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Abstract

ECG monitoring systems have a significant role in detecting cardiovascular diseases

and reducing the rate of sudden cardiac deaths through early warnings for heart at-

tacks. One of the critical factors in supporting real-time ECG tracking is to guarantee

monitoring system availability. This thesis focuses on battery life extension for a 12

Lead ECG patch utilizing compression and classification approaches.

In the compression approach, the operational hours of the ECG patch are extended

by reducing the data size of captured ECG signals to minimize data transmission.

Huffman, delta, and base-delta lossless compression techniques are implemented on

a Texas Instruments CC2650 Micro-controller Unit using different sampling rates,

normal, and abnormal cardiac conditions. The algorithms are evaluated in terms of

compression ratio, execution time, and power consumption of the ECG patch.

The computer-aided interpretation of ECG signals has become a pivotal tool for

physicians in the clinical assessment of cardiovascular diseases during the last decade.

Therefore, computerized diagnosis systems depend heavily on machine learning and

deep learning models to guarantee high classification accuracy. With the classification

approach, we target effective power consumption by controlling the ECG patch mode

of operation to reduce the need for a full-fidelity ECG signal. We use a binary

classifier to inform the decision to switch between different operational strategies. In
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addition, we developed a new approach to support energy-efficient ECG monitoring in

real-time through adaptive lead selection for ECG signals to better diagnose different

heart conditions.

Our findings show that the base-delta encoding technique outperforms other com-

pression techniques and achieves 70% data compression on normal ECG data, and

up to 50% on abnormal ECG data with 24 ms. The adaptive selection of ECG chan-

nels with CNN models on 1 and 12 leads achieves 77.7% power saving in the normal

cardiac condition and up to 55.5% for the heart blocks, sinus bradycardia, and sinus

tachycardia.

ii



Co-Authorship

1. Hebatalla Ouda, Ahmed Badr, Abeulmonem Rashwan, Hossam S. Hassanein,

and Khalid Elgazzr. Optimizing Real-time ECG Data Transmission in Con-

strained Environments. IEEE International Conference on Communications

(ICC), 2022 (accepted).

2. Hebatalla Ouda, Abeer Badawi, Hossam S. Hassanein, and Khalid Elgazzr.

Energy Saving on Constrained 12-Leads Real-Time ECG Monitoring. IEEE

Global Communications Conference (GLOBECOM), 2022 (accepted).

3. Hebatalla Ouda, Hossam S. Hassanein, and Khalid Elgazzr. Adaptive ECG

Leads Selection for Low-Power ECG Monitoring Systems Using Multi-class

Classification. International Conference on Communications, Signal Process-

ing, and their Applications (ICCSPA), 2022 (under review).

iii



Acknowledgments

First, I would like to thank Allah gratefully for giving me a generous portion of

achievements, I would never accomplish the master’s journey without his endless

blessings.

I would like to express my deepest gratitude to Prof. Khalid Elgazzar and Prof.

Hossam Hassanein for their extraordinary support, motivation, mentorship, and guid-

ance. They inspired me to follow the professional attitude of scholars. This two-year

journey was a life-changing experience for me with ups and downs. My supervisors

gave me the confidence and encouragement at difficult times to continue with a high

level of enthusiasm. I am fortunate to work under their supervision and it could not

have happened without them.

I was looking forward to this moment to give credit to my lovely parents, my

father, Dr. Tarek; my mother, Dr. Wafaa; and my supportive brother, Hossam.

They were always providing me with unfailing support, motivation, and continuous

encouragement throughout my life and I would never reach anything in life without

them.

My grateful thanks are extended to Basia Palmer for her incredible patience and

intensive efforts during the master’s journey. She is always keen on spreading positive

vibes and giving constructive feedback during proofreading. I am thankful for her

iv



continuous support even if we don’t request help, she is always there to assure we are

motivated to continue.

The journey wasn’t easy without spending memorable times with amazing friends.

I would like to thank my kindhearted friends: Marah, Sarah, Omneya, Sara Abde-

laziz, Shaza, Qamar, Rawan, Eman, Alaa, Mariam, Safa, and Ghada for the truly

beautiful moments that we shared during this journey. Furthemore, I am thankful

to the ESAQ board: Ahmad Nagib, Alaa, Shaza, Mohammed Anas, as they gave me

the opportunity to explore students’ activities at Queen’s while applying work-life

balance.

I would also like to thank all TRL and IoT Lab colleagues, partners of success, for

their great support and encouragement towards making a successful and enjoyable

academic experience.

v



Contents

Abstract i

Co-Authorship iii

Acknowledgments iv

Contents vi

List of Tables ix

List of Figures xi

List of Abbreviations xii

Chapter 1: Introduction 1
1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Background and Literature Review 7
2.1 ECG Monitoring Systems . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Data Compression Techniques . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Run-Length Encoding (RLE) . . . . . . . . . . . . . . . . . . 13
2.2.2 Lempel–Ziv–Welch Encoding (LZW) . . . . . . . . . . . . . . 14
2.2.3 Arithmetic Encoding . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Huffman Encoding . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Delta Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.6 Base-Delta Encoding . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 ECG Signals Classification Techniques . . . . . . . . . . . . . . . . . 17
2.3.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . 17

vi



2.3.2 Multi-Class Classification . . . . . . . . . . . . . . . . . . . . 19
2.4 Power Optimization in ECG Platforms . . . . . . . . . . . . . . . . . 22

Chapter 3: Data Size Reduction With Lossless Compression 27
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 ECG Datasets Acquisition . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Dataset Characteristics . . . . . . . . . . . . . . . . . . . . . . 32
3.4.3 ECG Data Reduction . . . . . . . . . . . . . . . . . . . . . . 32

3.4.3.1 Huffman Encoding . . . . . . . . . . . . . . . . . . . 33
3.4.3.2 Delta Encoding . . . . . . . . . . . . . . . . . . . . . 33
3.4.3.3 Base-Delta Encoding . . . . . . . . . . . . . . . . . . 34

3.4.4 Hardware Specifications: . . . . . . . . . . . . . . . . . . . . . 35
3.5 Lossless Compression Results . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Data size Reduction - Execution time Trade-off . . . . . . . . 36
3.5.2 Power Consumption Analysis . . . . . . . . . . . . . . . . . . 39

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 4: Adaptive ECG Leads Selection 44
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Features Extraction . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Supervised Learning Results . . . . . . . . . . . . . . . . . . . 48
4.2.5 System Flow in Binary Classification Scenario . . . . . . . . . 52
4.2.6 Power Consumption Analysis Using Binary Classification . . . 53
4.2.7 Merging Binary Classification with Base-Delta Compression . 55

4.3 Multi-Class Classification . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Multi-Class Classification Using a Single ECG Lead . . . . . 57

4.3.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.1.2 Deep Neural Network Architecture . . . . . . . . . . 59
4.3.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1.4 Multi-Class Classification Evaluation . . . . . . . . . 61
4.3.1.5 Power Consumption Analysis . . . . . . . . . . . . . 62

4.3.2 Multi-class Classification Using 12 ECG Leads . . . . . . . . 64
4.3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2.2 Deep Neural Network Architecture . . . . . . . . . . 65

vii



4.3.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2.4 Mutli-Class Classification Evaluation . . . . . . . . . 67
4.3.2.5 Power Consumption Analysis . . . . . . . . . . . . . 68

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 5: Conclusion and Future Work 71
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 73

viii



List of Tables

3.1 Compression ratios of lossless encoding algorithms with buffer size =

1000 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Compression ratios of lossless encoding algorithms with buffer size =

500 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Execution time (ms) of lossless encoding algorithms with buffer size =

1000 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Execution time (ms) of lossless encoding algorithms with buffer size =

500 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Air time (ms) of the compressed data with buffer size = 500 Samples

over BLE at 2 Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Air time (ms) of the compressed data with buffer size = 1000 Samples

over BLE at 2 Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Base power consumption in active power mode . . . . . . . . . . . . . 41

3.8 Power consumption (mJ) on buffer size = 500 Samples while trans-

mitting data over BLE . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Power consumption (mJ) on buffer size = 1000 Samples while trans-

mitting data over BLE . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Training set with MIT-BIH annotated records . . . . . . . . . . . . . 46

ix



4.2 Testing Set with MIT-BIH annotated records . . . . . . . . . . . . . 47

4.3 Top 10 features as ranked by the MI criterion for the reference anno-

tations of the MIT-BIH database . . . . . . . . . . . . . . . . . . . . 48

4.4 Execution time and accuracy of binary classification algorithms . . . 48

4.5 Evaluation report for binary classification algorithms in normal and

abnormal ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Air time (ms) before and after binary classification . . . . . . . . . . 54

4.7 Power consumption (mJ) for 12 leads before and after classification . 55

4.8 Energy saving in compression and classification scenarios . . . . . . . 56

4.9 Multi-class classification output classes using MIT-BIH arrhythmia

database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.10 Hyper-parameters tuning with Adam optimizer . . . . . . . . . . . . 60

4.11 Evaluation report for multi-class classification with MIT-BIH arrhyth-

mia database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.12 ECG channels for each cardiac class of the single lead DNN . . . . . . 63

