
On Demonstrating the Gain of SFC Placement with
VNF Sharing at the Edge

Amir Mohamad
School of Computing

Queen’s University
Kingston, Ontario, Canada

Email: {a.mohamad}@cs.queensu.ca

Hossam S. Hassanein
Schoole of Computing

Queen’s University
Kingston, Ontario, Canada

Email: {hossam}@cs.queensu.ca

Abstract—The demand for edge resources is increasing
and will continue to rise especially because of delay-sensitive
applications. Because of the limited resources at the network
edge, efficient resource utilization will play a crucial role. In
this paper, we demonstrate the gain of VNFs sharing-based
service function chaining (SFC) requests placement, as a way of
satisfying more requests with average less resources per request.
We formulated the sharing-based SFC placement as an integer
linear program (ILP) to minimize the overall deployment
cost, hence optimize resource utilization and yet satisfy
the QoS requirements. Our experiments show that sharing
deployed underutilized VNFs will help satisfy 9-47% more
SFC requests with on average 14-46% less resources per request.

Index Terms—NFV, VNF placement, Service Function Chain-
ing, edge computing, MEC

I. INTRODUCTION

The next generation of mobile networks (5G) is expected

to address performance requirements of divers use cases in

different vertical industries. Massive machine type communi-

cations (mMTC), enhanced mobile broadband (eMBB), and

ultra-reliable low-latency communications (URLLC), are the

categories of addressed use cases. To fulfill the requirements

of these diverse use cases, innovations and enhancements are

needed on the radio side and the networking (core) side.

On both sides, network function virsualization (NFV) [1],

software-defined networking (SDN), and edge computing are

to play a principal role [2].

All services, including network services, consist of compo-

nent functions that are stitched together in a specific order to

form service function chains (SFCs). NFV brings elasticity

to the creation and deployment of services by virtualizing

their functional components and decoupling them from their

specially-built hardware [3].

A virtualized infrastructure of telco clouds extending from

the network core to the perimeter of the access network,

forms a layer that can be used to host delay-sensitive network

services and applications of service providers. The layer could

even be extended to the cell-sites in the radio access network

(RAN) to host virtualized base-band units (BBUs) as well

This research is supported by a grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC) under grant number:
RGPIN-2019-05667.

as other third-party workloads. The part of telco cloud that

extends from access central offices (COs) to the RAN is called

the edge. With the growing interest in delay-sensitive applica-

tions, such as AR/VR, telehealth, online gaming, autonomous

vehicles, and content delivery services, the demands put on

the edge part of telco clouds will be high and no doubt will

grow significantly after the field deployment of 5G networks.

In mobile/multi-access edge computing (MEC) as the mo-

bile networks version of edge computing, hosted services

will have access to user mobility data as well as wireless

channel related measurements. With such visibility, service

providers will be able to take actions to enhance both the

quality of service (QoS) and users’ perceived quality of

experience (QoE) at a millisecond scale. Having access to such

information would not be viable anywhere else, that is why

network edge especially MEC is regarded as the monetization

arm that telecommunications service providers (TSPs) will

utilize for profit and to cover the cost of upgrading.

Network edge has limited resources compared to the core

cloud. Considering the anticipated high demand for edge

resources and the importance of the edge being a precious

asset for TSPs, the efficient utilization of edge resources will

play a significant role in the fulfillment of delay-sensitive

services and applications requirements.

In TSP telco clouds, virtual network functions (VNFs) that

are assigned all required compute and bandwidth resources,

are expected to operate at its full capacity. However, due to

changing operation conditions, some VNFs might be under-

utilized, that is to receive and process traffic less than its full

capacity. With SFC requests continuously arriving, it would be

more resource-efficient to utilize deployed underutilized VNFs

first, and only deploy a new VNF instance if no deployed

underutilized VNF of the same type already exists. All this

should be done with the SFC performance requirements, end-

to-end latency in our case, in mind.

