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Abstract—With the abundant on-board resources in intelligent
vehicles, they have become major candidates for providing
ubiquitous services, including urban sensing. This paper pro-
poses an efficient recruitment scheme for vehicles in urban
sensing applications. Our trajectory-based recruitment (TBR)
scheme solves the problem of participant selection by considering
spatiotemporal availability of participants. The aim of TBR is
choosing the minimum number of vehicles that achieve a required
level of coverage for the area of interest. TBR utilizes the easy-
to-acquire trajectories of the candidate vehicles as indicators
of the availability of participants, and applies a minimal-cover
greedy algorithm for selection. The basic greedy algorithm is
adapted to handle some practical scenarios, including departing
vehicles and varying redundancy requirements. The paper also
discusses two data acquisition models for retrieving the sensing
data (on-demand and unsolicited). Assessment of TBR shows that
it achieves high levels of coverage even when vehicles do not stick
to their announced trajectories.

Keywords—Urban sensing, Recruitment, Smart vehicles.

I. INTRODUCTION

Urban sensing is gaining a high interest nowadays with
the diversified applications it can provide. Currently, sensors
in mobile devices are extensively used to support such applica-
tions. Although there is a wide scope of services made feasible
with such engagement of mobile devices [1], the use of these
devices has challenges, in particular dealing with the relative
scarcity of available resources. Concurrently, the plethora of
on-board resources in intelligent vehicles is pushing towards
utilizing them as mobile providers for ubiquitous services.
According to an analysis of the market growth of automotive
sensors in North America, the average number of sensors per
vehicle is expected to be 70 by end of 2013 [2]. This abun-
dance of various sensors along with other on-board vehicular
resources, such as the processing, storage and communication
resources, make intelligent vehicles major enablers for many
sensing applications and solutions. Furthermore, the mobility
of vehicles can be utilized to widen coverage scope and,
in turn, the range of applications that can be supported by
engaging vehicles in the sensing loop.

We categorize the applications and services that can be
provided by vehicular sensing into two categories: 1) instant
sensing and 2) on-move sensing applications. Mobile devices
typically provide instant sensing. With the high sensing ca-
pabilities of vehicles, the scope of such applications can be
widened. An example of an instant sensing application is
reporting weather conditions such as temperature and ambient

barometric pressure. The second category of sensing applica-
tions is made feasible by utilizing the movement of vehicles
and generating sensing data on the go. Examples include
monitoring road conditions, traffic and crowds, and providing
estimates of parking availability.

The general architecture of urban sensing consists of three
main elements as shown in Fig. 1. These elements are the
data contributors/participants, the service provider, and the data
consumers/end users. The process involves three main stages
as indicated in Fig. 1 as well: 1) The service provider asks
data contributors to perform sensing tasks, 2) after collecting
the required data, the data contributors send it to the service
provider, 3) the service provider, after performing required
data analytics, presents meaningful information to the data
consumers as part of a subscribed service. Data consumers/end
users may also initiate the process asking for specific informa-
tion.

Although utilizing vehicles as data contributors in urban
sensing brings many advantages, it comes with a challenge. In
an urban environment there can be many potential participants
in an area of interest, especially in a congested area or
well-travelled road segment. These participants cannot all be
recruited for a sensing task as the recruited participants should
be given incentives as a reward for the service they provide and
to encourage them to participate in the future. Since monetary
incentives have shown to be the most encouraging ones, the
service provider paying such rewards would like to minimize
the number of recruited participants and the amount paid for
each sensing task to handle limited budgets and maximize
profit, while providing an acceptable level of service to the
end user. Based on the above perspective directing recruitment
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Fig. 1. The architecture of urban sensing.
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of participants, the main objective of this paper is to introduce
a recruitment scheme that selects the minimum number of
participants achieving a given level of coverage for the area
of interest in a cost-effective manner.

In our recruitment scheme the pool of potential participants
is first determined by their spatial and temporal availability to
achieve a desired coverage for the area of interest during a
given time period. In contrast to some models that consider
only instantaneous availability to achieve instantaneous cover-
age, we consider on-move coverage to support the wide scope
of on-move monitoring applications mentioned earlier. With
on-move coverage, the number of participants to achieve a
desired coverage can be small compared to those achieving
coverage without considering mobility of participants. For
example, in covering a road to build an estimate of parking
availability, we may find that just a few vehicles taking camera
shots on the go can provide complete coverage of the road.