4.13 Power consumption and energy saving after using single lead DNN . . 64

4.14 Multi-class classification output classes using CODE-test dataset . . 66

4.15 Hyper-parameters tuning with Adam optimizer . . . . . . . . . . . . 67

4.16 Evaluation report for multi-class classification with CODE-test dataset 68

4.17 ECG channels for each cardiac class of the 12 lead DNN . . . . . . . 69

4.18 Power consumption and energy saving after using 12-lead DNN . . . 69

x



List of Figures

2.1 Ambulatory ECG devices . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The overall architecture of ECG monitoring systems . . . . . . . . . . 9

2.3 Clustering of ECG monitoring systems . . . . . . . . . . . . . . . . . 10

2.4 Design components of ECG wireless systems . . . . . . . . . . . . . . 23

3.1 System architecture of the real-time ECG monitoring platform . . . . 28

3.2 TechPatient CARDIO V4 ECG simulator . . . . . . . . . . . . . . . . 31

3.3 CC2650 SimpleLink multistandard wireless MCU . . . . . . . . . . . 35

4.1 Cross validation score vs training score for the LR classifier . . . . . . 49

4.2 Cross validation score vs training score for the RF classifier . . . . . . 49

4.3 Cross validation score vs training score for the SVM classifier . . . . . 50

4.4 Cross validation score vs training score for the KNN classifier . . . . 50

4.5 Energy saving scenario using varying modes of operations . . . . . . . 53

4.6 System flow using the multi-class classification approach . . . . . . . 58

4.7 DNN architecture using single lead . . . . . . . . . . . . . . . . . . . 59

4.8 Confusion matrix of the single lead DNN model . . . . . . . . . . . . 61

4.9 DNN architecture using 12 leads . . . . . . . . . . . . . . . . . . . . . 66

4.10 Confusion matrix of the 12-lead DNN model . . . . . . . . . . . . . . 67

xi



List of Abbreviations

1dAVb 1st Degree AV Block

3D-MRP 3D Magnetic Resonance Pancreatography

ADC Analog to Digital Converter

ANN Artificial Neural Network

APC Atrial Premature Contraction

BLE Bluetooth Low Energy

CALIC Context-based Adaptive Lossless Image Codec

Cloud-MQTT Cloud-MQ Telemetry Transport

CNN Convolutional Neural Network

CR Compression Ratio

DL Deep Learning

DT Decision Tree

DWT Discrete Wavelet Transform

xii



ECG Electrocardiogram

FHIR Fast Healthcare Interoperability Resources

FPGA Field Programmable gate array

HEVC High-Efficiency Video Coding

HL7 Health Level 7

IoMT Internet of Medical Things

IoT Internet of Things

KNN K-Nearest Neighbors

LBBB Left Bundle Branch Block

LR Logistic Regression

LZW Lempel–Ziv–Welch

MAC Media Access Control

Mbps Mega Bit Per Second

MCU Microcontroller Unit

ML Machine Learning

MRI Magnetic Resonance Imaging

PAB Paced Beat

xiii



PVC Premature Ventricular Contraction

RAKE Rapid Automatic Keyword Extraction

RBBB Right Bundle Branch Block

ReLU Rectified Linear Unit

RLE Run Length Encoding

RNN Recurrent Neural Network

ROM Read Only Memory

SD Secure Digital

SPS Sample Per Second

VEB Ventricular Escape Beat

VFW Ventricular Flutter Wave

VLSI Very Large-Scale Integration

xiv



1

Chapter 1

Introduction

1.1 Overview and Motivation

During the last 30 years, cardiovascular diseases have been the dominant cause of

mortality in more than 195 countries worldwide [1]. The World Health Organization

(WHO) reports that “The world’s biggest killer is ischaemic heart disease, responsible

for 16% of the world’s total deaths. Since 2000, the largest increase in deaths has been

for this disease, rising by more than 2 million to 8.9 million deaths in 2019.” [2]. De-

veloping a real-time electrocardiogram (ECG) monitoring system for cardiac patients

is urgently needed to prevent sudden cardiac attacks. ECG data must be collected

and transmitted continuously to health care providers in real-time for evaluation.

The Internet of Things (IoT) has contributed significantly to the expansion of

healthcare systems during the last decade [3] [4] [5]. IoT technologies play a vital

role in supporting ECG acquisition and transmission tasks. Existing efforts in the

literature focus on the number of ECG electrodes to acquire data, design of portable

ECG patches, transmission mechanisms to deliver captured ECG data between the

patch and the cloud, and computational techniques that perform preprocessing on



1.1. OVERVIEW AND MOTIVATION 2

received data before making decisions [6] [7]. The recent ECG monitoring platforms

rely on ECG signal classification with high accuracy, especially since the advent of

deep learning (DL) techniques. The deep learning models can recognize the various

patterns by extracting meaningful features from input data without extensive feature

engineering [8]. Moreover, the neural network’s performance increases if we use mas-

sive training data, which is essential for real-time ECG streaming that generates a

large volume of ECG raw data.

The wide range of medical sensors, especially ECG sensors, prompts the need

for portable wearable monitoring devices, such as Holter monitor and cardiac events

recorders. Holter monitor facilitates continuous cardiac events monitoring for 24

hours, consuming a large amount of power to operate in a constrained environment.

Therefore, energy saving is critical in maintaining the sustainability of real-time ECG

platforms.

Optimizing energy consumption impacts the durability of ECG monitoring sys-

tems. If we reduce the computational power and the overall transmission time to send

ECG readings over Bluetooth Low Energy (BLE), we can guarantee seamless con-

tinuous monitoring without interruptions due to battery depletion or power outage.

To illustrate, if the size of collected ECG data is reduced, the required transmission

power will decrease, and the total number of operational hours will increase. Extend-

ing the ECG patch operational hours will support continuous monitoring without

charging the patch frequently or worrying about ECG readings delivery interruption.

The proposed efforts to date introduce several ways to optimize power consump-

tion during the data acquisition and transmission phases. For example, data size
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reduction is commonly used in ECG real-time monitoring [9] to reduce the communi-

cation overhead required to transfer data between both ends. In addition, changing

operational strategies using Machine Learning (ML) and neural network classifiers is

another approach to reduce power consumption and support real-time ECG moni-

toring [10]. Nonetheless, the power consumption evaluation in the low-power ECG

monitoring systems that utilize DL models is still underexplored

The remaining research efforts target power consumption optimization by imple-

menting customized hardware circuits [11] or deploying classification on the cloud [12]

[13]. As a result, there is a significant gap in testing the performance and durability of

the ECG monitoring platforms on real ECG systems. Furthermore, the transmission

time of captured ECG data and power-saving analysis on the constrained embedded

environments are underinvestigated.

1.2 Problem Statement

The ECG patch processes 13,500 bytes while operating in the high-resolution mode

with 500 sampling rate. The high volume of transmitted data increases transmis-

sion power which in return consumes the battery of the ECG patch intensively. Ef-

ficient techniques to optimize ECG data transmission in a constrained embedded

environment remain underexplored. Thus, our thesis targets different power-saving

approaches for the clinical assessment of cardiac patients. We aim to address the fol-

lowing research challenges to reduce the power consumption of the target constrained

12-leads ECG real-time platform.

• What are the optimum compression and classification approaches to achieve

maximum energy saving with minimum processing and transmission time?
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• What is the effect of combining data reduction and switching the mode of

operation of the ECG patch on the total power consumption?

1.3 Objectives

This study targets ECG data transmission optimization in a real-time ECG platform

and constrained environment. The main objectives are as follows:

• Reducing the amount and size of ECG data needs to be transmitted for diag-

nostics purposes, while maintaining efficient ECG monitoring.

• Reducing the execution time needed for ECG signals compression to guarantee

real-time streaming through the Bluetooth Low Energy (BLE) channel to the

internet gateway.

• Evaluating the performance of the commonly used neural models in the litera-

ture within the real-time environment.

• Adjusting the number of ECG leads and manipulating the mode of operation of

the ECG patch based on the identified cardiac abnormality from CNN models.

• Minimizing the total power consumption of the ECG patch using the adaptive

selection of ECG leads.

1.4 Contributions

The main contributions of this thesis can be summarized as follows:
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1. We highlight the constraints of real-time ECG platforms that must be consid-

ered while optimizing the energy consumption of the ECG patch within embed-

ded environments.

2. We present a quantitative comparison between three mainstream lossless com-

pression techniques including Huffman, delta, and base-delta encoding for ECG

signals with respect to compression ratio, execution time, and power saving.

3. We propose to use base-delta encoding as a data size reduction approach to

reduce the transmission time and extend the battery life of ECG patches in

constrained environments. We also use varying modes of operations to reduce

the number of transmitted leads to further save power consumption in normal

heart conditions.

4. We evaluate the performance of both data reduction techniques in terms of

power-saving and execution time for varying heart conditions on constrained

MCU environments.

1.5 Organization of Thesis

This thesis is organized as follows: Chapter 2 provides a comprehensive literature re-

view of the existing contributions to implement ECG monitoring systems, the variety

of data compression techniques, the role of ML and DL techniques in ECG classifi-

cation applications, and the recent efforts to optimize power consumption in cardiac

monitoring platforms. Chapter 3 presents the effect of using a data size reduction ap-

proach with lossless compression algorithms, such as Huffman, Delta, and Base-Delta

encoding on the power consumption of the ECG patch within the TI CC2650 MCU
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environment. In Chapter 4, we introduce the second approach to reduce the energy

consumption using adaptive ECG leads selection. We use binary classification and

multi-class classification techniques to support intelligent decision making to change

the ECG patch operation mode. Finally, Chapter 5 concludes our work and outlines

future directions.
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Chapter 2

Background and Literature Review

2.1 ECG Monitoring Systems

The rapid evolution of IoT technologies draws significant interest in real-time ECG

monitoring to support patients with chronic heart diseases. In the recent decade,

there has been a wide diversity of ambulatory ECG systems that facilitate diagnosis,

prognosis, and arrhythmia treatment assessment. Numerous monitoring devices are

available on the market with different features, such as backward and looping memory,

full disclosure, multi-channels, wearable styles, post-event monitor, and telemetry

transmission. Sanders et al. [14] provide an intensive comparison concerning the

design, operational duration, cost, advantages, and limitations of recent ambulatory

ECG devices like Holter monitor, external loop recorders, implantable loop recorders,

mobile cardiac telemetry, patch monitor, and smartwatches as shown in Figure 2.1.

