as well as the cur-

rent contention rate, to estimate a future completion date, which is used to minimize the

future contention rate. By monitoring the progress of running jobs, ProCon can balance the

resource utilization on different nodes and minimize the overall completion time, as well as

the makespan.

2.3.3 Meta-heuristic Techniques

Meta-heuristic evaluation is a higher-level procedure designed to use incomplete information

or limited computing power to perform a partial search that may provide a sub-optimal

solution to a problem. This method has the advantage of making relatively few assumptions

about the optimization being solved. The most common approaches in this category can

be classified under three major classes [37]; Ant Colony Optimization (ACO) [54], genetic

algorithms [55], and Particle Swarm Optimization (PSO) [56].

28



2.3 Meta-heuristic Techniques

ACO is a population-based search algorithm. It is inspired by ants’ pheromone trail

laying behavior while searching for food [54]. One approach introduced by Lin et al. [46] is a

multi-objective ant colony resource allocation technique. The optimization objectives include

CPU and memory utilization, rate of failure, and network transmission. The experimental

results show considerable improvement in the optimization of cluster service reliability, clus-

ter load balancing, and network transmission overhead compared to existing techniques,

such as Spread and GA-based approaches [46]. Nonetheless, this approach does not consider

energy consumption and does not handle any matching constraints that can be mapped to

community-imposed constraints.

Genetic algorithms are evolutionary search techniques based on the natural selection

hypothesis. In the evolution process, the most suitable variations have a higher chance of

survival and procreation. These variations are selected, and thus, their features are multiplied

from generation to generation [55]. Researchers in [47] address the problems of contention

and migration. They argue that deploying multiple containers on a single node leads to an

overall decrease in QoS. They proceed by introducing a container balancer that periodically

profiles containers and decides the optimal placement. It is also responsible for migrating

containers to their appropriate nodes by the end of each profiling cycle. The container

balancer utilizes genetic algorithms and runtime metrics as heuristics to optimize a custom-

made objective function. Runtime metrics include CPU, memory usage, and access count

for I/O blocks.

PSO is a stochastic optimization technique inspired by the movement and intelligence of

swarms of birds while traveling long distances. It uses a swarm of agents acting as particles

that move around the search space, searching for the solution [56]. Liu et al. [48] introduced

an improved PSO algorithm. The improved algorithm utilizes inertia weight parameters and

regularization techniques to increase the convergence speed of classic PSO. More importantly,

it optimizes CPU and memory usage while making minimal assumptions drawn from the

history of user behavior and an affinity factor, both of which are implemented in Kubernetes
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native dispatcher.

Al-Moalmi et al. [49] adopt a different approach to the problem by introducing an addi-

tional layer of placing VMs on Physical Machines (PMs). This layer, combined with placing

containers on VMs, forms a new optimization problem, in which, in which the Whale Opti-

mization Algorithm (WOA) is used. WOA targets the minimization of power consumption

while maximizing resource utilization. Experimental results comparing this approach against

existing methods illustrate the superiority of the WOA method. Nonetheless, this method

can not be extended to the case of communities in extreme edge computing because it re-

quires full access to the workers’ PMs.

2.3.4 Machine Learning-based Techniques

Machine learning is a group of algorithms that recognize patterns in data to learn and make

informed decisions on newly introduced cases. Deep learning is one subfield of machine

learning that has recently seen a surge in popularity due to its effectiveness in providing

enough computing resources for massive data. Major applications for deep learning are

computing vision and natural language processing [57].

Several attempts have been made to utilize machine learning techniques to solve the

offloading optimization problem. Authors in [50] consider energy consumption as a target

function to be minimized. Based on Bayesian optimization, the authors proposed a sta-

tistical online learning technique to achieve energy-aware offloading in a cloud data center.

This method requires fewer data points to recognize the patterns and solve the container

consolidation problem. The experimental results show that the proposed method improves

the total energy consumption at the expense of service response time compared to various

existing approaches.

In [51], Liu et al. propose a scheme to consolidate containers without violating the Service

Level Agreement (SLA) at the Virtual Machine level (VM-level). The proposed scheme relies

on linear regression to predict CPU usage in the corresponding physical machines; this, in
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turn, is exploited to re-balance over-utilized and under-utilized machines. The solution is

demonstrated through simulations on real workloads. The experimental results show that the

container consolidation scheme, combined with usage prediction, reduces energy consumption

and the number of required container migrations while complying with SLA.

To the best of our knowledge, none of the existing resource allocation schemes is optimized

for communities. Some schemes address the concept of matching constraints for allocation.

For example, in [58], the authors recommend an online resource allocation scheme with

matching constraints that optimize for time-changing costs. However, the scheme assumes

that the cost function is known at any point in time. In addition, it is based on two linear

programming algorithms that have poor scalability. Such approaches still fail to address

the restrictions associated with communities. In contrast to existing schemes, we propose a

resource allocation scheme optimized for communities.
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Chapter 3

Community Edge Platform

In this chapter, we present the Community Edge Platform (CEP). We provide an overview

of the system, its use cases, and underlying architecture. Then, we conduct a comparative

study to compare CEP to 12 prominent edge computing platforms.

3.1 System Overview

In CEP, an edge device can be any machine, stationary or portable. Any device running

the software can act as a requester, a worker, or both. Note that we interchangeably use

the terms EEDs and workers throughout this thesis. Each cluster is composed of a group of

devices that are within the local network owned by the same user, with one device acting

as the local scheduler for this network, called the cluster head. A cluster head acts as a

communication gate between the cluster and the server that connects it to other clusters.

A community is composed of one or more clusters. A community refers to a group of users

that are open to exchanging services and executing offloaded tasks among each other. Note

that a user can be a member of several communities.

To further illustrate the concept of clusters and communities in CEP, Figure 3.1 depicts

a system of four clusters owned by a total of three users (user A, user B, and user C), which

form two communities (community X and community Y). Any device that is a member of a

cluster owned by user B can offload services to any device owned by users A or B. This is

since user A and user B are both members of community X. In contrast, the devices of user
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Figure 3.1: Clusters, Users, and Communities in CEP

A can exchange services with users B and C.

CEP enables requesters to offload their custom tasks, with as few limitations as possible,

to trusted devices that are members of their community. This offloading is done regardless

of whether the devices are within the same cluster or in a remote location, or whether all

clusters in this community are owned by a single user, a single organization, or by several

entities, as long as all cluster owners trust their community members. In CEP, all connected

devices can act as requesters, workers, or cluster heads, depending on the configuration and

the running scenario. Beginning at the cluster level, where every group of devices on a LAN

can be handled by a single device known as the cluster head. This cluster head in turn has

access to the server (i.e., scheduler) that can receive and schedule services between different

clusters within the same community. Note that the notion of community can enable fostering

a wide range of user custom services and applications.

Fostering user custom applications in CEP requires overcoming some new challenges,

especially when dealing with a wide range of devices and operating systems. Therefore, we

opt to use the containers ecosystem. This ecosystem allows the requester to provide almost
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any source code as a task that can be offloaded in a containerized form that can run on a

large, diverse group of smart devices, with no regard to the programming language, required

libraries, or application domain. In addition to flexibility on the software side, this enables

the services to run on any Docker Container-enabled devices. Docker containers are selected

due to their quick deployment, easy management, safety, and hardware independence [37].

In CEP, each worker is a member of a cluster. Each cluster belongs to a specific user,

and each user is a member of one or more communities. Let S = {s1, s2, . . . , sn} denote the

set of containerized services in the server queue that need to be offloaded to workers within

communities. We assume independent services (with no inter-service data dependencies),

and preemption is not allowed since the container state cannot be relocated to a new device

without wasting additional resources. Each service originates from a requester within a

cluster that belongs to a user with a set of valid communities, each of which has candidate

workers to which the service can be offloaded safely. The set of workers available for service sj

assignment is denoted Dj = {dj1, dj2, . . . , djm}. Each worker has its updated benchmarks,

which indicate the available resources, as well as the cluster identifier. The latter can be

traced back to the corresponding requester and thus to the associated set of communities. On

the machine level, the assigned services are executed in a First-Come, First-Served (FCFS)

order.

CEP consists of different components, including user authentication, cluster manage-

ment, community management, data management, scheduling, benchmarking, notification

handling, and service execution time estimation. The architecture of CEP and its underlying

components and modules, as well as its use cases, are explained in the next sections.

3.2 Use Cases

In this section, we discuss three different use cases of CEP, where the notion of community

can be leveraged in real-life scenarios. In each use case, we present the way devices are labeled

as part of a community, how the community is created and managed, and the benefits that
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CEP brings to the participating members. The three use cases are presented as follows:

1. Hospital: In a hospital setting, a community should encompass hospital-owned servers

and devices with relatively high capabilities. Sensitive devices that are designed for a

specific medical critical purpose can be excluded from the worker list. Certain sections

or departments of the hospital can be isolated into more secure communities if they

process more sensitive data or run critical jobs. The hospital IT can create and manage

the hospital’s communities by adding all valid devices manually. Adopting the use of

CEP inside the hospital can solve the need for computational power for demanding

applications, such as patients’ data analysis, medical diagnosis, and treatment eval-

uation. At the same time, CEP ensures that the patients’ data remain on-premises,

which makes it less vulnerable to data breaches and data tampering.

2. Social Associations: A group of neighbors, friends, or relatives often have mutual

trust in one another. Furthermore, each user can have one or more capable devices.

In this environment, a community includes all EEDs, such as personal computers,

laptops, phones, routers, smart cars, and all IoT devices, that belong to users with

trusted social associations. Any person can create a community, and invite friends and

neighbors. The invitees can see the members list and decide whether to opt into this

community or not. Users can be members of several communities at the same time,

and they can create several communities as well. Thus, users can benefit from service

exchange that better utilizes the diverse EEDs capabilities and battery limitations.

3. Corporation: Many corporations utilize the cloud to provide computational resources

to employees or clients. A community in this setting would encompass all devices

owned by the corporation. This includes EEDs at separate branches and corporate-

owned laptops in employees’ homes. A community can be started by the IT department

at the head office, where they can add the corporate mainframes. Then, they can invite

other branches of ITs to do the same and invite employees to add the devices owned by
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the organization in their possession. The corporation can accelerate the work cycles by

granting employees access to a much higher computational power. Additionally, they

can offload jobs between branches to work around peak load time and varying working

hours.

