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ABSTRACT
Democratizing the edge by leveraging the prolific yet underutilized
computational resources of end devices, referred to as Extreme Edge
Devices (EEDs), can open a new edge computing tech market that
is people-owned, democratically managed, and accessible/lucrative
to all. Parallel computing at EEDs can also move the computing
service much closer to end-users, which can help satisfy the strin-
gent Quality-of-Service (QoS) requirements of delay-critical and/or
data-intensive IoT applications. However, EEDs are heterogeneous
user-owned devices, and are thus subject to a highly dynamic user
access behavior (i.e., dynamic resource usage). This makes the pro-
cess of determining the computational capability of EEDs increas-
ingly challenging. Estimating the dynamic resource usage of EEDs
(i.e., workers) has been mostly overlooked. The complexity of Ma-
chine Learning (ML)-based models renders them impractical for
deployment at the edge for the purpose of such estimations. In
this paper, we propose the Resource Usage Multi-step Prediction
(RUMP) scheme to estimate the dynamic resource usage of work-
ers over multiple steps ahead in a computationally efficient way
while providing a relatively high prediction accuracy. Towards that
end, RUMP exploits the use of the Hierarchical Dirichlet Process-
Hidden Semi-Markov Model (HDP-HSMM) to estimate the dynamic
resource usage of workers in EED-based computing paradigms. Ex-
tensive evaluations on a real testbed of heterogeneous workers for
multi-step sizes show an 87.5% prediction accuracy for the starting
point of 2-steps and coming to as little as a 16% average difference
in prediction error compared to a representative of state-of-the-art
ML-based schemes.

CCS CONCEPTS
• Computing methodologies → Model verification and vali-
dation; • Human-centered computing → Empirical studies in
ubiquitous and mobile computing.
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1 INTRODUCTION
With the pervasive proliferation of the Internet of Things (IoT), 23.3
billion IoT devices are expected to be connected to the Internet by
2025 [7]. This substantial growth is expected to impose unprece-
dented demands on computing resources to satisfy the stringent
Quality of Service (QoS) requirements associated with delay-critical
and/or data-intensive IoT applications [12]. Such requirements can
be challenging to meet in Cloud Computing (CC) due to the need
to transmit massive amounts of data to remote data centers, which
significantly increases latency and thrusts a large traffic load at
backhaul links [18].

Muti-access Edge Computing (MEC) has emerged as a propitious
computing paradigm that can alleviate the aforementioned issues
by offering the computing service closer to end-users [19]. How-
ever, the vast majority of existing MEC models and platforms are
dependent on infrastructure-based edge nodes that are exclusively
governed by cloud service providers and/or network operators
[20, 26]. Breaking this monopoly can be achieved by tapping into
the profuse yet underutilized computational resources of Extreme
Edge Devices (EEDs) such as PCs, Laptops, tablets, smartphones,
and connected vehicles. Parallel processing at EEDs can democ-
ratize the edge and permit more players, such as Distributive1, to
establish and administer their own edge cloud [1, 5, 6, 16]. Edge
Democratization can pave the way for a new tech market in edge
computing that is people-owned, democratically managed, and
accessible/lucrative to all. In addition, fostering parallel process-
ing in EED-enabled computing environments can help bring the
computing service even closer to end-users. This can drastically
curtail the delay and facilitate significant compute-intensive and

1https://kingsds.network
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latency-sensitive applications, such as virtual and augmented real-
ity, autonomous vehicles, smart-grids, and smart-cities [20].

Despite the promising potential of EED-enabled computing, the
viability of such a system is hindered by the heterogeneous na-
ture of EEDs (i.e., workers) and the fact that EEDs are user-owned
devices, making them subject to a highly dynamic user access be-
havior. In particular, users can access their devices at any given
time to run an intensive application, such as streaming a video,
playing a video game, augmented reality, etc. This can dynamically
alter and affect the devices’ available computational resources. Note
that these resources are affected by the demands of the applications
run, the operational conditions set, and the limits defined by the
device’s specifications [3]. Consequently, EED-enabled computing
paradigms cannot rely on the same resource characterization tech-
niques, methods, and algorithms used in distributed computing over
infrastructure-based edge nodes or cloud servers. In fact, success-
ful, consistent, and reliable task offloading and resource allocation
services in EED-enabled computing that can adapt to the dynamic
environment require new intelligent scheduling methods [22], and
resource characterization techniques [11].