As a main part of the on-board vehicular resources, the
navigation system is a vital component that provides infor-
mation to support many of the vehicular applications. Our
recruitment scheme is designed to utilize input from such
systems that are ubiquitous in intelligent vehicles. By utilizing
vehicle trajectories as inputs, we can select the participants in
an informed and efficient way. Based on this, we introduce
in this paper a trajectory-based recruitment (TBR) scheme
to efficiently solve the problem of participant selection in
recruiting vehicles to achieve a desired coverage. Assessment
of TBR shows that it achieves high levels of coverage even
when vehicles do not stick to their announced trajectories. To
the best of our knowledge, TBR is the first scheme considering
recruitment and selection of participating vehicles for urban
sensing.

The remainder of this paper is organized as follows. In
Section II, we discuss some related work on utilizing vehicles
as sensors, and recruitment for urban sensing. We present our
recruitment scheme (TBR) in Section III in its basic case along
with two generalized cases that reflect practical situations. In
addition, we discuss two data acquisition models that TBR
supports. In Section IV, we present a model to assess coverage
achieved by our scheme along with assessment results. Finally,
we conclude the paper and present our future work in Section
V.

II. RELATED WORK

In this section, we touch upon some related work in the area
of utilizing vehicles as sources of sensing data, and discuss
some available recruitment models for urban sensing.

Many platforms are proposed that utilize the sensory re-
sources of intelligent vehicles. An example is the MobEyes
platform [3] that focuses on utilizing vehicular sensors to
monitor a vehicle’s surroundings and recognize objects, and
utilizing the on-board resources to store the sensed data and
share it with other vehicles upon request. Another example
is the data-gathering solution proposed in [4] that supports
location-aware services utilizing vehicular sensors. In this
solution, data requests can be sent to vehicles asking for
specific data at specific locations. Vehicles in the area of
interest can resolve the request and send the reply back to
the requester. Another example is the CarMote system [5] that
aims at utilizing vehicular sensors for road surface monitoring.

Although the above mentioned platforms are good exam-

ples of using vehicles as mobile sensors, they neglect consid-
eration of the recruitment scheme that chooses the vehicles
that will participate in the sensing task. Most of them depend
on specific pilot vehicles for evaluation purposes. For use in
practical situations, these platforms are in need of some sort
of recruitment mechanism for selecting participants.

In the area of participant recruitment for urban sensing,
a few models are available in the literature. These models
focus mainly on recruiting smart phones to utilize their on-
board sensors. In [6], Reddy et al. proposed a recruitment
framework in which the selection of participants is dependent
on the instantaneous availability of participants along with their
participation habits. To maximize the instantaneous coverage
of the area of interest within a limited budget, the authors
use the budgeted maximum coverage problem [7]. Another
mechanism that considers the location and budget constraints
is proposed in [8]. In this mechanism, the participants bid for
their data, in contrast to the pricing model used in [6] where the
participants’ costs are identical. Although these schemes can
be effective at selecting mobile devices, they are not efficient
for the recruitment of vehicles because they only consider
instantaneous sensing and coverage which is not suitable for
the wide scope of on-move sensing applications supported by
vehicular mobility.

Instead of depending on an efficient recruitment scheme
for participant selection, some of the data collection platforms
for urban sensing depend on relatively simplistic schemes
for collecting data. For example, one scheme uses random
selection of data contributors. Another data collection scheme,
which we refer to as the ’naive’ scheme, is one in which
the service provider simply asks all the contributors in the
area of interest to generate and send data. Although these
two schemes are simple, they have drawbacks that hinder their
use. The ’random’ selection scheme is less likely to provide
coverage of the area of interest and also more likely to result in
collected data which may have undue redundancy, compared
to a more targeted recruitment scheme. Although it is the
easiest to implement, the ’naive’ scheme has potentially serious
disadvantages. First, by getting data from all participants in an
area of interest, the cost of such data to the service provider
may be unnecessarily and prohibitively high. Second, with
many participants in an area of interest, the data retrieved will
have high levels of correlation and redundancy. Such collection
of redundant data is considered a waste for both the service
provider’s budget and the communication bandwidth.

