
Optimal Proactive Resource Allocation at the
Extreme Edge

Rawan F. El Khatib1, Sara A. Elsayed2, Nizar Zorba3, and Hossam S. Hassanein2

1Department of Electrical and Computer Engineering, Queen’s University, Canada
2School of Computing, Queen’s University, Canada

3Department of Electrical Engineering, Qatar University, Qatar
rawan.elkhatib@queensu.ca, selsayed@cs.queensu.ca, nizarz@qu.edu.qa, hossam@cs.queensu.ca

Abstract—Edge Computing (EC) has emerged as a key en-
abling paradigm for latency-critical and/or data-intensive appli-
cations. Recently, recycling abundant yet underutilized compu-
tational resources of the Extreme Edge Devices (EEDs), such as
smartphones, laptops, connected vehicles, etc, has been explored.
This is since EEDs can bring the computation service much closer
to the edge, which can drastically reduce the delay. However,
resource allocation in such environments typically follows a
reactive approach, which can lead to increased delay and wasted
resources. In this paper, we introduce the Optimal Proactive
Resource Allocation (OPRA) benchmark to quantify the potential
gains of proactive resource allocation in EC environments. OPRA
exploits the predictability of request patterns to proactively
perform resource allocation and create compute clusters that
take future task and resource dynamics into consideration.
Specifically, OPRA formulates the resource allocation problem
as a Binary Integer Linear Program (BILP) problem, where it
aims to minimize the total delay under full task assignment
and computation capacity constraints. The optimal solution
acquired under perfect knowledge acts as the upper bound on the
achievable potential of predictive proactive resource allocation
schemes. The effect of erroneous predictions on the performance
of OPRA is also investigated. Extensive simulation results show
that OPRA outperforms a reactive baseline by yielding a 50%
decrease in the subtask dropping rate and 97% decrease in the
service capacity.

I. INTRODUCTION

With the advent of the Internet-of-Things (IoT), it is an-
ticipated that 125 billion IoT devices, such as smartphones,
connected vehicles, laptops, etc., will be connected to the
Internet by 2030 [1]. This rise contributes to the growing
popularity of a broad range of latency-sensitive and/or data-
intensive applications, such as healthcare, virtual reality, smart
cities, etc. Cloud computing struggles to meet the strict Quality
of Service (QoS) requirements of such applications. This is
since data must be fully transmitted to distant data centers
for processing. To respond to these soaring demands, Edge
Computing (EC) has emerged as a key enabling paradigm,
expected to exhibit a Compound Annual Growth Rate (CAGR)
of 38.4% by 2028 [2]. The core idea of EC is to push data
processing closer to the edge where data is generated, which
drastically reduces the communication latencies and alleviates
the excessive traffic load at back-haul links [3].

In EC, performance gain is largely dependent on efficient
computation offloading decisions. The majority of developed

EC platforms rely on dedicated compute-capable edge servers
to carry the offloaded computational tasks [3]. Recently, there
has been a growing body of literature [4]–[6] that proposes to
capitalize on the proliferation of IoT devices, also referred to
as Extreme Edge Devices (EEDs) [7], and their increasingly
powerful processing capacities within the EC paradigm. In this
EED-enhanced model of EC, the underutilized computational
resources of EEDs are recruited to augment the resource pool
and improve the offloading service.

Computation offloading services that existing resource allo-
cation schemes deal with are classified into two categories:
a) binary (full) offloading, where a computational task is
fully delegated to another EED for execution, and b) partial
offloading, where a task is partitioned into smaller subtasks for
execution at a group of collaborating EEDs [8]. In this article,
we are concerned with the latter category, which is prevalent
in scenarios where a task is too large to execute at a single
EED, or when different portions of the task become ready for
processing at different time instants. For such scenarios, most
existing works regard the partitioned subtasks as independent
[9], [10]. This implies that a) the need to ensure that all
subtasks are assigned is overlooked, and b) the effect of
subtask execution on the parent task successful completion
is ignored. In this work, we deal with partial offloading where
the successful completion of any task depends on the execution
of all of its subtasks.