Due to the distinct features of each device, the selection of an appropriate ECG

monitoring device for the clinical assessment is a critical task to guarantee real-time

evaluation, full-disclosure recording, and long recording duration using multiple leads.
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Figure 2.1: Ambulatory ECG devices (Adapted from [14])
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Holter monitors, post-event recorders, and smartwatches are the most affordable

cardiac monitoring devices. However, post-event recorders and smartwatches require

patients activation, which limits their contributions to informational use instead of

medical diagnosis, unlike the traditional Holter monitor, which supports continuous

ECG monitoring up to 48 hours.

The authors in [6] introduce an overall architecture of ECG monitoring systems

illustrated in Figure 2.2 that consists of five layers: acquisition layer, pre-processing

layer, modeling and analytics layer, storage layer, and application interfaces layer.

Figure 2.2: The overall architecture of ECG monitoring systems (Adapted from [6])

In addition, Serhani et al. classify the existing ECG monitoring systems in the

literature into five main clusters: ECG monitoring context, monitoring technologies,
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monitoring schemes, monitoring targets, and futuristic monitoring systems as shown

in Figure 2.3. Our work integrates CL2, CL3, CL4 and CL5 for an energy-efficient

continuous ECG monitoring platform in real-time.

Figure 2.3: Clustering of ECG monitoring systems (Adapted from [6])

The existing cardiac monitoring solutions differ regarding the supported features,

communication protocols, and the number of ECG patch leads. For instance, some

ECG monitoring systems focus on providing primary processes, such as signal acqui-

sition, signal pre-processing, feature extraction, and signal processing [15] [16] [17]. In

[18], the heartbeat detection procedure passes through multi-phases starting with sig-

nal selection and processing, feature extraction, signal quality assessment, and delay

correction. Similarly, the work in [19] focuses on the primary processes like data col-

lection and beat classification while integrating Wireless LAN (WLAN), smartphones,

and wearable sensors. The authors produced a smart shirt called Mobile Physiological
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Sensor System (MoPSS) that collects physiological data from the wireless body sen-

sor network system (WBSNS), which includes heart rate, body temperature, blood

pressure, and blood glucose sensors.

Many efforts have been introduced to support communication between ECG patches

and internet gateways. Mishra et al. [20] propose a new method for ECG monitoring

based on lightweight MQTT. They collect ECG data using AD8232 Texas Instruments

ECG sensor, then transmit collected data using ADS1115 16-bit ADC interface with

Raspberry Pi and the I2C protocol. The digital ECG sensor data received from the

ADC is published to a Cloud-MQTT broker using a mosquito client based on IEEE

802.11 WLAN. Zigbee has also been used to monitor the ECG status of elderly per-

sons outdoors, giving health care providers the real-time status of their patients [21].

However, the performance of these communication protocols in constrained environ-

ments is under-investigated.

Concerning the number of leads, Herry et al. applied a Support Vector Machine

(SVM) classification model on the MIT-BIH arrhythmia database to enhance heart-

beat detection and classification between normal and abnormal rhythms using a single

ECG lead [22]. Similarly, Mathews et al. introduced an approach based on Restricted

Boltzmann Machine (RBM) and deep belief network (DBN) methodologies to classify

ventricular and supra-ventricular heartbeats using a single ECG lead [23]. Their pro-

posed work is limited to single-lead only with offline processing, while our platform

aims to capture 12-lead ECG data to cover a wide range of cardiac issues in real-time.

Walinjkar and Woods integrated a wearable three-lead ECG monitoring kit with

a real-time arrhythmia classification and prediction model to send notification alarms

while uploading the collected data to the database using HL7 and FHIR standards
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[24]. Although the authors claim that their approach supports real-time monitoring,

they have a limited number of leads to capture precise ECG signals in abnormal

conditions. A flexible 12-lead Holter monitor is proposed [25] using an STM32F

microcontroller to support long-term monitoring. This Holter monitor facilitates

digital compression at stages close to the acquisition phase to overcome limitations

of coverage and bandwidth of cellular networks. However, their approach does not

provide real-time updates and notifications to healthcare providers when abnormal

conditions are detected.

Other monitoring systems [26] [27] provide advanced processing and add more

supporting features such as visualization, compression, data storage, and encryption.

As an example, Alex et al. [28] propose a fully homomorphic encryption (FHE)

algorithm to encrypt the collected ECG data and assure safe storage of patients’ data

on the cloud before being processed and sent to the doctors for medical assessment.

2.2 Data Compression Techniques

The advancement of IoT applications led to an exponential growth in the volume

of generated data. As a result, more storage capacity and computational power

are needed to transmit the massive volume of ECG data to the internet gateway,

which is detrimental for real-time applications. Therefore, data size reduction using

compression is used to minimize the total consumed energy and the required memory

in healthcare applications.

Data compression techniques are classified into two types: lossy and lossless algo-

rithms. In lossy algorithms, part of the data is lost after decompression. Conversely,

lossless algorithms reconstruct the original data without any loss. Lossy algorithms,
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such as Transform Coding, Discrete Cosine Transform, Discrete Wavelet Transform,

and Fractal Compression, are used with multimedia data (e.g., images, audio, and

video) and limited non-life-threatening healthcare applications [29], while lossless al-

gorithms, such as Run Length Encoding, Lempel–Ziv–Welch (LZW), Arithmetic En-

coding, Huffman Encoding, and Shannon Fano Encoding are used with textual data

[30]. In wireless sensor networks, there are five categories of compression techniques

[31]: string-based, image-based, compressed sensing, distributed source coding, and

data aggregation. String-based, image-based, and compressed sensing are commonly

used techniques in the healthcare domain [32] [33] [34].

Lossless compression techniques are vital in sensitive healthcare applications like

arrhythmias detection and heart attack prediction [35]. The lossless approaches elim-

inate the risk of losing any part of the ECG recordings that could contain critical

information for medical evaluation.

We will demonstrate the existing lossless algorithms in the literature and focus on

the lightweight techniques that we used in our constrained embedded environment.

2.2.1 Run-Length Encoding (RLE)

RLE is a lossless compression technique widely used in image- based, and animation

applications [36] [37]. RLE represents the number of occurrences for each symbol in

the data sequence. Accordingly, RLE is efficient for data with high local correlation.

However, the decompression process takes a long time and produces low decompres-

sion bandwidths. Kanania and Padole [38] utilize the RLE algorithm to apply parallel

encoding on large Genome files within a distributed Raspberry Pi environment. They
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detect abnormal patterns in genetic files while reducing the computational power due

to the compression output. The biosignal compression toolbox is introduced in [39] to

support data recoverability. The authors merge transformation methods and encod-

ing techniques, such as Huffman encoding and RLE, to create a compression pipeline

on wearable ECG sensors, photoplethysmography (PPG), accelerometry, and skin

temperature. The compression pipeline is evaluated in terms of compression ratio

and Percent Root-mean-square Difference to recommend the efficient transformation

and encoding methods for each wearable sensor.

2.2.2 Lempel–Ziv–Welch Encoding (LZW)

LZW encoding is one of the dynamic dictionary-based techniques. Each dictionary

element starts with the last letter from the previous dictionary item. The encoding

output is the index of dictionary records. The drawback of the LZW encoding tech-

nique is the long processing time to construct the entire dictionary. Wilson et al.

[40] implement a novel feature extraction technique using LZW Probabilistic Finite

State Automata (LZW-Coded PFSA) to recognize the distinct human activities ac-

curately with 95.6 % classification accuracy. A benchmark suite for the Internet of

Medical Things (IoMT) called HERMIT is introduced to ease the evaluation of micro-

architectures in IoMT applications [41]. LZW encoding is deployed in HERMIT to

represent the compression component in IoT devices while transmitting medical sen-

sor readings over the network.
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2.2.3 Arithmetic Encoding

Arithmetic encoding is an entropy-based technique that encodes data strings in two

phases [42]. First, the string is mapped into a floating point range, and this step

is repeated recursively for all string characters. Second, the floating point range is

translated into binary sequence. The Arithmetic approach is used for image compres-

sion and secure biometric applications. In [43], the authors introduce a novel image

compression technique using block-based arithmetic encoding to select the threshold

for prediction and choose the optimal block size of the residual image. Their approach

outperforms other lossless image compression techniques, such as CALIC, JPEG-LS,

HEVC and 3D-MRP. Aparna et al. [44] propose fingerprint biometric authentication.

They use arithmetic encoding to generate a watermark image for the MRI images by

encoding the image data and combining the encoded stream with the original input.

2.2.4 Huffman Encoding

Huffman encoding is a leading lossless algorithm and widely used in most text-based

applications [45][46]. In Huffman encoding, every character in the original message

is represented by binary code after generating the Huffman tree [47]. The length of

binary codes depends on the frequency (i.e., times of occurrences) of each character.