Overall, members of a community are more willing to dedicate resources to members of the

same community compared to complete strangers. Communities eliminate the recruitment

cost since users are participating in a service-for-service exchange or helping trusted members.

Lastly, this preserves data privacy and maintains a high level of security, since the workload

is originating from a source (i.e., requester) trusted by the provider and running on a machine

(i.e., worker) trusted by the requester.

3.3 System Architecture

CEP implementation is split into two different applications; the client-side, which runs

on the user’s devices within clusters, and the server-side, which runs on a server accessible

by all clusters. The client-side has two modes, one for all devices to allow the machine to

act as a worker or requester. The other mode is used to enable a device to run as a cluster

head. The cluster head collects benchmarks and service requests from cluster members

and forwards them to the server. In addition, the cluster head forwards notifications and

results from the server to the original requester and has a separate scheduler module to

act as the first and preferred level of offloading handling system. The server-side of the

system is hosted on a public server that can be accessed by potential clusters. The server

manages user authentication, keeps track of active clusters, stores and provides service data,

allocates services to workers, estimates execution run time, and handles service notifications.

Additionally, there are a few components that facilitate the communication between the two

application sides (i.e., client and server), including a message queue, and some external

service providers, such as Docker repositories.
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3.3.1 Client-side (Devices and Cluster Head)

In CEP, the client-side, implemented at the devices, leverages some of the modules used in

HomeEdge [29]. This is since such modules can be deployed as needed, and they provide a

reliable and tested implementation for basic functionalities, such as device discovery, data

storage, basic benchmarking, docker container pulling and execution, and network commu-

nication between devices. However, in its implementation, CEP ensures a centralized rather

than a decentralized approach. This is because although decentralized systems require fewer

network messages to communicate and are more resilient against one point of failure issues,

they are more vulnerable to malicious actions. This is since any device can send request

services directly to any other device. Thus, if anyone gets access to the network of the

devices, they can run any code they want on all devices Furthermore, in a decentralized

approach, each device needs to constantly keep track of all the other devices in the network

and ask for their benchmarks whenever there is a request. This traffic increases the load on

the network, which exponentially increases with the number of devices, making it unsuitable

for large-scale networks.

In CEP, the cluster needs to be centralized around the cluster head to facilitate com-

munication with the server. Hence, we design a centralized paradigm. Additionally, we

implement several new modules at the cluster head to collect workers’ information and re-

quests, authenticate users, register each cluster to a given server, forward benchmarks, as

well as requests, and results to the server, and forward assigned services to workers, and

allocate resources within the cluster using a community-aware scheduler. The scheduler is

implemented at the server and is discussed in detail later in chapter 4.

3.3.2 Server-side (Scheduler and Community Manager)

The server side acts as a communication gateway between clusters, similar to the cluster

head but on a larger scale. Moreover, it manages communities, centralized databases, and

execution time estimation. We opted for a stateless approach, in which each session is carried
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out as if it was the first time and responses are not dependent on data from a previous session.

In contrast to a stateful approach, a stateless approach provides high scalability, scheduling

in high availability environments, easier caching, less need for active storage, and better

failure recovery. The modules implemented at the server-side in CEP are defined as follows:

• User Authentication and Authorization: This component handles users’ login and reg-

istration to the platform. Additionally, it manages the user’s sessions and requests

from clusters to ensure the separation between clusters in different communities and

prevent malicious activities from unknown devices. A username and password are

used to authenticate users to access server APIs, such as managing accounts, generat-

ing tokens, and creating and managing communities. For the clusters to automatically

authenticate, a Personal Access Token (PAT) can be generated and encapsulated in

the cluster head, allowing faster and automated connections between the cluster and

server. Furthermore, keeping the PAT on the cluster head only increases security since

it would usually be the most secured device in the cluster. PATs are less prone to

brute force attacks and guessing, due to their long and random nature. Additionally,

they can be reused across multiple clusters.

• Cluster Manager: This module maintains clusters, keeps track of active clusters, and

identifies new connecting clusters upon requests. Thus, it can provide the scheduler

with potential cluster candidates to offload tasks to.

Figure 3.2 shows a state machine diagram highlighting the different states a cluster

can be in and the possible transitions between them. A cluster is in the ”active” state

when its workers are ready to be assigned new services along with the services that

they have already been assigned. After missing one scheduling cycle (discussed further

in 3.4), the cluster changes in state to ”busy”, indicating that it cannot be assigned

new services. However, the cluster still retains any service previously assigned to it. If

the cluster connects to the server with any request, it will be moved back to the active

state. Otherwise, it remains busy for x cycles, which is a configurable number, then
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Figure 3.2: Clusters State Machine.

it is moved to an inactive state. In the inactive state, the scheduler assumes failure

on the client-side and reassigns all services to a new cluster. New services cannot be

assigned to an inactive cluster. Any call from the cluster will move it back to the active

state directly, where it can be assigned a new service. If the cluster does not contact

the server in y cycles, which is another configurable number, it will be deleted from

the list of clusters to save storage space and when it connects back, it will be treated

as a new cluster and assigned a new id.

• Community Management Portal: CEP provides a fully-fledged API endpoint that al-

lows community owners to manage their communities while giving members the option

to view and leave communities when desired. A more detailed explanation is given in

Appendix A via the Entity Relationship Diagram in Figure A.1. Communities man-

agement is done using the invitations paradigm and it has a total of eleven different

endpoints, as illustrated below:

1. Create community: Any user can create a new community by providing certain

information, including the desired community name and description.

2. Edit community: Community owners are authorized to edit the community infor-

mation.

3. Delete community: Community owners are authorized to delete the community

if it is no longer needed.
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4. Leave community: Community members, except for the owner, do not have the

authority to delete a community. However, they can decide to opt out of this

community at any time.

5. List community: Provides a list of all communities the user is a member of. It

highlights the user’s relationship with each community as an owner or a member.

6. List member: Provides a list of members in a specific community, any member of

a community can view this list, in addition to any user with an active invitation

to the community.

7. Send invitation: Community owners can invite any member to their community.

Users can be identified using ids, usernames, or emails. Any user who is not a

current member of the community is eligible to be invited.

8. List user invitations: Any user can view a list of all invitations received from

communities.

9. List community invitations: Community owners can view a list of actively ex-

tended invitations to users.

10. Revoke invitation: Community owners can revoke the invitation to any invited

users as long as it is not responded to yet by the target user, or remove them from

the community if they already accepted the invitation.

11. Respond to an invitation: Users can accept or decline any invitation after viewing

the community.

• Data Manager: Data synchronization and delivery is not a simple task. That is why

this module, alongside the message queue that receives messages from all local storage

databases, are responsible for directing data to the correct place and retrieving it

upon request. Moreover, the data need to be protected and should be provided to

authorized users only. Finally, if a service has some results that need to be passed to

the original requester, it can be done through this module. Sending data and receiving
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results directly when handling service requests is better from a latency and privacy

point of view. However, this approach introduces several issues and challenges. For

example, the data needs to be sent through different levels of controllers to reach

its final destination, passing through the cluster controller and the global controller.

Another concern is resending all this data to a new worker in the unfortunate case of

failure or disconnection. In addition to establishing and maintaining a peer-to-peer

connection between devices for a long time to enable data synchronization. For all the

reasons mentioned above and the fact that in some ecosystems, such as IoT, most of the

data is already stored in a centralized database, we implement another approach that

users can benefit from. We do that by providing a centralized data approach with two-

level database architecture. The first level is the cluster level which enables low latency

offloading when available. The second level is the global level, which fosters a large,

centralized data storage that local cluster databases are synchronized to, on a fixed

schedule using message queues. This schedule can be extended to allow on-premises

data, thus increasing the level of data privacy for critical applications.

• Scheduler: One of the core modules that map services to devices within clusters. Af-

ter acquiring the device benchmarks from the score manager, the scheduler needs to

prioritize running on clusters owned by the same entity, followed by clusters owned

by members of the same community as the requester. The implemented scheduler is

required to be online to allocate resources in real time. We use a time-driven approach

with time cycles rather than an event-driven approach. This is because a time-driven

approach has more potential in terms of optimization, and can thus help address the

constraints imposed by communities more efficiently. This optimization potential can

be attributed to the larger number of services and devices available for the scheduler

at the time of allocation. The scheduler needs to achieve the best possible allocation

of resources. In particular, the scheduler strives to minimize makespan and flowtime,

while being fast enough to run within the cycle time frame. The scheduler module, re-
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ferred to as Community-Oriented Resource Allocation (CORA), is discussed in detail in

chapter 4. The time of each cycle can be configured depending on the application type

and the number of concurrent users. A longer cycle allows for more optimization in the

allocation but it can negatively impact the latency hence it is more suited for non-real

time services. For real time services, a shorter cycle or an event-driven approach can

be used to minimize latency. CEP can utilize the hierarchical control paradigm by

implementing different approaches at different levels. For example, CEP can use an

event-driven at the cluster level to minimize latency for quick services, while utilizing

CORA on the server level to benefit from the better allocation for longer services.

• Benchmark manager: This module is tasked with collecting benchmarks from active

clusters regarding available devices in a group of communities. Later, it combines

all the gathered results in a single list that can be passed to the service scheduler to

calculate scores and make decisions. The benchmarks used in our system are as follows:

– CPU Usage: which measures the current utilization percentage of a CPU.

– CPU Count: number of available CPU cores.

– CPU Frequency: the frequency of each CPU core.

– Free Memory: the amount of memory that is currently not used.

– Available Memory: the amount of memory that is available for allocation to a

new process or to existing processes.

– Net Bandwidth: the device network bandwidth.

– Network MBps: a measurement of the device read and write speeds over the

networks.

– RTT: the time it takes for a message to travel back and forth between two devices

(worker and scheduler).

• Notification Handler: Some services last for a long time. Thus, relying on requests’

responses for the results can result in timeout exceptions. This justifies the need for

42



3.4 System Flow

a notifications module. The service requesters need to be notified when their service

is terminated, whether it failed or succeeded (discussed further in Appendix A). This

module passes the final notification from the worker to the cluster head with the

required information to deliver to the requester. In addition to notification passing,

the handler receives periodic notifications from running clusters to ensure the services

are still in progress, notify the scheduler of any network failure, and take the necessary

actions.

