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Abstract—Fostering Edge Computing (EC) by recycling prolific
yet underutilized computational resources of the Internet of
Things (IoT) devices, also referred to as Extreme Edge Devices
(EEDs), has gained significant momentum lately. Fair resource
allocation is a primary concern in such computing paradigms.
However, fairness is typically considered from the requester’s
perspective, whereas fairness for workers (i.e., EEDs) is mostly
overlooked. In this context, we propose the Multitiered Worker-
Oriented Resource Allocation (MWORA) scheme. In MWORA,
the resource allocation problem is formulated as an Integer
Linear Program (ILP). MWORA aims to maximize service
capacity and minimize the task response delay while enabling
fair resource allocation that maintains a specific satisfactory
profit for workers. Such a satisfactory level is maintained to
prevent the workers from leaving the system and ensure their
recurrent subscription to the service. This is done while abiding
by the deadline demanded by each requester and without
exceeding a certain budget. MWORA also accounts for the fact
that EEDs are user-owned devices and are thus subject to a
dynamic user access behavior, which can affect the level of
computational resources that workers are willing to offer. In
particular, MWORA enables multitiered computational resources
to be granted by each worker depending on the price of the
allocated task. Extensive simulations have shown that MWORA
outperforms other baseline resource allocation schemes regarding
average response delay, service capacity, worker satisfaction ratio,
and fairness.

Index Terms—Edge Computing, Extreme Edge, EEDs, Fair
Resource Allocation, Optimization

I. INTRODUCTION

With the promulgation of the Internet of Things (IoT), it is
estimated that 23.3 billion IoT devices will be connected to
the Internet by 2025 [1]. This unprecedented surge is expected
to impose severe demands on computing resources to meet
the rigorous Quality of Service (QoS) requirements associated
with latency-sensitive and/or data-intensive IoT applications
[2]. Satisfying such requirements can be challenging in cloud
computing due to the substantial amount of data that must be
fully transmitted to distant data centers, which increases the
delay and creates a heavy traffic load at backhaul links [3].

Edge Computing (EC) has paved the way toward mitigating
the issues mentioned above by moving the computing service
closer to end users [2]. However, most existing EC platforms
and models rely on infrastructure-based edge nodes exclu-
sively controlled by cloud service providers and/or network
operators [4]. Breaking this monopoly by recycling prolific yet
underutilized computational resources of Extreme Edge De-

vices (EEDs), such as tablets, smartphones, and autonomous
vehicles, can democratize the edge and enable more players
to develop and manage their own edge cloud. This can foster
a new tech market that is people-retained, democratically
controlled, and accessible/rewarding. In addition, parallel pro-
cessing at EEDs can bring the computing service closer to
end-users, significantly reducing the delay [5]. Considering its
promising impact, fair resource allocation is crucial in such
computing paradigms [5].

Aside from load balancing approaches [6], most existing
resource allocation schemes in EC have considered fairness
from the requesters’ perspective [7]–[11] while overlooking
workers fairness. In EED-enabled computing environments,
overlooking workers fairness regarding achieving a satisfac-
tory profit can cause such workers to leave the system, avoid
recurrent subscription to the service, and join other competing
service providers (i.e., service facilitators acting as mediators
between requesters and workers, such as [12]). In the long run,
this can affect the yielded QoS since the available resources
might not be able to cope with the load imposed by incoming
requests.

In this paper, we propose the Multitiered Worker-Oriented
Resource Allocation (MWORA) scheme to ensure workers
fairness. MWORA aims to minimize the task response delay
and maximize service capacity while sustaining a certain level
of satisfactory profit demanded by each worker. This is while
abiding by a certain budget specified by the service provider
and a certain deadline indicated by each requester. In addition,
in contrast to existing schemes, the effect of offloading the
tasks to user-owned devices that have a dynamic user access
behavior is accounted for in MWORA.

