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Abstract—Federated Learning (FL) is a novel distributed
learning paradigm in which local learning models are simul-
taneously trained using the stored data on multiple devices, then
ultimately aggregated into a global model. A promising use case
of FL is the training of a global model using the data collected
by unmanned aerial vehicles (UAVs) during their flight, which
is invaluable in scenarios in which an infrastructure cannot be
accessed (e.g., disaster). However, this is challenging as limited
resources are to be distributed between flight time, sensing,
processing, and communication. In this paper, we address the
resource problem for a set of heterogeneous UAVs with different
computation and communication capabilities from distributed
point of view. We propose the usage of Device-to-Device (D2D)
communication to fairly distribute the data so-far collected by
UAVs with different capabilities by posing it as an optimal
transport problem. Our contribution is two-fold: (1) We obtain
the fairest distribution of data given the UAVs’ computational
capabilities such that global learning time is minimal; (2) We
devise a scheme using Optimal Transport (OT) to achieve such a
fair distribution between UAVs. The performance of the proposed
techniques is demonstrated in an FL setting with different UAV
topologies with the FL training done using the MNIST dataset.

Index Terms—Distributed Learning; Federated Learning; Op-
timal Transport; Flying Ad-Hoc Networks; Unmanned Aerial
Vehicles; Mobile Edge Computing.

I. INTRODUCTION

Machine Learning (ML) models have evolved rapidly over
the last decade. Recently, there has been a trend towards
making them more efficient. There have been efforts to allow
mobile deployment of ML models in both hardware (e.g.,
specialized accelerators such as Eyeriss v2 [1]) and software
(e.g., ML architectures such as MobileNets, which is aimed
at mobile devices [2]). While there are still challenges to
achieve optimal efficiency in terms of hardware design and
model optimization, learning on mobile nodes, with mediocre
capabilities, is no longer impossible.

Unmanned Aerial Vehicles (UAVs) have become an impor-
tant part of the future of the smart city [3]. With the advent of
Flying Ad-Hoc Networks (FANETSs) [4], UAVs can potentially
cater to a wide range of applications: from civil applications
such as monitoring crops, surveying, emergency and disaster
response, and even as dynamic communication infrastructure
[5] to mitigating traffic loads, military reconnaissance, and
edge computing [6].

Edge Computing (EC) is a nascent paradigm to push com-
putation from the core of the network to its edge, making it
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possible to reduce latency, increase network reliability, and to
provide a wide range of edge services, particularly intelligence
at the edge [7].

In this paper, we propose an example of deploying a
distributed learning scheme, Federated Learning (FL), over
UAVs. Federated Learning (FL) is a distributed learning model
that exploits the presence of various devices collecting/storing
data upon which a machine learning model is trained. FL
operates by first training local models on these devices using
their collected/stored data, and then uploading these models
to a server to aggregate them [8]. FL comes with various
advantages: it reduces communication costs as only the model,
not the data, needs be to transferred; it can potentially max-
imize the benefit from computational resources by pushing
computation more towards the edge, which makes it suitable
for edge intelligence. Moreover, nodes are no longer only
dedicated to sensing, they can also perform computation. FL
also ensures the nodes’ privacy the data is analyzed locally on
its source device.

In an FL-UAV setting, an MEC server is orchestrating
the FL task. This MEC server can be a centralized, semi-
centralized (e.g., a cluster head), or mobile node (e.g., smart-
phone, vehicle, UAV) [6]. In such a setting, the major cost is
the learning time, as it ultimately translates to the consumption
of resources (particularly, energy) [9]. In addition, many of
learning-based edge applications in IoT environments (includ-
ing those employing FL) are driven by fast online learning
and rapid decision-making that prohibits the delays of relying
on infrastructure-based resources [10].

Mobile Edge Computing (MEC) and edge intelligence,
UAVs and mobile devices became capable of a more than just
task execution and acquisition. These paradigms introduced
data processing and analysis - on the fly - to make the
best use of the collected data as soon as possible. A wide
range of potential applications for learning on-the-fly exists. In
particular, search and rescue applications that localize objects
using convolutional neural networks [11], and data-driven
optimizations of their operational procedures (e.g., power
management, flight scheduling, trajectory planning) using FL
[12].

