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Abstract—ECG monitoring systems have a significant role in
detecting cardiovascular diseases and reducing the rate of
sudden cardiac deaths. One of the critical factors to support
real-time ECG tracking is to guarantee monitoring system
availability. Hence, this work targets battery life expansion
for a 12 Lead ECG patch. ECG patch operational hours
are extended by reducing Bluetooth Low Energy (BLE) com-
munication airtime, hence reducing the overall transmission
power and extending the battery life. Huffman, delta, and
base-delta compression techniques are implemented on a Texas
Instruments CC2650 Microcontroller Unit using different sam-
pling rates and cardiac conditions such as normal, ventricular
tachycardia, and ventricular fibrillation state. The performance
of each encoding algorithm is evaluated in terms of compres-
sion ratio, the execution time, and power consumption of the
ECG patch. Our findings show that the base-delta encoding
technique outperforms other techniques and achieves 70%
data compression on normal ECG data, 41% on ventricular
fibrillation, and 44% on ventricular tachycardia. The execution
time of base-delta encoding takes less than 25 ms execution
time and saves up to 36 % of the power consumption on the
MCU environment.

1. Introduction

The World Health Organization (WHO) reports that
“The world’s biggest killer is ischaemic heart disease, re-
sponsible for 16% of the world’s total deaths. Since 2000,
the largest increase in deaths has been for this disease, rising
by more than 2 million to 8.9 million deaths in 2019.” [3]. To
prevent sudden cardiac attacks, developing a real-time ECG
monitoring system for cardiac patients is urgently needed.
ECG data must be collected and transmitted continuously
to health care providers in real-time for evaluation. Internet
of Things (IoT) technologies play a vital role in supporting
ECG acquisition and transmission tasks.

Existing efforts in the literature focus on the number
of ECG electrodes to acquire data, design of portable ECG
patches, transmission mechanisms to deliver captured ECG
data between the patch and the Cloud, and computational
techniques that perform preprocessing on received data
before making decisions [21] [7]. Nonetheless, questions
related to optimizing ECG data transmission in a constrained

embedded environment remain unanswered. For example,
what is the efficient way to maximize the battery life of
an ECG patch? How to reduce acquired data size with
minimum execution time? Which compression algorithm
could achieve data size reduction with minimum time and
maximum energy saving? ECG platforms could witness
significant improvement in terms of durability when battery
lifespan is extended. In other words, if the size of collected
ECG data is reduced, the required transmission power will
decrease, and the total number of operational hours will
increase. Expansion of ECG patch operational hours will
support continuous monitoring without charging the patch
frequently or worrying about ECG readings delivery inter-
ruption.

This study targets two objectives to achieve data trans-
mission optimization in a real-time ECG platform and con-
strained environment. First, minimize the amount of cap-
tured ECG data before transmission to the internet gateway
through the Bluetooth Low Energy (BLE) channel. Second,
reduce execution time needed to reduce original data size.
This will extend the ECG patch battery lifetime.

To accomplish these objectives, the proposed approach
must address the constraints of embedded systems in terms
of computational capabilities and airtime for BLE communi-
cation. Huffman, delta, and base-delta encoding algorithms
are applied on different buffer sizes (500 and 1000 samples)
to decrease the size of acquired ECG data before transmis-
sion. A quantitative comparison between these compression
techniques is conducted with respect to compression ratio,
execution time, and power saving.

Experimental results analysis show that base-delta en-
coding is the best compression choice matching our system
objectives and making a trade-off between the amount of
compressed data, time to execute compression, and amount
of consumed power needed to transmit ECG data. Using
base-delta encoding, we reach more than 70 % compression
ratio, less than 25 ms to execute compression, and total 36 %
reduction in power consumption for normal ECG readings.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a brief overview on previous work in ECG
monitoring, data compression concepts, and compression
techniques implemented in our system. Section 3 describes
the system architecture and requirements of the proposed
system. The experimental setup is explained in Section 4
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concerning hardware specifications and the testing dataset.
Section 5 shows the performance evaluation of each encod-
ing algorithm in terms of compression ratio, execution time,
and power consummation. Conclusion and future directions
are discussed in Section 6.