To this end, in this paper, we demonstrate the gain in

efficient resource utilization and number of satisfied SFC

requests by sharing VNFs across different SFCs. The main

contribution of this paper is the introduction of VNF sharing-

based SFC placement. We formulated the SFC placement and

sharing as an integer linear program (ILP) model to demon-

strate the VNF sharing gain. The objective is to minimize the

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: Queen's University. Downloaded on April 03,2021 at 13:49:19 UTC from IEEE Xplore. Restrictions apply.

total deployment cost, hence optimize resource utilization and

still satisfy QoS requirements/constraints. Also, we compared

number of satisfied requests and average required resources

per SFC request of our sharing-based placement against no-

sharing placement.

The remainder of this paper is structured as follows. In

section II, we present related work. Proposed sharing-based

SFC placement, network model, VNFs, SFCs and problem

formulation are detailed in section III. Performance evaluation,

simulation settings, experiments and results will be covered in

section IV, section V concludes the paper.

II. RELATED WORK

With the introduction of NFV in 2012 [1], service provi-

sioning became more agile and placement of service func-

tions/VNFs as the building block of SFCs started to gain

traction. The wheel was not reinvented, researchers started by

building on already existing body of research on cloud com-

puting, virtual machine (VM) placement (VMP) and virtual

network embedding (VNE). Due to the differences between

VNFs placement and VMP [4], more research into the area

was still needed. SFC placement is a two-step process: first,

resource allocation of VNFs; second, the traffic steering/path

selection. Since 2012, considerable research work was con-

ducted, some are generic VNF/SFC placement [5]–[14], while

others are more into specific settings and use cases, like VNF

placement at the edge-central cloud and service placement

and replication in 5G edge [15]–[19]. The main goal in [15]

is to minimize both end-to-end delay and deployment cost of

mission critical delay-sensitive service chains, and the SFC

placement is formulated as a MIP and further approximated

using tabu search algorithm. The work in [16], proposes

VNF placement on edge-central cloud in away that optimizes

resource utilization and satisfies QoS requirements using an-

alytic queuing and MILP models. In [19], authors propose

optimizing the QoS of cloud RAN (C-RAN) by dynamically

configuring remote radio heads (RRHs) to proper BBU sectors

according to the varying traffic conditions. For further details

on VNF placement, [20] is a recent survey on VMP and VNF

placement.

In the majority of papers surveyed, the VNF/SFC placement

is formulated as an integer programming (ILP, MIP or MILP)

model. After demonstrating the bottom line performance, a

more practical heuristic placement algorithm is then presented.

Sharing of VNF by more than one SFC flow is triggered by

the fact that some VNFs could be shared by SFC flows, such

as anti-virus. With the exception of [5], none of the surveyed

papers considered sharing deployed underutilized VNFs while

deploying new SFC requests. The work in [5], proposes

sharing VNF among SFC flows based on a predefined number

of flows that a VNF can handle. The fixed number of flows

a VNF can handle doesn’t reflect the changing operation

conditions and will still leave some VNFs underutilized. To

the best of our knowledge, the sharing/utilization of already

deployed underutilized VNFs based on the currently unused

capacity, was never proposed as a way of satisfying more

4

1

8

32

6

5

V1 V2 V3

SFC Request

C1

C2
Fig. 1: Substrate network and SFC request placement.

SFC requests with less resources and yet satisfy the perfor-

mance/QoS requirements.

III. PROPOSED PLACEMENT TECHNIQUE

In our sharing-based placement and upon the arrival of SFC

request, the priority is to use already deployed underutilized

VNFs of the same type as those in current SFC request. At

some point in the future, currently underutilized VNFs will

get fully utilized even without hosting guest SFCs; hence,

any sharing mechanism should take this into consideration.

However, for demonstrating the benefits of sharing-based

placement, we assume that currently underutilized host VNFs

will remain so until the guest SFCs are concluded. We do not

specify explicit start and termination points for SFC requests,

rather, first and last VNFs of each SFC are regarded as the

source and destination, respectively. Moreover, we assume the

existence of an SDN controller (SDN-C) which will take care

of configuring forwarding plane switches to forward traffic

according to the SFC selected path. An SFC mechanism is

assumed to be used in the TSP service domain, either using

network service header (NSH) or SDN-C bump-in-the-wire

technique that uses port-pairs, port-pair groups, and port-

chains to configure SFCs. The latter is used in OpenStack

Tacker and Open Virtual Networking (OVN).