Resource characterization in EED-enabled computing environ-
ments, which requires running benchmark tasks on the devices, is
used to estimate the performance of these dynamically accessed
user-owned devices. The performance estimation, in terms of job
completion time or throughput, would enable computational jobs
scheduling algorithms to reduce delays, as shown in [11]. Thus, for
EED-enabled computing environments, it is necessary to character-
ize the worker in each possible resource usage state with several
benchmark tasks. As such, there is a need to identify the resource
usage states and run the benchmarks in a timely manner to cor-
rectly characterize the worker. Such characterization can enable a
"Dynamic Usage-Aware" scheduler to take into account the resource
usage state of the worker when allocating tasks.

Resource characterization that relies on capturing and estimat-
ing the highly dynamic resource usage in EED-based systems has
been mostly overlooked. In addition, predictive models that are
proactively used in infrastructure-based edge computing paradigms
suffer from various drawbacks, namely high complexity in Machine
Learning (ML)-based models [25] and low prediction accuracy in
system identification-based methods [24]. Such drawbacks render
them impractical to cope with the highly dynamic nature of user
access behavior in EEDs. In this paper, we propose the Resource
Usage Multi-step Prediction (RUMP) scheme. RUMP incorporates
the use of the Hierarchical Dirichlet Process-Hidden Semi-Markov
Model (HDP-HSMM) to predict the resource usage state of EEDs
over multiple steps ahead.

In RUMP, the HSMM is used to proactively predict the resource
usage state of the worker for a given period, more or less equiva-
lent to the expected run-time of the benchmark, which necessitates
multi-step prediction of the worker resource usage. In order to
run multiple types of benchmark programs of various run-times,
flexibility in the step-ahead prediction size is vital. The HSMM is
used because it 1) inherits the accuracy of Hidden Markov Mod-
els (HMMs) and the added time-dimension predictability of Semi
Markov Models (SMMs) and 2) requires only a single model for
multi-step predictions making it more effective for inference in the

context of EEDs, unlike ML models that require a separate model
per step size.

We evaluate RUMP compared to a good representative of the
state-of-the-art machine learning-based methods [23], in terms of
mean absolute error and root mean square error. We also conduct a
complexity analysis to study the complexity of RUMP compared to
other methods. In contrast to most existing works in the literature
that rely on simulations [13], we conduct extensive evaluations on
a real testbed of heterogeneous workers to analyze the performance
of RUMP for each of the resource usage patterns of workers and
multi-step prediction accuracy.

Our contributions can be summarized as follows:
• Estimating worker resource usage to capture the highly dy-
namic user access behavior in EED-based systems and en-
able resource characterization. To the best of our knowledge,
RUMP is the first scheme in EED-based computing environ-
ments that enables multi-step prediction of resource usage.

• In contrast to existing complex ML-based models that are
typically used in infrastructure-based computing paradigms,
RUMP enables practical and efficient estimation of resource
usage to cope with the highly dynamic nature of EED-based
systems by using the Hierarchical Dirichlet Process-Hidden
Semi-Markov Model (HDP-HSMM).

• Employing a performance evaluation method that relies on
conducting extensive evaluations on a realistic testbed of
heterogeneous workers in different dynamic resource us-
age scenarios. In addition, we create a dataset of dynamic
resource usage associated with running edge-native appli-
cation labels to further catalyze EED-based research. The
created dataset [9] is available to the research community
and can also be accessed with the code via GitHub 2.

The remainder of the paper is organized as follows. Section
2 presents an overview of the related work. Section 3 presents a
detailed description of RUMP, aswell as an analysis of its complexity.
Section 4 showcases the performance evaluation and simulation
results. Finally, section 5 concludes the paper and suggests future
research directions.

2 RELATEDWORK
Methods for resource usagemodeling and prediction, used as part of
intelligent resource management mechanisms have been proposed
for systems ranging from grid computing [21], volunteer computing
[17], and cloud computing [14]. More recently, methods tailored for
edge computing environments have been proposed for the benefit of
management operations such as resource allocation [23]. However,
coping with the highly dynamic user access behavior at EEDs and
estimating the dynamic resource usage of workers in EED-enabled
computing environments, has been mostly overlooked.