2. Background & Related Work

The rapid evolution of IoT technologies draws signifi-
cant interest in real-time ECG monitoring to support patients
with chronic heart diseases. In the recent decade, there was
a wide diversity of existing ECG monitoring systems in
terms of supported features, communication protocols, and
the number of ECG patch leads. For instance, some ECG
monitoring systems focus on providing primary processes,
such as signal acquisition, signal pre-processing, feature
extraction, and signal processing [22] [26]. Other monitoring
systems provide advanced processing and add more support-
ing features such as visualization, compression, data storage,
and encryption [17] [20].

Many efforts have been introduced to support communi-
cation between ECG patches and internet gateways. Mishra
et al. propose a new method for ECG monitoring based on
lightweight MQTT. They collect ECG data using AD8232
Texas Instruments ECG sensor, then transmit collected data
using ADS1115 16-bit ADC interface with Raspberry Pi
and the I2C protocol. The digital ECG sensor data received
from the ADC is published to a Cloud-MQTT broker using a
mosquito client based on IEEE 802.11 WLAN [16]. Zigbee
has been also used to monitor the ECG status of elderly
persons outdoors, giving health care providers the real-time
status of their patients [24]. However, the performance of
these communication protocols in constrained environments
is under investigated.

Concerning the number of leads, Herry et al. applied
a Support Vector Machine (SVM) classification model on
(MIT-BIH) arrhythmia database to enhance heartbeat de-
tection and classification between normal and abnormal
rhythms using a single ECG lead [10]. Similarly, Mathews
et al. introduced an approach based on Restricted Boltz-
mann Machine (RBM) and deep belief networks (DBN)
methodologies to classify ventricular and supra-ventricular
heartbeats using single-lead ECG [15]. Their proposed work
is limited to single-lead only with offline processing, while
our platform aims to capture full 12-Lead ECG data to cover
a wide range of cardiac issues in real-time. Walinjkar and
Woods integrated a wearable three-lead ECG monitoring
kit with a real-time arrhythmia classification and prediction
model to send notification alarms while uploading the col-
lected data to the database using HL7 and FHIR standards
[23]. Although the authors claim that their approach sup-
ports real-time monitoring, they have a limited number of
leads to capture precise ECG signals. A flexible 12-lead
Holter is proposed using an STM32F microcontroller to
support long-term monitoring. This Holter facilitates digital
compression at stages close to the acquisition to overcome
limitations of coverage and bandwidth of cellular networks
[19]. However, their approach does not provide real-time

updates and notifications to healthcare providers when ab-
normal conditions are detected.

Our approach targets real-time data compression with
stringent execution time to satisfy resource-constrained sys-
tem specifications (computation and energy) and meet real-
time application requirements. This is important to enable
real-time notifications when abnormal conditions are de-
tected.

Next, we will discuss related work of data compression
and different ECG compression techniques.

2.1. Data Compression Techniques

The advancement of IoT applications led to an expo-
nential growth of generated data volumes. Data compres-
sion techniques are classified into two types: lossy and
lossless algorithms. In lossy algorithms, part of data is
lost after decompression. Lossless algorithms reconstruct
original data without any loss. Lossy algorithms, such as
Transform Coding, Discrete Cosine Transform, Discrete
Wavelet Transform, and Fractal Compression are used with
multimedia data (e.g., images, audio and video), while
lossless algorithms, such as Run Length Encoding, Lem-
pel–Ziv–Welch (LZW), Arithmetic Encoding, Huffman En-
coding, and Shannon Fano Encoding are used with tex-
tual data [13]. In wireless sensor networks, there are five
categories of compression techniques: string-based, image-
based, compressed sensing, distributed source coding, and
data aggregation techniques [25]. This work aims to com-
press ECG data after the acquisition phase to reduce the
size and hence the transmission power required to send this
dara. Accordingly, we are interested in applying lossless
algorithms on time series ECG data, such as Huffman
encoding, delta encoding, and base-delta encoding.

2.1.1. Huffman Encoding Huffman encoding is consid-
ered a leading lossless algorithm and it is widely used in
most text-based applications [12] [5]. In Huffman encoding,
every character in the original message is represented by
binary code after generating the Huffman tree [8]. The
length of binary codes depends on the frequency (i.e., times
of occurrences) of each character. Huffman encoding was
our first choice to apply compression on collected ECG data
because of its superior compressing capabilities to the loss-
less compression techniques. It efficiently reduces the size
of original data by assigning short codes for most repeated
characters and longer codes for less repeated characters.
The majority of the previous works implement the Huffman
algorithm on PC as a software compression solution, while a
few contributions run the Huffman algorithm on embedded
systems using FPGA and VLSI [14] [11]. They use the open
source MIT-BIH datasets and their main focus is primarily
on power consumption.