In the rest of this section we will explain substrate network

model and problem formulation.

A. Substrate Network Model

The substrate network is modeled as a graph G(N,E),
where N is the set of nodes and E is the set of links. To be

more generic, we modeled all our network nodes to be capable

of hosting VNFs. The links between nodes are directional, as

shown in Fig. 1, a link between nodes 1 and 2 means there

are two links, one link from node 1 to node 2 and another

link from node 2 to node 1.

Each node has its own compute resources, CPU cores

and RAM. Each link has its bandwidth capacity as well

as its propagation delay, which is a function of its length.

When created, resources amounts are assigned randomly to

Authorized licensed use limited to: Queen's University. Downloaded on April 03,2021 at 13:49:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Substrate network parameters

Parameter Description
N Set of substrate network nodes

E Set of substrate network links

cpuc(n) CPU capacity in cores of node n ∈ N

ramc(n) RAM capacity in GBs of node n ∈ N

cpuav(n) Available CPU cores at node n ∈ N

ramav(n) Available RAM GBs at node n ∈ N

L
nn

′ A link exists from node n to node n
′
, n, n

′ ∈ N

bwc(Lnn
′) BW capacity in Mbps of link L

nn
′

bwav(Lnn
′) Available BW at link L

nn
′

Del(L
nn

′) Propagation delay of link L
nn

′

V1 V2 V3

- S (Shareable) - D (Drops)
- NS (Not-Shareable) - ND (No Drops)

Max-Flow=146
Inflow=88
Outflow=88

Max-Flow=182
Inflow=88
Outflow=68

Max-Flow=109
Inflow=68
Outflow=50

CPU: 4
RAM: 8
S & ND

CPU: 5
RAM: 10
S & D

SFC j

CPU: 3
RAM: 6
NS & D

Fig. 2: VNFs of sfci and their required resources, max-flows, inflows and
outflows

nodes and links. The substrate network topology is fixed

and described by a connectivity matrix. The description of

substrate network parameters is provided in Table I.

B. VNFs and SFC requests

An SFC request consists of an ordered list of VNFs. VNFs

are selected from a list V of available already on-boarded

VNFs. In the list of available VNFs, each VNF has a type,

CPU and memory requirements, and the maximum traffic

flow it can handle if assigned the resources required. Some

VNFs, like firewalls, drop packets, in that case outflow should

reflect such dropping. The outflow will be equal to inflow if

a VNF does not drop or compress the inflow. As mentioned

previously, some VNFs can be shared among SFC flows while

others not. S(vi) is a flag to determine whether VNF vi is

shareable or not. Take for example request sfcj shown in Fig.

2, it consists of 3 VNFs. The resources required as well as

other parameters of each VNF are shown (real numbers from

our simulation). As we can see the max-flow is proportional

to the resources assigned to VNFs. For example v2, v1 and

v3 require 5, 4, and 3 CPU cores and can handle 182, 146
and 109 max-flows, respectively. Once selected in sfcj , the

inflow and outflow of VNFs should be determined. As shown

in Fig. 2, the inflow of VNF vji+1, Fin(v
j
i+1), is the out flow

of preceding VNF vji , Fout(v
j
i), for all vi ∈ sfcj . Description

of VNF and SFC request parameters is in Table II.