In this paper, we address a case in which UAVs are
heterogeneous in terms of their capabilities, particularly that
which mixes less capable UAVs with more capable UAVs (e.g.,



older models with newer ones). This heterogenous mixture of
UAVs in a mission would impact its performance; for FL, it
would impact the time taken to learn over the models. Less
capable UAVs may be burdened by data beyond their capacity,
thus increasing the learning time significantly. On the other
hand, more capable UAVs could be under-utilized. In this
paper, we propose an adaptation approach for FL in UAV
environments (FL-UAV) that considers the heterogeneity in
UAV capabilities, and presents a two-fold solution to address
them: the first is to identify the optimal distribution of data
among UAVs to minimize the global time of the FL process,
and the second is to use Optimal Transport (OT) [13] to
minimize the time of device-to-Device (D2D) data sharing to
reach this distribution of data among UAVs. In addition, our
scheme aims to select the best times for UAVs to exchange
their data along their trajectories to minimize the time of the
FL.

The structure of the paper is as follows. Section II details the
proposed FL-UAV scheme and considered fair data distribution
problem. Section III describes the optimal transport and its
usage for computing the data to be transmitted over the D2D
links. Section IV highlights the simulation results of both steps
of the FL-UAV technique. Section V concludes the paper.

II. FEDERATED LEARNING OVER UAVS (FL-UAV)
A. FL-UAV System Description

The D2D Federated Learning model [9] includes a ground
station acting as an MEC server for a set U of Nyay UAV
nodes in an area defined by [—R,,, R,,]? in the 2D plane.
Each node in U is equipped with a sensor, a processor capable
of training a local machine learning model, and a transceiver.
Figure 1 shows a diagram of such a system, where UAVs could
exchange data over communication links with heterogeneous
qualities. Initially, the MEC server conveys to the UAV nodes
the global model that will be locally trained by each of them
using their previously or real-time collected data via their
sensors. Once this training is done by each UAYV, it uploads
the trained models to the MEC server. This process involves
four major times: the time to transmit the global model from
the MEC server to the i™ node V i € 1,..., Nyay, denoted
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where () denotes the size of the machine learning model
in bits, B is the bandwidth of the MEC server’s uplink
transmission, P is the transmission power by the MEC server,
h; is the channel gain between the i node and the MEC
server, and ng is the noise power spectral density. Clearly, the
denominator in (1) is the channel capacity in bits per second
between the MEC and the i-th node.
The second time, denoted by tgﬂ), is the time for the 3™

to update the model locally, which is expressed as:
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Fig. 1: D2D-Enabled FL-UAV System Diagram

where L is the number of local iterations to be performed
for all nodes, F' is the number of floating point operations
per second (FLOPS) required per a single local iteration, ¢; is
the number of FLOPS per CPU cycle for the i node, f; is
the CPU frequency for the i" node, and d; is the number of
training data instances of size a bits present in the i™ node.
The parameters L and F' are fixed global parameters set by
the MEC server to perform synchronous FL. In asynchronous
FL, these parameters could be different for each node.

The third time, denoted by t?“), is the time for the i™ node
to transmit its trained models to the MEC server:
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where b; and p; are the transmission bandwidth and power of
the i node, respectively.

Finally, the fourth time V) is the time for the MEC server
to fuse or aggregate the acquired models. This time is typically
negligible for capable stationary MEC servers, but becomes
significant for mobile MEC servers in a decentralized FL
scheme (e.g., such as a cluster head UAV).

In a D2D-enabled FL scheme, a fifth time, denoted t§V> is
required for D2D exchange of data between the the i and the
j‘h nodes, expressed as:
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where a is the number of bits per data frame (size of each
sample), d;; is the number of data instances (or frames)
transmitted from node ¢ to node j. Similarly, h;;, b;;, and
pi; correspond to the channel gain, transmission power, and
bandwidth between the i and the 7™ nodes.

The total global learning time can then be described as:

Lgtona =max (t(” + P+ 4 t(w)) M + max t; ty (5
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where M is the number of global iterations, and the max
operator is included as the total time relies on the time taken
by the worst-case UAV node. As mentioned above, 1) could
be assumed zero in case of a dedicated MEC server.