• Estimator: Utilizing a combination of analytic benchmarking and statistical prediction,

we can make use of historical knowledge from prior executions of the same services to

estimate the execution time on a machine with different benchmarks, either due to

machine variation or device usage during offloading [59]. Furthermore, we can extend

this approach by using a two-stage machine learning approach with a model better

suited for this application, such as random forest, thus significantly increasing estima-

tion accuracy [60]. A few adaptations are needed to fit this model into our case. For

example, because we have no control over the containers offloaded to embed a tracking

code, we have to replace the resource tracking built into services with docker moni-

toring technologies. Other required adaptations are creating models for new services

once they are introduced to the system and automatically selecting training variables

by analyzing the service parameters. The last key adaptation is switching to an online

machine learning model or retraining models with new data to retain accuracy and

relevance.

3.4 System Flow

In CEP, the resource allocation is processed using a time-driven scheduler that executes

once every cycle of a specified amount of time. As shown in Figure 3.3, the cycle has four

events that run in order; update benchmarks, allocate jobs, assignment check, and update

cluster states. During any time in the cycle, the requester can send service requests, which
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Figure 3.3: CEP Scheduler Cycle. Black events are triggered by the server, while blue events
are triggered by the client

are queued in a service queue waiting to be scheduled. Starting at the update benchmarks

event, all clusters are required to send the updated benchmarks of all available workers to

the benchmark manager at the server. This update is managed by a cron expression that is

passed to the cluster head when the cluster registers with the server. After a configurable

amount of time marked by D in the diagram, the server triggers the scheduler to do the

allocation. The services are pulled from the queue, and allocated to the available workers.

Following this step with another time frame indicated by A, the cluster heads must check

for any service assigned to their workers. Once again, this is timed using a cron expression

passed by the server at cluster initialization. Workers are expected to start executing services

as soon as the cluster head distributes them to workers. The following step in the cycle is

triggered at the server within the cluster manager. In this step, the cluster states are updated

as mentioned in section 3.3. Finally, the cycle goes back to the update benchmarks event

after time C. Overall, the sum of times A, B, C, and D define the total cycle time, and all

of those times are configurable and are not necessarily equal.

Figure 3.4 illustrates the flow throughout the system. The components in the figure are

color coded as follows: orange highlights components related to data storage and manage-
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Figure 3.4: CEP Architecture and Flow

ment, green indicates components related to management, yellow maps components outside

the system, Blue is for user authentication, red is the community management module, and

black is for estimation and notifications.

The normal flow of a service request, cannot start unless the cluster in which the requester

device exists, is initialized. After this, any service request will be directed to the cluster

controller, which can either handle the request on a cluster level if possible or offload it to

the global system, where the user authentication module confirms the cluster owner’s identity

to get a list of the owner’s communities. Following this at the scheduling cycle, the service

scheduler queries the benchmark manager, which keeps track of benchmarks for all active

cluster workers, accessed via the cluster manager, and accumulates all the results in a single

comprehensive list. This list, alongside variables of services queued for allocation, is sent to

the estimator module, which calculates the execution time estimations and forwards them

to the scheduler to make a decision. Finally, the scheduler passes the service information to

the selected device cluster head.
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When a cluster head receives the service request, it passes it to the selected worker device,

which in turn gets the service image from the Docker repository, downloads any required

data, and starts processing. After processing is completed, the results, if any, are uploaded

to the centralized data storage, and a notification is sent to the cluster head with the state,

in which the service finished processing. The cluster head forwards this notification to the

notification handler, where it gets passed to the original requester.

3.5 Comparative Study

We conduct a comparative study to highlight and illustrate the differences between CEP

and 12 other prominent edge computing systems (introduced in section 2.2). In total, we

compare the systems based on 14 features grouped into three categories; System architec-

ture and deployment features (Table 3.1), application features (Table 3.2) , and performance

features (Table 3.3). The system architecture and deployment features include deployment

location, workers ownership, control paradigm, worker OS support, and network coverage.

The application features include a user access interface, workload format, application area,

and cost. The performance features include data privacy, worker security, deployment, scal-

ability, and mobility. The 14 features of the aforementioned three categories are analyzed

below under their corresponding category:

I. System Architecture and Deployment Features (Table 3.1):

1. Deployed at: The deployment location shows the type of devices suitable for such a

system. This feature clarifies where the controller is deployed. Deployment location

is a key factor that determines the suitability of a system for certain applications,

depending on the user’s access to such devices. Akraino edge [21] could be deployed

at cell towers, central offices, and other service providers’ locations, such as wire

centers. Edgex Foundry [24], Apache Edgent [26], and Azure IoT Edge [25] must be

deployed at the edge nodes, such as gateways, hubs, and routers. HomeEdge [29] is
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Table 3.1: Comparison of Edge Computing Platforms - Architecture Features

System Deployed At
Workers

Ownership
Control OS support

Network
Coverage

Akraino [21] Cell towers
Network
Providers

Hierarchical Linux Unrestricted

EdgeX
Foundry [24]

Gateway Requester Centralized Various OS Local Network

HomeEdge [29] EEDs Requester Decentralized Various OS Local Network
Azure Edge [25] Gateway Requester Centralized Various OS Unrestricted

Apache
Edgent [26]

Gateway Requester Centralized Various OS Local Network

Kubernetes [27] EEDs and Server Requester Centralized Various OS Unrestricted
AWS

Greengrass [28]
EEDs and Cloud Requester Hierarchical Various OS Unrestricted

Mobiledgex [23] Data centers
Cloud

Providers
Centralized Various OS Unrestricted

Mutable [22]
Network operators’

servers
Network
Providers

Centralized Mutable OS Unrestricted

Golem [30] Cloud Users Decentralized Ubuntu Unrestricted
OTOY [33] Cloud Users Centralized Various OS Unrestricted
iExec [31] EEDs and Cloud Users Decentralized Various OS Unrestricted

CEP
EEDs and
Server

Community Hierarchical Various OS Unrestricted

deployed on all EEDs that need to run the system on the local network. Kubernetes

[27] has a kubelet on each node, combined with a Kube controller manager on one

device that acts as an entry point to distribute workload, and give the user access to

monitor and manage nodes. This controller can be on-site or at a remote location,

such as a cloud. AWS IoT Greengrass [28] requires a combination of a controller

on one device acting as the core device and AWS services running in the cloud to

monitor, manage, and, deploy new applications.

Mobiledgex [23] aims to deploy its system in data centers, commodity clouds, and

multi-access edge computing (MEC) locations. Mutable [22] deploys its worker man-

ager on network operators’ servers. Golem network [30] and OTOY Rendertoken [33]

maintain their core controller in the cloud where all workers have to communicate

with it directly. iExec [31] allows users to operate their machines as workers’ pool
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managers where they schedule work for other workers, while the main server is used

as a manager for pool managers, applications, and data providers. CEP has two

controllers, The first one, which is deployed at the cluster head, manages resource

allocation within the cluster and handles communication with the second controller.

The latter is deployed on a separate server that is accessible by all clusters. This

deployment location gives users control over the system instead of relying on a

provider.

2. Worker Ownership: The workers that are responsible for executing the actual com-

putation task belong to different beneficiaries in each system. Most systems in our

comparison limit the workers to devices owned or managed by the requester. Such

systems are EdgeX Foundry, HomeEdge, Azure IoT Edge, Apache Edgent, Kuber-

netes, and AWS Greengrass. A few systems deviate from this pattern; Akriano Edge

Stack and Mutable utilize network provider-owned servers to perform the compu-

tation. Mobiledgex allows specific kinds of entities to provide workers, namely, the

owners of data centers, clouds, and edge servers. Meanwhile, Golem, OTOY, and

iExec opt for an open public approach. The workers in those systems are EEDs

owned by any user willing to share their computation resources. In CEP, we limit

the workers available for each requester to any device owned by a member of one of

the user’s communities.

3. Control: Three main control paradigms are used across the compared systems; cen-

tralized, decentralized, and hierarchical (i.e., multi-level control). In centralized

systems, one server acts as the sole source of resource allocation decisions assigning

workloads to workers. EdgeX Foundry, Azure IoT Edge, Apache Edgent, Kuber-

netes, Mobiledgex, Mutable, and OTOY all follow this approach as it is a simple yet

effective way of managing a large number of devices. Decentralized systems allow

each requester to choose the workers that are suitable for their needs. In HomeEdge,

each device can request benchmarks from all devices on the network and decide which
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device is the most suitable for the workload. This process has high reliability since

no machine acts as a central point of failure for the system. However, this process

cannot be scaled to a large number of machines. Golem and iExec follow an open

market model where requesters and workers are free to present their offers or accept

offers already extended. This approach allows the market price to adjust depending

on supply and demand removing the burden of handling resource allocation from

the system maintainers. Nonetheless, this approach tends to require more actions

from the users, which is not optimal for new users, and user intervention is needed

in case of workers’ failure or migration. In contrast, Hierarchical control allows

the system to fully leverage the advantages of edge computing by minimizing the

amount of data transmitted over the network, allowing for faster decision-making

and computation in latency-critical applications. Systems that follow this approach

are Akraino, AWS IoT Greengrass, and CEP. Akraino has one controller on each

edge site, and all controllers at one level are connected to a higher-level controller.

AWS IoT Greengrass relies on the core device as a management point before the

cloud. CEP operates a full controller and scheduler within each cluster, which can

fall back to the central scheduler in cases where no suitable worker is available.

4. OS Support: EdgeX, HomeEdge, AzureEdge, Edgent, Kubernetes, AWS Greengrass,

Mobiledgex, OTOY, iExec, and CEP support various OS on edge workers, including

Linux, Windows, and Mac OS. Akraino is limited to Linux, which is reasonable since

most servers are Linux-based. Hence, there is no need to support other OS. Golem

Network only supports Ubuntu. However, in the future, they plan on extending

their support. Mutable depends on its own OS, called Mutable OS, which is built

on the NixOS open-source Linux-based operating system with built-in infrastructure-

specific advantages.