TABLE II: VNF and SFC request parameters

Parameter Description
V Set of available/on-boarded VNFs

vi Is a VNF, where vi ∈ V

cpu(vi) CPU cores required for VNF vi ∈ V

ram(vi) RAM GBs required for VNF vi ∈ V

Fmax(vi) Maximum inflow VNF vi can handle

S(vi) Flag to indicate VNF vi is shareable

Drop(vi) Flag to indicate that VNF vi drops/compresses inflow

sfcj SFC request j

|sfcj | Number of VNFs in sfcj

vji The ith VNF of sfcj

Fin(v
j
i) Actual inflow that VNF vi will be serving

Fout(v
j
i) Outflow VNF v will produce

Del(sfcj) Maximum end-to-end delay of sfcj

TABLE III: Decision variables and Constants

Variable Description
Xj

in Binary decision for placing VNF vi of sfcj at node n

Rj
in Binary decision for sharing the flow of VNF vi of sfcj

with already deployed VNF of same type at node n

Di
n VNF of same type as vi already deployed at node n

Fav(Di
n) Available unused flow of vi at node n

Uc(cpu) Unit cost of cpu at all nodes

Uc(ram) Unit cost of ram at all nodes

Uc(bw) Unit cost of bw at all links

C. Problem Formulation

We formulated our problem as an ILP model, where all de-

cision variables are binary and some constraints are quadratic.

With SFC request sfcj consisting of VNFs vi, i ∈ [1−|sfcj |],
our decision variables are; Xj

in if equals to one means a new

instance of VNF vi of sfcj is to be placed at substrate node n
and Rj

in means that VNF vi of sfcj is to share its traffic flow

with already deployed underutilized VNF of the same type

at substrate node n. Decision variables and other parameters

descriptions are in Table III.

1) Objective Function: The objective is to select the place-

ment that minimizes the overall cost, hence optimize resource

utilization. The cost of instantiating a new instance of VNF vji
includes total required cpu, ram and bw costs. But when an

already deployed VNF of the same type as vji exists the cost

only includes total required bw cost. The objective function

in equation (1) is formulated in a way to favor sharing over

instantiating and placing new VNF instances. The first term

represents the cost of compute resources in case of deploying

a new instance of VNFs. The second term is for the cost

of bandwidth either in the case of sharing or the case of

deploying a new VNF instance.

Authorized licensed use limited to: Queen's University. Downloaded on April 03,2021 at 13:49:19 UTC from IEEE Xplore. Restrictions apply.

min

|sfcj |∑

i=1

∑

n∈N
[cpu(vji)Uc(cpu) + ram(vji)Uc(ram)]Xj

in+

Fout(v
j
i)Ucbw[X

j
in +Rj

in]
(1)

2) Constraints: Constraints are needed to assure that our

model will converge to a feasible solutions. A feasible solution

has to have each VNF of an SFC request mapped only once

to a physical node. Moreover, the mapping should be either

to place a new instance or to share already deployed instance,

see (2).

∑

n∈N
Xj

in + Rj
in = 1 , ∀i ∈ [1− |sfcj |] (2)

Constraints (3) and (4) ensure that, when a sharing decision

is to be taken, there has to be an already deployed shareable

VNF of the same type as the one in hand and there is enough

available/unused flow that is enough for current VNF inflow.

∑

n∈N
Xj

in + Dj
i S(vi) R

j
in = 1, ∀i ∈ [1− |sfcj |] (3)

Fin(v
j
i) R

j
in ≤ Fav(D

i
n), ∀i ∈ [1− |sfcj |] (4)

For the placement decision Xj
in to be valid, there has to be

enough cpu and ram resources at node n, constraints (5) and

(6) ensure the availability of such compute resources.

|sfcj |∑

i=1

cpu(vji) X
j
in ≤ cpuav(n), ∀n ∈ N (5)

|sfcj |∑

i=1

ram(vji) X
j
in ≤ ramav(n), ∀n ∈ N (6)

For any two consecutive VNFs vji and vji+1 of sfcj to be

placed on two nodes n and n
′
: first, there has to be a link Lnn′

connecting the two nodes, constraint (7); second, the outflow

of first VNF Fout(v
j
i) should not exceed available bandwidth

at that link bwav(Lnn′), constraint (8). In both constraints, the

two terms (Xj
in + Rj

in) and (Xj

(i+1)n′ + Rj

(i+1)n′) represent

the four possible placement decisions our model might take.

First decision, to deploy new instances of vji and vji+1 at nodes

n and n
′
, respectively. Second, to share already deployed

instances of vji and vji+1 at nodes n and n
′
. Third, deploy

a new instance of vji at node n and share a deployed instance

of vji+1 at n
′
. Fourth, share a deployed instance of vji at node

n and deploy a new instance of vji+1 at node n
′
.