2.1.2. Delta Encoding Delta encoding is one of the simplest
compression techniques used for storing and transmitting
data. Ideally, delta compression works best when the con-
secutive samples are very similar. It outperforms Huffman
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compression for data redundancy elimination when small
changes occur between sequential samples [9]. There is
limited usage of delta encoding with ECG in the literature.
Existing contributions integrate delta encoding with adaptive
Huffman to compress static MIT/BIH database [6]. We
apply delta encoding as a standalone technique on a stream
of collected ECG data in real-time.

2.1.3. Base-Delta Encoding .
Base-delta encoding is a modified version of the delta

algorithm that measures the difference between the first
sample and the remaining samples to reduce the original
message size. It was introduced in 2012 to reduce caching
size [18]. In this work, we utilize base-delta to compress
ECG data and obtain compressed samples with varying
length compared to the fixed byte size in delta compression.

3. System Design

Our proposed platform is functionally divided into five
main phases: data acquisition, data transmission, data stor-
age and streaming, data processing, and data analytics and
decision-making phase, as shown in Figure 1. Badr et al.
[4] describe a novel ECG platform that provides real-time
electrocardiogram monitoring using deep learning and data
streaming techniques to classify ECG signals and notify
healthcare providers based on analysis. We extend this work
through offering a robust and effective compression tech-
nique to reduce their real-time data transmission and extend
the battery life. All compression algorithms we use in this
study are implemented using embedded C on the TI CC2650
microcontroller chip.

3.1. System Requirements

The data acquisition task runs at a sampling rate ranging
between 250 to 500 SPS. In the case of the 250 SPS, the
acquisition task captures one sample every four milliseconds
(250 samples/1000 ms = 4 ms). The data acquisition task
itself requires 1ms to capture each sample. Therefore, the
remaining time available for other tasks (e.g., compression,
logging, and transmission) to operate after each sample
acquisition equals to 3 ms (4 ms - 1ms). This period is
down to 1 ms at 500 SPS. However, in the proposed system,
we process samples in batches every one second, in which
we execute compression, logging and transmission . This
means we have a total of 750 ms available for these three
tasks when the sampling rate is 250. In comparison, at the
500 rates, a total of 500 ms is available for running these
tasks. This setup is a stringent time constraint in our system
and the data compression task will have to be completed
during this time interval. Otherwise, it will be interrupted
by the data acquisition task since it has the highest priority
according to our setup to ensure we don’t miss any data.

The ECG hardware firmware encapsulates the operations
conducted by the MCU into tasks using the scheduling
APIs of the onboard real-time operating system (RTOS).
Data acquisition, data compression, and data transmission

are each encapsulated in a separate task. Each task is ranked
based on a pre-configured priority. The data acquisition is set
to receive the highest priority in the firmware operating on
the hardware. Accordingly, the data acquisition task fulfills
its call first, then the data compression and transmission run
their functions according to their priority. The data com-
pression task has the second-highest priority after the data
acquisition task. To that extent, the following objectives are
set to deliver the expected outcomes by the ECG acquisition
hardware: (1) reduce the digitized ECG data size before
transmission over BLE to the backend system; (2) maximize
the ECG acquisition hardware battery lifetime by enhancing
the power consumption profile of the device.

4. Experimental Setup

Our experimental work is expressed in terms of data
acquisition procedure, datasets characteristics and ECG data
reduction.

4.1. ECG Datasets Acquisition

To collect ECG data, we connect our data acquisition
platform to the TechPatient CARDIO V4 heart simulator [1]
to generate ECG datasets. This way, we avoid connecting
the proposed hardware to a real patient. The simulator
can generate real-time electrocardiogram (ECG) waveforms
for different cardiac conditions. It supports two modes of
operation: ECG mode and Rhythmic mode. The ECG mode
provides a realistic 12-leads ECG waveforms. The Rhyth-
mic mode simulates 45 predefined arrhythmias or heart
diseases, such as ventricular tachycardia and ventricular
fibrillation. Using the ECG Simulator, we created three
different datasets: normal ECG, ventricular tachycardia, and
ventricular fibrillation heart diseases. Each dataset contains
a total of 10 minutes of ECG waveform recordings.