5. Network Coverage: Network coverage is a key factor when deciding which system is

suitable for a specific use case. A few systems are limited to a local network where
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Table 3.2: Comparison of Edge Computing Platforms - Application Features

System UI Workload Application Area Cost

Akraino [21] N/A
VM, Container,
Bare Metal

Unrestricted N/A

EdgeX
Foundry [24]

API, GUI
Predefined
Commands

IoT Cloud Storage

HomeEdge [29] API Container Unrestricted Maintain

Azure Edge [25] CLI, GUI
Restricted
Container

Unrestricted Azure Services

Apache
Edgent [26]

API Java Application IoT Cloud Rent

Kubernetes [27] API, GUI Container Unrestricted Rent/Maintan
AWS

Greengrass [28]
API, GUI

AWS Lambda
Function

Unrestricted AWS Services

Mobiledgex [23] SDK, API
Ubiquitous
computing

Unrestricted Rent

Mutable [22] API Container Various Rent

Golem [30] SDK, CLI
Restricted
Container

Unrestricted Rent

OTOY [33] GUI Render Token Rendering Usage

iExec [31] GUI
Restricted
Container

Tasks Usage

CEP API Container Unrestricted N/A

all the communication and logic reside, namely, EdgeX Foundry, HomeEdge, and

Apache Edgent. All other systems can be extended and linked to different requesters

and workers outside the local network. The three systems limited to one network

can be extended as well but they require some programming or workarounds to reach

this level, which is already provided in other systems by default.

II. Application Features (Table 3.2):

1. User Access Interface: How the user interacts with the system is a good indicator of

its appeal to new users since the availability of one interface type can influence the

success or failure of a use case. In our comparison, there are four prominent cate-

gories of user access interfaces; Application Programming Interface (API), Graphical

User Interface (GUI), Command-Line Interface (CLI), and Software Development

50



3.5 Comparative Study

Kit (SDK). API is the most common way for computing systems to communicate

with users as it provides the functionality of the system in a human-readable and

interactable format for anyone with a technical background while retaining the pos-

sibility of being integrated into other applications and user-made extensions or inter-

faces for the system. GUI is the best option for people with no technical background

since it is easy to interact with. However, it can be limiting for the communication

options available, since building any application or extension that utilizes its in-

formation requires far more effort. CLI was the standard way for people lacking

programming knowledge to interact with applications by typing words or commands

to a shell or a terminal. This type of interaction offers a compromise between ease

of use and flexibility depending on how it is implemented. SDK is a collection of

software development tools in one installable package that can be imported and

extended to build applications that are able to communicate with another system

easily.

Akraino Edge Stack is meant for network providers and is still under development.

Hence, no user access interface has been made public yet. EdgeX Foundry, Kuber-

netes, and AWS IoT Greengrass support both a RESTful API alongside a graphical

user dashboard interface for users with less technical training. Currently, HomeEdge,

Mutable, CEP, and Apache Edgent only provide a RESTful API. In contrast, OTOY

and iExec limit their interface to GUI. Azure IoT Edge accompanies its GUI with

a console-like interface that allows users to monitor and deploy new applications

and services. Golem and Mobiledgex require requesters to write the applications

using their SDK to access the system. While Mobiledgex adds an API for workers

to interact with, Golem is taking the command line direction for the same uses.

2. Workload Format: Depending on the workload requesters want to offload and whether

they are willing to rewrite the workload in a different format or not, the workload

can be a barrier for systems to gain new users. Akraino Edge Stack provides all
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three major common methods of task offloading by providing bare metal machines,

virtual machines (VMs), and containers. Edgex Foundry is limited to a number

of commands defined by each device and it lacks the ability to execute anything

custom provided by the requester. OTOY is limited to render tokens that are used

for rendering images or videos. Apache Edgent can only run applications written

on JAVA that can run on a Java Virtual Machine (JVM). AWS Greengrass allows

any AWS lambda function to be sent as a workload. Hence, the user code needs

to be rewritten as an AWS lambda function first. Currently, Mobiledgex does not

define a clear workload method. However, they highlight the need for a ubiquitous

computing method, so developers can write code once then it can run on different

machines and environments. Golem, iExec, and Azure IoT Edge allow the use of

containers. Even so, they force some restrictions on those containers like a specific

SDK or package to use, or a template to follow so that the workload can interact

with the system correctly. HomeEdge, Kubernetes, CEP, and Mutable allow normal

containers without required modifications, which allows users to pack their code in-

side a container easily, using one of the millions of premade containers online as is,

or extending to perform a new task.

3. Application Area: Apache Edgent and EdgeX Foundry both prioritize IoT edge.

EdgeX Foundry is tailored for communication with various sensors and devices,

while Edgent is optimized for data analysis. These systems are suitable for intelli-

gent transportation, intelligent manufacturing, and smart city applications, where

various sensors and devices generate an enormous amount of data, and not all of this

data is required to be sent to the cloud. Azure IoT Edge and AWS IoT Greengrass

can be considered an extension of Azure Cloud and AWS Cloud, respectively. They

share an extensive application area but are limited by the computation resources

of edge devices. Furthermore, they make it significantly more convenient to deploy

edge applications, such as ML and image recognition to edge devices with the help of
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Azure and AWS services. OTOY is limited to rendering due to its workload format.

Mutable lists a large number of application areas on their site, such as cloud gaming,

autonomous vehicles, IoT, smart cities, drones, data processing, video conferencing,

video and audio processing, Domain Name System (DNS), and networking. Muta-

ble does not clearly state that it can be used for any application; hence it is not

unrestricted. iExec states that their system is currently limited to one-off tasks,

not long-running services. For Akraino, HomeEdge, Kubernetes, CEP, Mobiledgex,

and Golem where there is no restriction on the kind of applications that can run on

them.

4. Cost: By cost, we mean the cost that the requester of a workload must pay to

get their jobs done. This is another major deciding factor for users when choosing

which platform to use [61]. HomeEdge depends on smart home devices owned and

maintained by the requester. Although it can be argued that this system utilizes

the already existing resources, it is not guaranteed that the user already has the

underutilized computation resources required to execute all the workload. In that

case, the user would need to purchase additional devices for computational power, in

addition to the cost of maintenance for the existing devices. Kubernetes can connect

devices across different sites including the cloud. Thus, those machines can be built

and maintained by the requester or rented from a cloud provider, reducing the cost,

for cases of small workloads. However, in the latter case, the system suffers from the

drawbacks of cloud computing. Azure IoT Edge and AWS IoT Greengrass require

requesters to pay for Azure services and AWS services, respectively. EdgeX Foundry

and Apache Edgent perform some processing at the edge but later perform further

analysis or store the data in the cloud, which requires continuously running costs.

Currently, Mutable and Mobiledgex do not provide a clear pricing model. However,

both promise revenue for the workers’ owners, data center owners in Mobiledgex, and

Network operators in Mutable. Hence, it can be safely assumed that they will charge
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renting costs from the requesters. Meanwhile, Akranio Edge Stack does not mention

its pricing or promise profits to the network providers, so the same assumption

cannot be made. Golem Network allows requesters to rent computation power from

workers to execute their code. OTOY and iExec use the pay-per-task model, where

requesters pay for the number of render tokens in OTOY and per-task execution in

iExec. In contrast, CEP utilizes the community concept to use the already existing

computation power available within communities to execute the workload. There

are definitely cases where a user’s community does not have enough computation

power, but the resource pool of a community is usually significantly larger compared

to a single user, thus eliminating costs to purchase or rent additional machines.

III. Performance Features (Table 3.3):

1. Data Privacy: Data privacy is a major deciding factor for requesters who deal with

sensitive data or source code. Data privacy indicates what parties have access to

the data or source code in a raw form (without network encryption). The data

shared with another party does not automatically mean it is easy to access, but it

can be vulnerable to a broader range of security attacks. In contrast, systems that

keep data on-premises reduce the possibility of data transmission attacks over the

network, making it even more secure.

Akraino Edge Stack and Mutable execute the workload on network providers’ ma-

chines. Hence, the data and source code is available to the network provider. EdgeX

Foundry usually involves offloading the data to a server afterward, and this server

can be a public cloud. However, the data can be kept on-premises or offloaded

to a private cloud, which increases the privacy but significantly increases the cost.

Apache Edgent continues to process data at the cloud, which increases the risk of a

data breach. Azure IoT Edge and AWS IoT Greengrass utilize cloud services at the

edge and at the cloud, thus making the data available to cloud providers. HomeEdge
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Table 3.3: Comparison of Edge Computing Platforms - Performance Features

System Data privacy
Workers
Security

Deployment Scalability Mobility

Akraino [21]
Shared with

network provider
Run untrusted

code
Static Poor Good

EdgeX
Foundry [24]

Shared with
cloud

Requester
verified

Dynamic Poor Not Supported

HomeEdge [29] On-premises
Requester
verified

Dynamic Not Scalable Not Supported

Azure Edge [25]
Shared with

cloud
Requester
verified

Dynamic Moderate Poor

Apache
Edgent [26]

Shared with
cloud

Requester
verified

Dynamic Poor Poor

Kubernetes [27] Private
Requester
verified

Dynamic Good Moderate

AWS
Greengrass [28]

Shared with
cloud

Requester
verified

Dynamic Moderate Poor

Mobiledgex [23]
Shared with

cloud
Verified

applications
Static Poor Good

Mutable [22]
Shared with

network provider
Verified

applications
Static Poor Poor

Golem [30] Shared
Run untrusted

code
Dynamic Good Poor

OTOY [33] Shared
Limited

Functionality
Dynamic Good Moderate

iExec [31] Shared
Run untrusted

code
Dynamic Good Moderate

CEP
Shared with
Community

Community
verified

Dynamic Good Moderate

is a Local Area Network (LAN) system, so the data is kept on-premises unless the

code specifically sends it outside.

Kubernetes machines are managed by the requester. Hence, the data is kept pri-

vate from other parties unless those machines are rented from a cloud provider for

example. Mobiledgex runs the code on private data centers and commodity clouds.

Despite utilizing Accedian security protocols, which ensure a high level of security,

the possibility of data attacks still exists due to the nature of worker devices. Golem,

OTOY, and iExec. share the data and source code with devices owned by end users,
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making them the least secure option. Despite CEP sharing data with workers, it en-

sures that the data and source code are never sent to someone outside the requester’s

community. Hence, CEP adds an additional level of privacy that can be controlled

by the requesters themselves by defining and verifying their own communities.

2. Workers Security: Workers’ security and data privacy are two sides of the same

coin; on one side, we have the risks the requesters are taking by offloading the

workload to another device, and on the other side there are the workers taking risks

by running other people’s code on their machines. Most workload offloading systems

rely on virtualization technology as a baseline for workers’ security by isolating the

offloaded workload in a separate environment. However, there is a trade-off between

allowing the requester more options in types of workload that can be offloaded and

isolating the execution of the code.