Lnn′ (Xj
in + Rj

in)(X
j

(i+1)n′ + Rj

(i+1)n′) = 1

∀n, n′ ∈ N & ∀i ∈ [1− (|sfcj | − 1)]
(7)

∑

n∈N

∑

n′∈N
Fout(v

j
i)(X

j
in + Rj

in)(X
j

(i+1)n′ + Rj

(i+1)n′)

≤ bwav(Lnn′), ∀i ∈ [1− (|sfcj | − 1)]
(8)

Finally, the performance requirements (end-to-end latency)

of sfcj must be satisfied. Even though end-to-end latency has

many components such as processing delay, queuing delay,

propagation delay and virtualization delay [11], for simplicity,

the only component we opted for is the fixed propagation

delay, see constraint (9).

|sfcj |−1∑

i=1

∑

n∈N

∑

n′∈N
Del(Lnn′) (Xj

in + Rj
in)

(Xj

(i+1)n′ + Rj

(i+1)n′) ≤ Del(sfcj)

(9)

IV. PERFORMANCE EVALUATION

To evaluate and demonstrate the performance gain of

sharing-based SFC placement technique, we developed a Java-

based simulation environment. The simulation environment

generates substrate network model, creates SFC requests,

executes the placement decisions, and tracks the network

model total utilization as well as other measurments. The ILP

model is solved using the Gurobi solver [21]. All simulation

experiments executed on Dell OPTIPLEX 9020 machine of

Intel core i7@3.6 GHz, 16 GB RAM with Windows 10

Enterprise. We used the NSFNET network topology with 13

nodes and 32 directional links.
Each time a substrate network model is created, the topol-

ogy is fixed, but the resources cpu, ram and bw are drawn

randomly from the ranges [8− 64] cores, [16− 128]GB and

[100 − 1000]Mbps, respectively. Moreover, the link length,

that determines propagation delay, is also random and drawn

from the range [50− 1000]m.
SFC requests are also generated randomly. The SFC request

length, resource requirements of each VNF, each VNF share-

ability and if it drops/compresses inflow, and VNFs inflow

and outflow, all these parameters are random and drawn from

predetermined ranges, as follows:

• SFC length range [2− 10] vnfs
• SFC end-to-end latency = (|sfcj | − 0.5) ∗ average-link-

delay

• VNF cpu range [2− 8] cores
• VNF ram range [4− 16]GB
• VNF maxflow is a function of required/assigned cpu

and ram
• VNF inflow range [0.15∗maxflow−maxflow]Mbps
• If VNF drops/compresses, outflow range [0.4∗inflow−

inflow]. If not, outflow = inflow

We chose to set Uc(cpu) = 2.5, Uc(ram) = 1.7, Uc(bw) =
2, these arbitrary values have no effect on the results as they

are the same on both sides of any comparison.

Authorized licensed use limited to: Queen's University. Downloaded on April 03,2021 at 13:49:19 UTC from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

70

80

90

NM1 NM2 NM3 NM4 NM5 NM6 NM7 NM8 NM9 NM10

Network Models

Sharing Total Utilization % Sharing Satisfied requests

No-Sharing Total Utilization % No-Sharing Satisfied requests

Fig. 3: Average total utilization and Average satisfied SFC requests (out of 30
requests) per network model. Experiment for each network model is repeated
5 times and the averages are presented

A. Experiments

For the purpose of demonstrating the gain, more requests

satisfied with less average required resources per request,

we designed two experiments. In the first experiment, we

compared the proposed VNF sharing-based placement versus

VNF no-sharing-based placement. In the second experiment,

we studied the impact of increasing number of shareable VNFs

in the list of available VNFs, hence number of deployed

shareable VNFs.

1) Sharing vs No-Sharing: In this first experiment, 10

random network models are generated. For each network

model an identical copy is cloned, one is used to satisfy

SFC requests with shareable VNFs and the other without

shareable VNFs. For each identical pair of network models,

30 SFC requests are generated of the same VNF list. Each

SFC request is cloned and VNFs of the clone is set to non-

shareable, one used for sharing-based placement and the clone

for no-sharing-based placement, respectively. Each network

model pair trial is repeated 5 times and the averages of the

number of satisfied SFC requests and closing cpu utilization

are recorded. Since the amount of ram resources is double

the cpu resources both in substrate nodes and VNFs, we

will only report and compare the cpu utilization. The bw
utilization is ignored as it will be the same for sharing-based

and no-sharing-based placement. As the results reveal, in Fig.