To illustrate the significance of the aforementioned no-
tion, consider an example of a delay-sensitive data-intensive
video processing task. The task aims to count the number of
people entering a venue (e.g., a shopping center), to ensure
that COVID-19 capacity restrictions are not violated. Several
CCTV cameras capture crowds entering from various points
of entry. All CCTV cameras are connected to a control
room where video recordings are partitioned into smaller
segments to be offloaded to multiple nearby EEDs, such as
crowd members’ smartphones, tablets, parked vehicles, etc.
Because the video recording is partitioned as it is taken,
the segments become available for processing at different
times. That is to say, the subtasks have different arrival times.
Furthermore, the workers (i.e., EEDs) have heterogeneous
spatio-temporal resource availability, indicating that a subtask
will incur different execution and communication delays at

5657

IC
C

 2
02

2 
- I

EE
E 

In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

ns
 | 

97
8-

1-
53

86
-8

34
7-

7/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

C
45

85
5.

20
22

.9
83

88
97

Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:15:31 UTC from IEEE Xplore.  Restrictions apply. 



different EEDs. Evidently, the successful completion of the
video processing task is contingent on the completion of all
subtasks. In other words, if all segments return a crowd count
except for a single failing subtask, the parent task is considered
incomplete. Existing works disregard such unity and offer no
guarantee that all subtasks will be executed, which lowers the
rate of successful task completion. In addition, most existing
resource allocation schemes adopt a reactive approach, where
resource allocation decisions are made in response to incoming
requests after their arrival. As a result, resource allocation lags
far behind resource requests, leading to imbalanced resource
utilization and wasted resources.

To address the aforementioned challenges, we introduce the
Optimal Proactive Resource Allocation (OPRA) benchmark.
OPRA strives to proactively allocate partitioned subtasks be-
longing to a single parent task to a group of collaborating
EEDs that form a compute cluster. The objective is to form
resource-sufficient compute clusters for each parent task, such
that all subtasks are executed to achieve minimal latencies.
Furthermore, we address the sporadic nature (i.e., heteroge-
neous arrival times) of subtasks by aiming to exploit the
predictability of task dynamics (e.g., prediction of venue peak
hours). Leveraging this predictability allows to proactively
create subtask-resource mappings in lieu of waiting for task
requests to arrive. This proactive resource allocation approach
can track, learn and predict task dynamics ahead of time, and
hence offers more flexibility to make highly informed resource
allocation decisions.

To the best of our knowledge, OPRA is the first to ex-
plore proactive resource allocation in the context of EED-
enhanced EC. In addition, OPRA determines the upper bound
on the achievable potential of predictive resource allocation.
This is done by formulating the resource allocation problem
as a Binary Integer Linear Program (BILP) under perfect
knowledge (i.e., no prediction errors) of task arrival times and
workers’ spatio-temporal availability. This allows to quantify
the potential gains of resource allocation schemes and evaluate
the performance gap in comparison with the optimal solution.
Additionally, we study the realistic scenario in which estimates
of task arrival times can be erroneous. We refer to the latter
variation as Robust Hybrid Resource Allocation (RHRA). The
remainder of the paper is organized as follows. In section
II, we discuss some related work. Section III introduces the
proposed benchmark (OPRA). Section IV presents RHRA.
Section V discusses the performance evaluation and simulation
results. Finally, section VI presents our conclusions and future
work directions.

II. RELATED WORK

The potential of augmenting EC computational capacity
with EEDs-contributed resources has been explored in the
literature recently. This approach is shown to bring many bene-
fits, such as natural proximity to the edge, lower latencies, fault
tolerance, better scalability, and improved cost-effectiveness
[4], [5]. This model of EC has been referred to as device-
enhanced EC [8], collaborative multidevice computing [6],

opportunistic EC [4], and mobile ad hoc computing [3]. These
works take different perspectives on the type and level of
interaction and collaboration with edge servers.

Most existing resource allocation schemes for EED-
enhanced EC follow a reactive approach, where the scheduling
entity responds to tasks after they are initiated by their
requesters. Most works aim to allocate computational re-
sources such that the latency and/or the energy consumption
is minimized through the optimization of communication and
computation resources [8]. The work in [9] minimizes the
latency by optimizing task assignment jointly with time and
power allocation under individual energy constraints, whereas
[10] minimizes the latency by jointly considering the tasks
assignment, the task offloading times and rates, the local and
remote task execution times and computation frequencies, and
the results downloading times and rates. In both these works,
there exists a single requester with multiple independent tasks
with identical arrival times. On the other hand, the work in
[11] considers a system with multiple requesters, each with a
single task to execute locally or by a worker, with the objective
of minimizing the overall energy consumption.