Existing resource characterization mechanisms in infrastructure-
based edge paradigms can be categorized into reactive and proactive
techniques [15]. Reactive techniques adapt to shifting resources
by modifying computing task schedules and resource allocations
when shifts are detected, some relying on system-identification
[24], and others on threshold-based techniques [21]. In contrast,
proactive techniques adapt to the anticipated future resource shifts
2https://github.com/RuslanKain/rump-ec
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before they occur, predicted via machine learning [15, 23] and state-
based methods [17]. Both reactive and proactive techniques enable
adaptation to resource usage variability and availability at different
expenses. Proactive techniques have been shown to achieve a much
higher prediction accuracy, at the expense of higher computational
complexity, compared to reactive techniques [15].

Proactive techniques that include the use of machine learning
(ML) models and state-based models can indeed capture long-term
dependencies and recurrence in the system. In Rusty [15], an LSTM
is trained to predict lower-level architectural events and system-
level characterization under interference to gain insights into the
system state and guide the task scheduler. In [23], a mix of Long-
Short Term Models (LSTM) and Convolutional Neural Networks
(CNN) are used to predict the resource usage, where the architecture
of the models is automatically designed to maximize performance
using hyper-parameter search optimization methods, performing
better and competitively in comparison to other ML models such as
Support Vector Regression, Multiple Linear Regression, XGBoost,
Deep Neural Networks. In particular, [23] uses a combination of
Bayesian and particle swarm optimization for ML hyper-parameter
search. Despite their high prediction power, such ML-based tech-
niques are significantly complex and computationally intensive
[25]. Thus, they suffer from long training times, and low adaptabil-
ity to resource usage patterns continually changing in real-time.
Consequently, they are rendered impractical for EED-based sys-
tems. In addition, ML-based models have limited usability within
the context of EED-based systems due to their reliance on 1-step
ahead predictions that fail to capture the highly dynamic nature
of such systems. Multi-step ahead prediction of CPU loads using
a pattern matching technique has been proposed in distributed
systems [24]. However, it is unfit for multi-variate prediction of
resource usage in EED-based systems, due to the explosive number
of pattern combinations, which impacts predictive capabilities [8].
Using ML-based models for multi-step prediction has more poten-
tial. However, as previously mentioned, their drawbacks make them
impractical for EED-based systems.

In contrast to existing schemes, our proposed RUMP scheme
is tailored to model and capture the dynamic resource usage in
EED-enabled computing environments by exploiting the use of the
HDP-HSMM. HSMM combines the accuracy of Hidden Markov
Models (HMMs) and the added time-dimension predictability of
Semi-Markov Models (SMMs) that was shown to resource usage of
computing systems [17]. The HSMM can be a more practical option
for use in EED-based systems compared to ML since it 1) relies on
estimating state transition probabilities between different statistical
distributions and can thus render a lower complexity and impose
a lower workload on an EED, 2) is flexible, since a single model
is used for multi-step prediction for different step sizes, making it
appropriate for benchmark tasks used for resource characterization,
and 3) is adaptable, since new data can be continually input to
the distribution statistics of the state without requiring significant
re-training efforts [11]. As opposed to existing schemes that rely
on simulations, we employ a performance evaluation method that
relies on a realistic testbed of heterogeneous workers, and generate
a dataset of dynamic resource usage in EED-based systems.

3 RESOURCE USAGE MULTI-STEP
PREDICTION (RUMP)

In RUMP, we model the workers’ dynamic resource usage using a
Hidden Semi-Markov Model (HSMM) to enable a multi-step predic-
tion of the workers’ resource usage state. The implementation uses
a Hierarchical Dirichlet Process (HDP) for a Bayesian nonparamet-
ric extension of the HSMM [10]. The extension HDP-HSMM enables
the model to infer the number of hidden states using a weak-limit
Gibbs sampling method without requiring prior knowledge. This is
since the workers’ usage behavior and the applications they run
tend to vary from one user to another. Moreover, the use of explicit
duration semi-Markov modeling overcomes the limitation of the
resource usage data being non-Markovian, since the time when the
next resource usage state is reached depends on the time spent in
the current state and not just the state itself. To learn the model, the
resource usage information of the worker, such as CPU time and
memory percent usage, is collected at a fixed interval over a long
enough period to capture all the possible resource usage states.