MWORA considers the impact of the dynamic user access
behavior on the level of computational resources that the
workers are willing to offer, which can differ based on the cost
of compromising their own convenience. Take, for instance,
the scenario in which a user is streaming a video on their
device. In this scenario, the worker (user’s device) could be
willing to forego the video by pausing and devoting their
maximum computational capability to an offloaded task if it
is worth a high financial reward. Alternatively, if the reward
is moderate, the worker could continue streaming the video
and devote less computational capability to the offloaded task.
Note that the worker here is sacrificing a smaller portion of
their capabilities to preserve some of its own convenience. If
the task’s reward is too low, the worker could refrain from978-1-6654-3540-6/22 © 2022 IEEE
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giving up any of their resources. Thus, in contrast to existing
schemes, MWORA fosters granting multitiered computational
capabilities by each worker based on the financial reward
associated with the offloaded task.

To the best of our knowledge, MWORA is the first scheme
that solicits multitiered computational capabilities and aims to
achieve fair resource allocation for workers by ensuring that
each worker receives a certain demanded reward. The resource
allocation problem is formulated as an Integer Linear Program
(ILP) and is solved using the Gurobi optimizer [13].

The remainder of the paper is structured as follows. Sec-
tion II provides an overview of some related work. Section
III presents our proposed scheme (MWORA). Section IV
discusses the performance evaluation and simulation results.
Finally, Section V presents our conclusions and future work.

II. RELATED WORK

Resource allocation is a technique used to allocate com-
puting resources to various processes, threads, data flows, and
programs/applications [14]. Fair resource allocation is required
to balance the load on the system, ensure fair distribution of
resources, and give priority according to the set of defined
rules in the implemented scheduling algorithm while allocating
the available resources [6], [14]. In general, fair resource
allocation strives to guarantee the capability of a system to
serve all requests and achieve specific QoS measures [6]. In
[15], it has been shown that 23% of categorized resource
allocation schemes aim to improve the response delay, as the
case in [16], 5% aim to improve the execution delay. The
remaining 72% are distributed among the remaining measures
of QoS, including the recruitment cost [17].

Aside from load balancing schemes [6], existing research
efforts have mostly considered fair resource allocation from
the requester’s perspective [7]–[11]. In [7], the authors aim to
minimize the maximum server delay in a multi-user and multi-
server system in Multi-access Edge Computing (MEC) by
fairly selecting the appropriate server on which the requester
can offload tasks, which minimizes the overall delay of the
system. In [8], a multi-objective optimization problem formu-
lation aims to minimize the delay, energy consumption, and
cost paid to the MEC service provider. A study on minimizing
delay and energy consumption is also proposed in [9] by
partitioning the task and offloading it to multiple devices
in MEC. The work in [10] partitions the task into portions
and aims to minimize the sum difference between the actual
delay taken and the desired delay of each portion. In [11], the
authors present a resource allocation scheme that maximizes
the number of tasks executed within their allowed deadline
while simultaneously ensuring fairness by prioritizing the tasks
and maintaining high network stability.

Contrary to our work, the existing schemes do not consider
that workers may be user-owned devices, which can dynami-
cally impact their available computational capability. In other
words, they do not account for the associated dynamic user
access behavior and its implications on the user’s convenience
and the level of computational capability that the worker

is willing to share. They also fail to consider the impact
of workers’ fairness on their availability and willingness to
cooperate with the service provider if they are not receiving a
satisfactory monetary reward.

III. MULTITIERED WORKER-ORIENTED RESOURCE
ALLOCATION (MWORA)

In MWORA, the system consists of user-owned devices
operating as workers, a set of requesters with tasks that need
to be offloaded for execution, and a Service Provider (SP)
functioning as the centralized entity responsible for making
resource allocation decisions in the system. The SP has a
coverage area, a set of workers operating within this coverage
area, and a set of tasks received from the requesters. The SP is
responsible for allocating the tasks to the participating workers
within given constraints and limitations.

A. System Model:

Given a set of workers W = {w1, w2, . . . wm}, a set of
requesters U = {u1, u2, . . . un}, and a set of tasks T =
{t1, t2, . . . tn} at any given time. Each task ti has a certain
computation workload or intensity qi (in CPU cycles/bit) and
involves a certain amount of data in bits, denoted Li and
should be executed within a specified deadline, denoted by
εi. The distance between the requester ui and worker wj is
denoted by dij , Rij denotes the data rate of the link between
ui and wj , and the propagation speed is denoted by v. The
SP has a specific budget β that is used to recruit the available
workers. This budget should not be exceeded.