Huffman encoding was our first choice to apply compression on collected ECG data

because of its superior compressing capabilities to the lossless compression techniques.

It efficiently reduces the original data size by assigning short codes for most repeated

characters and longer codes for less repeated characters. The majority of the previous

works implement the Huffman algorithm on PC as a software compression solution,

while a few contributions run the Huffman algorithm on embedded systems using
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FPGA and VLSI[48][49].

2.2.5 Delta Encoding

Delta encoding is one of the simplest compression techniques for storing and trans-

mitting data. Ideally, delta compression works best when the consecutive samples are

very similar. It outperforms Huffman compression for data redundancy elimination

when small changes occur between sequential samples [47]. There is limited usage

of delta encoding with ECG in the literature. Existing contributions integrate delta

encoding with adaptive Huffman to compress static MIT-BIH database [50]. We ap-

ply delta encoding as a standalone technique on a stream of collected ECG data in

real-time.

2.2.6 Base-Delta Encoding

. Base-delta encoding is a modified version of the delta algorithm that measures the

difference between the first sample and the remaining samples to reduce the original

message size. It was introduced in 2012 to reduce caching size [51]. In this work, we

utilize base-delta to compress ECG data and obtain compressed samples with varying

lengths compared to the fixed byte size in delta compression.

In this work, we aim to compress ECG data after the acquisition phase to reduce

the size and the transmission power required to send this data. Accordingly, we are

interested in applying lossless algorithms to time series ECG data, such as Huffman

encoding, delta encoding, and base-delta encoding. Our approach targets real-time
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data compression with stringent execution time to satisfy resource-constrained sys-

tem specifications (computation and energy) and meet real-time application require-

ments. It is important to enable real-time notifications when abnormal conditions

are detected.

2.3 ECG Signals Classification Techniques

2.3.1 Binary Classification

Due to the high demand for accurate detection and early prediction of ECG cardiac

risks, the recent ECG monitoring platforms include machine learning approaches

for identifying and classifying cardiovascular diseases. Supervised and unsupervised

learning techniques are used in ECG platforms for different purposes [52]. For in-

stance, diagnosis applications mainly depend on supervised learning approaches, while

unsupervised learning approaches are used for automatic risk detection applications

that need unknown physiological feature discovery.

Wasimuddin et al. [53] propose an intensive review of the existing research ef-

forts in implementing multi-stages ECG signal analysis models using traditional and

advanced ML techniques. The stages-based model consists of four phases: dataset

sources, quality check, feature engineering, and classification. Likewise, Luz et al.

[54] review the published contributions in ECG acquisition methods, datasets, pre-

processing methodologies, segmentation, feature extraction techniques, and learning

algorithms.

In [55], the researchers apply the threshold-based methodology to the European

ST-T database to detect cardiac ischemia. Although their approach achieves 98.12%

average sensitivity and 98.16% average specificity, the processing pipeline consumes
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too much time, which is critical for real-time systems. A polynomial regression model

is proposed in [56] to detect acute myocardial infarction. The regression model is de-

ployed on ECG data collected from 12 leads for 10 seconds. The classifier reaches

97% sensitivity, but the dataset is small to obtain a full performance evaluation

similar to the real monitoring systems. Signal analysis and feature generation are

essential before handling classification tasks. Thus, Li and Zhou [57] apply wavelet

packet decomposition on the MIT-BIH arrhythmia database to decompose the ap-

proximations and details of the ECG signal and represent the critical information

in higher-frequency components. The representative features are extracted after en-

tropy calculations on decomposed components. The Random Forest model utilizes

the generated features and achieves 94% classification accuracy. The authors com-

pare their approach and the published approaches in terms of accuracy and execu-

tion time. Their technique outperforms Support Vector Machine (SVM), K-nearest

neighbours (KNN), Decision Tree (DT) and Probabilistic neural network algorithms

which make their model a promising solution for continuous monitoring platforms.

The work in [58] categorizes the automated methods to detect myocardial ischemia

and infarction based on the number of used leads, such as V1, V2, V3, V4, V5,

I, and II, the feature selection methods like Forward feature selection (FFS), Evo-

lutionary optimization algorithms, Feature weighting approaches, and Fuzzy rough

feature selection. Furthermore, Ansari et al. review the classification methods start-

ing from simple thresholding and traditional ML algorithms like SVM, KNN, and DT

to convolutional neural networks (CNN), rule-based expert systems, and neuro-fuzzy

classifiers.

ECG signals classification with SVM is widely used in the literature. For instance,
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Venkatesan et al. [59] apply SVM on the MIT-BIH arrhythmia database to detect

normal and abnormal cardiac conditions based on the heart rate variability (HRV)

feature. Despite the high classification accuracy of the SVM model, which reaches

96%, the experimental work is introduced using a MATLAB simulator with a high

processing time above 20 seconds which restricts the model usage to cardiac events

recording only without real-time monitoring features. Equivalently, the cardiac ar-

rhythmia detection using SVM is proposed in [60] with 99.2% classification accuracy.

The authors implement the classification pipeline starting with pre-processing, R-R

peak detection, Q- wavelet transform for feature extraction before training the SVM

classifier on the MIT-BIH arrhythmia database.

2.3.2 Multi-Class Classification

The ECG monitoring systems have significantly improved after emerging deep learn-

ing techniques. Deep neural networks play a vital role in providing accurate and fast

diagnoses for a wide range of cardiac diseases. Accurate ECG classification is clin-

ically essential to predict and control cardiac patients before suffering from critical

side effects and deterioration. Unlike the traditional machine learning algorithms,

deep learning algorithms could handle data pre-processing, feature extraction, and

classification efficiently on large data volumes.

In the literature, many efforts are introduced to support ECG diagnosis using deep

learning [61] [62] [63] [64]. The existing solutions for abnormal ECG detection differ in

terms of the diagnosis type, DL algorithm, and the used datasets. There are different

types of diagnosis applications that rely on DL models. For example, myocardial

infarction detection, arrhythmias detection, irregular heart rhythm classification, and
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coronary artery classification are different ECG diagnosis types. The convolutional

neural network (CNN) and recurrent neural networks (RNN) are the commonly used

DL algorithms in diagnosis applications. The used datasets vary between the MIT-

BIH arrhythmia database, PTB-XL dataset, PhysioNet Cardiology Challenge 2017

dataset, European ST-T dataset, INCART dataset, and Self-constructed datasets.

Some of the existing solutions focus on the hardware used in training the neural

networks. For instance, Wu et al. [65] introduce a lightweight neural network-based

ECG classification algorithm with high recognition accuracy by combining both the

bi-directional long short-term memory (BLSTM) and convolutional neural networks

(CNN). The authors utilize a high degree of similarity between successive heartbeats

to achieve computation reuse on hardware architecture which speeds up the network

inference and improves the energy efficiency. However, the proposed processor is not

for continuous ECG monitoring. Although they reuse the repeated cardiac cycles

to minimize the computational power and save energy, this technique could lead to

additional delay, which contradicts real-time ECG streaming. Correspondingly, Jan-

veja et al. [66] propose an initial prototype for wearable ECG monitoring. They

fabricate an additional processor unit to handle multi-class classification using DNN

and MIT-BIH datasets. The Co-Processor consists of 2 main blocks: Pre-processing

with a beat extraction block and a classification block. They minimize the compu-

tational complexity by reducing the total number of input and hidden layers, which

leads to minimizing power consumption. Despite the main goal of using the energy-

efficient processor, the energy-saving analysis for the different classified classes using

the customized co-processor is missing. Corradi et al. [67] introduce a method for

encoding and compressing ECG signals into a stream of asynchronous digital events.
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The compressed ECG signals can be correctly classified into one of 18 classes after a

dimensionality expansion performed by RNN. The authors use a software simulation

compatible with a digital embedded implementation. After the simulation results,

they fabricate a custom mixed-signal analog/digital neuromorphic processor to im-

plement the recurrent SNN. The authors aim to reduce the power consumption while

training the RNN using the VLSI neuromorphic processor, but there is no explana-

tion of how they evaluated or reduced the power consumption. According to work

proposed by Monedero [68], a functional ECG diagnosis system could perform an

accurate medical assessment by following a specialist’s approach. The author uses

a set of rules in the system to differentiate 13 diseases with a high-reliability rate.

Five leads (I, II, V1, V5, and V6) are used instead of a standard 12-lead ECG to

perform the diagnosis. A novel noise indicator is deployed to measure the quality of

the acquired ECG signals, which allows repeating the ECG recording if the noise level

is high and cannot be filtered. Furthermore, signal processing techniques are applied

to captured signals for wave identification and Chi-squares Automatic Interaction

Detection (CHAID) model detects 13 cardiac risks. The proposed system depends on

signal processing techniques; it will need large memory to store records besides the

high computational delays, which act as a barrier to supporting real-time ECG mon-

itoring. Hybrid architectures, such as Long Short Term Memory (LSTM) cells and

Multi-Layer Perceptrons (MLP) are merged in [69] for ECG anomaly detection on

the MIT-BIH arrhythmia database. Sivapalan et al. recommend data augmentation

using Synthetic Minority Oversampling TEchnique (SMOTE) to solve the unbalanced

classes in the dataset. Energy saving is achieved according to the following scenario:
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Once an ECG beat is identified as anomalous, the wireless transmission will be en-

abled, thus reducing sensor power consumption. Nevertheless, the ANN technique

increases the current consumption. In addition, continuous real-time ECG transmis-

sion is not supported as ECG readings are only transmitted if an anomalous beat is

detected.