The works in [12] and [13] also consider a system with
multiple requesters each with a single task, with the objective
of jointly minimizing latency and energy consumption. A more
recent work is introduced in [14], where the authors focus
on fault-tolerant decentralized formation of compute clusters,
such that EEDs collaborate to execute latency-sensitive tasks.
However, these schemes cannot cater to critical scenarios
where a task’s completion is contingent on the execution
of a batch of subtasks. Moreover, these schemes cannot
accommodate the sporadic arrival times efficiently, as they all
employ a reactive resource allocation approach. To the best
of our knowledge, our work is the first to employ a proactive
resource allocation approach that relies on the predictability of
task arrival times and spatio-temporal distribution of workers.

III. OPTIMAL PROACTIVE RESOURCE ALLOCATION
(OPRA)

In this section, we present our assumptions, the system
model, the problem formulation, and the functionality of our
OPRA scheme.

A. Assumptions and System Model

Our system consists of a centralized entity, a set of re-
questers and a set of workers (i.e., EEDs). The centralized
entity, referred to as the scheduler, acts as a mediator between
requesters and workers. The scheduler is responsible for prob-
ing computational resources from heterogeneous EEDs and
creating appropriate subtask-resource mappings. The scheduler
is hosted at an edge server that is able to communicate with
both requesters and workers. It is noteworthy that our scheme
does not consider the possibility to offload computational tasks
to the edge server. In other words, the computational resources
considered in this article are exclusively those offered by
EEDs.

5658Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:15:31 UTC from IEEE Xplore.  Restrictions apply. 



The scheduler collects information related to workers’
location, duration of availability, and amount of dedicated
resources. This is done in exchange for incentives provided
to the recruited EEDs and based on a privacy agreement.
Moreover, we assume that the scheduler has a prediction
module that enables it to perform accurate predictions of future
task dynamics. Predictors such as in [15] can be utilized for
this purpose. These predictions offer insights into the tasks
(and subtasks) arrival times and workload characterization
(e.g., amount of required resources, execution time, etc.). In
this manner, our scheduler attains full knowledge of both
the spatio-temporal availability of the resources and tasks
dynamics. This future knowledge embodies the core enabler
of our proactive resource allocation scheme.

Without loss of generality, we assume that this knowledge
is acquired by the scheduler for the system’s sojourn time,
during which the characteristics of workers and tasks are
invariant. Hence, time is divided into sequential execution
sessions {s1, s2, s3, ...}, where the length of each session is
equal to the sojourn time. Ahead of the start of each session,
the scheduler proactively creates subtask-resource mappings
in accordance to our problem formulation, as explained in the
sequel. The actual length of the sessions (i.e., sojourn times)
depends on the scenario in question. For example, in a scenario
where computational resources are offered by vehicles waiting
at a traffic light, the sojourn time is in the scale of a few
minutes (e.g., 5 minutes). On the other hand, in our shopping
center scenario mentioned earlier, the sojourn time is expected
to be larger (e.g., 30 minutes) as crowd members are predicted
to spend more time near the scheduler. For simplicity, we
abandon the session notation hereafter, emphasizing that all
variables introduced in the following are invariant during an
individual execution session.

Given the above assumptions, consider a set of I requesters
each with a task, where each task i comprises Ji subtasks
denoted by set Ji. Each subtask ⟨i, j⟩ is characterized by
the subtask arrival time tarrivali,j , the required computational
intensity qi,j in CPU cycles/bit, designating the number of
CPU cycles required for computing one input bit, the input
subtask size Lini,j and the output subtask size Louti,j in bits. Let
K denote the set of available workers, where each worker’s
maximum computational capacity is Zk in CPU cycles/second,
and δk denotes the percentage of occupied processing capacity
due to local tasks. Hence, each worker has a maximum
available CPU frequency Cmaxk = (1− δk)Zk. When subtask
⟨i, j⟩ is assigned to worker k, it is allocated a CPU frequency
cki,j = uki,jC

max
k , where uki,j ∈ (0, 1] is the available rate

of worker k computational resources, set in accordance to
the incentives offered by the requester for subtask ⟨i, j⟩. The
distance between the requester i and worker k is dki , the
upload/download data rate is Rki , and the propagation speed is
v. Finally, for each worker-subtask pair, we define the interval
Aki,j which spans the start time of the subtask ⟨i, j⟩ until its
completion at worker k.