Each worker wj specifies a certain price τj that it should
be paid per executing one CPU cycle. Also, each worker wj
specifies a minimum profit that it should gain to be deemed
satisfied (i.e., a satisfactory reward), denoted sj . Such a
satisfactory reward acts as an indicator of workers satisfaction
by the SP. One of SP’s primary functions when assigning tasks
to workers is to assign one or more tasks to a worker capable
of completing each assigned task within the task deadline εi.
At the same time, the assigned tasks must render each worker’s
required satisfactory profit sj without exceeding the budget β.

The cost of executing each task ti on worker wj is denoted
pij and is given by Eq. 1:

pij = τjqiLi (1)

Each worker wj has a maximum CPU clock speed denoted
by cmax

j (in CPU cycles/sec). Each worker wj is willing to
dedicate one of three possible levels of its cmax

j according to
high and low-profit thresholds that each worker specifies, de-
noted by ΩjH and ΩjL, respectively, the CPU cycle frequency
that each worker wj is willing to dedicate to execute task ti
is denoted by cij , and is given by Eq.2, where 0 ≤ δ ≤ 1.

cij =


δcmax
j if pij ≥ ΩjH

αjδc
max
j if ΩjL ≤ pij < ΩjH

0 otherwise
(2)

Note that δcmax
j is the maximum load capacity that can be

purchased from worker wj that ensures that it is not completely
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overwhelmed. The capacity level αjδcmax
j reduces the capacity

that can be purchased from wj by a defined factor αj , where
0 ≤ αj ≤ 1. If the price of executing task ti on worker wj ,
pij , does not correspond to any of the preceding levels, the
worker refrains from devoting any capacity level to task ti.
Therefore, ΩjL of wj acts as a cut-off point below which the
worker does not find it feasible to perform the task.

The response delay associated with executing task ti on
worker wj , denoted γij , is composed of the execution delay,
transmission delay, propagation delay, and is given by Eq. 3.

γij =
qiLi
cij

+
Li
Rij

+
dij
v

(3)

B. Problem Formulation:
The objective is to maximize the service capacity (i.e., the

number of executed tasks) and minimize the total response
delay. We formulate the problem as an ILP multi-objective
problem, where the binary decision variable xij is set to 1 if
task ti is assigned to wj , and 0 otherwise, as given by Eq. 4.

xij =

{
1 if ti is assigned to wj
0 Otherwise (4)

The problem formulation is shown below:

max
xij

∑
j∈W

∑
i∈T

xij

min
xij

∑
j∈W

∑
i∈T

xijγij

subject to:

C1:
∑
j∈W xij ≤ 1 ∀i ∈ T

C2:
∑
j∈W

∑
i∈T xijpij ≤ β

C3:
∑
j∈Ni

xij = 0 ∀i ∈ T

C4:
∑
i∈T xijcij ≤ δcmax

j ∀j ∈W

C5:
∑
j∈W

∑
i∈T xijγij ≤ εi

C6:
∑
i∈T xijpij ≥ ψsj ∀j ∈Wj

Constraint C1 specifies that each task must be assigned to at
most one worker; this ensures that each task is assigned only
once. Constraint C2 ensures that the total reward gained by
all workers from the tasks assigned to them does not exceed
the budget specified by the SP. Constraint C3 ensures that no
task is assigned to a worker from the set Ni, which is the
set of tasks with which the worker has a zero cij . Constraint
C4 ensures that for each worker, the CPU cycle frequency
used to execute all the tasks assigned to it does not exceed
the maximum load capacity that can be purchased from the
worker. Constraint C5 ensures that when assigning a task to a
worker, is be executed within the task deadline εi. Constraint
C6 ensures that for each worker, the total reward gained from
all the tasks assigned to it is no less than a certain threshold.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of MWORA com-
pared to a baseline resource allocation approach, referred to
as Requesters-Oriented Fair Allocation (ROFA). ROFA is a
representative of existing resource allocation schemes that
focus on fairness in terms of the QoS provided to requesters
without considering the satisfaction of workers [7]. Note that
ROFA does not support multitiered computational capabilities.
In order to show the effect of the multitiered computational
capabilities fostered by MWORA, we implement ROFA twice,
once with multitiered computational capabilities and once
where each worker grants only a single level of computational
capabilities. The former approach is referred to as ROFA-MC,
and the latter is referred to as ROFA-SC.