2.4 Power Optimization in ECG Platforms

The recent decade has witnessed an increased demand for portable real-time ECG

monitoring systems [6] [70]. Efficient ECG monitoring platforms are concerned with

data acquisition techniques, compression transmission approaches, models for accu-

rate diagnosis, and energy-saving methods while defining the design specifications for

real-time systems. In addition, there are required components that have to be consid-

ered while designing wireless ECG monitoring systems [71], as shown in Figure 2.4,

where power consumption is one of the vital components to guarantee the system’s

availability.
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Figure 2.4: Design components of ECG wireless systems

Optimizing energy consumption in health monitoring systems attracts significant con-

tributions to support continuous physiological measurements. Accordingly, existing

research efforts differentiate between the energy demand and supply concepts to ma-

nipulate energy saving on continuous monitoring platforms [72].

1. Energy Demand : The rapid evolution in continuous monitoring platforms gener-

ates great interest in evaluating the total energy consumed by wearable sensors

[73] [74] [5], signal pre-processing circuit modules [75], memory modules [76],

and wireless communication modules [77] [78].

2. Energy Supply : To accommodate the increase in energy demands, self-powered

techniques are introduced to maintain a stable power supply during the data

acquisition, processing, and transmission phases. For instance, energy storage

using flexible batteries and supercapacitors facilitates portable power sources

for wearable systems [79] [80]. Furthermore, energy harvesting opens the door
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for renewable energy usage [81] and obtaining the necessary power from human

thermal energy and body movements [82].

There are limited contributions in the literature that address the impact of real-time

data acquisition, signal processing, and data transmission on the power consumption

of ECG monitoring devices. The majority of these contributions aim to minimize the

required computational power by reducing the data size and wireless transmission

time.

Data size reduction is achieved by applying lossy or lossless compression algo-

rithms on ECG signals [83]. Moon et al. investigate a way to balance data reduction

and data fidelity on ECG data received from the BioSemi Active Two system de-

vices using discrete cosine transform (DCT), discrete wavelet transform (DWT), and

R-peak validation [84]. Similarly, Rebollo-Neira in [85] evaluates DWT as a simple

lossy compression technique on the MIT-BIH arrhythmia database. However, DWT

achieves a high compression ratio with negligible delay. In both contributions, the

experimental work is not tested on a real ECG system or a constrained platform

to evaluate the performance and energy-saving at low distortion recovery. Reduc-

ing transmission time through lossless compression is proposed by Tsai et al. in

[86]. The authors propose three separate techniques: (1) an adaptive linear predictor

that selects the best ECG readings to decrease the prediction error, (2) an improved

context-adaptive Golomb-Rice code for data storage optimization, and (3) a fixed-

length packing format to decode data in real-time. The authors compare the linear

predictor and the remaining lossless algorithms in terms of compression ratio, but the

transmission time and power-saving analysis are missing on the embedded platform.

Campobello et al. [85] introduce a simple lossless algorithm named RAKE to encode
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the binary representation of an ECG signal during the pre-processing phase. The

RAKE algorithm achieves a compression ratio of 2.67% compared to 2.43% in Huff-

man and 2.25% in Dynamic Pack. However, RAKE produces a high latency equal

to 500 ms as it operates on data blocks that are too high to meet the real-time de-

mands in constrained environments. In a few works, lossy and lossless techniques are

combined to create a hybrid approach. Deepu et al. demonstrate this hybrid encod-

ing system to control the transmission mode, and power consumption in IoT-enabled

wireless sensors [87]. Despite the resulting high energy saving ratios, the implementa-

tion complexity depends on the selected lossy and lossless schemes. Furthermore, the

compressed data needs to be decompressed locally at the sensor node, which demands

more storage and causes additional delay.

ECG classification algorithms support making the appropriate decision to switch

to lower data fidelity mode which reflects on energy-saving for real-time platforms.

For instance, Kung et al. [88] recommend the Random Forest (RF) algorithm with

98.63% classification accuracy for energy saving in ECG systems. They compare

RF and other QRS detection algorithms in terms of sampling rate and sensitivity.

Nonetheless, their work lacks a practical performance evaluation on real-time moni-

toring systems. Multistage pruning CNN achieves 97% accuracy in low-power ECG

classification and a 60.4% decrease in run-time complexity [89]. On the other hand,

CNN requires high computational power that renders its deployment on low-powered

edge nodes unrealistic for real-time applications. Wang et al. [90] introduce an

energy-efficient scheme for wearable ECG monitoring that consists of two processes:

adaptive compression and neural network. In adaptive compression, the authors com-

bine lossy and lossless techniques and switch between both based on the classification
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results from a tree-structured neural network (TSNN). The scheme scored 98.4% in

diagnosis accuracy and a 99.9% reduction in computational complexity, which in turn

reduced the power consumption. One drawback of this scheme is the overall latency

due to the execution time of the two processes. Such a delay prevents effective real-

time ECG diagnosis. In [91], dynamic management of the Internet of Medical Things

(IoMT) nodes is defined using a hardware/software development template. Scrugli

et al. control the operation modes of IoMT nodes based on the results of quantized

CNN using the MIT-BIH database. They could save energy by manipulating the

hardware and software components of the ECG device, such as capturing raw data,

peak detection, and CNN processing.

The effect of using a renewable energy approach on the power consumption of

ECG devices is investigated in [92]. Bui et al. designed a solar-powered ECG de-

vice to achieve optimal power consumption and maintain system availability without

needing battery replacement. The fabricated ECG device contains solar harvesting

modules to store energy at night with super-capacitors. Additionally, it operates with

a range of sampling frequencies up to 2133 Hz to facilitate communication with a wide

range of smartphones and low-powered devices. The solar-based design reduces power

consumption significantly with a 1.9 V supply. However, the solar-powered ECG de-

vice can capture ECG signals from five leads maximum which is inefficient for critical

monitoring applications like arrhythmia detection which requires readings from all 12

leads.
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Chapter 3

Data Size Reduction With Lossless Compression

3.1 Motivation

The rapid growth of e-healthcare solutions leads to a significant increase in connected

medical devices, which is expected to reach 75 billion by 2025 [93]. Health monitoring

devices generate a large amount of data continuously, which is considered a challenge

for system availability. For instance, the ECG Holter monitor produces 135000 bytes

each second while recording the changes of ECG signals at a 500 sampling rate.

The transmission of huge data volumes causes high power consumption and rapid

battery discharging, which negatively affects the continuous cardiac events recording.

To reduce the total power consumption, we need to minimize the transmitted data

size using the compression approach. In the literature, there is a wide range of

lossy and lossless techniques for ECG applications. Due to the sensitivity of ECG

data and to eliminate the risk of losing important part of the captured signals, we

use lossless compression techniques. In this chapter, we aim to optimize the power

consumption of ECG patches in the constrained embedded environment by applying

different lightweight lossless compression techniques.
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3.2 System Overview

Our proposed platform [94] is functionally divided into five phases: data acquisition,

data transmission, data storage and streaming, data processing, and data analytics

and decision-making phase, as shown in Figure 3.1. In the data acquisition phase,

we capture the analog ECG signals from 10 electrodes before being converted to the

digital format using the ADS 1298 chip. The digital ECG signal is compressed on

the TI CC2650 MCU prior to being sent over the BLE to the internet gateway in

the transmission phase. The electrocardiogram readings will be streamed using data

streaming engines and stored to keep the recordings available for further processing.

In the final phase, ECG signals are classified using deep learning models, and then

healthcare providers will be notified based on the analysis.

Figure 3.1: System architecture of the real-time ECG monitoring platform
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3.3 System Requirements

The data acquisition task runs at a sampling rate from 250 to 500 SPS. During the 250

SPS, the acquisition task captures a single sample every four milliseconds, that is, 250

samples/1000 ms = 4 ms. To capture each sample, the data acquisition task needs 1

ms. Leaving the remaining time for other tasks including compression, data logging,

and transmission to progress after every sample acquisition, which amounts to 3 ms (4

ms - 1 ms). At 500 SPS the time is 1 ms. However, in our system samples are processed

in groups every 1 s, during this period the logging and transmission tasks must be

completed. When the sampling rate is 250, we have 750 ms available for these two

tasks. By comparison, at 500 SPS, there are 500 ms available to complete the tasks. In

our system this operation is under a stringent time constraint, leaving data logging

and transmission tasks having to be completed within 750 ms. If not completed,

these tasks will be interrupted by the data acquisition task as data acquisition has

the highest priority in our system to ensure data is not missed. The ECG hardware

firmware condenses the MCU operations into three separate tasks: data acquisition,

data logging, and data transmission using the scheduling APIs of the onboard RTOS.

Each task is classified based on a predetermined hierarchy. In the firmware operating

on the hardware the data acquisition task receives the highest priority followed by

the data logging task which has the second-highest priority, and lastly, the data

transmission task has the lowest priority.

To that extent, the following objectives are set to deliver the expected outcomes

by the ECG acquisition hardware:

1. Reduce the digitized ECG data size before transmission over BLE to the backend

system.
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2. Maximize the ECG acquisition hardware battery life by enhancing the power

consumption profile of the device.