Fig. 1: An example of subtask assignments at a worker k. Each
rectangle designates a different subtask ⟨i, j⟩. The length of each
rectangle represents the execution time, and the width represents the
required computational intensity. The arrival time of each subtask is
shown on the time axis in seconds.

B. Problem formulation

Our objective is to minimize the total delay in the system by
proactively forming a compute cluster for each task such that
the corresponding resources of the cluster are available at the
subtasks arrival time and incurs minimal total delay. The total
delay Dtotal is the sum of incurred delay for each subtask-
resource mapping decision, denoted by Dk

i,j . For subtask ⟨i, j⟩
at worker k, Dk

i,j is expressed as follows:

Dk
i,j =

qi,jL
in
i,j

cki,j
+ 2× dki

v
+
Lini,j + Louti,j

Rki
(1)

The three terms represent the execution delay, the round
trip propagation delay, and the transmission delay, respectively.
Accordingly, the problem is formulated as a Binary Integer
Linear Program (BILP), where the decision variable xki,j is set
to 1 if subtask ⟨i, j⟩ is assigned to worker k at time interval
Aki,j , and 0 otherwise. The mathematical formulation of the
said objective is shown below.

minimize
xki,j , σi

∑
i∈I

∑
j∈Ji

∑
k∈K

Dk
i,jx

k
i,j

subject to

C1:
∑
k∈K

xki,j ≤ 1 ∀i ∈ I,∀j ∈ Ji,

C2:
∑

⟨i,j⟩∈ψn

cki,jx
k
i,j ≤ Cmaxk ∀ψn ∈ Ok,∀k ∈ K,

C3:
∑
i∈I

σi = α ,

C4:
∑
j∈Ji

∑
k∈K

xki,j ≥ Ji[σi(M + 1)−M ] ∀i ∈ I,

C5:
∑
j∈Ji

∑
k∈K

xki,j < Ji[σi(M + 1) + 1] ∀i ∈ I

Constraint C1 indicates that each subtask is assigned to
at most one worker. Constraint C2 ensures that the total
assignments to each worker do not exceed its computational
capacity Cmaxk at any overlapping time interval. To ensure this
condition, we define Ok as a set of sets ψn, n ∈ N, where
ψn is a set of all overlapping intervals at worker k. Then, for

5659Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:15:31 UTC from IEEE Xplore.  Restrictions apply. 



all the subtasks in the set ψn, the sum of the allocated CPU
frequencies should not exceed Cmaxk . In Fig. 1, we show an
example of sporadic subtasks at an arbitrary worker k. In this
case, ψ1 = {⟨1, 1⟩ ⟨1, 2⟩ ⟨2, 1⟩}, ψ2 = {⟨1, 2⟩ ⟨2, 1⟩ ⟨2, 2⟩ },
and ψ3 = {⟨1, 2⟩ ⟨1, 3⟩ ⟨2, 2⟩ }, with Ok = {ψ1, ψ2, ψ3}.

To impose the condition on full task execution by assigning
all subtasks, we define the service capacity metric as the
number of fully assigned tasks. We impose constraint C3
to ensure that the service capacity is maintained above a
predefined threshold α, where α ∈ N. For this purpose, we
define the indicator variable σi, which is set to 1 if all Ji
subtasks of task i are assigned, and 0 otherwise. This is to
say, for any task i, σi = 1 if

∑
j∈Ji

∑
k∈K x

k
i,j = Ji, and

σi = 0 if
∑
j∈Ji

∑
k∈K x

k
i,j < Ji. To incorporate this condi-

tional statement in the constraints, we introduce the additional
constraints C4 and C5, in which the variable M is set to a
large positive value (M >>

∑
j∈Ji

∑
k∈K x

k
i,j). C4 and C5

are verified as follows: substituting σi = 0 in both constraints
will result in the inequality −JiM ≤

∑
j∈Ji

∑
k∈K x

k
i,j < Ji.