In order to show the effect of satisfying workers, we
implement MWORA, ROFA-MC, and ROFA-SC over mul-
tiple rounds, where only the satisfied workers remain in the
system for the next round to execute the incoming tasks. To
demonstrate this effect, we show the results of each scheme
for the first and last rounds, referred to as MWORA-F and
MWORA-L, ROFA-MCF, ROFA-MCL, and ROFA-SCF and
ROFA-SCL, respectively.

We use the following performance metrics: 1) the average
response delay which is the average time taken to offload and
execute the tasks (i.e, the average γij , where γij is given by
Eq. 3), 2) the service capacity ratio, which is the ratio of the
number of successfully executed tasks to the total number of
tasks, 3) the workers satisfaction ratio, which is the ratio of
the number of workers that acquire their desired satisfactory
reward sj to the total number of workers, 4) the workers
fairness, which is calculated using Jain’s fairness index [18],
denoted by F , and is given by Eq. 5, where πj denotes the
actual reward obtained by worker wj , and F ranges from 0
(best case scenario) to 1 (worst case scenario), and 5) the
total energy consumption of workers, which is the sum of the
energy consumed by each worker due to task execution, as
given by Eq. 6, where µj is the on-board CPU capacitance of
worker wj , and λ = 2.

F =

(∑n
j=1 πj − sj

)2
n ·
∑n
j=1

(
π2
j − s2j

) (5)

∑
j∈W

∑
i∈T

xijµjqiLic
λ−1
ij (6)

A. Simulation Setup

MWORA, ROFA-MC, and ROFA-SC are all implemented
using Gurobi [13]. Simulations are performed over 500m ×
500m area, where all requesters and workers are uniformly
distributed. The total number of tasks is set to 250, and the
number of available workers is set to 100. The data size of
tasks is uniformly distributed in the range of [5,10] bits. Unless
otherwise specified, the computation intensity of tasks ranges
between [10, 20] cycles/bit. The propagation speed is set to
120 m/s, and the data rate is uniformly distributed in the range
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of [15,30] bits/sec. The maximum computation capability of
workers is set in the range of [300, 800] CPU cycles/sec. The
price per one CPU cycle that is specified by workers ranges
between [0.1, 0.4]. The factor δ is set to 0.9, whereas αj ranges
between [0.1, 0.4]. The satisfactory profit of workers ranges
between [100, 250], and ΩjH and ΩjL are set in the range of
[90, 250] and [5, 89], respectively.

The budget is set to 2500. The value of ψ was set to 80%.
The deadline of tasks ranges between [0.5, 10] seconds. The
on-board capacitance of all workers µj is set to 10−11 , and
λ is set to 2.

Simulations are conducted over 5 rounds to show the effect
of workers satisfaction. Each round is a new time interval
during which the SP assigns incoming tasks to operating
workers. Workers who are unsatisfied with their reward leave
the system, so the number of operating workers can decrease
between successive rounds. To demonstrate this effect, we
present the first and last rounds of each scheme.

B. Simulation Results and Analysis

Initially, we evaluate the performance of MWORA, ROFA-
MC, and ROFA-SC in terms of the average response delay, as
shown in Fig. (1a). For the first round, MWORA and ROFA-
MC have identical values of the average response delay for the
same values of q. This is because the workers in MWORA
and ROFA-MC dedicate the same amount of computational
capability cij . For ROFA-SC, as mentioned earlier in section
IV, all the workers in the system have a single level of compu-
tational capability, dedicating their maximum δcmax

j capability.
As a result of constraint C4, the workers are assigned a single
task at a time. Hence, ROFA-SC provides the lower bound on
the achievable average response delay since all workers are
exploited at their maximum computational capability. On the
other hand, it is seen in Fig. (1a) that MWORA and ROFA-MC
do not exhibit identical values for the average response delay
in the last round. In fact, MWORA consistently outperforms
ROFA-MC in the last round, even though the workers dedicate
the same computational capability to these two schemes. This
is because MWORA will retain a higher number of workers
cooperating with the SP in the long run since it specifically
considers workers’ satisfaction, unlike ROFA-MC. For ROFA-
SC in the last round, it is noted that it provides the lower
bound on the achievable average response delay because the
workers in ROFA-SC operate at their maximum available
computational capability, as mentioned earlier.