3.4 Experimental Setup

The experimental environment setup consists of the following steps:

1. Collect ECG signals in real-time from the heart simulator. The CC265x powers

the hardware to acquire the ECG signals in real-time from the heart simulator

under six different heart conditions: normal heartbeats at 92 bpm, abnormal

ventricular tachycardia, atrial premature contraction, right bundle block, pre-

mature ventricular contraction, and ventricular fibrillation heartbeats.

2. Create two test environments by constructing two buffers, where the buffer

sizes are 1000 and 500 samples. The buffers carry equivalent ECG data of two

seconds at 500 SPS and 250 SPS, respectively.

3. Apply Huffman, delta, and base-delta encoding compression techniques on the

buffered data in two operation modes. The first operation mode is when the

data acquisition hardware is working offline, which means the radio module

for BLE is turned off, and the data transmission task is not scheduled. This

simulates when the ECG patch is disconnected for any reason. The second mode

is the real-time continuous operation mode, where the collected ECG data is

compressed, saved on a local SD storage, and transmitted to the nearest paired

BLE device.

4. Compare various compression techniques in terms of compression ratio and

execution time.
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5. Calculate the energy-saving after applying the compression techniques to the

constrained system.

3.4.1 ECG Datasets Acquisition

To collect ECG data, we connect our data acquisition platform to the TechPatient

CARDIO V4 ECG simulator [95] as shown in Figure 3.2. The simulator can generate

real-time ECG waveforms for different cardiac conditions. It supports two modes

of operation, ECG mode and rhythmic mode. The ECG mode provides a realistic

12-leads ECG waveform. The rhythmic mode simulates 45 predefined heart diseases

including arrhythmias, such as ventricular tachycardia and ventricular fibrillation.

Using the ECG simulator, we created six different datasets: normal ECG, ventricular

tachycardia, ventricular fibrillation, atrial premature contraction, premature ventric-

ular contraction, and right bundle block. Each dataset contains a total of 30 minutes

of ECG waveform recordings.

Figure 3.2: TechPatient CARDIO V4 ECG simulator
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3.4.2 Dataset Characteristics

Our ECG data is acquired at sampling rates between 250 - 500. Each sample contains

the data of eight ECG channels. Every ECG channel carries 24 bits of raw data, plus

an additional 24 bits representing the status of the electrodes attached to the patient’s

body (i.e., whether they are correctly connected or not). Respectively, one successful

sample holds 216 bits of information (8 channels * 24 bits for data + 24 bits for

electrode status). As a result, our ECG patch processes 6750 bytes per second while

operating in the low-power mode at a rate of 250 SPS and 13,500 bytes while operating

in the high-resolution mode at a rate of 500 SPS.

3.4.3 ECG Data Reduction

To transmit data over a wireless interface, the power consumption rate is proportional

to the volume of transmitted data. As indicated above, our ECG patch generates a

large volume of data each second, which requires a large amount of power to transmit.

Theoretically, if we reduce the data size, we consume less power to transmit, given

that we have the computational capacity to do so within the constrained time budget.

Thus, we use lightweight lossless compression algorithms to increase battery life and

extend the ECG patch operational hours for efficient real-time monitoring. We im-

plement the Huffman, delta, and base-delta encoding algorithms using embedded C

in TI Code Composer Studio for the TI CC265 MCU and compare the performance

of each algorithm to determine the appropriate technique suitable for the system

requirements.
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3.4.3.1 Huffman Encoding

In this scenario, we implemented the Huffman algorithm to accept the raw ECG

signal as input before building the Huffman tree. To generate the Huffman tree, the

frequency of each character is calculated and sorted in ascending order. The minimum

two frequencies are merged to be one tree node. Fetching the least frequencies is

repeated recursively to build the entire tree as shown in the pseudo-code below:

Algorithm 1 Huffman Encoding

n = C.size
Q = priority queue()
for i = 1 . . . , n do

n = node(C[i])
Q.push(n)

end for
while Q.size() ̸= 1 do

Z = new node()
Z.left = x = Q.pop
Z.right = y = Q.pop
Z.frequency = x.frequency + y.frequency
Q.push(Z)

end while
Return Q

For each non-leaf node, we assign 0 to the left edge and 1 to the right edge. We

insert the characters and the equivalent binary representation in a hash table where

the most frequent characters are represented with fewer digits. We will discuss the

way of calculating the Huffman encoding compression ratio in the results section.

3.4.3.2 Delta Encoding

In the delta encoding algorithm, we calculate the difference between each consecutive

sample rather than sending the exact large-size samples which reduces the original
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data size. The resulting output contains the first original samples followed by deltas

for the remaining successive samples as described in the pseudo-code below:

Algorithm 2 Delta Encoding

base = 0
current sample = first sample
for i = 0 . . . , n samples do

if result counter == 0 then
result = current sample - base
Result[result counter++] = result

else
result = next sample - current sample
Result[result counter++] = result

end if
end for

3.4.3.3 Base-Delta Encoding

In this scenario, we select the first ECG sample to act as a baseline. We subtract the

rest of the samples from the base value to get a new data buffer. Accordingly, we

send a buffer of deltas with the base value instead of the original values as shown in

the pseudo-code.

Algorithm 3 Base-Delta Encoding

base value = ECG samples [0]
for i = 0 . . . , n samples do

current sample = buffer[i];
Result[i] = base value - current sample;

end for
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3.4.4 Hardware Specifications:

All compression algorithms we targeted during this study were implemented using

embedded C on the Texas Instruments CC2650 microcontroller chip in Figure 3.3.

Figure 3.3: CC2650 SimpleLink multistandard wireless MCU

TI CC2650 is a SimpleLink Multi-standard Wireless MCU supporting Bluetooth,

ZigBee and 6LoWPAN, and ZigBee RF4CE protocols which make it an ideal choice for

medical, industrial, remote control and wireless sensor networks applications. CC2650

board is a member of the CC26xx family of cost-effective, ultra-low power, 2.4-GHz

RF devices. The CC2650 device contains a 32-bit ARM Cortex-M3 processor that

runs at 48 MHz as the main processor and a rich peripheral feature set that includes

a unique ultra-low power sensor controller. TI CC2650 is equipped with a Bluetooth

Low Energy controller and the IEEE 802.15.4 MAC that are embedded into ROM and

are partly running on a separate ARM Cortex-M0 processor. This architecture im-

proves overall system performance and power consumption and frees up flash memory
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for the application.

3.5 Lossless Compression Results

3.5.1 Data size Reduction - Execution time Trade-off

To evaluate the performance of each encoding technique within the constrained em-

bedded environment of TI CC2650 MCU, we need to compare the amount of data

reduction with the required processing time for each algorithm. The compression

ratio (CR) represents the reduction in data size produced by the compression algo-

rithm. To obtain the compression ratio we divide the data size after compression by

the data size before compression as follows:

CR = 1− data size after compression

data size before compression
(3.1)

Based on the system requirements, the execution time of each compression algo-

rithm is a critical factor as we need 40 ms maximum to execute compression tasks on

the MCU in real-time. As the TI CC2650 has crystal frequency = 32 kHz (i.e., 32000

ticks /second), the total time to run the compression task is calculated as follows:

Execution Time (ms)= 1000×Timestamp interval before and after the execution

32000

(3.2)
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We run Huffman, delta and base-delta encoding using two different sampling rates

to accommodate various operation modes on the ECG patch. In Tables 3.1 and 3.2,

we compare the compression algorithms’ performance in terms of the compression

ratio where the buffer size equals 1000 and 500 samples (i.e., collecting ECG data for

2 seconds using 500 and 250 sampling rates).

Table 3.1: Compression ratios of lossless encoding algorithms with buffer size = 1000
Samples

ECG Signal Huffman Encoding Delta Encoding Base-Delta Encoding

Normal 84.9% 72.3% 73.6%

Ventricular Tachycardia 56.1% 0% 44%

Ventricular Fibrillation 56.7% 0% 41.7%

Atrial Premature Contraction 53.1% 1.5% 51.8%

Premature Ventricular Contraction 52.3% 1.2% 50.6%

Right Bundle Block 51.7% 0% 55.4%

Table 3.2: Compression ratios of lossless encoding algorithms with buffer size = 500
Samples

ECG Signal Huffman Encoding Delta Encoding Base-Delta Encoding

Normal 84.9% 73.6% 74.8%

Ventricular Tachycardia 56.1% 0% 43.2%

Ventricular Fibrillation 56.7% 0% 39.1%

Atrial Premature Contraction 53.2% 1.6% 51.7%

Premature Ventricular Contraction 52.4% 1.1% 50.7%

Right Bundle Block 51.7% 0% 55.5%

We found the Huffman encoding technique yields the highest compression ratio

over delta and base-delta compression techniques. In contrast, the delta encoding fails

to compress abnormal heart conditions. This is due to the uniqueness of each sample
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in abnormal conditions. On the other hand, the base-delta encoding shows better

compression ratios in abnormal heart conditions than the delta encoding technique.

Tables 3.3 and 3.4 summarize the execution time of the compression techniques.

We utilize the Real-time Clock (RTC) module on the MCU to calculate the execution

time of the three compression techniques. The initial experiment runs the compression

techniques in an isolated environment regardless of the other tasks (i.e., the only task

running on the MCU).