Alternatively, substituting σi = 1 will result in the inequality
Ji ≤

∑
j∈Ji

∑
k∈K x

k
i,j < Ji(M +2). Thus, C5 and C6 serve

as artificial constraints designed to verify C3.
In summary, our OPRA scheme works as follows. Ahead

of the start of an execution session, the scheduler exploits its
prediction module to estimate subtask arrival times and work-
load characteristics. The scheduler also collects information
from workers on their future locations and amounts of com-
putational resources available for the next session. Then, the
scheduler solves the optimization problem formulated above
to minimize the total delay of all tasks (and subtasks), subject
to service capacity and individual workload constraints. The
result is subtask-resource mappings for the entire duration of
the execution session, such that in total, α tasks are fully
executed with minimal delay.

IV. ROBUST HYBRID RESOURCE ALLOCATION (RHRA)

In the previous section, we focused on the ideal sce-
nario where tasks’ characteristics in terms of arrival time
and workload are perfectly predictable. In this manner, the
scheduler possesses full certainty about the workload demands
in the future session, and proactively creates subtask-resource
mappings. Realistically speaking, prediction inaccuracies are
almost unavoidable, and evoke the possibility of (sub)task
failure and resource waste. In this section, we examine the
scenario of imperfect knowledge due to inaccurate predictions
of task characteristics. Specifically, we address the scenario
in which errors can occur when predicting subtask arrival
times, in order to isolate its effect on design and performance.
Specifically, we consider prediction errors in which a subtask
arrives after its predicted time.

For this purpose, we present the Robust Hybrid Resource
Allocation (RHRA) scheme. The core idea of RHRA is that
it captures the predictable and sustained resource demand pat-
terns from historical data and proactively provisions computa-
tional resources for them. At runtime, the deviations between
the actual and predicted resource demands are handled by

Algorithm 1 Robust Hybrid Resource Allocation (RHRA).

1: solve OPRA.
2: repeat
3: repeat
4: if prediction error in ⟨i, j⟩ then
5: insert ⟨i, j⟩ at the rear of Q
6: end if
7: until end of current time period
8: for all ⟨i, j⟩ ∈ Q do
9: get worker k̂ with minimum Dk̂

i,j and ck̂i,j ≤ Cmax
k̂

10: if ∃k̂ then
11: assign ⟨i, j⟩ to k̂
12: update Dk̂

i,j

13: else
14: drop ⟨i, j⟩ from Q
15: end if
16: end for
17: until end of execution session

reactive provisioning. In this manner, RHRA employs a hybrid
proactive-reactive approach that aims to mitigate the effect of
erroneous predictions of arrival times.

RHRA operates under the same assumptions as OPRA, with
the exception that it accommodates erroneous task predictions
rather than assuming perfect knowledge. Specifically, before
the beginning of an execution session, RHRA proactively
produces optimal subtask-resource mappings by solving the
problem formulated in the previous section based on the
available predictions of arrival times. At runtime, the execu-
tion session is divided into equal time periods. During each
period, the following procedure, illustrated in Algorithm 1,
is performed. The scheduler monitors the status of subtasks,
and those which deviate from their expected arrival times are
held off and added to a virtual queue Q at the scheduler
(line 5). Then, at the end of the time period, the scheduler
invokes a recovery mechanism based on a greedy reactive
approach. Specifically, for each subtask in Q, the scheduler
looks for a worker k̂ that achieves the minimum Dk

i,j without
exceeding its computational capacity. If such a worker exists,
then subtask ⟨i, j⟩ is assigned to k̂ (line 11), and the value
Dk
i,j is updated to reflect the excess delay from the erroneous

prediction and the waiting time until the end of the time period
(line 12). If none of the workers satisfy these conditions,
the subtask is dropped (line 14). The intuition behind the
reactive recovery mechanism is to mitigate the effects of erro-
neous predictions on the proactively created subtask-resource
mappings by resorting to unused computation resources. In
this manner, it is guaranteed that the disruptions caused by
erroneous predictions are isolated from accurate ones, while
still seeking to achieve the required service capacity with
minimal total delay.

5660Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:15:31 UTC from IEEE Xplore.  Restrictions apply. 