Akraino does not mention security precautions. This can be because they are build-

ing and maintaining new machines just for new edge workloads similar to cloud

providers but at the edge. Hence, there is personal or organizational data or code

running on those machines. EdgeX Foundry, HomeEdge, Azure IoT Edge, Apache

Edgent, Kubernetes, and AWS Greengrass run the requester code on their own ma-

chines and assume that the requester has already verified the code before executing

it. Thus, there is no need for extreme security measures. EdgeX Foundry is limited

to predefined commands, so running custom code is not an option in the first place.

Mobiledgex and Mutable require application verification before they can be executed

on workers, which moves the responsibility to the verifying entity rather than the

requesters or workers. Golem Network runs untrusted custom code. However, in-

teracting with system resources is managed through their SDK, making it harder

to work around. OTOY limits the workload to render tokens, thus significantly

reducing the chance of any possible security attacks. iExec does not take any ad-

ditional precautions to secure the workers besides virtualization. In contrast, CEP
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depends on the mutual trust between the requester and provider of the same com-

munity. Hence, there is no need for limiting precautions, which in turn leads to more

flexibility in workload options.

3. Deployment: Deployment reflects how easy and quick the system can be deployed

and extended for new workers. Akraino Edge Stack is designed for network providers,

who need to handle additional hardware, such as access devices and network cards,

apart from computing machines. Hence, adding new workers can be slow and require

much human intervention. Mobiledgex and Mutable target organization-owned de-

vices to act as workers, which results in a complex process of adding new workers

to the system. EdgeX Foundry, HomeEdge, and Kubernetes are deployed on edge

devices, making them possible for end users to deploy and modify the system them-

selves. HomeEdge workers’ extension can be done by simply running the HomeEdge

application on a new machine connected to the same network. EdgeX Foundry

requires communication using the API to define a new device profile. Kubernetes

requires changes to the cluster manager machine in addition to the deployment of

the new worker node. Azure Edge and AWS Greengrass require users to utilize

the cloud-based interface to develop and deploy their applications. Golem, OTOY,

iExec, and CEP allow workers to participate in the system by deploying a worker

instance on their machine and login into their account, making the process relatively

straightforward.

4. Scalability: This feature indicates how well and easy is it to scale the system to

serve a larger number of connected users. Akraino Edge Stack theoretically can be

scaled to any size. However, it requires hardware modifications and deployment of

new controllers on network centers, which is a slow process. HomeEdge is limited to

LANs, and it is decentralized, making it not scalable beyond a few devices. EdgeX

Foundry and Apache Edgent are limited to LANs as well, but they can be extended

to a larger number of users due to their central nature of control. It is worth
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mentioning that EdgeX Foundry deployment is scalable since it consists of multiple

microservices, which the user can dynamically add or remove to adapt to their needs.

Mobiledgex and Mutable require negotiating with new providers before scaling the

number of workers available, hence the poor scalability. Azure Edge and AWS

Greengrass are connected to the cloud so they are highly scalable; however, offloading

tasks between different groups of devices is somewhat challenging. Kubernetes,

Golem, OTOY, iExec, and CEP, can easily scale to accommodate new requesters

and workers, and communication between users anywhere on the network is built

into those systems by default.

5. Mobility: Mobility measures how well a workload can be migrated or restarted on

a new device. Akranio and Mobiledgex support migration of workload from one

worker to another easily, due to the residence of workers on the network provider’s

infrastructure and being built with mobility in mind. Kubernetes, OTOY, iExec,

and CEP, cannot migrate a workload once it starts. However, they can restart the

workload on a different machine without user intervention in case of failure. Azure

Edge, Apache Edgent, AWS Greengrass, Mutable, and Golem have some recovery

mechanisms and failure handling that require user intervention. EdgeX Foundry and

HomeEdge do not provide a process for failure recovery; instead, they require user

intervention to handle failures and redeploy the workload by hand.

Based on the aforementioned comparative study, it is clear that CEP demonstrates supe-

rior architecture and deployment characteristics in terms of deployment location and worker

ownership flexibility. Additionally, CEP supports various OS and can cover wide area net-

works. CEP control paradigm allows it to fully leverage the advantages of edge computing.

For application features, CEP can eliminate additional costs, and impose no restrictions on

application area or workload format. Furthermore, CEP ensures a high level of privacy,

security, scalability, and deployment flexibility.
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Chapter 4

Community-Oriented Resource Allocation

The notion of communities in CEP adds another dimension to resource allocation that can

be challenging for schemes that overlook the restrictions imposed by communities in terms

of the order of assignment. The main challenge that stems from such imposed restrictions

is unbalanced work Distribution. This unbalance can happen due to a scheduler’s inability

to look ahead or reschedule if necessary. Figure 4.1 depicts an illustrative scenario that

demonstrates this problem. In the depicted scenario, consider the case where the requester

of job 1 belongs to community X and the requester of job 2 belongs to community Y. Now

worker A is limited to community X. Meanwhile, worker B is included in both communities

X and Y. The time it takes to execute job 2 on worker B is 65 seconds, and the time to

execute job 1 on workers A and B is 60 seconds and 50 seconds, respectively.f we use one of

the existing event-driven or heuristic resource allocation schemes, such as Min-min [40], job

1 will be assigned to worker B because it is 10 seconds faster to execute. The scheduler will

then be forced to allocate job 2 to worker B as well. This is due to the imposed constraint

prohibiting job 2 from being allocated to worker A since worker A and the requester of job

2 do not share any communities. Allocating both jobs to worker B achieves a better sum of

all execution times of 115 seconds, which is desirable. However, it results in a significantly

higher total time for all jobs to finish executing of 115 seconds because all jobs are allocated

to the same worker. On the other hand, a better allocation would be job 1 to worker A

and job 2 to worker B. This results in a slightly higher execution time sum of 125 seconds.
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Figure 4.1: An Illustrative Scenario of Resource Allocation in Communities

Nonetheless, it achieves a significant improvement in the total time it takes for all jobs to

finish executing, reducing it to only 65 seconds.

In order to address the aforementioned problem, it is imperative to have a resource allo-

cation scheme that is tailored for community-driven scenarios. To the best of our knowledge,

none of the existing resource allocation schemes is optimized for communities. As discussed

in section 2.3, some approaches address matching constraints for allocation. However, Such

approaches cannot be adapted to address the restrictions associated with communities. In

this context, we propose the Community-Oriented Resource Allocation (CORA) scheme.

CORA is based on the Min Cost Max Flow (MCMF) algorithm. In this chapter, we provide

a detailed description of CORA and the underlying method used to address the challenging

issue of imposed restrictions, as well as a performance evaluation of CORA compared to

other prominent heuristic resource allocation schemes.
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4.1 Graph Representation of Resource Allocation in CORA

In order to address the imposed restrictions issue caused by communities, CORA ac-

knowledges the need to first determine the set of workers that are eligible to execute each

service. This can be done by checking for union values between the data from a service set

of communities and a worker set of communities. This problem can be better represented by

a graph of vertices, which is the union of the workers and services sets, as given by equation

(1). This graph can be divided into two groups, one for services and one for workers. The

vertices from the first group (i.e., services) can only have an edge with vertices from the

second group (i.e., workers). Thus, the graph can be defined as a bipartite graph.

V = S ∪D (1)

= {v1, v2, . . . , vn, vn+1, vn+2, . . . , vn+m}

Expected Time to Compute (ETC) is a function that can be used to calculate the es-

timated time to execute a service on a worker passed as parameters. A two-stage machine

learning approach is used for this estimation as discussed in section 3.3. Using this function

we construct the possible edges matrix Ẽ, which is a n×mmatrix in which n is the number of

services and m is the number of workers. Each entry in the matrix represents the estimated

execution time of a given service on each worker as shown in equation (2).

[Ẽ] =



ETC(s1, d1) ETC(s1, d2) ETC(s1, d3) . . . ETC(s1, dm)

ETC(s2, d1) ETC(s2, d2) ETC(s2, d3) . . . ETC(s2, dm)

...
...

...
. . .

...

ETC(sn, d1) ETC(sn, d2) ETC(sn, d3) . . . ETC(sn, dm)


(2)

In the constructed bipartite graph, an edge between two vertices exists only if they share

at least one community, as reflected by equation (3). Where E is a set of all valid edges

that the scheduler can choose from during the resource allocating process. For each service
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si and each worker dj, Ẽij is the estimated execution time of si on dj. We define Ci as the

set of communities for service si and Cj as the community set for dj. Each edge in the graph

connects one service to one worker, where the intersection between Ci and Cj is not empty,

and the edge weight is the corresponding value extracted from the ETC function.

E =
{
Ẽij | Ci ∩ Cj ̸= Φ, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}

}
⊂ Ẽ (3)

We define Aj as the set of services assigned to worker dj by the scheduler. That is, for

j ∈ {1, 2, . . . ,m},

Aj ⊂
{
i ∈ {1, 2, . . . , n} | Ẽij ∈ E

}
. (4)

The approximate time it takes worker dj to complete all assigned services is denoted tj,

and is given by equation (5), where Wj represents the prior workload on the worker.

tj =
∑
i∈Aj

Ẽij +Wj (5)

CORA strives to minimize the average makespan and flowtime. Flowtime is the sum

of the execution time of all services on their selected workers, as given by equation (6).

Minimizing the flowtime should be the scheduler’s goal since we aim to reduce the load on

the workers to optimize resource utilization and maintain the maximum possible number of

available workers.

flowtime =
∑
i∈Aj

m∑
j=1

Ẽij

n
(6)

Makespan is the time needed for the system to finish executing the last service [42], which

can be calculated as the longest time that any worker from the system takes to finish its

assigned services, as given by equation (7). Thus, it is important to minimize this number to

ensure that the average user service is completed in a timely manner. It is noteworthy that
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makespan can be heavily impacted by communities if a generic resource allocation scheme

that is not specifically designed for communities is used, since it can pile workload on a few

workers, due to their available resources, before realizing that those workers are the only

available option for the unallocated services.

makespan =
m

max
j=1
{tj} (7)

4.2 Solution of the Bipartite Graph Matching Problem

Formulating the problem as a bipartite graph matching renders the Munkres algorithm

[62] a suitable solution. The Munkres algorithm, also known as the Hungarian algorithm,

is a combinatorial optimization algorithm capable of solving the classical bipartite graph

matching, which is the assignment problem in polynomial time, specifically with time com-

plexity of O(N3). However, in contrast to classical bipartite graph matching, where every

vertex from group A is matched with a single vertex from group B, this is not always the

optimal case for resource allocation. This is since multiple services can be assigned to the

same work within the same cycle. On top of that, the Munkres algorithm is relatively slow,

due to its multiple steps and calculations.