The channel gain is generally defined as |h|> = 10P-(/:")
where PL(f,r) is the path loss defined as:

PL(f,7)as = 20log(f) + 10nlog(r) — 147.56 dB  (6)



where f is the carrier frequency, and r is the distance between
the transmitter and the receiver. The channel gain for UAVs,
in free space (n=2), can then be defined as:

= \/(1020 log(f)+20log(d)—147.56)/10
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Eq. 7 is useful for computing the distance in the following
subsection under the CARATE UAV trajectory model.

B. 2D CARATE Trajectory Model

In this paper, the mobility model governing the movement of
the UAVs is a modified 2D variant based on the 3D CARATE
UAV trajectory model [14], where the i UAV’s position
(@, 4()’s evolution is decided by:
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is the velocity at time ¢, T' is the duration of a
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where T is the number of steps in the past that influence
the current step, which has been devised to avoid sharp turns
and maintain a smooth trajectory.

However, this model requires initial values for vt(i) and Gt(i).
This needs defining the UAVs’ positions for the first iy
epochs, which could be assumed to deploy from the MEC
server’s location. This can be done by assuming normal initial

(i >} "~ N(MEC(,,), Ray), then the
t=2
initial velocity components can be computed as:
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where v( ) and vz(f;) are the speed in x and y directions for the

i UAV. The initial angle can then be defined as:
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And the overall velocity is defined as:

v = oD cos(8”) + v} sin(6)") (13)

With this in place, distances can then be calculated between

every two points, where the distance, r, between the i™ and
the j node can be described by:
) N 2 . N 2
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that is used in Eq. 7.

C. Fair Data Distribution with Minimum Time Per Global
Iteration

After the UAV’s deployment, they collect data. However,
the volumes of data collected by each UAV might not be fair
when it comes to the UAV’s resource consumption. UAVs
consume power at different rates, for example those facing
strong wind resistance, lower temperatures, or interference
would end up having to consume more power. Moreover,
the FL-UAV administrator might have to deploy heterogenous
UAVs with non-uniform capabilities to make use of older UAV
models in combination with newer ones. As a result, each
UAV will have different communication and computational
resources.

In this subsection, we formulate an optimization problem
that assigns to each node a fair volume of data, such that it can
perform its learning time while minimizing the consumption.
This is done by minimizing the time required for a single
global iteration.

During a single iteration, from the perspective of a single
node, the time remaining for each global iteration is tg) +
tEH) +t§m), i.e., the times required to receive the global model,
perform the local updates, and to upload the model. To be able
to decide the the data volumes included in the D2D time, tgv),
we formulate the following optimization problem:
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For a constant D > 0, equivalent to the number of data
instances to be trained.

The problem in Eq. 15 can be recast as an auxiliary
linear program with 1 equality constraint, Nyay inequality



constraints, and Nyay + 1 non-negativity constraints:
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= % This can be
interpreted as minimizing the upper bound on times tEH) and
thII) per global iteration.

This program can be made to minimize other parameters
such as b;,p; as well, however the optimization problem is
not straightforward as the log, term becomes asymptotic to
zero in the Lagrangian. Such extension is left for a future
work.

where 7 is an auxiliary variable, y;

ITII. D2D USING OPTIMAL TRANSPORT
A. Overview of the Optimal Transport

The optimal transport aims to find an optimal mapping,
or transport plan, between two probability distributions, o, 3
such that the cost associated with such mapping is minimal
[13], where o, 3 are discrete distributions:
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where «y, (; are weights of impulses 0., J,, located at
locations ., y;, and S0 o = 1 and % B = 1.

A mapping transporting the quantities in « to (3 exists
whose cost is defined by a cost function ¢(zy,y;). For the
discrete optimal transport, such mapping can be described
by means of a weighted adjacency matrix, C where C}; =
c(zg,y;) € RNa*Ns,

For ¢, B, and C, there exists a minimal cost coupling,
or transport plan, in a set of admissible coupling U(e, 3),
where all possible coupling P € IR_]:“XNB C U(e, 3), such
that (C,P*) is minimal. For P, the sum along the columns
yields «, while the sum along the rows yields 3. Px; describes
a portion of ay, to be transported to its match ;. Under the
Monge-Kantorovich (Kantorovich Relaxation) formulation of
the optimal transport, g, can be splitted and distributed among
more than one (; [13]. The optimal transport problem can be
described as:

a7

minimize (C,P)
subject to P € U(ax, 3)
where (C,P) =", Cii Py is the inner product.
The Kantorovich-relaxed verison of this problem - in which

the splitting of masses is permissible - can be cast as a linear
program [13], where:

(18)
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where c is a flattened formulation of the matrix C, p is the
flattened form of matrix P, and the matrix A is defined as:
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where 1 is the indicator vector of length L, and I is the
identity matrix of size L x L, and ® is the Kronecker-Product.