Table 3.3: Execution time (ms) of lossless encoding algorithms with buffer size =
1000 Samples

ECG Signal Huffman Encoding Delta Encoding Base-Delta Encoding

Normal 112 24 24

Ventricular Tachycardia 112 24 24

Ventricular Fibrillation 112 24 24

Atrial Premature Contraction 112 24 24

Premature Ventricular Contraction 112 24 24

Right Bundle Block 112 24 24
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Table 3.4: Execution time (ms) of lossless encoding algorithms with buffer size = 500
Samples

ECG Signal Huffman Encoding Delta Encoding Base-Delta Encoding

Normal 109 23 23

Ventricular Tachycardia 109 23 23

Ventricular Fibrillation 109 23 23

Atrial Premature Contraction 109 23 23

Premature Ventricular Contraction 109 23 23

Right Bundle Block 109 23 23

The Huffman encoding technique shows the highest execution time with a max-

imum of 112 ms on the buffer size. In contrast, the delta and base-delta techniques

show significantly less execution time of a maximum of 24 ms on the same buffer size.

From compression ratios and execution time results, we find that the base-delta ap-

proach achieves a trade-off between minimum execution time along with a reasonable

compression ratio for normal and abnormal cardiac conditions.

3.5.2 Power Consumption Analysis

Based on the data reduction and processing time analysis for each encoding technique,

we find the base-delta has promising results. However, we need to evaluate the

compression techniques in terms of power consumption to select the best technique

that maintains energy saving and extends the ECG patch operational hours.

To evaluate the power consumption for each algorithm, we calculate the required
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time to transmit the ECG data, captured in 250 and 500 sampling rates, over Blue-

tooth Low Energy (BLE) at 2 Mbps and 251 bytes payload. Given the total time to

transmit one packet over BLE and receive successful delivery acknowledgment is 1.4

ms, the air time to transmit ECG samples over BLE is calculated as follows:

Air time (ms) =
Transmitted Data Size

251
× 1.4 (3.3)

In Tables 3.5 and 3.6, we present the required transmission time for Huffman,

delta and base-delta algorithms in 250 and 500 sampling rates.

Table 3.5: Air time (ms) of the compressed data with buffer size = 500 Samples over
BLE at 2 Mbps

ECG Signal Huffman Encoding Delta Encoding Base-Delta Encoding

Normal 2.8 2.9 2.8

Ventricular Tachycardia 7.2 11.1 6.3

Ventricular Fibrillation 7.2 11.1 6.7

Atrial Premature Contraction 7.8 10.9 10.8

Premature Ventricular Contraction 7.9 11 10.9

Right Bundle Block 8 11.1 9.9
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Table 3.6: Air time (ms) of the compressed data with buffer size = 1000 Samples over
BLE at 2 Mbps

ECG Signal Huffman Encoding Delta Encoding Base-Delta Encoding

Normal 5 6 6

Ventricular Tachycardia 14.66 22.3 12.47

Ventricular Fibrillation 14.4 22.3 13

Atrial Premature Contraction 15.7 21.9 21.5

Premature Ventricular Contraction 15.9 22 22

Right Bundle Block 16 22.3 19.9

We utilize the execution time and air time calculations for each encoding algorithm

along with the base current values in Table 3.7 to obtain the power consumption before

and after applying the compression task on TI CC2650 MCU as follows:

Total Energy = Air time (TAir) * (ITx + ICore + IPeri-RF Core + IPeri-Power Domain

+ IPeri-DMA) + Processing time (TProc) * (ICore + IPeri-RF Core + IPeri-Power Domain +

IPeri-DMA + IPeri-SPI) (3.4)

Table 3.7: Base power consumption in active power mode

Base Current Module Value

ICore MCU running at 48 MHz 3.39 mA

IPeri Peripheral Power Domain 97.7 µA

IPeri Serial Peripheral Interface (SPI) 82.9 µA

IPeri RF Core idle 210.9 µA

IPeri µDMA 63.9 µA

ITx Radio transmits current 2.4 GHz (BLE) 7.3 mA



3.5. LOSSLESS COMPRESSION RESULTS 42

In Tables 3.8 and 3.8, We compare Huffman, delta and base-delta performance in

terms of the power saving before and after applying data compression. Although Huff-

man encoding achieves more than 50% as compression ratio in all cardiac conditions,

the high execution time affects the overall power consumption. In both sampling

rates, the power consumption after applying Huffman exceeds the original power con-

sumption which means Huffman encoding will not produce the optimal energy saving

within our constrained embedded environment.

Table 3.8: Power consumption (mJ) on buffer size = 500 Samples while transmitting
data over BLE

ECG Signal Huffman Encoding Delta Encoding Base-Delta Encoding

Before Compression After Compression Before Compression After Compression Before Compression After Compression

Normal 185.1 473.5 246.8 119 246.8 117.6

Ventricular Tachycardia 185.1 490.2 246.8 246.8 246.8 156.5

Ventricular Fibrillation 185.1 489.7 246.8 246.8 246.8 160.6

Atrial Premature Contraction 185.1 496.6 246.8 207.9 246.8 205.9

Premature Ventricular Contraction 185.1 498.3 246.8 208.5 246.8 208

Right Bundle Block 185.1 498.6 246.8 246.8 246.8 196.2

Delta encoding achieves 51.7% and 68% power saving in normal ECG using 250

SPS and 500 SPS respectively, and 32% energy saving in atrial premature contraction

and premature ventricular contraction. Nonetheless, delta compression fails to pre-

serve power in some cardiac conditions, such as ventricular tachycardia, ventricular

fibrillation and right bundle block where the compression ratio is almost zero.
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Table 3.9: Power consumption (mJ) on buffer size = 1000 Samples while transmitting
data over BLE

ECG Signal Huffman Encoding Delta Encoding Base-Delta Encoding

Before Compression After Compression Before Compression After Compression Before Compression After Compression

Normal 370.2 476.7 493.6 157.7 493.6 157.5

Ventricular Tachycardia 370.2 583.5 493.6 493.6 493.6 228.3

Ventricular Fibrillation 370.2 580.7 493.6 493.6 493.6 234.1

Atrial Premature Contraction 370.2 595.1 493.6 333.1 493.6 328.1

Premature Ventricular Contraction 370.2 597.6 493.6 334.1 493.6 334

Right Bundle Block 370.2 600 493.6 493.6 493.6 304

On the other hand, the base-delta algorithm outperforms Huffman and delta en-

coding and achieves 52.3% and 68% power saving in normal ECG using 250 SPS and

500 SPS respectively. Furthermore, it reaches more than 50% energy saving in ven-

tricular tachycardia and ventricular fibrillation besides 30 % power saving in atrial

premature contraction, premature ventricular contraction and right bundle block con-

ditions.

3.6 Summary

To conclude, the base-delta encoding fulfills our ECG data acquisition hardware con-

straints. It makes a trade-off between the required stringent execution time and the

compression ratio while extending the battery life of the ECG patch.
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Chapter 4

Adaptive ECG Leads Selection

4.1 Motivation

Based on the medical literature, cardiovascular risks could be categorized into: ar-

rhythmias [96] [97], myocardial infarction [98] [99], heart blocks [100] [101]. The ECG

abnormalities could be diagnosed using various ECG leads based on the cardiovas-

cular risk category. In this chapter, we consider the adaptive selection of ECG leads

as a second approach for reducing the required number of transmitted ECG chan-

nels, and evaluating the effect on the power consumption of the ECG patch within

the constrained embedded environment. We will demonstrate the effect of minimiz-

ing the number of ECG leads on the battery life of the MCU after applying ECG

classification techniques, such as binary and multi-class classification, which act as

intelligent decision makers to control the streamed channels. Furthermore, we will

compare the air time to transmit ECG data and the energy saving in binary and

multi-class classification scenarios concerning the TI CC2650 MCU environment.
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4.2 Binary Classification

In a constrained real-time monitoring platform, we need to balance the processing

time of ECG classification and accuracy for abnormalities detection. Saenz-Cogollo et

al. [102] introduce a novel features selection technique using a filter method based on

the mutual information ranking criterion on the training set. The authors recommend

that both normalized beat-to-beat (R–R) intervals and QRS complexes are the most

distinct features for cardiac disease diagnosis. Badr et al. [103] utilize the novel

features selection technique to present an intensive comparison between distinct ML

algorithms regarding accuracy and execution time for ECG anomaly detection.

4.2.1 Methodology

To distinguish the normal and abnormal ECG signals, we reproduce the experimental

results in both studies [102] [103] with the popular supervised learning algorithms,

such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor

(KNN), and Logistic Regression (LR). Signals were extracted from the original files

of the MIT-BIH database using the native Python waveform database (WFDB) and

re-sampled at 500 Hz to simulate the same sampling rate as our ECG patch.

4.2.2 Datasets

We use the MIT-BIH arrhythmia database [104] which contains 48 ECG recordings

for 47 patients. Each record contains 30 minutes of ECG readings collected from 47

subjects by the BIH Arrhythmia Laboratory between 1975 and 1979. The recordings

were digitized at 360 samples per second per channel with 11-bit resolution over a
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10 mV range. Two or more cardiologists independently annotated each record to ob-

tain the computer-readable reference annotations for each heartbeat (approximately

110,000 annotations). According to the work introduced in [77], the dataset includes

15 types of ECG arrhythmia. We choose the most common abnormalities, prema-

ture ventricular contraction (PVC), paced beat (PAB), right bundle branch block

beat (RBBB), left bundle branch block beat (LBBB), atrial premature contraction

(APC), ventricular flutter wave (VFW), and ventricular escape beat (VEB). In ad-

dition, we use the normal annotated records to get a balanced dataset with normal

and abnormal cases. We divide the dataset into 22 records for the training set and

22 records for the testing set as shown in Table 4.1 and Table 4.2.