With these limitations of the available sensing platforms
and recruitment models, we are in need of efficient recruitment
schemes that ensure the sufficient coverage of the area of
interest using the minimum number of participants to minimize
the cost, and in a way that utilizes vehicular mobility efficiently
to support the on-move sensing applications. These are the
main features of our trajectory-based recruitment scheme that
we discuss in the next section.

III. THE PROPOSED RECRUITMENT SCHEME AND
SUPPORTED DATA ACQUISITION MODELS

As a main component of an intelligent vehicle, the nav-
igation system plays a pivotal role in most of the vehicular
applications and services. In addition to providing navigational
information to the driver, the output of the navigation system
is utilized by a multiplicity of applications including safety, in-
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fotainment, and diagnostics. We propose a recruitment scheme
that utilizes trajectory information from navigation systems to
make vehicle selection decisions. The spatiotemporal informa-
tion included in vehicle trajectories enables a more informed
and reliable selection of a minimum number of participants. As
trajectories represent the dynamic availability of participants,
we consider them in achieving a desired on-move coverage.
Members of the data collection process (drivers registered with
the service) will need to enter their destination before starting
their trip. This way, the service application can calculate the
trajectory and have it stored and ready to be accessed by the
service provider when needed. To request a sensing task, a
service provider sends sensing requests to the participants.
The sensing request defines the sensing task, the area of
interest, and the time span of the task. The on-vehicle service
application then sends relevant trajectory information (i.e.
overlapping parts with the sensing task) to the service provider.

To solve the coverage problem with the minimum number
of participants based on availability of trajectories, we consider
a related problem in the area of computational geometry. By
representing the area of interest and the overlapping parts of
participants’ trajectories with the area of interest as intervals,
we argue that our problem can be solved with a scheme similar
to the minimal-cover problem [9]. Later in this section, we
elaborate on the two data acquisition models that are supported
by the proposed TBR scheme.

A. Trajectory-Based Recruitment (TBR) Scheme

In this sub-section, we first discuss the minimal cover
problem and the greedy algorithm proposed for its solution. We
then present our trajectory-based recruitment (TBR) scheme
in its basic form by discussing the general formulation of our
recruitment problem and how it maps to the minimal cover
problem and its greedy solution. Our TBR scheme generalizes
the basic algorithm to handle practical situations, including
departing vehicles and varying redundancy requirements.

1) Minimal-Cover Scheme:
Problem Definition - The minimal-cover problem is concerned
with having a minimum number of overlapping line segments
the union of which covers a linear coverage area. It can be
described as follows: Given an interval [a, b] and a set n of
intervals S = {[ai, bi]}, find the smallest subset S′ of S such
that the union of its elements covers the interval [a, b], if
such a subset exists; otherwise, report a whole coverage failure.

Solution - The solution is based on a greedy algorithm
that works as follows:

(i) Find a member m ∈ S that covers a and has a maximal
right endpoint. If such a member does not exist report a
failure and exit.

(ii) While failure is not reported and m does not cover b,
find a successor that covers bi and has the maximal right
endpoint.

(iii) This procedure continues until b is covered or a successor
cannot be found.

Consider the example shown in Fig. 2 where we have an
interval [a,b] we need to cover with the minimum number of
[ai,bi] overlapping intervals. Following the greedy procedure
above, we find that the minimum set that covers [a,b] is the
one containing segments 2, 4, 6, 7, and 8.
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Fig. 2. An example of a minimal-cover problem with the minimum covering
set containing segments 2, 4, 6, 7, and 8.

2) Vehicle Selection Scheme:
Based on the information available and the objective of the
proposed recruitment scheme, we can define our recruitment
problem and the proposed solution as follows.

Inputs

A : Area of Interest
S : Set of Segments

Output

S′ ⊂ S : Covering Set of Segments

Problem Definition - Find the minimum number of segments
Si ∈ S to form the coverage set S′ such that the coverage
function F (S′, x ∈ A) = 1 ∀x ∈ A. F (S′, x) is defined as

F (S′, x) =

{
1 if x is covered by S′

0 if x is not covered by S′

Solution - Consider the parts of vehicles’ trajectories that
overlap with the area of interest to be the segments and the area
of interest itself to be the interval to be covered. We can apply
the greedy algorithm above as a solution for the minimal cover
problem to achieve our goal and select the minimum number
of participating vehicles that can provide coverage for the area
of interest. By ensuring that the end of the chosen segment will
be covered by a following segment - the one with the maximal
right endpoint if many are available - till the end of the area
of interest, we can ensure having F (S′, x) = 1 ∀x ∈ A.