V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of OPRA and
RHRA compared to a reactive resource allocation approach.
The reactive baseline follows a greedy method, where the
execution session is divided into equally spaced time periods.
During each period, the scheduler collects arriving subtask
requests. Then, at the end of each period, the scheduler reacts
to the received subtask requests for execution in the beginning
of the next time period. Subtask requests are handled in
the order they arrive by sequentially assigning subtasks with
the earliest finish time until all the available computational
resources are exhausted.

We employ the following performance metrics: 1) the
average total delay, which measures the sum of the time since
a subtask arrives until it is fully executed and its result is
returned to the requester for all the subtasks in the system,
2) the average subtask dropping rate, which is the number
of dropped subtasks to the total number of subtasks in the
system, and 3) the average service capacity ratio, which is the
number of fully executed tasks to the total number of tasks in
the system.

A. Simulation Environment

We consider an area of 200m × 200m where workers and
requesters are uniformly distributed. The number of workers
is set to 10, the number of tasks is varied in [5, 10, 15, . . . , 60],
and the number of subtasks per task is set to 5. The execution
session is set to 900 seconds (i.e., 15 minutes), and subtask
arrival times are uniformly distributed in U{1, 900} seconds.
The computational intensity of the subtasks is uniformly
distributed over the range [1000, 3000] cycles/bit, the input
subtask size is uniformly distributed in the range [400, 4000]
Kbit, and output subtask size is set to 0.05 × Lini,j . The
maximum computation capacity is uniformly distributed in
[1.5, 3] GHz, and the percentage of occupied capacity is in
[0.1, 0.9]. The upload/download data rate between workers and
requesters is uniform over the range [1, 10] Mbps.

To study the effect of erroneous predictions, we vary the
percentage p of subtasks for which the predictor module pro-
duces inaccurate arrival time estimations. The prediction error
delay in RHRA is uniformly distributed in [0, 10] seconds. For
both the reactive and RHRA schemes, we show results when
the time period is set to 30 and 60 seconds.

B. Simulation Results

First, we evaluate the performance of OPRA, RHRA and the
reactive baseline in terms of the average total delay in Fig. 2a.
For OPRA, we fix the service capacity threshold α to 100%
of the subtasks in the system, imposing a condition of full
execution of all task requests. Since the average total delay ac-
counts for the accumulative delay of all executed subtasks, all
curves show an upward trend as the total number of subtasks
increases. As depicted, OPRA provides the upper bound on the
potential delay improvement. OPRA demonstrates a significant
reduction in the average total delay compared to the reactive
baseline in both scenarios for the time period length. As can

be seen, the reactive baseline exhibits a greater increase in the
average total delay compared to OPRA when the time period
is set to 60 seconds. This is because arriving subtasks are
stored and await until they are assigned in the next time period.
The 30-second reactive baseline offers better performance at
the expense of increased scheduling overhead. On the other
hand, the performance gap between RHRA and OPRA grows
larger as the percentage of inaccurate predictions and the time
period length increase. This is because RHRA invokes the
reactive greedy recovery mechanism for erroneous subtasks,
capping the performance gain attained from the proactively
created subtask-resource mappings. This degradation is further
exacerbated when the time period is longer, as the total delay
is further prolonged by the time an erroneous subtask is held
in the virtual queue until execution. Hence, as can be seen, for
high percentages of inaccurate predictions, RHRA approaches
the performance of the reactive baseline for the same time
period.

Second, we examine the average subtask dropping rate in
Fig. 2b. As demonstrated in the Fig., OPRA provides the upper
bound on the achievable subtask dropping rate, producing
0% subtask dropping rate for all simulated scenarios. This is
because OPRA produces the optimal solution that adheres to
the specified service capacity threshold α, which is set to 100%
throughout the experiment. RHRA performs comparably when
the percentage of inaccurate predictions is 20%, regardless of
the time period, maintaining a subtask dropping rate below
1% as the total number of subtasks increases from 25 to
300. When the percentage of inaccurate predictions is 50%,
RHRA sustains a subtask dropping rate below 1% and 10%
compared to below 6% and 32% when the percentage of
inaccurate predictions is 80%, for a time period of 30 and
60 seconds, respectively. This is because in a longer time
period, there exists a higher possibility that erroneous subtasks
will accumulate in the queue and compete for the same
computational resources, causing the subtask dropping rate to
rise. On the other hand, the reactive scheme exhibits a sharper
increase in the subtask dropping rate as the total number
of subtasks increases, peaking at 13% and 50% when the
time period is 30 and 60 seconds, respectively. Thus, RHRA
surpasses the equivalent time period reactive baseline even for
high percentages of inaccurate predictions.

