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Abstract—Smart cities are becoming more complex and greater
volumes of data are required for its efficient operation. Mobile
Crowdsensing (MCS) is a paradigm that employs smartphones as
instruments to collect data, where the recruitment of participants
is based on rewards and incentives. However due to the mobile
nature of people, sensing may not be available in a specific area
of interest, reducing the quality of the MCS inference of that
region. In this paper, we propose a method that utilizes optimal
transport so that the MCS administrator could direct participants
towards areas with poor quality to improve overall quality. An
analysis of optimal transport is presented where the method is
evaluated using computer simulations, where it is shown to be
efficient for moving participants among spatiotemporal cells.

Index Terms—mobile crowdsensing; internet of things; sensor
networks; coverage quality metric; source quality; data collec-
tion; optimal transport.

I. INTRODUCTION

The development of the Internet of Things (IoT) paradigm
has provided fertile grounds for various sub-paradigms and
frameworks that integrate the cyber and the physical aspects of
life. This integration has revolutionized the technology behind
sensors, completely incorporating it in the structure of tomor-
row’s smart cities. As a consequence, the pursuit of increased
access to data emerged as the administrators and stakeholders
of smart cities seek to improve the efficiency of operation.
This led to the development of the Mobile Crowd Sensing
(MCS) which exploits the presence of sensors in the crowd’s
smartphones, employing them as an extended instrument [1].
This enabled smart city administrators to crowdsource a wide
range of cyber-physical data, and provided them with social
and physical insights about the smart city [2].

In MCS, administrators have a certain objective for which
they create a task, which is assigned to a participant, who
works on its execution, via a centralized server. An example
of a task can be to acquire samples of noise pollution using
microphones [3]. MCS tasks can be classified according to
the nature of their execution as participatory or opportunistic.
Participatory sensing actively involves users in the sensing
process, such as taking a photo or writing a comment [4].
On the other hand, opportunistic sensing passively conducts
the sensing task when the participant’s device satisfies the
set of conditions defined for the task, such as time, place,
device capabilities, battery, etc. [2]. To facilitate the complex
implementation of MCS, various frameworks and models were
developed. An interesting model, in particular, is developed in

[5] which models the MCS sensing problem over spatiotem-
poral cells whose bounds are defined in time and space.

MCS is generally treated as a problem with large scale
data under the assumption that participants - and thus data
- are always available in abundance. For example, the scale of
data employed in [4], [6] is large involving many participants.
For a large smart city, this is essentially true at a global
scale. However, at the local scale such as a neighborhood,
the problem of participant scarcity is a likely possibility.
The participant set that MCS data comes from, within a
spatiotemporal cell, is diverse and thus prone to variations
in quality, performance, and capability. To overcome this
heterogeneity, small sample quality metrics were developed
in [7] to quantify and evaluate the reliability of participants’
readings. The feedback of such metrics allows the elimination
of inconsistencies while providing a local picture of the
participants’ reliability. Furthermore, a coverage metric based
on the small sample quality metrics was developed in [8] to
allow the MCS administrators to select enough participants to
conduct the needed MCS tasks. The coverage metric provides
a global picture of the MCS region as a whole, over all cells,
while providing a more local picture by assessing how quality
varies from one cell to another.

A description of the minimum number of needed readings
to achieve a predefined inference quality allows MCS adminis-
trators to optimize costs, which are based upon the number of
participants. The cost is considered either in terms of monetary
incentives, or as the amount of consumed data/energy [9]. Due
to the mobility nature of smartphones, the application of MCS
on an urban city is challenging as the number of participants is
not uniform all over it. Areas which are more active than others
will show better MCS inference capability (that we define as
coverage), while areas without much participants are going to
lack coverage. If the MCS participants’ decisions on mobility
could be controlled, by means of a reward to achieve a specific
objective, then the quality desired by the MCS administrator
could be achieved. Thus it is of importance that such mobility
recommendations are efficient between cells, incurring the
least cost possible. In this paper, we describe how optimal
transport and its theory [10] can be used to optimize the MCS
system performance in terms of quality and cost; and to solve
some of the problems that rise during participant recruitment
within MCS.