In order to handle areas that involve curved roads, such
areas can be divided into a series of straight roads that can
be dealt with as separate intervals. Generally speaking, any
irregular road can be treated as a series of straight roads.

3) Practical Considerations:
The problem defined above assumes complete confidence in
vehicle trajectory information and equal importance of road
segments. In practical scenarios, such an ideal case is not
guaranteed. In the following, we discuss two generalized
cases of this basic scheme. These generalized cases reflect
practical situations the service provider would face during the
recruitment process. These are: i) having a probability that
a vehicle will not stick to the trajectory it announced, and ii)
having events that require redundancy at some parts of an area
of interest.

Case I: TBR with Probability of Leaving:
In realistic scenarios, it is not guaranteed that a vehicle will
stick to its announced trajectory. We consider a generalized
case of the basic TBR that assigns different probabilities of
sticking to the announced trajectory.

For each vehicle, we calculate a degree of confidence Di

(such that 0 ≤ Di ≤ 1) based on the participation history
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of this vehicle assuming that it was involved in earlier tasks,
otherwise, Di will bet set to 1. Based on the computed degree
of confidence, a probability of sticking to the announced
segment of trajectory p(Si, x) ∀x ∈ Si is defined as follows

p(Si, x) =

{
1 if x ≤ Di

0 if x > Di

where x is normalized to be in [0, 1] to ease mapping to Di

values.
Having p(Si, x) equal to 1 means that the vehicle will cover

this segment and having it equal to 0 means that this part is
not covered by this vehicle. Hence, we can define a vehicle’s
coverage function to be

f(Si, x) = p(Si, x) ∀x ∈ Si

where Si is the segment announced by vehicle i.
Recall that, as defined earlier, the set coverage function

F (S′, x) should be equal to 1 ∀x ∈ A. To compensate for
having a part of a vehicle’s trajectory with a probability of
being not traversed by the vehicle (not covered), this part
should be covered by another vehicle with probability 1.
Therefore, we can define the set covering function of a point
x ∈ A to be the summation of all the vehicles’ coverage
functions of x as follows

F (S′, x) =
∑

Si∈S′ where Si includes x

f(Si, x) (1)

such that F (S′, x) should be at least 1 to ensure coverage of
x.

It may happen that we find more than one segment (vehicle)
that compensates the 0 probability of the current segment, in
this case, the greedy algorithm chooses the trajectory segment
with the maximal right endpoint as defined earlier in the basic
greedy algorithm.

The above algorithm can be summarized as follows:

(i) For each segment, calculate p(Si, x) based on the com-
puted Di.

(ii) Map the announced segment of trajectory to a projected
one based on p(Si, x).

(iii) Apply the greedy algorithm on the projected segments to
achieve coverage.

The example in Fig. 3 shows the operation above. We
can see that when considering probabilities of leaving, more
segments/vehicles are needed to ensure coverage compared to
the case with full confidence of sticking to the trajectory.

It may happen that, when considering the probability of
leaving, coverage of a certain area may be intermittent if there
are no vehicles to compensate the part of the segment with a
probability of coverage less than 1. To handle this case, two
different approaches can be deployed based on the criticality
of the service as follows.

If the service is delay-critical, coverage should be achieved
in the exact duration of the event, otherwise, data generated and
reported will be obsolete. In this case, the greedy algorithm
can be adjusted to provide the maximum coverage possible
instead of full coverage. During the selection of vehicles, the
parts with no vehicle segments available can be ignored and
the algorithm will continue at the next point with available
coverage as shown in the example of Fig. 4.
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Fig. 3. An example of TBR operation with probability of leaving. In
part (a), each segment is mapped to a probability distribution based on its
corresponding Di. Part (b) shows the projected segments. The minimum
covering set contains segments 2, 3, 4, 5, 7, and 8.