The constraint P € U(a,3) +» Ap = [3] ensures
that the sum over the columns would yield o and the sum
over the rows would yield 8. By limiting the sum over a
whole row to a specific set of “legal couplings”, the set of
admissible couplings U(a, 3) can be redesigned [15]. This
can be done by updating the lower half of the matrix A to
have n, horizontally concatenated n, X ng matrices, however
the feasibility of the solution, as a result, relies on the choice
of 3 and C [15].

B. Optimal Transport for D2D FL-UAV

In the FL-UAV setting, the UAVs move with time and follow
a trajectory. Such trajectory could be predefined as a mission
parameter, or could be planned automatically as the set of
UAVs proceeds with their tasks. In both cases, the available
resources cannot be exactly predicted, especially in the latter
case of spontaneous path planning. The optimal transport, as
mentioned in the previous subsection, takes in three inputs: a
source distribution, a target distribution, and a cost measure.

For the FL-UAYV, source distribution, o« where oy, = dj,, is
the data collected by each of the UAVs. The target distribution,
B where §; = dj is the data quantity resulting from the
optimization problem solved in Eq. 16. The cost of this optimal
transport has to be defined reflecting the quality of the D2D
links. While Eq. 4 is a good candidate, the volume of data
transferred dj; is the objective sought in finding P*. Thus, we
consider the transmission of only a single data frame as the
cost for this optimal transport, where:

a
bijlogy (1 + ki
) g2 nob,;j

However, for ¢ = j, the denominator is zero which would
lead to degeneracies in solving Eq. 19. To solve this, the
resulting infinites in C need to be replaced by a finite relatively
large number (for example, 1000 seconds).

2n

C(i,j) =

The resulting optimal coupling, P*, is an adjacency matrix
whose weights are the data transferred from node ¢ to node j,
dij-

Nevertheless, the distribution, the cost matrix, and the
optimal coupling are only snapshots at a specific time, i.e., its
optimality is local. We propose an extension to the optimal
transport to ensure its optimality over an interval of time
epochs. We define a discrete time window:

m:Cot+Not/2
Hot(cot7 Nol) = {tm} (22)

m:Col*Nm/Q



where ¢, is the center of the time window, and Ny + 1 is the
length of the time window. Iy (co, Not) contains the indices
of the discrete time instances for which an optimal transport
is performed, resulting in Ny + 1 optimal transports in total.
The cost is then evaluated for time instance, and the cheapest
optimal transport over this window is chosen to perform the
FL-UAV learning. This is best described as:

topt = argtmin {<Ci’ P:>}t1 EHO((CohNol) (23)

i

where C,; and P} are the cost and optimal coupling for a
transport at t; € Ilo(cor, Not). This can be interpreted as
the transport at which the time is minimal over the interval
o (Cot, Not), which could be due to the trajectories of majority
approaching each other, or the communication link among the
majority of UAVs is best. However, it is possible that the
resulting D2D transmission is unneeded, thus the administrator
has to verify Eq. 5 before and after the optimal transport, to
see whether it is worth performing the D2D data exchange in
the first place.

The FL-UAV administrator will need to consider the choice
Not + 1 and ¢ with the application in mind. As UAVs are
performing the task, the data they acquire at a specific time
t might not be sufficient for the model to learn properly.
The proposed technique is suitable for scenarios in which the
FL-UAV scheme is performing an online-learning task, as it
can be cater to near real-time applications, as the complexity
of solving the linear program in Eq. 19 has a polynomial
smoothed complexity. However, Eq. 5 could be modified to
introduce another term, ¢, for the computation of the optimal
transport algorithm as:

tolobal = MAX (t@) R t“v)) M + max 'Y + ¢
global el i i i ijeu ij + ot
(24)
IV. SIMULATION AND PERFORMANCE EVALUATION

A. Simulation Setup

To test the proposed algorithm, we simulated Nyay UAVs
in a [£50m]? 2D box. For the machine learning model,
we employed a 3-layer neural network with parameters
[784,300, 124,60, 10] over 60,000 28x28 images from the
MNIST dataset [16]. We then solved the optimization problem
for a number of UAVs and a number of global iterations
Nyav x N = {10,20} x {5, 10}, to illustrate the impact of
solving Eq. 16 on the learning process. For the optimal trans-
port, Nyay = 6 was chosen, and a = 784 bits, corresponding
to the size of a single sample of the MNIST dataset. The
simulation parameters are shown in Table I.