3.1 Hidden Semi-Markov Model
Much like the HiddenMarkovModel, a Hidden Semi-MarkovModel
is composed of two layers; a hidden state later and an observa-
tion/emission layer, represented as random variables. However,
HSMM additionally expresses the time duration of states, which is
limited to a geometric distribution in HMM. We argue that running
an application running on a worker, which from a MEC service
provider’s side would be similar to a hidden state, has a similar
relation to the corresponding resources usage patterns that can
be viewed as emission from a distribution of values previously ob-
served. State transition patterns may be modeled probabilistically
where each entered state is given an explicit duration, also drawn
from a distribution. Such a Semi-Markov model is defined as an
explicit duration Semi-Markov model. The observations can be rep-
resented by 𝑦𝑡 ∈ R≥0 for 𝑡 ∈ {1, 2, . . . ,𝑇 }, where 𝑇 is the length
of the observation sequence. The observations, in this case, are
the values of the resource usage information such as CPU time,
memory percent usage, and network rates. Moreover, the observa-
tions, drawn from a distribution corresponding to a hidden Semi-
Markov state, are represented by a sequence of random variables
𝑥𝑡 ∈ {1, 2, . . . , 𝑁 } forming a Markov chain for the sequence of
𝑁 possible states. The hidden states, in this case, represent the
resource usage states associated with applications and processes
running on the EED. The state transition matrix, which collects the
transition probabilities in a row-stochastic matrix, is denoted by
𝜋𝑖 𝑗 = 𝑝 (𝑥𝑡+1 = 𝑗 |𝑥𝑡 = 𝑖). The emission distribution with parame-
ters {𝜃𝑖 } is represented by the probability 𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃𝑖 ).

HSMM is augmented with a random variable, denoted 𝐷𝑡 repre-
senting state duration time drawn from a distribution specific to the
entered state with the probability mass function 𝑝 (𝑑𝑡 , |𝑥𝑡 = 𝑖, , 𝜔𝑖 ),
where {𝜔𝑖 } are the duration distribution parameters. Once 𝐷𝑡 of an
entered state passes, a Markov transition occurs towards a differ-
ent state. To simplify representation, a sequence of the same state
is represented by "super-states" 𝑧𝑠 ∈ {1, 2, . . . , 𝑆}, for 𝑆 possible
super-states, which emits observations within the time 𝐷𝑡 , thus
avoiding state self-transition of super-states. More details of how
the self-transitions are eliminated using an additional auxiliary
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Figure 1: Components of the Hierarchical Dirichlet Process -
Hidden Semi-Markov Model

variable can be found in [10]. Note that, we assume that the models
are time-homogeneous. This means that the transition probabili-
ties do not change with time. However, this can be modified using
extensible Markov Models [4]. The worker dynamic resource us-
age scenario would allow the models to adapt with time to often
regularly evolving worker usage behaviors. The state transition
probabilities of the model are derived from a given sequence of ob-
servations/emissions using the standard message-passing inference
of the forward-backward algorithm, also called smoothing.

3.2 Hierarchical Dirichlet Process
The HSMM generation method used relies on a hierarchical Dirich-
let process (HDP) [10] which allows for Bayesian non-parametric
inference of the hidden states and duration distributions, instead of
the usual treatment from a non-Bayesian perspective by approxi-
mating parameters using the Expectation-Maximization algorithm.
As such, the model parameters are treated as random variables hav-
ing HDP priors 𝑝 (𝜋 |𝛼), 𝑝 ({𝜃𝑖 }|𝐻 ), and 𝑝 ({𝜔𝑖 }|𝐺), where 𝛼 > 0 is
a concentration parameter specifying the shape of the distribution
and where 𝐻 and𝐺 are the base measures used to parameterise the
emission distribution and duration distribution, respectively. The
inference approach enables the modeling of uncertainty over the
parameters and the prediction of observations and state sequences
by integrating out all possible parameters. Thus, HDP acts as a prior
over infinite-state transition matrices biased by a set of states that
are consistently re-entered in each smoothing iteration, i.e., the
draw of the forward-backward message passing algorithm, which
is itself parameterized by a discrete measure 𝛽 . The 𝛽 parameter
penalizes large numbers of states and reduces them to the states
consistently visited in the sequence. A graphical representation of
all components of HDP-HSMM is shown in Figure 1. A weak-limit
Gibbs sampler is used to completely represent the transition matrix
in a finite form based on 𝐿-Dimensional Dirichlet distributions. The
𝐿 parameter can be sampled over without being set beforehand us-
ing the beam sampling technique as in [2]. Essentially the sampler
constructs the parameters by drawing samples from the posterior
probability 𝑝 ({𝑥𝑡 }, {𝜃𝑡 }, {𝜋𝑡 }, {𝜔𝑡 }|𝑦𝑡 , 𝐻,𝐺, 𝛼). Moreover, the sam-
pler also accelerates mixing, i.e. estimating contributions of sources
to a mixture, by allowing for block sampling of the entire state
sequence simultaneously. Lastly, a parameter 𝜅 is introduced to
allow for some control over duration statistics, i.e. encouraging
longer or shorter periods, known as the sticky property.