This paper is structured as follows: Section 2 provides
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Fig. 1: General Architecture of an MCS System

an overview of MCS architecture, the spatiotemporal model,
as well as the aforementioned quality and coverage metrics.
MCS Use cases are also discussed in this section. Section 3
introduces the optimal transport theory, the developed optimal
transport algorithm, and the potential applications for which
optimal transport could be employed within MCS; Section
4 provides a simulated instance of the proposed algorithm.
Section 5 concludes with an epilogue on optimal transport in
the context of MCS operation.

II. OVERVIEW OF MCS FRAMEWORK

As part of IoT, MCS aims to integrate the cyber and physical
spaces together. By utilizing smart devices and engaging their
users in the sensing process, MCS allows administrators to
leverage users and their mobility for the general benefit of the
smart city while providing them with a service or a reward
in exchange. However, since the implementation of MCS is
usually remote, the framework usually involves Administra-
tors, Systems (or server), and participants. Several works such
as [2], [11], [12] have provided detailed descriptions of the
MCS architecture. Figure 1 shows a simple description of the
MCS system architecture. The MCS system generally consists
of three main elements, as previously mentioned:

• MCS Administrator: is the prime mover of the MCS
system who designs and publishes tasks to be picked
up and executed by the participants. Within the context
of the smart city, the MCS administrator is interested in
collecting data about a specific phenomenon at a specific
time or location for which they design and publicly post
their tasks. Through MCS, the administrator achieves the
objectives of the smart city and enhances its operational
efficacy.

• MCS Participants: they are crowd members who partic-
ipate in the MCS system by accepting task assignments
from the MCS administrator to execute, in exchange for
an incentive service or a monetary reward. They are
capable of executing tasks participatorily, being actively
involved, or opportunistically, passively by satisfying the
conditions. They communicate with the MCS adminis-
trator via an application on their device that connects
them to the MCS server. Furthermore, the mobility of
the participants allows the MCS administrator to pick
participants whose conditions maximize the potential
sensing over the smart city.

• MCS Server: is the core of the MCS system, as it
is the link that connects the MCS participants and the
MCS administrator. The process of participant recruit-

Fig. 2: Spatiotemporal MCS Model

ment, which maps tasks to participants, is automatically
performed by the system. The system assigns tasks and
recruit participants while evaluating their performance,
reliability and quality. It also computes and delivers the
reward deserved by the participants.

A. MCS Spatiotemporal Model

In MCS, an Area of Interest (AoI) requires to be divided
into geofences or cells to which participants are assigned.
The granularity of this division reflects in the precision of
a phenomenon’s characterization within a certain region; i.e.
requiring a specific task resolution. However, time is a factor
that must be taken into consideration when assigning partic-
ipants from a dynamic crowd. This led to the development
of the Spatiotemporal Model that divides an AoI into space
and time [5]. Figure 2 illustrates a similar diagram for spa-
tiotemporal cells. MCS administrators are required to divide
space and time into cells and sensing cycles that satisfy the
purpose of the task at hand, while maintaining consistency
with the spatial and temporal versions of Shannon’s sampling
theorem [13]. In general, within the mth cell, a task will be
assigned to Nm participants, who return a set of readings
Um = {um,1, um,2, . . . , um,Nm}. In the spatiotemporal model,
each reading um,n is a random variable obtained by the
nth participant in the mth spatiotemporal cell. Each cell m
corresponds to a 3-tuple m = (i, j, t), which correspond to
the location of the mth cell in space and time (am, bm, cm).

The truth of the sensed quantity in a specific cell, µm, is
then estimated from Xm by computing the mean:

µ̂m = mean(Um) =
1

Nm

Nm∑
n=1

um,n (1)

B. Small Sample Quality and Coverage Metrics

The lack of knowledge about the ground truth, µ, is a factor
that led to the development of inference models, which employ
participants as a proxy to asserting the truth. However, the
participant set’s heterogeneity poses a challenge to asserting
the true value, especially if the number of participants is not
enough. To that end, the quality metrics developed in [7]
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provide methods by which a numerical quantity is ascribed
to a cell to describe the quality of the set of readings obtained
within that cell. The approach employed in [7] defines quality
as a quantity, Q, based on the difference between the sample
mean and robust centrality estimates: the sample mean after
filtering outliers using the median absolute deviation (MAD-
mean) and the k-trimmed mean. This difference statistic
was called the Mean MAD-Mean Trimmed Mean (MMTM)
difference, denoted θMMTM. It provides the administrator with
a degree of control in defining the quality via a sensitivity
parameter η which allows the toleration of certain outliers,
arising from the phenomenon’s natural distribution to be
included as a reading, unlike certain abnormalities completely
alien to the phenomenon. θMMTM is employed to evaluate
small-sample quality in [7] for Nm > 11, while it is combined
with the costly statistical bootstrap in [14] for Nm > 8, where
θMMTM is expressed as:

θMMTM = η(ū− ūk) + (1− η)(ū− ūMAD) (2)

with η ∈ [0, 1], Ū is the sample mean of the set of readings
Um within the mth cell, Ūk is the k-trimmed mean, and ūMAD
is the MAD-mean.

Quality can then be describes as a measure of how good
a sample is in estimating the ground-truth, or precisely as
a quantity that reflects the acquired samples’ reliability in
estimating the ground-truth. Quality, as per [7], is defined as:

Q =


1

2
logγ

(
1

µMMTMσ2
MMTM

)
8 < N < 11

logγ

(
1

θMMTM

)
11 < N < 30

(3)

where γ is a scaling factor, µMMTM and σMMTM are the mean
and variance of the bootstrap distribution of θMMTM.

In addition, a coverage quality metric was developed in [8]
to extend the notion of quality from a specific cell to that
of an AoI during the tth sensing cycle. Quality, for a region
of interest, can be described as a matrix at tth sensing cycle,
Qmap,t as:

Qmap,t =


Q1,1,t Q1,2,t . . . Q1,S,t

Q2,1,t Q2,2,t . . . Q2,S,t

...
...

. . .
...

QS,1,t QS,2,t . . . QS,S,t

 (4)

where Qi,j,t is the quality for the mth cell
(
where m is

the 3-tuple (i, j, t) as per the spatiotemporal model
)
, and S

represents the side-length of the square grid into which the
AoI is divided.

The corresponding overall coverage metrics for a quality
map, Qmap,t, is defined as the mean Qtot,t:

Qtot,t = mean(Qmap,t) (5)

That is represented in Figure 3 as the yellow plane. Another
metric, called the relative quality metric, and denoted as Qrel,
is a S2 × S2 matrix whose elements are defined as the angle

Fig. 3: Coverage Quality Metric: Yellow plane describes
overall coverage quality, while angle of depression describes
the change of quality between neighbouring cells.

of depression between neighboring quality values:

Qrel,(Qi,j ,Qî,ĵ) = sin−1

[
Qi,j −Qî,ĵ√

[Qi,j −Qî,ĵ ]2 + 1

]
(6)

where (i, j) corresponds to the coordinates of the of kth cell,
and (̂i, ĵ) correspond to the coordinates of an arbitrary adjacent
cell. Figure 3 provides an illustration of Eq. 6.

C. MCS Use Cases

Optimal Transport can be used in any MCS scenario, as
MCS is mainly based on smartphones that move and can
be “transported”. A potential use case are the games based
on Augmented Reality (e.g., Pokémon Go). Consider the city
council (MCS Administrator) willing to infer about an event
in a specific location in the city (e.g., a park) and finds
that the number of available sensors is low or null in that
location. A possible solution is to trigger people to move to
that specific location (Optimal Transport in our case), and
AR games are a very good “tool” that can help. By moving
the players (and obviously their smartphones) to that location
to catch a Pokémon in that park. The availability of several
players will enable the needed measurements in the park and
quality inference is achieved. Releasing Pokémon creatures
with different features (the incentive in MCS) will trigger
more or less people (the MCS participants) to move towards
a certain location and time (MCS spatiotemporal cell). The
Pokémon features/powers/reward would trigger more or less
visitors to move, and an optimization of that reward is desired.