Figure 2 shows the learning accuracy achieved in the
FL-UAV system for different setups, with values for global
iterations of duration 7, minimized from the optimization
problem described in Eq. 16. It can be seen that 7 varies
with different setups. Indeed, the global time per iteration
described in Eq. 5 is directly proportional to the number of
local iterations, and the data processed by each UAV decreases
with the total number of UAVs. It can be seen that the accuracy
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Fig. 3: Optimal transport cost (C, P*) at different times

at Nyay = 20 saturates at less time for L = 5 local iterations,
while Nyay = 10 took most time to saturate for L = 10, thus
the choice of local iterations and impacts the performance of
the FL-UAV.

Figure 3 illustrates how the optimal transport cost varies
with time (and thus with the trajectory). It can be seen that
the local minima of the cost occur at ¢ = {4,10, 14}, with
t = 14 being the global minimum. The choice of the window,
Iy (Cot, Not), could influence the minimum being observed.

Figure 4 illustrate the edges for the optimal transport at time
t = 10. The trajectories illustrated represent the history of the
UAV’s position, whereas at ¢ they are located at the edge of
the transport. The values of P* at ¢ = 10 where:

0 0 10000 0O 0 0
0 0 3326 0 0 6674

x _ |6121 2248 0 0 0 1631

=107 1 ¢ 0 0 0 10000 0O (25)
0 0 0 5873 0 4127
0 9451 0 0 549 0



Parameter | Value Description
T |1 Epoch duration
Tinit | 3 Initial time steps
Thist | 2 Past steps
Lyzy | 50 meters Box size
ny 1.8 m/s Mean velocity
oy | 0.25 m/s Spread in velocity
pe | 0357 Mean angle (UAVs circling)
og | 0.057 Spread in angle
fe | 2.4 GHz Carrier Frequency
no 1 nW/Hz (-60 dBm) Noise Power
F' | 6 megaFLOPS FLOPS per iteration
Q | 8,974,080 bits Model size
fi | N(700 MHz, 50 MHz) | CPU Frequency for node ¢
G | II(4,8) FLOPS per cycle for node ¢
b; | 5 MHz UAV <+ Server Bandwidth
p; | 200 mWatt UAV—Server Power
Ps 1 Watt UAV<Server Power
bij | 5 MHz D2D Bandwidth
pij | 200 mWatt D2D Power
a | 784 bits Size of a single data frame
cot | 4 Center of OT window
Not | 4 Length of OT window
TABLE I: Simulation Parameters
Optimal Transport at t=10
0T TOAV Area Bllx 1
401 UAV 2
UAV 2
301 e uAV3
20 UAV 3
UAV 4
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Fig. 4: Optimal Transport at ¢ = 10 for Nyay = 6

Where the entries correspond to the amount of data transferred
between node 7 and node j, where the target distribution 3’s

data sizes were obtained by solving Eq. 16:

8= [6121 11699 13326 5873 10549 12432] (26)
And the source distribution was the uniform distribution:
a= [10000 10000 10000 10000 10000 10000] 27

V. CONCLUSIONS

We proposed the FL-UAV scheme which finds the optimal
distribution of data amounts given a set of UAVs’ available
computational and communication resources. We use the dis-
crete optimal transport over the UAVSs’ trajectories to identify
an optimum point, at which D2D communication is cheapest
to exchange the distribution of data into the aforementioned

optimal distribution. Both techniques are low complexity and
are easily scalable, which makes them a viable candidate for
near real-time learning. Nevertheless, the notions conceived in
this paper are not limited to only optimizing the data amounts,
but they can also be extended to optimizing communication
parameters such as the bandwidth and the power. Such op-
timalities are of significance to FL-UAV administrators and
designers, as the increased efficiency in performing the learn-
ing tasks have significant consequences, such as performing a
search and a rescue with faster convergence time.
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