3.3 Complexity Analysis
The most computationally intensive part of HDP-HSMM results
from the message passing step using the forward-backward algo-
rithm, i.e. the smoothing process. The algorithm has a complexity
of O(𝑇 2𝑁States +𝑇𝑁 2

States), where 𝑁𝑆𝑡𝑎𝑡𝑒𝑠 is the number of states
and 𝑇 is the observation sequence length. However, not all steps in
the sequence need to be considered, thus it is enough to consider
the steps where a change in the super-state is most likely, i.e. the
change points. The complexity is reduced to O(𝑇 2

Change𝑁States +
𝑇𝐶ℎ𝑎𝑛𝑔𝑒𝑁

2
States) if change-point detection is run when using the

weak-sampler on the observations, where 𝑇Change is the number of
possible change points, which is much less than𝑇 . We reinforce the
aforementioned efficiency and lower complexity of the HDP-HSMM
by comparing it to the baseline machine learning approach for re-
source usage prediction called Hybrid Bayesian Particle Swarm
Hyper-Parameter Optimization (HBPSHPO) [23]. The LSTM-CNN
based model in HBPSHPO uses the Particle Swarm meta-heuristic
(PS) to optimize the model architecture until it stops according to
termination criteria with value𝐶 . Thus, the number of PS rounds is
a function of the termination criteria value𝑁PSO = 𝑓 (𝐶). HBPSHPO
also uses Bayesian optimization to optimize the selection of activa-
tion and loss functions within 𝑁BO number of iterations per particle
in the PS. Moreover, an LSTM-CNN model needs to be trained for
each step size, numbered 𝑁Steps, and so the number LSTM-CNN
models trained is 𝑁Models = 𝑁PSO×𝑁BO×𝑁Steps. Each model has a
complexity of O(𝑈𝑇 ), where𝑈 is the number of LSTM-CNN units
and, as before, 𝑇 is the input data sequence length. It follows that
the complexity of the HBPSHPO method is O(𝑇𝑈𝑁Models), which
exceeds the complexity of the HDP-HSMM of O(𝑇 2𝑁States) for a
sizeable observation sequence length 𝑇 , in our case on the order
of 104, since 𝑈 ≫ 𝑇 ≫ 𝑇Change ≫ 𝑁Models ≫ 𝑁States where the
number of LSTM-CNN units𝑈 is on an order of magnitude of 109.

4 PERFORMANCE EVALUATION
We evaluate RUMP in comparison to a state-of-the-art hyper-tuned
LSTM/CNN model, called Hybrid Bayesian Particle Swarm Hyper-
parameter Optimization Model (HBPSHPO) [23], in terms of the
average mean absolute error and root mean square error of the
user, system, and idle time in seconds. As well as the memory per-
cent usage, for both random and patterned state sequences, over
different step sizes. The original HBPSHPO model was originally
implemented for 1-step ahead prediction, but for the experiments,
we modified it to enable multi-step ahead predictions. In RUMP, the
resource usage information (i.e., CPU Time, memory usage, etc.) are
represented as observations, while the resource usage states (i.e.,
"game," "mining", "idle", etc.) are modeled as hidden states. As for
the HDP-HSMM parameters in RUMP, they may all be derived from
the data. However, the 𝜅 parameter and the number of sampling
iterations of the weak Gibbs sampler need to be selected, which
may impact the HSMM model. The parameters may be selected
using a grid search method, but once they are selected for the model,
the same values can be used for all other models, unlike the hyper-
parameters of the HBPSHPOmodel, which need to be optimized for
every training cycle. The values of 𝜅 and the number of sampling
iterations used for the experiments are 0.1 and 800, respectively.
The evaluations of the models, trained on the training data, are

 

28



Multi-step Prediction of Worker Resource Usage at the Extreme Edge MSWiM ’22, October 24–28, 2022, Montreal, QC, Canada

performed by applying inference of the observations in the testing
data for the different step sizes.