If the service is delay-tolerant, the greedy algorithm can
be adjusted such that if a solution with full coverage cannot
be achieved, the algorithm will report a failure and it can be
re-run at a later time. Re-running the algorithm to achieve full
coverage should be accompanied with a maximum threshold
of re-runs based on the delay-tolerance of the service.

Intermittent coverage may also happen when a service
provider cannot find a sufficient number of vehicles that
achieve continuous coverage for the area of interest in the case
of monitoring of an environment that is not dense enough, or
when the penetration rate of the service and its corresponding
application are not high enough in certain areas. These two
cases can be handled in the same way discussed above.

Case II: TBR with Redundancy Requirements:
The basic case of the proposed scheme assumes that only one
vehicle is needed to monitor an area. In practical situations,
the service provider may require readings from multiple ve-
hicles monitoring the same area to achieve a certain level of
reliability. We adapt the basic case to give a service provider
the ability to determine the level of redundancy needed by
determining the degree of importance for different parts of the
area of interest. For example, as shown in Fig. 5, in the case
of a severe accident, a service provider may ask for different
degrees of importance relative to the location of the accident
with the highest degree at the exact location of the accident,
and lower degrees farther from the accident location.

In order to handle this case, we define the degree of
importance stated by the service provider for each part of the
area of interest to be Ir, where

⋃n
1 r = A, and n is the number
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Fig. 4. An example of TBR with intermittent coverage. For a delay-critical
service, the maximum available coverage should be provided. In this case, the
covering set contains segments 2, 3, 4, and 6.
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Fig. 5. An example of TBR with redundancy requirements. The area of
interest is divided into 5 parts each with a certain degree of importance based
on its proximity to the event.

of parts the area of interest is divided into. Ir will be translated
to the number of vehicles needed to monitor this part. In a
certain part with a certain degree Ir = k, we assign each
vehicle/segment in this part a coverage degree Ci such that

Ci =
1

Ir
=

1

k
∀Si ∈ r

To relate to the notations used in the previous and basic
cases, we can define a vehicle’s coverage function f(Si, x) to
be equal to its coverage degree as follows

f(Si, x) = Ci ∀x ∈ Si

As aforementioned, the set coverage function of a point x
is defined to be the summation of all the vehicles’ coverage
functions of x as defined in Eqn.1. As mentioned previously,
to ensure coverage of a point x, F (S′, x) should be at least 1.
This implies that to achieve coverage for a point x in an area
with an importance degree k, k vehicles (each with Ci = 1/k)
are needed to make the value of F (S′, x) equal to 1.

The basic greedy algorithm can be adjusted such that for
each point x in a part with Ir = k, the first k segments covering
x with the maximal right end points will be chosen if x is not
covered at all. Otherwise, if x is covered by (k−n) segments,
n segments covering x with the maximal right end points will
be chosen.

We remark that the case with redundancy and probability
of vehicles leaving is a straightforward extension.

B. Data Acquisition Models

When collecting data, intelligent vehicles can follow differ-
ent models for data acquisition. In our paper, we consider two
models that are enhanced by our recruitment scheme; the on-
demand model, and the unsolicited model. These two models
differ in when data is generated.

1) On-Demand Model:
In this model, data acquisition is done on-demand and upon
request from a service provider. While on the go, vehicles
receive requests for sensing tasks. Based on the availability of
resources at that moment, the application installed on the on-
board unit of the vehicle can decide if the vehicle is ready
to participate or not (i.e. accepting the sensing request or
declining it). This type of handling sensing tasks without
intervention from the driver or any of a vehicle’s occupants
falls under the ”opportunistic” category of urban sensing.

In addition to being able to handle the services initiated

by a service provider, this model is more suited for services
initiated by a data consumer - through a service provider - who
is in need of specific information.

2) Unsolicited Model:
In this model, vehicles sense their surroundings, collect data,
and store it without being tasked. When a service provider
needs some information about an area of interest, the provider
can check which vehicles have data stored about that area.
After selecting the data holders, the service provider informs
them to send the stored data. This model involves some sort
of advertisements by vehicles about the data they carry. Such
advertisements can be handled by metadata that describes the
actual data and lists some of its features (e.g. when and where
they are generated).