4.2. Dataset Characteristics

Our ECG data is acquired at sampling rates between 250
- 500. Each sample contains the data of eight ECG channels.
Every ECG channel carries 24 bits of raw data, plus an
additional 24 bits representing the status of the electrodes
attached to the patient’s body (i.e., whether they are correctly
connected or not). Respectively, one successful sample holds
216 bits of information (8 channels * 24 bits data + 24 bits
for electrode status). As a result, our ECG patch processes
6750 bytes per second while operating in the low-power
mode at a rate of 250 SPS and 13,500 bytes while operating
in the high-resolution mode at a rate of 500 SPS.

4.3. ECG Data Reduction

To transmit data over a wireless interface, the power con-
sumption rate is proportional to the volume of transmitted
data. As indicated above, our ECG patch generates a large
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Figure 1. System Architecture of Real-time ECG monitoring Platform

volume of data each second, which requires a high amount
of power to transmit. Theoretically, if we reduce the data
size, we consume less power to transmit, given that we have
the computational capacity to do so within the constrained
time budget. Thus, we use lightweight lossless compression
algorithms to increase battery lifetime and extend the ECG
patch operational hours for efficient real-time monitoring .
We compare the performance of Huffman, delta, and base-
delta encoding on the TI CC265 MCU to determine the
appropriate technique suitable for these conditions.

5. Results and Discussion

The compression techniques are assessed based on our
system requirements regarding Compression Ratio (CR),
Execution Time (ET), and Power Consumption Analysis
with respect to the acquisition hardware constraints. The ex-
periments evaluate the compression techniques on different
buffer sizes. The buffers setup is set as double the acquisition
rate per second to capture at least one complete heartbeat
signal. The ECG acquisition hardware uses a sliding window
of two-seconds interval to capture at least one complete
cardiac cycle at a minimum heart rate of 30 bpm, and four
complete cardiac cycles at a heart rate of 240 bpm. The
analytical power analysis conducted shows the difference in
power consumption while sending the ECG data over BLE.

The experimental environment setup consists of the fol-
lowing steps:

1) Collect ECG signals in real-time from the heart
simulator. The CC265x powers the hardware to
acquire the ECG signals in real-time from the heart
simulator under three different heart conditions:
normal heartbeats at 92 bpm, abnormal ventricular
tachycardia and ventricular fibrillation heartbeats.

2) Create two test environments by constructing two
buffers, where the buffer sizes are: 1000 and 500
samples. The buffers carry an equivalent ECG data
of two seconds at 500 SPS and 250 SPS, respec-
tively.

3) Apply Huffman, delta, and base-delta encoding
compression techniques on the buffered data in two
operation modes. The first operation mode is when
the data acquisition hardware is working offline,
which means the Radio module for BLE is turned

off and the data transmission task is not scheduled.
This simulates when the ECG patch is disconnected
for any reason. The second mode is the real-time
continuous operation mode, where the collected
ECG data is compressed, saved on a local SD
storage, and transmitted to the nearest paired BLE
device.

4) Compare various compression techniques in terms
of compression ratio and execution time.

5) Calculate the power consumption footprint and the
energy-saving of applying the compression tech-
niques on the overall system performance.

Table 1 shows the compression ratio of the three compres-
sion techniques. The Huffman encoding technique yields
the highest compression ratio over delta and base-delta
compression techniques. In contrast, the delta encoding
fails to compress abnormal heart conditions. This is due
to the uniqueness of each sample in abnormal conditions.
On the other hand, the base delta encoding shows better
compression ratios in abnormal heart conditions than the
delta encoding technique.

Table 2 summarizes the execution time of the com-
pression techniques. We utilize the Real-time Clock (RTC)
module on the MCU to calculate the execution time of the
three compression techniques. The initial experiment runs
the compression techniques in an isolated environment re-
gardless of the other tasks (i.e., the only task running on the
MCU). The Huffman encoding technique shows the highest
execution time with a maximum of 112 ms on the buffer
size. In contrast, the delta and base-delta techniques show
significantly less execution time of a maximum of 24 ms on
the same buffer size. The result from the initial experiment
satisfied the time constraints of the ECG data acquisition
hardware. The second experiment runs the compression task
with the data acquisition, logging, and transmission tasks.
The experiment results show that the device can run all the
tasks at a max sampling rate of 250 SPS. However, the time
constraints are violated when the sampling rate is higher
than 250 SPS.
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TABLE 1. COMPRESSION RATIOS WITH BUFFER SIZE (BS) = 1000, 500 SAMPLES