A similar use case would be the theme/amusement parks,
where the manager (MCS administrator) interested to know the
situation in a blind spot can move some crowd (MCS partici-
pants) by announcing reduced fees for the rides (the incentive
in MCS) at a specific location and time (MCS spatiotemporal
cell). The amount of reduction in the fees would trigger more
or less visitors to move, and an optimization of that amount
is needed.
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III. OPTIMAL TRANSPORT FOR MCS APPLICATION

The Optimal Transport problem was found to be partic-
ularly useful in resource allocation problems [10], [15]. The
discrete version of the transport problem, proposed in 1942 by
Leonid Kantorovich, is of relevance to the setting of MCS as
the participant recruitment problem is one to which optimal
transport can be directly applied to maximize its efficiency.
In this section, we provide an overview of optimal transport
as well as an algorithm for transporting participants between
cells in order to reduce MCS costs while maintaining MCS
quality. The feasibility of such transport lies in providing
the administrator a degree of control over the participants’
mobility, enabling a better characterization of a phenomenon
over the area of the smart city. The developed algorithm relies
on the previous works that provided metrics for quality and
coverage [7], [14]. We also propose alternative usages for it
within the MCS context that focus on participants themselves
rather than the cells.

A. Optimal Transport

The Optimal Transport theory is the most affordable cou-
pling, or transport plan, to transport between two probability
vectors (α,β) such that the cost of transporting all the
elements in α to β is minimal. The distributions can be
described as:

α =

Nα∑
k=1

αkδxk , β =

Nβ∑
l=1

βlδyl (7)

where αk, βl correspond to masses located at xk, yl, respec-
tively, and δx, δy correspond to the dirac delta located at
position x, y, respectively.

The cost which is to be minimized is a function c(xk, yl)
that maps the choice of α ∈ α and β ∈ β to a value. It is best
described as a matrix C where Ckl = c(xk, yl) ∈ RNα×Nβ . In
most of Optimal Transport problems, the cost is often defined
based on the euclidean distance where c(xk, yl) = ‖xk−yl‖2.

The optimal coupling, which is the best transport plan, is to
be selected from a set of admissible couplings U(α,β) which
contains all the possible couplings P ∈ RNα×Nβ

+ such that the
sum over all the columns of a P would yield the vector α and
over all the rows would yield vector β. An element, Pkl, of
a coupling matrices describes the precise amount of mass to
be transferred between each mass k ∈ α to the corresponding
mass l ∈ β. The set of admissible couplings U(α,β) is a
bounded convex polytope defined by Nα+Nβ constraints [10].
The optimal transport problem is that of finding an optimal
coupling P? such that the average cost is minimal. This can
be described using mathematical optimization notation as:

minimize 〈C,P〉
subject to P ∈ U(α,β)

(8)

where 〈C,P〉 =
∑
klCklPkl.

Since U(α,β) is a polytope, linear programming is feasible
method for solving optimal transport problems. The authors in

Fig. 4: Rough Illustration of the Optimal Transport between
discrete measures

[10] cast the optimal transport problem in the standard form
of linear programming as:

minimize cTp
subject to p ∈ Rnαnβ

Ap = [ αβ ]
(9)

where c is the flattened form of the matrix C, p is the flattened
form of the matrix P, and the matrix A is defined as:

A =

[
1
T
Nα
⊗ INβ

INα ⊗ 1TNβ

]
∈ R(Nα+Nβ)×NαNβ (10)

where 1L is the indicator vector of length L, and IL is the
identity matrix of size L× L.

The Kantorovich formulation of the Optimal Transport
problem is more suitable for masses defined discretely, such
as α and β. Figure 4 provides an illustrative example in
which the red circles correspond to the source distribution
α while the blue circles correspond to the target distribution
β, and the black lines show a rough example of a non-split
coupling. However, for MCS, the splitting of masses needs to
be carefully done so that the probability vectors α and β map
to whole numbers, as they would represent the transport of
participant.