The unsolicited model is only suitable for the delay-tolerant
services that allow storing data and reporting it at a later time.
An example of such services is using vehicles for monitoring
road conditions.

It is worth mentioning that the proposed TBR scheme
supports these two data acquisition models. In the on-demand
model, the trajectories considered for recruitment are those that
vehicles are supposed to follow and can be retrieved from the
navigation software. For the unsolicited model, the trajectories
are those that vehicles have already traversed and stored sensed
data.

IV. COVERAGE ASSESSMENT

We assess the coverage achieved by our proposed re-
cruitment scheme. For clarity of demonstration, we assume
that we have a set of available trajectories that represent the
solution space, and that vehicles can enter or leave only at
intersections. We apply TBR with probability of leaving to this
set of trajectories with four different ranges for the degree of
confidence Di, as shown in Table I. For each confidence range,
we apply our scheme and find the coverage solution. Then, we
assess the obtained solution in terms of the coverage achieved
by the chosen trajectories.

To assess a solution, we compute pi to be the probability of
vehicle i to leave at an intersection, which is computed based
on the equation

qi = (1− pi)
k

where qi is the probability of vehicle i to stick to the an-
nounced trajectory and is equal to Di, and k is the number of
intersections vehicle i may leave at on its trajectory.

We compute the total probability of coverage of a road
segment Rj ∀j such that 1 ≤ j ≤ n and n is the number of
road segments in an area of interest (as shown in Fig. 6), as
follows

PRj
= 1− (

∏
pi)

where {pi} included in the multiplication are for the vehicles
whose trajectories cover this road segment in the being-
assessed solution.

After computing PRj∀Rj , we compute the proportional
coverage of the area of interest to be

Carea interest =

n∑
j=1

PRj

n
∗ 100 %

In Table I, we present the assessment results of solutions
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Fig. 6. An example of a solution to be assessed. The area of interest
includes 6 road segments divided by intersections. The probability of coverage
is computed for each road (e.g., PR2

= 1− (p2 ∗ p3))

obtained with various ranges of Di. In addition, we consider
different densities of vehicles available in the area of inter-
est: 1) a dense environment where each part is covered by
redundant vehicles with a minimum of 3 vehicles covering
each road segment, and 2) a more sparse environment where
each road segment is covered by a maximum of 2 vehicles
with some segments are completely not covered. The results
show that, in a dense environment, even with low values of Di

(high probabilities of a vehicle not sticking to its trajectory),
our scheme achieves high proportional coverage based on the
fact that the scheme includes sufficient vehicles in the covering
set to compensate for probabilities of leaving which enhances
the reliability of our scheme. In a more sparse environment,
the achieved proportional coverage is lower because some
road segments did not have passing vehicles to cover them.
The algorithm worked on achieving the maximum available
coverage in this case instead of full coverage.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the trajectory-based recruit-
ment (TBR) scheme that handles the problem of selection
of participating vehicles in urban sensing applications. TBR
aims at choosing the minimum number of participants that
achieve a certain level of coverage for an area of interest
specified in a sensing task. To achieve this target, TBR
considers trajectories of vehicles as means for acquiring the
spatiotemporal availability of participants that assist in making
the selection process more efficient and informative. TBR
generalizes the basic recruitment case to some practical cases
that a service provider faces during the recruitment process
such as probability of a vehicle not sticking to its announced
trajectory and having redundancy requirements at certain parts
of an area of interest. The assessment results show that our
proposed scheme achieves high levels of available coverage
even with high probabilities of vehicles not sticking to their
trajectories.

We plan to extend our scheme to accommodate budget
constraints. We remark that participants would report data with
varying quality of information (QoI). We plan to extend TBR
to take QoI into consideration, in addition to availability, for

TABLE I. RESULTS OF COVERAGE ASSESSMENT FOR DIFFERENT
RANGES OF THE CONFIDENCE DEGREE

Range of Degree of Confidence (Di)
[0.8,1] [0.5,0.8] [0.1,0.5] [0.1,1]

Carea interest 99 % 89 % 80 % 83 %
(Dense Environment)

Carea interest 80 % 71 % 55 % 68 %
(Sparse Environment)

directing the selection process. Having varying QoI will lead
to having varying costs given as incentives for participants.
Development of a dynamic pricing mechanism will be a part
of our future work as well.
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