Since the average response delay accounts for the time
needed to execute a task, we observe that schemes show an up-
ward trend as the average computational intensity q increases
in Fig. (1a). Moreover, MWORA, ROFA-MC, and ROFA-SC
exhibit an increase in the average response delay between the
first and last rounds. This is because, in the last round, fewer
workers are subscribed to the service, while all the workers
unsatisfied with their received rewards unsubscribed, leaving
fewer workers to handle the incoming task requests and thus
incurring higher response delays. Note that the advantage
of our MWORA scheme and its consideration of workers’

satisfaction is clearly shown by comparing its performance
in the last round to ROFA-MC for increasing values of
q. Particularly, the performance gap regarding the average
response delay grows significantly larger as q increases, with
MWORA consistently outperforming ROFA-MC, and this is
because, again, MWORA retains a more significant number
of workers that are satisfied with their rewards and hence, has
more workers to take on the incoming task requests. For q =
30, MWORA shows a 45.7% decrease in the average response
delay compared to ROFA-MC.

Second, we examine the service capacity in Fig. (1b).
Similar to Fig. (1a), MWORA and ROFA-MC exhibit identical
values of the service capacity in the first round since the
workers offer identical amounts of computational capability
for task execution. Additionally, ROFA-SC consistently under-
achieves regarding the service capacity in the first round
compared to MWORA and ROFA-MC. This is because the
workers in ROFA-SC are constrained to perform a single
task at a time, which effectively reduces the overall service
capacity. On the other hand, MWORA surpasses both ROFA-
MC and ROFA-SC in the last round. Again, this is due to
the consideration of workers’ satisfaction, which increases the
number of satisfied workers available to execute more tasks
in the long run. The workers in MWORA continue to operate
with SP. More importantly, in MWORA, a primary goal is to
maximize the service capacity. Hence, workers are assigned
more tasks as long as their computational capabilities are
not exceeded, as conditioned by constraint C4. Furthermore,
by examining Fig. (1b), we note that all schemes display a
decrease in the service capacity for increasing values of the
computational intensity q in both the first and last rounds of
each scheme. This is because when the computational intensity
increases, the pij of task ti increases, and the budget of the
SP will not be enough to execute the same number of tasks
in the preceding experiment.

Third, we evaluate the performance of MWORA, ROFA-
MC, and ROFA-SC in terms of workers’ satisfaction ratio
in Fig. (1c). The workers’ satisfaction ratio metric highlights
the core advantages of our MWORA scheme. As depicted,
MWORA offers superior performance in the first round com-
pared to ROFA-MC and ROFA-SC. MWORA exhibits a 50%
increase in the workers’ satisfaction ratio compared to ROFA-
MC and a 76% increase compared to ROFA-SC for q=15.
Similar behavior is seen in the last round as well. ROFA-
SC offers the lowest worker’s satisfaction ratio in the first
and last rounds compared to MWORA and ROFA-MC since
ROFA-SC workers operate at a single level of computational
capabilities. In addition, the workers in ROFA-MC and ROFA-
SC execute the assigned task without checking if it renders
the worker’s required satisfactory profit sj . Note that the
workers’ satisfaction ratio is calculated by considering the
remaining workers in the system at each round. Consequently,
the workers’ satisfaction ratio will be higher for all three
schemes in the next round than in the preceding round. In
addition, the workers’ satisfaction ratio increases as the com-
putational intensity increase for the same scheme in the same
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Fig. 1: Performance results of MWORA, ROFA-MC and ROFA-SC over varying average task computation intensity q

round, and this is because pij increases for tasks with higher
computational intensity. Hence, workers are rewarded more
when performing tasks with higher computational intensity,
and their satisfaction levels consequently increase.