4.1 Experimental Setup
To test our proposed method on heterogeneous workers represen-
tative of EEDs in different dynamic usage scenarios. We use a set of
four computers, the Raspberry Pi (RPi) 4B model, of different RAM
sizes and CPU cycle frequencies. The processor is a 64-bit quad-core
Cortex-A72 (ARM v8). Note that an RPi 4B model’s regular CPU
frequency is 1.5 GHz, however to increase heterogeneity, the RPi
is overclocked and throttled. As such, the CPU frequencies used
are 1.8, 1.5, and 1.2 GHz, and the RAM sizes are 8, 4, and 2 GB. The
specifications of the workers are described in Table 1.

Table 1: Worker specifications and labels

Worker Label Raspberry Pi 4B Specifications
RAM Size (GB) CPU Cycle Freq. (GHz)

A 8 1.8
B 4 1.5
C 2 1.5
D 2 1.2

A dynamic usage scenario is implemented by automatically
running a set of applications in sequence for different periods.
The applications are a video game, streaming a Youtube video on
a browser, emulating real-time augmented reality, and mining a
crypto-currency. The augmented reality application is emulated
by continuously imposing on ArUco markers detected on an input
of a sequence of image frames, much like a live video stream. The
crypto-currency mining is for the Duino-coin, which is designed
for low-power devices, such as Arduinos and RPis. This is since the
coin uses the easily implemented SHA-1 cryptographic function
for encryption on a variant of a blockchain, called a hash-chain.
Additionally, the computer is left idle, i.e. no application runs, for
some periods. To create varying usage scenarios (i.e., sequence and
periods of running applications and idling, which we refer to as
resource usage states), two types of sequence are used for each
worker; a random sequence, and a patterned sequence. The pat-
terned sequence consists of a recurrent sequence of applications
that is repeated over a specific period. We generate four resource
usage information datasets for each worker over a 48-hour duration,
a 5-second monitoring interval, and two pairs of sequence types
labeled "random" and "patterned". The resource usage information
is collected as user, system, and idle CPU time, memory percent
usage, network upload and download size and rates, disk IO, etc.
For modeling, we focus on the user, system, idle CPU time, and
memory percent usage. Note that other resources can be modeled
as well. The resource usage information is associated with the re-
source usage states in the datasets using the labels "game", "stream",
"augmented reality", "mining", and "idle". To input the labels into
the prediction model, they are given a numerical label. The step
sizes used are 1, 2, 5, 10, 15, 30, and 60 steps, which are equivalent
to 5, 10, 25, 50, 75, 150, and 300 seconds, respectively. Moreover, the
datasets are divided into training and testing sets, to use the same
terms of ML modeling, using a 70-30% split.

4.2 Results and Analysis
We first evaluate RUMP and HBPSHPO in terms of the average
mean absolute error and root mean square error of the user, system,
and idle time in seconds, as well as the memory percent usage, for
both random (R) and patterned (P) state sequences, over different
step sizes. As shown in Figure 2, there is a gradual increase in error
for larger step sizes for both models. RMSE is always larger than
MAE. This is since RMSE is more influenced by outlier values (i.e.,
values much larger than the average). Moreover, it is observable that
the difference between RMSE and MAE is larger for the predictions
made by RUMP than those made by HBPSHPO, which indicates that
there are more inaccurate outlier values predicted by RUMP. The
large differences way the inference is done by RUMP, which creates
predictions of observations drawn from a probability distribution
rather than a more precise function that maps inputs to predicted
outputs. This does not mean that the inferences made by RUMP are
less useful since the hidden state corresponding to the predicted
observationmay still be correct, which is corroborated by the results
shown in Figure 3 (as explained later).