To address the previously mentioned problems, we need to take the problem a step back

to graph matching, better known as the maximum flow algorithm [63]. More specifically,

the multi-source multi-sink variation of the problem, where we add an imaginary source that

connects to all the sources and an imaginary sink that connect to all sinks. To apply this

to bipartite graph matching, we can set the capacity of those new edges to one, limiting

the flow to one per source and one per sink (i.e., service). In our case, we want the graph

to match the sinks (services) once in order to avoid assigning redundant work to workers.

However, we strive to allow workers to have multiple services. Thus, we introduce our first

parameter β, which allows the user to set the capacity of the number of services assigned per
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4.2 Solution of the Bipartite Graph Matching Problem

worker. By default, this can be set to the number of services. Thus, any number of services

can be assigned to the same worker if needed.

The maximum flow algorithm with the worker capacity set to one, can maximize the num-

ber of matches between workers and services, overriding previous matches if services assigned

so far result in a dead-end, where some services are left unmatched. Hence, the maximum

flow algorithm can result in the maximum possible number of matching, but they cannot be

guaranteed to be the best matches. Replacing the pathfinding portion of the maximum flow

algorithm with the shortest path alternative, such as the Bellman-Ford algorithm, elevates

it to the minimum cost maximum flow (MCMF) algorithm, which guarantees matches that

result in the lowest cost (i.e., service execution time). However, with the cap on source

edges at the number of services. The MCMF can assign all services to one worker. The

first approach of bipartite graph matching tends to optimize the makespan, while MCMF

optimizes the flowtime. CORA bridges the gap between the two approaches. Whenever a

service si is matched with a worker dj, we change the cost on the edge between the added

“super-source” and dj, denoted es,j, from zero to the sum of edge weights for all services

assigned to this worker, multiplied by α, as given by equation (8), where α is a tuneable

parameter, such that 0 < α < 1.

es,j =
∑
i∈Aj

α · Ẽij (8)

Algorithm 1 illustrates the resource allocation procedure in CORA. The number of all

vertices in the extended MCMF graph is denoted as v. The set of all vertices includes

services, workers, a super source, and a super sink. The source and sink vertices are assigned

the index 0 (i.e., the first element in the set) and v − 1 (i.e., the last element in the set),

respectively (lines 13-15). A capacity matrix, denoted capv×v, is created for the max flow

algorithm. This matrix indicates the available capacity on each edge in the graph. Hence its

size is v × v, where the element capij indicates the capacity of the directed edge connecting

vertex i with vertex j. The values for the capacity matrix are set to 1 for all edges between
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Algorithm 1 CORA

1: Input:
2: Set of All Services S
3: Set of All Workers D
4: Set of All Valid Edges E
5: Execution Time Estimation Matrix Ẽn×m = Ẽij n = |S|,m = |D|
6: Service Allocation Penalty Factor α
7: Device Capacity β
8: Output:
9: Assignment Sets: Aj ∀j ∈ {1, 2, . . . ,m}
10:

11: ALLOCATE RESOURCES(Ẽ, α, β)
12: Begin
13: v ← n+m+ 2
14: src← 0
15: sink ← v − 1

16: capij ←


1, for i = src and j ∈ {1, 2, . . . , n} or Ẽi(j−n) ∈ E

β, for j = sink and i ∈ {n+ 1, n+ 2, . . . , n+m}
0, otherwise

∀i, j ∈ {0, 1, . . . , v− 1}

17: costij ←


Ẽi(j−n), forẼi(j−n) ∈ E

−Ẽi(j−n), forẼ(j−n)i ∈ E

0, otherwise

∀i, j ∈ {0, 1, . . . , v − 1}

18: while True do
19: edges←

{
Ẽij | cap(j+n)i > 0, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}

}
20: dist, P ← BELLMAN FORD(edges, src, sink)
21: if distsink ≥ ∞ then
22: break //Cannot find a better path to sink
23: s← |P | − 1
24: f ← min({capP0P1 , capP1P2 , . . . , capPs−1Ps})
25: for all i ∈ {0, 1, . . . , s− 1} do
26: capPiPi+1

← capPiPi+1
− f

27: capPi+1Pi
← capPi+1Pi

+ f //Add reverse edge
28: costPisink ← costPisink + α× costPiPi+1

29: Aj ←
{
i | cap(j+n)i = 1, i ∈ {1, 2, . . . , n}

}
∀j ∈ {1, 2, . . . ,m}

30: return {A1, A2, . . . , Am}
31: End
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the super source and all service vertices, in addition to any valid edge between a service

and a worker that shares a community, based on equation (3). Other values in the matrix

are set to β in the case of edges between the worker vertices and the sink or 0 if none of

the previous conditions applies (line 16). Another matrix of the same size is required for

MCMF, denoted costv×v. Each element in this matrix is the edge cost, that the algorithm

is trying to minimize. For any valid edge between a service vertex and a worker vertex, the

value of the cost matrix is assigned to the estimated execution time of that service on that

worker. The reverse edge between the worker and the service is given the cost of negative the

estimated execution time. These reverse edges allow the algorithm to backtrack previously

allocated resources, and reallocate them if a better matching is found. The remaining cost

matrix values are set to zero (line 17).

As long as paths from the source to the sink exist, the following steps are iteratively

repeated. First, a list of all current possible edges is calculated based on the capacity matrix

(line 19). Second, the Bellman-Ford algorithm is executed, given the list of edges, the source,

and the sink vertices, to find the current shortest path from the source to the sink. Note

that other algorithms, such as Dijkstra with potentials, can be used to find the shortest path

in a graph with negative edges. The Bellman-Ford algorithm returns an array of distances

from the source to all reachable vertices, in addition to the shortest path from the source to

the sink, represented as an array of vertex indices. The sink vertex is unreachable from the

source vertex when the distance to the sink is∞ or more, hence we break from the main loop

and return the services allocated so far (lines 20-22). Third, the last index in the path array

is set to a variable denoted s, while a variable, denoted f is set to the lowest capacity on the

found path (i.e., path bottleneck) (lines 23 & 24). Fourth, we loop over the shortest path

found, reducing the capacity of each edge along the path by f , and increasing the capacity of

each reverse edge by the same amount. Again, this is done to allow the backtracking of this

assignment later if a better allocation could be made. This backtracking can be achieved

due to the combination of reverse edges in capacity, and negative costs for the reverse edges.
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The cost of edges connecting the workers to the sink vertex is updated using the stacking

penalty parameter α. This update works for forward and reverses edges to adjust the current

cost of allocating another service to this worker since any allocation to the worker has to

pass through the edge connecting the worker vertex to the sink (lines 25-28). After the loop,

any reverse capacity of 1 means that this service is allocated to this worker since the reverse

capacity is added after the allocation (line 29). A set of allocation sets is returned, so it can

be used to pass service information to the assigned workers.

4.3 Simulation Setup

We evaluate the performance of CORA compared to six prominent heuristic-based re-

source allocation schemes that could be tweaked to fit into the community-oriented EED-

based computing environments. These schemes are Work Queue [27], Min-min [40], Max-

min [40], LJFR SJFR [42], and Sufferage [42]. In addition, we compare CORA to the

Munkres algorithm [62]. We use the following performance metrics: 1) average makespan,

2) average flowtime, and 3) average scheduler runtime, which is the average time it takes the

resource allocation module to allocate all services to available devices.

The data generated and used in this simulation is the Ẽ matrix, service set of commu-

nities, and worker set of communities. This data is generated using a uniform distribution

with some parameters to distinguish between different scenarios. Unless otherwise specified,

the number of services and workers is set to 600 each. The simulation is repeated ten differ-

ent times for each instance, and a 95% confidence interval is used to highlight the variation

between runs. In total, we generate and simulate 16 classes of instances by varying the

following parameters:

• Worker heterogeneity: represents the variance among the execution times of a given

service across all workers. This value can range between 1 and 50 in our simulation.

In extreme edge computing environments, worker heterogeneity is typically high, due

to the wide range of available workers. However, in some cases of corporate-owned
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devices, they can be relatively close or even identical.

• Service heterogeneity: describes the possible variation among the execution times of

services on a given worker, where a low variance indicates that a given worker can run

all services with a small execution time gap, while a high variance indicates a case of

vastly dissimilar services. We set service heterogeneity between 1 and 50.

• Ẽ matrix consistency: can have one of two possible values; consistent or inconsistent.

In a consistent Ẽ matrix, a worker dj executes any service si faster than dk. In this

case, worker dj executes all services faster than worker dk. In contrast, an inconsistent

matrix characterizes the case where worker dj may be faster than worker dk for some

services and slower for others.

• Community density: defines the number of edges in the graph and the number of unique

communities available in the environment at the time of simulation, which translates

to the possibility of community overlapping between services and workers. This, in

turn, results in matching with fewer constraints. The number of unique communities

is scaled up and down with the total number of services, and it ranges between 20 and

100, while the number of edges per node can vary between 2 and 10.

4.4 Results and Analysis

Tables 4.1 and 4.2 show the makespan and flowtime results obtained from running the

scheduler evaluations for every instance, respectively. The results shown for every instance

are the average of ten different simulations. The mean value per approach across all instance

classes within the table is shown in the last row. The first column indicates the instance

name, in a format that is explained in the caption below the table, and the remaining columns

indicate the values of makespan in Table 4.1 and flowtime in Table 4.2. The underlined

bold value is the minimum yield value of makespan (Table 4.1) or flowtime (Table 4.2) per

instance.
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Table 4.1: Makespan in Seconds of CORA, Min-min, Max-min, LJFR SJFR, WorkQueue,
Sufferage, and Munkres for 600 Services

Instance Min-min Max-min LJFR SJFR WorkQueue Sufferage CORA Munkres
lo-lo-c-s 936 922 902 995 2663 691 691
lo-lo-c-d 892 884 799 965 1883 692 692
lo-lo-i-s 1092 1066 1065 1218 1471 589 589
lo-lo-i-d 1054 1034 1035 1180 1103 563 563
lo-hi-c-s 959 943 877 1047 1997 697 697
lo-hi-c-d 918 896 799 936 1519 696 696
lo-hi-i-s 1106 1073 1083 1268 1381 616 616
lo-hi-i-d 1081 1046 1053 1205 1187 585 585
hi-lo-c-s 975 955 893 1021 2128 699 699
hi-lo-c-d 906 897 801 932 2160 691 691
hi-lo-i-s 1095 1071 1067 1248 1689 614 614
hi-lo-i-d 1049 1053 1043 1186 1199 583 583
hi-hi-c-s 1736 1517 1545 8840 3384 1289 1380
hi-hi-c-d 1416 1259 1314 9022 2192 997 1013
hi-hi-i-s 1906 1640 1668 9060 2774 1419 1514
hi-hi-i-d 1586 1368 1403 9250 1262 1066 1057
Mean 1169 1102 1084 3086 1875 780 793
The instance format is ww-xx-y-z, where ww is service heterogeneity (high/low), xx is worker heterogeneity (high/low), y
is matrix consistency (consistent/inconsistent), and z is community density(sparse/dense). The ms. stands for makespan
while ft. indicates the flowtime column under each approach

As depicted in Table 4.1, CORA and Munkres share the minimum makespan across

all instances. This is due to their common nature of prioritizing distributing services over

different workers. In addition, they both share the possibility of reallocating to consider

the allocation order that prevents service stacking that significantly increases makespan.