B. Optimal Transport for Coverage Enhancement in MCS

We employ Optimal Transport for the purpose of enhancing
quality within MCS systems. In the context of MCS, we
describe the mth cell as static mass, δm, at a fixed location
- the center of a cell - whose weight (or mass) represents the
number of participants Nm at a specific time t = ti. However,
the cost c(xk, yl) will no longer be defined as the ground
distance usually considered in Optimal Transport, it would
rather be changed to reflect the cost aspect from an MCS
perspective. Since Qrel matrix contains the angles between
neighbouring Qm readings, we utilize it to define the cost C in
the Optimal Transport. This modified cost incorporates quality
as defined in Eq. 3, and relates to the number of participants
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Fig. 5: Simulation of the optimal transport of MCS participants

within a cell and to cost in MCS. Furthermore, the ground
distance is proportional to the cost of the incentive that the
MCS administrator will offer to induce participants to move
from cell k to cell j. The updated cost then becomes:

CMCS = {CMCS,kl : CMCS,kl = ‖xk − yl‖2 cos2(Qrel,kl)} (11)

where the cost function c(xk, yl) = ‖xk − yk‖2, and the cos2

incorporates the cosine into the square, thus modifying the
length of ground distance to that of the hypotenuse described
in Figure 3.

Nevertheless, the Kantorovich formulation allows the split-
ting of masses - and thus participants. This requires the optimal
transport to be corrected after its computation to ensure that
the masses being transported between cells are whole numbers.
The probability vectors α and β corresponds to the ratio of
participants in each cell to the whole Ntotal =

∑M
k=1Nk,

similar to the optimal coupling P? that describes ratios of
participants to be transported. As such, the algorithm requires
to compute actual number of participants being transported and
verify that they are whole numbers and that the total number
of participants is conserved between the source α and the
target β, being Ntotal. If it fails to do so, a simple solution
is to compute the difference between the total of the rounded
optimal coupling and Ntotal and take it to the maximum value
within the coupling. Algorithm 1 presents the steps through
which coverage quality is enhanced. As this algorithm is based
on the optimal transport’s formulation as a linear program,
the simplex method is employed in finding P?. The simplex
algorithm was found in [16] to have a polynomial smoothed
complexity.

IV. COMPUTER SIMULATION

To test the proposed algorithm over MATLAB, we generated
M random integers between 11 and 30 corresponding to the
number of participants present in each cell, Nm, present over
the MCS AoI, placed in vectors α,β. The results are presented

Algorithm 1 Algorithm for Optimal Transport among
Cells for MCS
Input: C,α,β, Ntotal,Qrel
Output: P?

1: CMCS ← {CMCS,kl : CMCS,kl = ‖xk − yl‖2 cos2(Qrel,kl)}
2: c← flat(CMCS)
3: p← flat(P)
4: Compute A (Eq. 10)
5: P? for f= min cTp: Ap = [α;β], p >= 0 using

simplex method.
6: Rounded PR ← dNtotalP

?c
7: NR,total ←

∑
klPR,kl

8: Ndiff ← NR,total −Ntotal
9: Update maxP? ← maxP? −Ndiff

10: return P?

in Figure 5, with the transport being illustrated over 8 iterative
steps; it is a potential benefit to the MCS administrator to
conduct sensing over intermediate cells in sparse systems
during the transport of the participants. The sizes of the circles
represent the number of participants being transported, while
the colors in the beginning and the end represent the quality,
where red is low quality and green is high quality.

It can be seen in the “Initial” stage of the optimal transport,
the quality is not uniform over all cells, and the number
of participants is very low in some cells while others are
over-populated. At t = 1, the masses split to illustrate the
detachments of participants. From t = 1 to t = 8 the
participants movement is depicted over the black lines, which
illustrate the presence of a coupling between the kth and
the lth cell. At the “Final” stage, the participants join their
corresponding cells, yielding a uniform profile of quality over
the AoI, while the total number of participants remained the
same between “Initial” and “Final”. The duration of a cycle
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could vary during MCS.

V. CONCLUSION

In summary, MCS requires the recruitment of participants
who would reliably collect and report information. Over an
area of interest, participants might not be available. This
requires the MCS administrator to request MCS participants to
move from one region to another within the area of interest.
Doing so would incur costs for the MCS system, thus the
requested transport plans require to be optimal, minimizing
the cost while enhancing the coverage. In this paper, a method
for transporting MCS participants between cells was proposed.
This method considers a current MCS coverage quality of the
area of interest and aims to transport participants between cells
in a manner that improves the overall coverage quality.

The use of Optimal Transport in MCS is interesting, and it
can be of benefit to MCS systems as the cost of the transport
could be redefined to include details regarding the participants
or their cells, such as their reputation, trust, capability, and
others. This paper has examined an initial scenario for which
optimal transport was used.
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