Dataset Huffman Encoding Delta Encoding Base-Delta Encoding
BS 1000 BS 500 BS 1000 BS 500 BS 1000 BS 500

Normal ECG 84.9 % 84.9 % 72.3 % 73.6 % 73.6 % 74.8 %
Ventricular Tachycardia 56.1 % 56.1 % 0 % 0 % 44 % 43.2 %
Ventricular Fibrillation 56.7 % 56.7 % 0 % 0 % 41.7 % 39.1 %

TABLE 2. EXECUTION TIME (ms) WITH BUFFER SIZE (BS) = 1000, 500 SAMPLES

Dataset Huffman Encoding Delta Encoding Base-Delta Encoding
BS 1000 BS 500 BS 1000 BS 500 BS 1000 BS 500

Normal ECG 112 109 24 23 24 23
Ventricular Tachycardia 112 109 24 23 24 23
Ventricular Fibrillation 112 109 24 23 24 23

TABLE 3. TRANSMISSION TIME OF THE ORIGINAL DATA OVER BLE AT
1 MBPS & 2 MBPS.

Compression
Technique

Huffman
Encoding

Delta Encoding
& Base-delta
Encoding

Heart Condition Normal Abnormal Normal Abnormal
ECG Data Size 48000

bits
32000
bits

TAir (BLE 2
Mbps — 251
payload)

33 ms 33 ms 22.32
ms

22.32
ms

TAir (BLE 1
Mbps — 251
payload)

48 ms 48 ms 32 ms 32 ms

To evaluate the power consumption, we calculate the
overall power consumption for all active modules on the
MCU while performing the intended tasks. The list of these
modules and their base current consumption can be found in
[2]. The power consumption is divided into two segments:
the base power consumption and radio power consumption.
While values of Air Time over BLE at 1 MBPS and 2 MBPS
are presented in Table 3 and Table 4. The total energy con-
sumption is calculated using the following formula (where
the I’s are the active modules from the board data sheet [2]):

Total Energy = Airtime (TAir) * (ITx + ICore + IPeri-RF Core
+ IPeri-Power Domain + IPeri-DMA) + Processing time (TProc) *
(ICore + IPeri-RF Core + IPeri-Power Domain + IPeri-DMA + IPeri-SPI)

Table 5 compares different scenarios of operation on
the ECG data acquisition hardware in terms of energy
consumption. The main point of comparison is the impact
of the data compression techniques on the energy consump-
tion profile. As shown in Table 5, the Huffman encoding
technique imposes additional complexity on the system for
signal processing, storage, and transmission. The Huffman
encoding treats ECG data samples as a set of characters.
This process includes additional computations in converting
the digitized ECG signals from an unsigned integer data
type to a character data type. Moreover, character data
types require additional memory to store the data, which
increases the transmission time when sending the collected
data over BLE. Accordingly, the experiments show that
Huffman encoding is unsuitable due to the limited resources

and the time constraints of the proposed ECG acquisition
hardware.

The same observation applies to the delta encoding
technique except that it shows significant improvements
in processing time from 112 ms to 24 ms. The delta en-
coding achieves adequate processing time concerning the
time constraints on the hardware but fails to compress the
data in abnormal heart conditions. However, the base-delta
encoding completes in roughly the same time but achieved
up to 44% compression ratio for abnormal heart conditions,
which yielded 36% in saving energy.

The experimental results conclude that despite high com-
pression ratio gain with the Huffman encoding technique,
it does not satisfy the execution time requirements. The
base-delta encoding makes a balance between the required
execution time to operate and the compression ratio to fulfill
our ECG data acquisition hardware constraints.

6. Conclusion

This study investigates the impact of data compression
on energy saving in constrained embedded environments
using TI-CC2650 MCU. The Huffman, delta, and base-delta
encoding algorithms are evaluated in regards to the com-
pression ratio, execution time, and energy consumption for
data transmission. The base-delta encoding outperforms both
the Huffman and delta encoding techniques and achieved a
24 ms execution time, 70% in compression ratio in nor-
mal cardiac status, a 41% compression ratio in ventricular
fibrillation and 44% on ventricular tachycardia. The delta
encoding technique saved 36% of the power consumption
compared to no compression. In the future, we plan to apply
the base-delta encoding on various cardiac conditions and
study the effect of data compression on enhancing the power
consumption profile for these conditions.
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