However, it is not always desirable to have one service per worker. This idea is highlighted

by the instances with high service heterogeneity and service heterogeneity alike. This can

be attributed to the fact that high worker heterogeneity increases the possibility of having

workers that are powerful enough to execute multiple services before other workers execute

a single one. Another reason is high service heterogeneity, which can result in short services

that can be stacked and completed before or close to relatively long services. In those four

instances of high worker heterogeneity accompanied by high service heterogeneity, we can
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Table 4.2: Flowtime in Seconds of CORA, Min-min, Max-min, LJFR SJFR, WorkQueue,
Sufferage, and Munkres for 600 Services

Instance Min-min Max-min LJFR SJFR WorkQueue Sufferage CORA Munkres
lo-lo-c-s 505 514 511 529 501 503 503
lo-lo-c-d 505 513 511 531 502 502 502
lo-lo-i-s 528 539 537 600 527 523 523
lo-lo-i-d 523 531 528 599 520 517 517
lo-hi-c-s 510 520 517 546 504 505 505
lo-hi-c-d 508 519 515 548 505 503 503
lo-hi-i-s 534 545 543 617 532 529 529
lo-hi-i-d 529 535 534 616 524 522 522
hi-lo-c-s 510 522 518 545 507 505 505
hi-lo-c-d 508 521 515 547 505 503 503
hi-lo-i-s 534 553 546 615 535 530 530
hi-lo-i-d 529 544 538 616 527 522 522
hi-hi-c-s 607 697 661 2109 619 623 639
hi-hi-c-d 574 646 621 2162 587 579 582
hi-hi-i-s 679 767 744 2224 696 690 699
hi-hi-i-d 638 710 698 2229 651 637 638
Mean 545 573 565 977 546 543 545
The instance format is ww-xx-y-z, where ww is service heterogeneity (high/low), xx is worker heterogeneity (high/low), y
is matrix consistency (consistent/inconsistent), and z is community density(sparse/dense). The ms. stands for makespan
while ft. indicates the flowtime column under each approach

see CORA’s ability to adapt and achieve even lower makespan results. On average, CORA

achieves a 28% lead compared to the second-best heuristic (LJFR SJFR). The Munkres

algorithm is not considered in this comparison because of its significantly long runtime

(i.e., high complexity), which will be discussed later. This is in addition to the fact that

Munkres lacks the ability to assign multiple services to a worker, which significantly reduces

its potential for generalization.

In Table 4.2, the flowtime of most approaches, with the exception of WorkQueue, is

observed to be relatively close to each other. However, CORA still outperforms all other

approaches with a negligible difference ahead of the second-best approach (Min-min). More-

over, CORA retains the minimum flowtime for 11 out of 16 instances, which means that in

those cases, it is the best option on the two fronts (i.e., makespan and flowtime). Min-min
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performs better in high heterogeneity cases because CORA tends to find more optimiza-

tion opportunities in those instances. Note that due to the default values of α being set

to 1 and β to n, CORA prioritizes minimizing the average makespan over flowtime. Other

configurations for CORA that showcase better flowtime results are discussed later in this

section.

As observed in Tables 4.1 and 4.2, there is a trade-off between makespan and flowtime

that the other heuristics have to make; the Sufferage and Min-min schemes for instance have

a slight lead in average flowtime, while they fall behind in terms of makespan. Compared to

CORA, the Sufferage and Min-min approaches have around 140% and 50% higher average

makespan compared to CORA. On the other hand, LJFR SJFR and Max-min retain a

relatively low makespan but have to sacrifice some flowtime, with an average flowtime 5%

higher than CORA. Breaking this pattern are Munkres and CORA.

4.4.1 Effect of Varying the Number of Services

Figures 4.2 and 4.3 depict the average makespan, and average flowtime, respectively, over a

varying number of services; 200, 400, 600, 800, and 1000. We ran the same 16 instances of

varying heterogeneity, matrix consistency, and density. The number of unique communities is

set to n/10, where n is the number of services (generated by n requesters), while maintaining

a varying graph density between instances since this is more representative of real-life cases.

Figure 4.2 illustrates the change in average makespan in seconds when changing the

number of services. As depicted in Figure 4.2, as the number of services increases, the

average makespan increases slowly in WorkQueue, Min-min, LJFR SJFR, Max-min, CORA,

and Munkres. This increase can be explained by the fact that makespan is capped at the

maximum value of the minimum execution time for each service. Since it will take at least

this time if this service is allocated to a worker with no other work alongside it, there is no

way to go lower than this cap. Sufferage witnesses a relatively large increase in makespan

as the number of services increases. This can be attributed to the effect of increasing the
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Figure 4.2: Average makespan of CORA, Min-min, Max-min, LJFR SJFR, WorkQueue,
Sufferage, and Munkres over a varying number of services

number of communities, which leads to a higher chance of isolated services with a limited

number of available devices. Those isolated services tend to be a challenge for the Sufferage

approach due to its process of selecting the next service to be allocated.

The markers in Figure 4.2 show the mean of all the simulations. The variations between

simulations are depicted by the confidence interval on each marker using a 95% confidence

interval. We can see that the confidence interval is insignificant (less than 2%) in WorkQueue,

Min-min, LJFR SJFR, Max-min, CORA, and Munkres. WorkQueue has a slightly larger

interval due to the randomness involved with the order of assignment of services. In the

Sufferage scheme, the confidence interval reaches 6% of the mean makespan, with an average

of 4.8% across a varying number of services. This large interval can be explained by the

volatile nature of the Sufferage scheme since the ordering of service assignment relies on
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Figure 4.3: Average flowtime of CORA, Min-min, Max-min, LJFR SJFR, Sufferage, and
Munkres over a varying number of services

the difference between the best and second best possible assignment of a service. For most

services, there is not that much variety across different devices, especially after most of

the services are already assigned. This volatile nature leads to its performance being more

influenced by the input than the other approaches.

Figure 4.3 depicts the effect of varying the number of services on the average flowtime. It

shows that the flowtime remains almost the same acrosst different number of services. This

is since varying the number of services does not affect the average time a service takes to

execute on any suitable worker. Hence, the same ratio of services that get allocated to less

optimal workers remains the same, resulting in the same average flowtime across all services

within the equivalent instances.
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As shown in Figure 4.3, a maximum of 1.2% confidence interval is yielded at 200 services

in terms of flowtime in all approaches, slowly decreasing as the number of services increases,

reaching less than 0.5% at 1000 services. This decrease is because the figure shows the mean

flowtime of all services, which converges to a closer average with a higher number of services,

since one service assignment, either good or bad, has less influence on the average value

in a larger number of services. Since the confidence intervals are negligible, they are not

explicitly depicted in the other figures for clarity of presentation.

Resource allocation that results in minimum makespan and flowtime is the main goal of

the scheduler. However, calculating a near-optimal solution can take a relatively long time,

sometimes, to the point where the resulting allocation is no longer relevant as the scheduler

runtime exceeds the time the services could have taken in a less optimal solution. Thus, the

scheduler runtime is vital to any live allocation approach. WorkQueue sacrifices optimality

for speed and simplicity, hence, it has a complexity of O(NM), where N is the number of

services and M is the number of devices. The Min-min, Max-min, and LJFR SJFR all share a

complexity of O(N2M). Sufferage has a slightly higher complexity of O(2N2M). CORA has

a time complexity of O((N+M)2E), where E is the number of edges in the formulated graph,

which can vary depending on the graph density. Munkres time complexity is O(6(N +M)3).

As depicted in Figure. 4.4, which shows the runtime over a varying number of services.

Intuitively, the runtime increases as the number of services increases in all. The Munkres

algorithm’s longer runtime is due to factors resulting from the multiple steps that it has to go

through before the assignment. In contrast, on average CORA does not encounter the same

problem achieving a run time that is up to six times faster than the Munkres algorithm.

WorkQueue is significantly faster than all other approaches due to its relatively low time

complexity. CORA is around 16% faster than Sufferage, While Min-min, LJFR SJFR, and

Max-min are around 40% faster than CORA in terms of scheduler runtime.
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Figure 4.4: Scheduler runtime of CORA, Min-min, Max-min, LJFR SJFR, WorkQueue,
Sufferage, and Munkres over a varying number of services.

4.4.2 Effect of Omitting Communities

CORA is optimized for an environment with multiple communities. Nonetheless, it still

provides acceptable performance in generic cases of one community or no communities at

all, which are the same case from the scheduler’s point of view since any service can be

assigned to any worker. Note that, in the case of no communities the instances are reduced

to eight because community density is omitted from the simulation variables. Figure 4.5

depicts the effect of having no communities on the average makespan for 600 services. As

illustrated in Figure 4.5, CORA outperforms all other heuristics approaches in terms of

average makespan, with an improvement reaching 78%, 6.5%, 23%, 15%, and 10% compared

to WorkQueue, Sufferage, Min-min, LJFR SJFR, and Max-min, respectively. Despite the

case of no communities lacking the main challenge of community constraints that CORA
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Figure 4.5: Average makespan of CORA, Min-min, Max-min, LJFR SJFR, WorkQueue,
Sufferage, and Munkres for 600 services with no communities

normally addresses, CORA manages to pull a lead on other heuristics. This lead can be

explained by CORA’s ability to backtrack and reassign services, Which addresses some of

the cases where the other heuristic approaches fail. It is worth noting that each one of the

heuristic approaches would fail in different cases.