Finally, we investigate the performance of these schemes
in terms the average service capacity. This is an important
performance indicator, as it highlights the number of fully
executed tasks, which cannot be clearly assessed from the
subtask dropping rate. As shown in Fig. 2c, OPRA produces
the upper bound on the achievable service capacity ratio,
yielding 100% for all values of the total number of subtasks.
When the percentage of inaccurate predictions is 20%, RHRA
is on a par with OPRA, sustaining a service capacity rate
above 97%. While the achieved service capacity declines
as the percentage of inaccurate predictions, the time period
length, and/or the total number of subtasks increase. This is
due to the same reasons previously discussed. The reactive
baseline yields high values of average service capacity when

5661Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:15:31 UTC from IEEE Xplore.  Restrictions apply. 



25 50 75 100 125 150 175 200 225 250 275 300

Total number of subtasks

0

1000

2000

3000

4000

5000

6000

7000

8000
A

v
e

ra
g

e
 t

o
ta

l 
d

e
la

y
OPRA, = 100%

RHRA, 30 sec, p = 20%

RHRA, 30 sec, p = 50%

RHRA, 30 sec, p = 80%

RHRA, 60 sec, p = 20%

RHRA, 60 sec, p = 50%

RHRA, 60 sec, p = 80%

Reactive, 30 sec

Reactive, 60 sec

(a) Average total delay

25 50 75 100 125 150 175 200 225 250 275 300

Total number of subtasks

0

10

20

30

40

50

60

A
v
e

ra
g

e
 s

u
b

ta
s
k
 d

ro
p

p
in

g
 %

OPRA, = 100%

RHRA, 30 sec, p = 20%

RHRA, 30 sec, p = 50%

RHRA, 30 sec, p = 80%

RHRA, 60 sec, p = 20%

RHRA, 60 sec, p = 50%

RHRA, 60 sec, p = 80%

Reactive, 30 sec

Reactive, 60 sec

(b) Average subtask dropping rate

25 50 75 100 125 150 175 200 225 250 275 300

Total number of subtasks

0

10

20

30

40

50

60

70

80

90

100

A
v
e

ra
g
e

s
e

rv
ic

e
c
a
p

a
c
it
y

%

OPRA, = 100%

RHRA, 30 sec, p = 20%

RHRA, 30 sec, p = 50%

RHRA, 30 sec, p = 80%

RHRA, 60 sec, p = 20%

RHRA, 60 sec, p = 50%

RHRA, 60 sec, p = 80%

Reactive, 30 sec

Reactive, 60 sec

(c) Average service capacity rate

Fig. 2: Performance results over varying number of subtasks.

the total number of subtasks is low, before experiencing a
sharp decline to 48% and 3% for 30- and 60-second time
periods, respectively. This is because the reactive baseline does
not prioritize the execution of subtasks belonging to tasks
whose execution was already started, as opposed to OPRA
and RHRA.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced OPRA, which exploits the
predictability of task requests to proactively form resource-
sufficient compute clusters under service capacity and com-
putational capacity constraints. The problem was formulated
as a BILP under perfect knowledge of task arrival times
and workers’ spatio-temporal availability. The optimal solu-
tion acts as the upper bound on the achievable potential of
predictive proactive resource allocation in EED-enhanced EC
environments, allowing to evaluate the performance gap and
assess if there is room for improvement. In addition, the effects
of erroneous predictions were investigated under RHRA. We
conducted extensive experimental evaluations and showed that
OPRA outperforms the reactive baseline by yielding a 50%
decrease in the subtask dropping rate and 97% increase in the
service capacity rate. In our future work, we aim to design a
prediction module that poses an upper limit on the prediction
error of subtask arrival times, and present a probabilistic
heuristic solution to counteract the effects of prediction errors.

ACKNOWLEDGEMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number ALLRP 549919-20. This research is also
supported by Qatar University QUHI-CENG-21-22-1 project.