3, sharing the allocated capacity of already deployed VNFs,

resulted in significant increase in number of satisfied SFC

requests ranging from 9% to 47%, yet, as expected, using

less compute resources. That is, accepting the same number

of requests, the required resource are lower for sharing-based

placement compared to no-sharing-based placement.

To show the average percentage of required/utilized re-

sources per satisfied SFC request, in each network model trial

0

1

2

3

4

5

6

7

NM1 NM2 NM3 NM4 NM5 NM6 NM7 NM8 NM9 NM10

Av
er

ag
e

Re
ou

rc
e

Ut
ili

za
tio

n
pe

r S
at

isf
ie

d
SF

C
re

qu
es

t (
%

)

Network Models

Sharing No-sharing

Fig. 4: Average percentage of required resources per SFC request

we divided the closing utilization by number of satisfied SFC

requests. As shown in Fig. 4, on average, the required/utilized

resources per request for sharing-based placement is 14% to

46% less compared to no-sharing-based placement.

2) Number of Shareable VNFs (70%-based vs 30%-based):
In this second experiment we study the impact of the number

of shareable VNFs in the list of available VNFs. To do so, we

created one typical pair of network models and we created

a typical pair of available VNFs list. The first list is with

70% of its VNFs shareable and the other list is with 30%

shareable VNFs. We used the two VNF lists to generate

two sets of SFC requests, each with 30 requests. Peer SFC

requests in the two sets are of the same length. For each

network models pair, we repeated this experiment 10 times

and reported the averages. The total number of accepted

requests and the resources utilized are shown in Fig. 5. We

observed that number of shareable VNFs impacts number

of satisfied request and the required resources. Over the 10

experiments, number of accepted SFC requests is 13% to

26% higher for the 70%-based requests than for the 30%-

based requests. On the other hand, the utilized resources of

the 70%-based accepted requests range from 11% lower to

only 5% higher than the 30%-based requests. When the same

number of requests accepted, the amount of resources utilized

is 11% less for the 70%-based requests than for the 30%-based

requests.

V. CONCLUSION AND FUTURE WORK

To take advantage of the changing operation conditions and

the fluctuation in traffic flow over different periods, in this

paper, we demonstrated the performance gain of sharing-based

SFC requests placement. The demonstrated gain is in the form

of increased number of satisfied SFC requests and a reduction

of resources required to satisfy these requests. Indeed, the

shared-based placement has to be done with current network

Authorized licensed use limited to: Queen's University. Downloaded on April 03,2021 at 13:49:19 UTC from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

60

70

80

90

100

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9 Ex10

Experiment Repetitions

Total Utilization (70%) Satisfied requests(70%) Total Utilization (30%) Satisfied requests(30%)

Fig. 5: Comparison of closing utilization and satisfied SFC requests (out of
30 requests) between 70%-based shareable VNFs and 30%-based shareable
VNFs

load, and individual deployed VNFs’ available flow in mind.

Unlike previous related work, our sharing-based placement

takes the decisions by considering current utilization status

of deployed VNFs not based on a predetermined number of

SFC flow a VNF can handle. The latter may still leave some

VNFs underutilized. Our findings will help TSPs efficiently

utilize their edge resources. This gain will translate into more

earnings and better users satisfaction due to more satisfied

requests/less blocked requests.

As a next step, we plane to consider different service

categories. For example, a premium category service compo-

nents shouldn’t be shared even if underutilized. Also, we will

incorporate more stochastic components such as, the expected

time window a deployed VNF will remain underutilized, the

expected available flow during such window, and the expected

SFC requests arriving during the same window.

REFERENCES

[1] ETSI, “Network functions virtualisation: An introduction, benefits,
enablers, challenges & call for action,” ETSI, Introductory White Paper,
October 2012.