Figure 4.6 demonstrates the effect of having no communities on the average flowtime

for 600 services. As shown in the figure, CORA achieves the minimum flowtime among

all approaches, with an improvement of up to 50% and 2% compared to WorkQueue and

Max-min, respectively. CORA yields less than 1% lower flowtime compared to Sufferage,

Min-min, LJFR SJFR, and Munkres, which is still a negligible amount in real-life scenarios.
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Figure 4.6: Average flowtime of CORA, Min-min, Max-min, LJFR SJFR, WorkQueue, Suf-
ferage, and Munkres for 600 services with no communities

4.4.3 Effect of Varying CORA Parameters

CORA has configurable parameters, that can adjust its performance based on its priorities.

The one we want to highlight, as discussed before, is the α parameter. This is because

changing the α parameter significantly impacts the execution of the allocated services. Fig-

ure 4.7 demonstrates the effect of varying α on the average makespan of CORA. Note that

as α increases, the average makespan decreases, reaching a decrease of around 24% when

α = 1, compared to α = 0.25. This decrease can be attributed to the scheduler increasing

the penalty for allocating multiple services to the same device by increasing the weight of

the edge connecting the device node to the sink. As seen in the figure, the makespan sweet

spot is between 0.25 and 1; Makespan at α = 0 is more than ten-fold the makespan at any

other α. Hence it is omitted from the figure, since it is unusable in real life.
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Figure 4.7: Average makespan of CORA, Min-min, LJFR SJFR, Max-min, and Munkres
over varying α for 600 services

Figure 4.8 depicts the effect of varying α on the average flowtime of CORA. At α = 0,

CORA can achieve average flowtime around 10% lower compared to α = 1. However, as

discussed in the previous paragraph, this configuration is useless in real-life scenarios due to

its unreasonable makespan. The allocation resulting at α = 0 can be achieved by assigning all

services to the device yielding the minimum execution time among all the devices, regardless

of the other allocated services. This minimum execution time acts as the hard cap for the

minimum flowtime that can be achieved. Thus, the first usable value is at α = 0.25. As α

increases, the average flowtime increases, reaching an increase of up to 2% when α = 0.25

compared to α = 1. This increase can be attributed to the smaller penalty for allocating

multiple service to the same device. This smaller penalty allows more service to be allocated

to the device with less execution time for the given service regardless of the other allocated

services. At α = 0.25, CORA achieves around 3% lower flowtime than the second best
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Figure 4.8: Average flowtime of CORA, Sufferage, Min-min, LJFR SJFR, Max-min, and
Munkres over varying α for 600 services

heuristic scheme (Min-min), while maintaining a 12% lower makespan. CORA can reach

up to 6% lower flowtime compared to the second best heuristic scheme (Min-min) while

maintaining a similar makespan. Depending on the use case, CORA can be optimized for

a better makespan with flowtime similar to other approaches or a better flowtime with a

makespan on par with other approaches. This flexibility is another strong advantage CORA

has over competing approaches.
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Chapter 5

Conclusions

5.1 Summary and Conclusion

Democratizing the edge by exploiting ample yet underutilized resources of EEDs can open

a new tech market for individuals, businesses, enterprises, and municipalities to create their

own edge cloud and monetize underused resources. Workload offloading in EED-enabled

computing environments is crucial for modern applications. Maintaining data privacy and

cost efficiency remain core challenges for the viability of EED-enabled computing paradigms.

In this thesis, we have proposed the Community Edge Platform (CEP) to foster cost-free

and privacy-preserved democratized edge computing. Towards that end, CEP exploits the

notion of communities and leverages the wide range of business, institutional, and social

relationships between users. CEP utilizes clusters and communities to achieve a high level of

privacy and security, eliminate additional costs, and maintain a low latency task offloading.

We have conducted a scrupulous comparative study to assess CEP compared to twelve

prominent edge computing platforms. The comparison has covered 14 features, grouped

into three categories. The first category encompasses system architecture and deployment

features, where CEP has stood out as a flexible, easily deployed, and managed system that

can cover wide area networks. The second category encompasses application features. The

comparison has shown the leverage of CEP in eliminating additional costs, as well as its

flexible workloads and applications. The third category encompasses performance features.

The comparison has illustrated CEP’s potential as a platform that provides a high level of
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5.2 Recommendations

scalability, privacy, and security.

CEP acknowledges the need for a QoS-based community-aware resource allocation ap-

proach to retain an acceptable efficiency. Towards that end, we have introduced the Community-

Orientated Resource Allocation (CORA) scheme. CORA uses a graph-directed approach to

allocate container-based services in community-oriented EED-enabled edge computing envi-

ronments. Extensive simulations have shown that CORA is on par with six other prominent

resource allocation schemes in terms of runtime. Additionally, CORA has a 28% better

makespan on average in 16 different resource allocation scenarios. Extensive evaluations

have also shown that CORA can yield an improvement of up to 6%, in terms of flowtime.

Accommodating potential gains from the cluster scheduler, and the ability to adjust tune-

able parameters to enable CORA to prioritize makespan or flowtime, along with the leverage

demonstrated in different scenarios indicate that CEP, combined with its resource allocation

module CORA, is a suitable middle-ground for users prioritizing cost-efficiency, security, and

privacy but also seeking high efficiency.

5.2 Recommendations

CEP enables resource allocation that leverages the use of adjacent devices owned by

the same user/organization (i.e., cluster-level allocation), along with devices within the re-

quester’s communities (i.e., community-level allocation). The cluster-level allocation pro-

vides a significant reduction in latency and data transfer. Thus, it is recommended to

maximize the number of capable devices within a cluster for latency-critical applications

by merging nearby clusters if possible. Since the cluster in CEP is centralized, there is no

theoretical threshold on the number of devices that can be included in the cluster; There is

no significant communication overhead for workers, unlike in decentralized systems. If the

requested services are not delay-sensitive or data-intensive, then maintaining smaller clusters

will enable more services to reach the higher level scheduler, and eventually be allocated to

a more suitable device in any available cluster within the user communities.
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5.3 Future Directions

The community size is significant to the scheduler in finding suitable workers. A commu-

nity composed of scarce clusters would be unable to find suitable devices for the requested

services. Meanwhile, a community composed of too many clusters would slow down the

scheduler. In the case of one community or no overlapping communities, CORA can be

replaced with another resource allocation approach that is more optimized for that case. For

example, using WorkQueue for faster scheduler cycles or event-driven online scheduling in

cases where the number of services or workers is too high to allocate services in a reasonable

time. However, if there are multiple overlapping communities, it is recommended to keep

CORA as the default scheduler for CEP.

The container-based approach adopted in CEP is a suitable option for systems where it

is required to cover a wide range of applications and run on a diverse set of worker machines.

In addition, it enables ensuring data privacy and workers’ security in another way, such as

mutual trust between the requesters and workers. Nonetheless, other approaches can be used

for better service migration, distributed workloads, or enforcing trust using a framework to

govern the possible use cases and minimize security risks.

5.3 Future Directions

In the future, we plan to improve the runtime estimation approach by utilizing Docker

image history. This allows us to make use of the data gathered in previous versions and share

knowledge across different services’ histories. Then, by generalizing the second stage of the

two-stage machine learning approach currently used, we can dynamically switch between

different machine learning models depending on data size and model performance. Lastly,

we plan on maintaining a profile of each worker, along with periodic benchmarks to estimate

workers’ idle time and available computation resources during relatively long services.

Another area that can be improved is the user experience on the platform. We plan

on investigating the possibility of maintaining each user’s profile, including social and work

relations, and using those to dynamically form communities with minimal user interference.
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5.3 Future Directions

Additionally, implementing a GUI for the platform can facilitate the introduction of our

platform to a wider range of users with a less technical background. A GUI, combined with

the API we already provide, can increase the system’s flexibility by covering most use cases.

The GUI can be used by users with a less technical background or simple applications, while

the API can be used to automate the offloading process or to integrate CEP with other

existing systems.

Currently, the system is built to eliminate costs by utilizing the community relation

between users. However, we can provide another mode that extends the service exchange

idea beyond a single community to include service exchange between communities. Users

can label their devices as open for any work, same for their service request, which can be

marked as safe to run on any machine. This is provided that the service request does not

contain sensitive data or private codes for example. The scheduler can then match service

requests across communities with a debt system that maintains a standing balance of each

community with other communities. This allows the users to run on a wider selection of

workers to solve peak load problems within communities without additional costs.
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Appendix A: Community Edge Platform Implementation

Appendix A: Community Edge Platform

Implementation

The purpose of this appendix is to present a few implementation details for CEP. Starting

with the Entity Relationship Diagram (ERD) of the server. As illustrated in Figure A.1,

we can see the current invitation-based implementation of community management. The

database stores four tables for community management: user, community, invitation, and

membership. The user is one of the core tables that link the communities to the devices

and services through clusters. New users can register and log in to the system using the

authorization manager module. Later, they can use the community management module

endpoints to create and manage communities.

Figure A.1: CEP Entity Relationship Diagram

Users can be members of multiple communities and a community can have one or more

users. Hence, forming a many-to-many relationship that needs to be implemented by an

intersection table, titled membership in our case. Besides the owner who creates the com-
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Appendix A: Community Edge Platform Implementation

munity, other users need to be invited. This invitation will be stored in the invitation table,

so users can be notified and respond to it. Clusters are stored under users by contacting

the server using the user key (i.e., Personal Access Token (PAT)), which is generated at

the user’s request. Devices and benchmarks are updated during the benchmarks update

stage during the scheduler cycle depicted in Figure 3.3. Meanwhile, the clusters states, are

modified by the cluster manager module during the update clusters states stage. Finally,

service requests are added upon the cluster head communication with the server to forward

a request which can happen at any time during the cycle. The request would be queued until

the service allocation stage. However, this queue is maintained in the database to ensure

stateless implementation of the server.

Figure A.2: Service Request State Machine

Figure A.2 shows the state machine for the requested service. It remains queued after

creation until the service requests are assigned to any device during a cycle. Then, the

request service state is changed to assigned. If during this time the cluster moved to an

inactive state which is depicted in Figure 3.2, the service request will be added back to

the queue so it can be reassigned to a new worker. After the assigned device executes the

service it can be tagged as done or failed, for cases where there is a problem with the service

implementation. The result is forwarded to the original requester as a notification during the

assignments check stage alongside any newly assigned services. Finally, the request would

be removed from the main database. However, it can be logged for future analysis of the

system.
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