REFERENCES

[1] K. Gyarmathy, “Comprehensive Guide to IoT Statistics You Need to
Know in 2020,” March, 2021. Available from: https://www.vxchnge.
com/blog/iot-statistics

[2] “Edge Computing Market Share & Trends Report,” Grand View Re-
search, May, 2021. Available from: https://www.grandviewresearch.com/
industry-analysis/edge-computing-market

[3] A. J. Ferrer, J. M. Marquéés, and J. Jorba, “Towards the Decentralised
Cloud: Survey on Approaches and Challenges for Mobile, Ad Hoc, and
Edge Computing,” in ACM Computing Surveys, vol. 51, no. 6, pp. 1-36,
2019, doi:10.1145/3243929.

[4] R. Olaniyan, O. Fadahunsi, M. Maheswaran, and M. F. Zhani, “Op-
portunistic Edge Computing: Concepts, Opportunities and Research
Challenges,” in Future Generation Computing Systems, vol. 89, pp.
633–645, 2018. doi:10.1016/j.future.2018.07.040.

[5] Y. Sahni, J. Cao, S. Zhang and L. Yang, “Edge Mesh: A New Paradigm
to Enable Distributed Intelligence in Internet of Things,” in IEEE Access,
vol. 5, pp. 16441-16458, 2017, doi:10.1109/ACCESS.2017.2739804.

[6] W. Zhang, H. Flores and P. Hui, “Towards Collaborative Multi-device
Computing,” in Proc. IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops), Greece,
2018, pp. 22-27, doi:10.1109/PERCOMW.2018.8480262.

[7] J. Portilla, G. Mujica, J. -S. Lee and T. Riesgo, “The Extreme Edge at the
Bottom of the Internet of Things: A Review,” in IEEE Sensors Journal,
vol. 19, no. 9, pp. 3179-3190, 2019, doi:10.1109/JSEN.2019.2891911.

[8] M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein and F.
H. P. Fitzek, “Device-Enhanced MEC: Multi-Access Edge Com-
puting (MEC) Aided by End Device Computation and Caching:
A Survey,” in IEEE Access, vol. 7, pp. 166079-166108, 2019,
doi:10.1109/ACCESS.2019.2953172.

[9] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint Task Assignment and
Wireless Resource Allocation for Cooperative Mobile-edge Computing,”
in Proc. IEEE International Conference on Communications (ICC),
USA, 2018. pp. 1–6, doi:10.1109/ICC.2018.8422777.

[10] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint Task Assignment
and Resource Allocation for D2D-enabled Mobile-edge Computing,” in
IEEE Transactions on Communications, vol. 67, no. 6, pp. 4193–4207,
2019, doi:10.1109/TCOMM.2019.2903088.

[11] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting Massive
D2D Collaboration for Energy-efficient Mobile Edge Computing,” in
IEEE Wireless Communications, vol. 24, no. 4, pp. 64–71, 2017,
doi:10.1109/MWC.2017.1600321.

[12] R. Chai, J. Lin, M. Chen, and Q. Chen, “Task Execution Cost
Minimization-based Joint Computation Offloading and Resource Alloca-
tion for Cellular D2D Systems,” in Proc. IEEE International Symposium
Personal, Indoor and Mobile Radio Communications, Italy, 2018, pp.
1–5, doi:10.1109/PIMRC.2018.8580887.

[13] U. Yaqub and S. Sorour, "Multi-Objective Resource Optimization for
Hierarchical Mobile Edge Computing," in Proc. IEEE Global Commu-
nications Conference (GLOBECOM), United Arab Emirates, 2018, pp.
1-6, doi:10.1109/GLOCOM.2018.8648109.x

[14] M. Mudassar, Y. Zhai, L. Liao and J. Shen, “A Decentralized Latency-
Aware Task Allocation and Group Formation Approach With Fault
Tolerance for IoT Applications,” in IEEE Access, vol. 8, pp. 49212-
49223, 2020, doi:10.1109/ACCESS.2020.2979939.

[15] T. Le Duc, R. G. Leiva, P. Casari, and P. O. Östberg, “Machine Learning
Methods for Reliable Resource Provisioning in Edge-cloud Computing:
A Survey,” in ACM Computing Surveys, vol. 52, no. 5, pp. 1–39, 2019,
doi:10.1145/3341145.

5662Authorized licensed use limited to: Queen's University. Downloaded on September 18,2022 at 18:15:31 UTC from IEEE Xplore.  Restrictions apply. 