[2] F. van Lingen, M. Yannuzzi, A. Jain, R. Irons-Mclean, O. Lluch,
D. Carrera, J. L. Perez, A. Gutierrez, D. Montero, J. Marti, R. Maso,
and a. J. P. Rodriguez, “The unavoidable convergence of nfv, 5g,
and fog: A model-driven approach to bridge cloud and edge,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 28–35, Aug 2017.

[3] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro,
“Service function chaining use cases in mobile networks,” IETF, Internet
Draft, January 2019.

[4] J. Cao, Y. Zhang, W. An, X. Chen, J. Sun, and Y. Han, “Vnf-fg
design and vnf placement for 5g mobile networks,” Science China
Information Sciences, vol. 60, no. 4, p. 040302, Mar 2017. [Online].
Available: https://doi.org/10.1007/s11432-016-9031-x

[5] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE 3rd International Conference on
Cloud Networking (CloudNet). IEEE, 2014, pp. 7–13.

[6] T. Kim, S. Kim, K. Lee, and S. Park, “A qos assured network service
chaining algorithm in network function virtualization architecture,” in
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, May 2015, pp. 1221–1224.

[7] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted nfv service chain
deployment based on affiliation-aware vnf placement,” in IEEE Global
Communications Conference (GLOBECOM). IEEE, 2016, pp. 1–6.

[8] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of
service function chains,” in IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2016,
pp. 128–133.

[9] Z. Ye, X. Cao, J. Wang, H. Yu, and C. Qiao, “Joint topology design and
mapping of service function chains for efficient, scalable, and reliable
network functions virtualization,” IEEE Network, vol. 30, no. 3, pp.
81–87, 2016.

[10] S. Khebbache, M. Hadji, and D. Zeghlache, “Virtualized
network functions chaining and routing algorithms,” Computer
Networks, vol. 114, pp. 95 – 110, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128617300087

[11] D. B. Oljira, K. Grinnemo, J. Taheri, and A. Brunstrom, “A model
for qos-aware vnf placement and provisioning,” in IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN), Nov 2017, pp. 1–7.

[12] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function
chain deployment and readjustment,” IEEE Transactions on Network
and Service Management, vol. 14, no. 3, pp. 543–553, 2017.

[13] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” IEEE/ACM Transactions on Networking (TON), vol. 26, no. 4,
pp. 1562–1576, 2018.

[14] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network func-
tions placement and routing optimization,” in IEEE 4th International
Conference on Cloud Networking (CloudNet). IEEE, 2015, pp. 171–
177.

[15] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “Vnf
placement optimization at the edge and cloud ,” Future Internet,
vol. 11, no. 3, 2019. [Online]. Available: http://www.mdpi.com/1999-
5903/11/3/69

[16] F. Ben Jemaa, G. Pujolle, and M. Pariente, “Qos-aware vnf placement
optimization in edge-central carrier cloud architecture,” in IEEE Global
Communications Conference (GLOBECOM), Dec 2016, pp. 1–7.

[17] I. Farris, T. Taleb, A. Iera, and H. Flinck, “Lightweight service repli-
cation for ultra-short latency applications in mobile edge networks,”
in IEEE International Conference on Communications (ICC). IEEE,
2017, pp. 1–6.

[18] I. Farris, T. Taleb, M. Bagaa, and H. Flick, “Optimizing service
replication for mobile delay-sensitive applications in 5g edge network,”
in IEEE International Conference on Communications (ICC). IEEE,
2017, pp. 1–6.

[19] M. Khan, R. S. Alhumaima, and H. S. Al-Raweshidy, “Qos-aware
dynamic rrh allocation in a self-optimized cloud radio access network
with rrh proximity constraint,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 730–744, 2017.

[20] A. Laghrissi and T. Taleb, “A survey on the placement of virtual re-
sources and virtual network functions,” IEEE Communications Surveys
& Tutorials, 2018.

[21] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2018.
[Online]. Available: http://www.gurobi.com

Authorized licensed use limited to: Queen's University. Downloaded on April 03,2021 at 13:49:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