Figure 2(a) and Figure 2(b) show that the predictions for the user
and idle CPU times have similar patterns when comparing the two
models for the different state sequence types. Meanwhile, Figure
2(c) and 2(d) show that the predictions using RUMP for the system
CPU time andmemory percent usage are similar in that the error for
the random sequence is less than the patterned sequence, but not for
the predictions made using HBPSHPO. Except when predicting the
memory percent usage for step sizes 15, 30, and 60. Thus, HBPSHPO
sees an improved accuracy for the sequence of states that follows
a repetitive pattern, while RUMP does not improve as much. This
indicates that in most cases the HBPSHPO model might be over-
fitting to the patterned sequence data, thus leading to a gain in
accuracy at the expense of model generalization. The variance in
MAE for RUMP is on average 31.54 % for both the random (26.09%)
and patterned (36.99%) sequence data. In contrast, for the HBPSHPO
model, the average variance is 35.06% for both the random (36.82%)
and patterned (33.29%) sequence data. It follows that the predictive
power of RUMP is comparable to themore computationally complex
HBPSHPO model, with an overall average percent difference of
28.03% in MAE and 66.01% in RMSE. The average percent difference
between RUMP and HBPSHPO for the patterned sequence data is
39.13% and 72.78% in terms of MAE and RMSE, respectively, and
16.93% and 59.25% in MAE and RMSE, respectively for the random
sequence data, in favor of the HBPSHPO model.

Figure 3 presents a time-series plot of the predictions made
using HBPSHPO (Figure 3(a)) and RUMP (Figure 3(b)), taking 5-
step prediction of the user CPU time on worker C as a sample.
As shown in the Figure, the predictions made by RUMP tend to
fluctuate more than those made by HBPSHPO, which explains the
higher RMSE, but nonetheless closely follow the level of the actual
observations, which explains the lower values of MAE.

Figure 4 depicts the distribution of the percent difference in MAE
and RMSE for each of the state sequence types (random and pat-
terned) when comparing the predicted observations of RUMP to
that of HBPSHPO. Note that a positive percent value indicates that
HBPSHPO has a lower error and vice versa. The results show an
average of 16% and 40% difference in MAE in favor of the HBPSHPO
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(a) (b)

(c) (d)
Figure 2: Average mean absolute error and root mean square error of a) user, b) idle, and c) system time (seconds) and d) memory
percent usage predicted using RUMP and HBPSHPO for all workers for both random (R) and patterned (P) state sequences

(a) (b)
Figure 3: Observed (blue) and predicted (red) user CPU time for worker C and by a) HBPSHPO b) and RUMP

for the random and patterned sequence data, respectively. Moreover,
the results show an average of 60% and 70% difference in RMSE in
favor of the HBPSHPO for the random and patterned sequence data,

respectively. In some cases, RUMP even outperforms HBPSHPO, for
example, the minimum difference in MAE for the random sequence
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Figure 4: Percent error difference in MAE and RMSE for re-
source usage prediction using RUMP andHBPSHPO, the blue
dashed line is the mean and the red line is the median

data is -30% (i.e., in favor of RUMP). Reflecting on the results ob-
tained, in general, the accuracy of RUMP overall remains lower
than HBPHSPO but nonetheless benefits from lower computational
complexity and higher efficiency. This is since HBPSHPO is ML-
based, and thus has better predictive powers, but at the expense
of extra training, since each step-ahead size requires a new model,
and re-training must be applied when new resource usage data
is collected. Moreover, HBPSHPO renders higher complexity (as
illustrated in Section 3.3), due to the number of hyper-parameters
searches for the model architecture optimization technique.