Fourth, we investigate the performance of MWORA, ROFA-
MC, and ROFA-SC in terms of fairness. In MWORA, workers
are assigned tasks in one of two ways. First, the SP assigns
the worker a single task by purchasing the higher amount of
computational capability δcmax

j , causing the requested sj to be
met. Alternatively, the SP assigns the worker multiple tasks at
the αjδcmax

j level, and in total, the assigned tasks will meet the
required sj . This assignment process depends on the available
budget β, pij of each task and the task’s deadline εi. Besides
the fairness from the workers’ perspective, the SP also con-
siders the fairness from the requesters’ perspective. Constraint
C5 guarantees that the provided cij level by the worker for the
task will ensure it is finished within its deadline. Therefore, we
should consider both of the above cases to measure fairness.
Specifically, we take into consideration whether worker wj
received a reward that meets their specified threshold sj or an
amount that exceeded sj .

Fig. (1d) shows the fairness index against increasing values
of computational intensity. Recall that in fairness Eq. 5, the
lower the value, the fairer the system. As seen in Fig. (1d),
MWORA surpasses ROFA-MC and ROFA-SC in the achieved
fairness in the first and last rounds, for varying levels of
q, since MWORA takes the required sj by workers into
consideration. Notably, we note that ROFA-SC shows the
poorest performance since workers perform a single task at

a time.
Fifth, we study the impact of the total energy consumed by

the workers in Fig. (1e). Similar to our observations in Fig.
(1a) and (1b), MWORA and ROFA-MC show identical energy
consumption levels in the first round since the dedicated
computational capability levels are similar. In addition, since
in ROFA-SC each worker performs a single task at a time,
ROFA-SC has a lower energy consumption than MWORA
and its ROFA-MC counterpart in the first and last rounds.
It has a significantly lower number of workers at each round
than MWORA and ROFA-MC. In the last round, MWORA
performs a higher number of tasks than ROFA-MC and
exhibits higher energy consumption. This represents the cost
incurred by MWORA in order to achieve adequate workers’
satisfaction.

Finally, we conclude our analysis by plotting the average
response delay for the even number of rounds in Fig. (2).
Note that in Fig. (1), we plotted our metrics for the first
and last (fifth) rounds. On the other hand, Fig. (2) shows the
performance of our proposed scheme in the long run when the
average computational intensity q is set to 20. The behavior
of the investigated schemes is similar to that shown in Fig.
(1a), sustaining an upward trend between progressing rounds.
Similarly, MWORA surpasses ROFA-MC, while ROFA-SC
exhibits the highest response delay for the above-mentioned
reasons. More importantly, Fig. (2) reveals that MWORA
reaches a steady level regarding the average response delay.
As shown in the figure, MWORA experiences a negligible
increase in the response delay after the sixth round, whereas
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Fig. 2: Average response delay over varying rounds

ROFA-MC continues to show significant growth as rounds
progress. Hence, in addition to the demonstrated advantages of
our MWORA scheme, an important characteristic is that the
system performance stabilizes after a while, and it no longer
exhibits an exponentially increasing trend. This is because
MWORA sustains a certain number of workers that become
guaranteed recurrent subscribers since their satisfaction is
always met through the SP’s available budget. In other words,
considering workers’ satisfaction improves workers’ retention
in the system. In addition, it offers a cap on the average
response delay, which benefits the task requesters.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the Multitiered Worker-
Oriented Resource Allocation (MWORA) scheme. MWORA
leverages the prolific yet underutilized computational re-
sources of EEDs. This can help democratize the edge and
enable more players to build and manage their own edge
cloud. In contrast to existing schemes, MWORA considers
that EEDs tend to be user-owned devices, and are thus subject
to a dynamic user access behavior, which can dynamically
impact their computational capabilities and introduce a human
factor related to preserving users’ convenience. To address this
issue, MWORA fosters multitiered computational capabilities
that can be granted by workers, compliant with the level
of their own convenience that they are willing to sacrifice
based on the corresponding profit of the offloaded task. In
addition, MWORA achieves fair resource allocation from the
worker’s perspective by maintaining the demanded satisfactory
profit. This can encourage workers to remain in the system
and recurrently donate their computational services, which
can significantly impact the QoS in the long run. Extensive
simulations have shown that MWORA achieves significant
improvements compared to other baseline resource allocation
schemes, in terms of average response delay, service capacity,
worker satisfaction ratio, and fairness. In future work, we plan
on using game theory to solve the resource allocation problem.
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