Lastly, RUMP’s accuracy in predicting the resource usage state
of each worker is evaluated in terms of percent accuracy matched
to the dataset’s true labels. The resource usage state of a worker in
HSMM terms is represented by the hidden state. However, the pre-
dicted hidden states do not necessarily match the labels that relate
to the running applications. This is since other worker background
processes may run at any time, thus impacting the resource usage.
For simplification, we assume that the hidden state predicted by
RUMP that most often coincides with the dataset label is the pre-
dicted resource usage state. The results of the evaluation for each
worker are shown in Figure 5 for both the training and testing data
and for the random 5(a) and patterned 5(b) sequence data over the
different step sizes for all workers. Note that the HSMMs in RUMP
are generated for 1-step size predictions, and thus the state predic-
tion accuracy for the training data corresponds to 1-step prediction
only and is represented by the horizontal lines. The scattered dots
indicate the accuracy achieved when using the model to infer on the
testing data for each step size. The average training-phase accuracy
for all workers for random and patterned state sequences shown in
Figure 5(a) is 95.3% and in Figure 5(b) is 93.8%. As for the multi-step
inference on the unseen testing data for random state sequences
the average prediction accuracy starts from 90.4% for a 1-step size,
88.4% for a 2-step size, 78% for a 10-steps prediction, and down to
55% for a 60-steps size. While for the patterned state sequences
data, the accuracy starts from 88.5% for a 1-step size, 86.6% for a
2-step size, 78.6% for a 10-steps prediction, and down to 59.6% for
a 60-steps size. The decrease in prediction accuracy has a reduced
steepness for longer step sizes, which suggests a non-linear relation
with step size due to the error propagation from the prediction step

Table 2: Distribution of 1-step predictions in terms of percent
correct state prediction (✓), incorrect prediction as other
known states (×), and prediction of unknown states (?) for
testing-phase patterned sequence data for "Stream", "Game",
and "Mining" resource usage states for all workers

Worker
Label

Resource Usage State
Stream Game Mining

✓ × ? ✓ × ? ✓ × ?
A 81.1 9.8 9.1 96.6 0.6 2.8 77 2.7 20.3
B 77 2 21 64.3 17.7 18 83.4 7.1 9.5
C 85.1 2.9 12 92.6 0.4 7 92.4 2.5 5.1
D 67.2 18.3 14.5 88.5 2.7 8.8 61.6 9.7 28.7

to the next. In Figure 5b, the accuracy results of workers B and D
are slightly lower starting accuracy, i.e. for 1-step prediction.

Table 2 helps explain the source of the aforementioned devia-
tions by presenting the 1-step prediction accuracy on the unseen
patterned sequence data for the "Steam", "Game", and "Mining" re-
source usage states for each worker. The table shows that accuracy
is relatively low in the "Steam" state for workers B and D, "Game"
for worker B, and "Mining" state for workers A and D. Besides hav-
ing the state incorrectly classified as a different resource usage state,
another source of error is the prediction of a hidden state that does
not directly correspond to the labeled resource usage state. This is
due to the model generating "extra" hidden states that are impacted
by some unknown processes instead of the running application.
These processes may include automatic operating system processes
which may run at any time or the application itself uses resources
abnormally due to the application’s operation being affected by
an overloaded system. All of the resource usage states have been
sometimes predicted as these "unknown" hidden states, in addition
to incorrect predictions as other hidden states. This does not mean
that the model is inaccurate, but instead, the issue is that the labels
in the dataset do not completely capture the unknown resource us-
age states reflected in the resource usage patterns which also impact
a worker’s performance that the model can detect. Therefore, the
model’s prediction accuracy would increase if the resource usage
associated with the unknown processes is successfully labeled.

5 CONCLUSION
In this paper, we have proposed the Resource Usage Multi-step Pre-
diction (RUMP) scheme to model and predict the resource usage of
heterogeneous workers in EED-enabled computing environments.
RUMP deals with the highly dynamic user access behavior in such
environments by using a Hierarchical Dirichlet Process-Hidden
Semi-Markov Model (HDP-HSMM) to provide a relatively high
predictive power without sacrificing computational efficiency or
rendering too much complexity. Extensive evaluations on a realistic
testbed have shown that RUMP is comparable to a representative
of the state-of-the-art machine learning-based models in terms of
multi-step and multi-variant prediction accuracy, while rendering
a much lower computational complexity. In particular, evaluations
have shown that RUMP yields a 16% gap in prediction error in com-
parison to the more complex ML-based model. Further performance
studies have substantiated the modeling capability of RUMP for
workers’ dynamic resource usage patterns, starting with a 87.5%
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(a) (b)
Figure 5: Multi-step prediction accuracy for training and testing phase for all workers for a) random and b) patterned sequences

accuracy for 2-step prediction. In the future, we plan on further
improving the prediction accuracy by using predictive modeling
and analytics that exploit both historical and real-time data. More-
over, conduct further performance evaluations compared to other
resource usage prediction methods and formulate an economical
model to handle the trade-off between accuracy and efficiency when
selecting prediction models.
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