Table 4.1: Training set with MIT-BIH annotated records

ECG Class Annotated Records

Normal 101, 108, 112, 114, 115, 122

PVC 106, 116, 119, 201, 203, 208

PAB 102, 217

RBBB 118, 124

LBBB 109, 213

APC 209, 220,223

VFW 207

VEB 207
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Table 4.2: Testing Set with MIT-BIH annotated records

ECG Class Annotated Records

Normal 100, 103, 105, 113, 117, 121, 123, 202

PVC 200, 210, 221, 228, 233

PAB 104, 107

RBBB 212, 231

LBBB 111, 213

APC 222, 232

VFW 207

VEB 207

4.2.3 Features Extraction

The original study in [102] considers a total of 85 features which are divided into

beat-to-beat (R–R) intervals, discrete wavelet transform (DWT) coefficients, Hermite

basis function (HBF) expansion coefficients, higher-order statistics (HOS), amplitude

differences, Euclidean distances and temporal characteristics of the ventricular depo-

larization waves (QRS complex). Doquire et al. [105] propose mutual information

(MI) ranking criterion, We use the same criteria on the training set to rank the most

informative features relative to the heartbeat type classes. Table 4.3 shows the top

10 ranked features we obtain from the mutual information (MI) ranking criterion.
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Table 4.3: Top 10 features as ranked by the MI criterion for the reference annotations
of the MIT-BIH database

Rank Feature Description

1 hbf 2 The coefficients of fitting Hermite basis functions with polynomials degree = 2

2 hbf 3 The coefficients of fitting Hermite basis functions with polynomials degree = 3

3 hbf 12 The coefficients of fitting Hermite basis functions with polynomials degree = 12

4 hbf 1 The coefficients of fitting Hermite basis functions with polynomials degree = 1

5 RR0/avgRR The current R-R interval divided by the average of the last 32 beats

6 RR+1/RR0 The following R-R interval divided by the current R-R interval

7 hbf 11 The coefficients of fitting Hermite basis functions with polynomials degree = 11

8 QRSw4 norm The normalized QRS complex at a quarter of the peak value

9 RR-1/RR0 The previous R-R interval divided by the average of the last 32 beats

10 hbf 10 The coefficients of fitting Hermite basis functions with polynomials degree = 10

4.2.4 Supervised Learning Results

We train the MIT-BIH arrhythmia database on RF, SVM, KNN, and LR models to

compare them in terms of accuracy, execution time, precision, recall, and F1 score.

In Table 4.4, LR outperforms the other algorithms in the total processing time with

0.857 Sec, while RF achieves the highest accuracy score with 94.8%

Table 4.4: Execution time and accuracy of binary classification algorithms

LR RF SVM KNN

Execution Time (Sec) 0.857 52 306 8.3

Accuracy (%) 93.5 94.8 94.2 94

We verify the accuracy scores by visualizing the cross-validation versus the training

scores for each classification model. Figure 4.1, Figure 4.2, Figure 4.3, and Figure 4.4
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represent the performance of LR, RF, SVM, and KNN classifiers, respectively.

Figure 4.1: Cross validation score vs training score for the LR classifier

Figure 4.2: Cross validation score vs training score for the RF classifier
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Figure 4.3: Cross validation score vs training score for the SVM classifier

Figure 4.4: Cross validation score vs training score for the KNN classifier
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In Table 4.5, we evaluate LR, RF, SVM, and KNN based on the precision, re-

call, and F1-score values in normal and abnormal ECG signals. The KNN classifier

achieves the maximum precision in the normal ECG, and the SVM has the highest

precision in abnormal conditions. For the recall scores, the SVM classifier is at the

top in the normal case despite KNN being the maximum in the abnormal case. The

RF classifier obtains the highest F1-score for both normal and abnormal classes. We

found that the results of the normal ECG class significantly exceed the abnormal class

due to the imbalanced MIT-BIH database where the number of normal recordings is

two times the abnormal recordings. A potential solution to this problem is perform

data augmentation and regularization to overcome the limitations of dataset size and

data variation. However, this is beyond the scope of this work.

Table 4.5: Evaluation report for binary classification algorithms in normal and ab-
normal ECG

LR RF SVM KNN

Normal

Class
Precision 94.7% 96.1% 95.2% 96.8%

Recall 98.2% 98.1% 98..3% 96.5%

F1-Score 96.4% 97.1% 96.8% 96.6%

Abnormal

Class
Precision 79.3% 82% 82.1% 72.5%

Recall 55.9% 67.9% 60.3% 74.1%

F1-Score 65.5% 74.3% 69.5% 73.3%

According to the constraints of the embedded environment on computational time,
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We found that the LR model satisfies our ECG platform requirements in terms of

accurate diagnosis and minimum computational complexity with 93.60% accuracy and

0.857 Sec processing time. The binary classification will act as an intelligent decision-

maker to control the ECG patch’s mode of operation based on the current ECG

readings. By controlling the mode of operation on the ECG patch, we can reduce

the number of required ECG leads and thus reduce the total energy consumption

required for data transmission.

4.2.5 System Flow in Binary Classification Scenario

The system design includes multiple stages as shown in Figure 4.5. We train the

LR model offline using the annotated ECG recordings of the MIT-BIH arrhythmia

database. The classifier then classifies the ECG readings acquired by the ECG patch

into normal and abnormal classes. The ECG patch runs the 12-leads streaming mode

by default to enable full-scale ECG analysis. Our proposed power-saving approach is

to let the ECG patch stream only a single lead by default and switch to more leads

when abnormal conditions are detected. Energy-saving would be feasible due to data

size reduction between the 12-lead mode which generates 27648 bytes during 2 Sec,

and the single lead mode which generates 6144 bytes in 2 Sec.
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Figure 4.5: Energy saving scenario using varying modes of operations

4.2.6 Power Consumption Analysis Using Binary Classification

To maintain the ECG system availability, we must minimize the total power consumed

in the acquisition and transmission stages. Energy-saving scenario using the binary

classification is assessed and compared with the original scenario (i.e., Single lead

data transmission) in respect of the air time to transmit the ECG data, the total

power consumption, and the amount of saved energy.

The required duration to capture at least one full R-R signal equals 2 Sec. Our

ECG patch operates on a 500 sampling rate. So, we need 1000 samples to detect a

complete cardiac cycle. We calculate the required air time given 251 bytes payload,



4.2. BINARY CLASSIFICATION 54

and 1.4 ms to transmit the data packet and get acknowledgment after the successful

delivery according to the following equation:

Air time to transmit ECG data =
Size of transmitted ECG data

251
∗ 1.4

(4.1)

Table 4.6 compares the 1 lead ECG streaming scenario in the original and LR

states in terms of the required air time while transmitting the ECG data to the

internet gateway over BLE with 2 MBPS physical layers and 251 bytes payload. For

the binary classification scenario, we consider the air time in the single lead mode for

normal ECG. Next, we evaluate the air time for 12 leads (8 channels) mode in the

abnormal cases. As shown in Table 4.6, the normal ECG in the classification approach

has air time less than the original state. On the other hand, the binary classification

scenario has the maximum air time when we switch to the 12-lead mode.

Table 4.6: Air time (ms) before and after binary classification

ECG Signal Original Scenario LR Scenario

Normal 45 34.2

PVC 45 154.2

PAB 45 154.2

RBBB 45 154.2

LBBB 45 154.2

APC 45 154.2

VFW 45 154.2

VEB 45 154.2
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After air time calculations, we evaluate the total power consumption in the normal

ECG condition (i.e., single lead mode of operation), and the ECG abnormal condition

(i.e., 12-lead mode of operation). The comparability of power consumption after using

the binary classification technique to control the patch mode of operation from 12

leads to a single lead highlights that power consumption can be reduced in the normal

condition only, as shown in Table 4.7, with a 77.7% power saving.

Table 4.7: Power consumption (mJ) for 12 leads before and after classification

ECG Signal Original Scenario LR Scenario

Normal 1706 379.1

PVC 1706 1706

PAB 1706 1706

RBBB 1706 1706

LBBB 1706 1706

APC 1706 1706

VFW 1706 1706

VEB 1706 1706

4.2.7 Merging Binary Classification with Base-Delta Compression

To study the effect of combining the binary classification and base-delta compression

on the power saving, we start with classifying the captured ECG signal using the

LR model as mentioned previously. Afterwards, we change the ECG patch mode of

operation between 1 and 12 leads based on the classification results either normal or

abnormal and compress the data with base-delta before transmission over BLE.

Table 4.8 summarizes the power-saving for the compression scenario on 12 leads
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and compression after classification. To obtain the power-saving readings, we calcu-

late both the processing time and air time for each ECG condition concerning the

base current of the TI CC2650 MCU using the following formula (where the I’s are

the active modules from the board data sheet) [106]:

Total Energy = Air time (TAir) * (ITx + ICore + IPeri-RF Core + IPeri-Power Domain

+ IPeri-DMA) + Processing time (TProc) * (ICore + IPeri-RF Core + IPeri-Power Domain +

IPeri-DMA + IPeri-SPI) (4.2)

According to the results, applying base-delta compression after the LR classifica-

tion has power-saving ratios close to the results of using compression only. However,

the computational overhead will increase as we need to execute the binary classifica-

tion before compressing the captured ECG signals.

Table 4.8: Energy saving in compression and classification scenarios

ECG Signal
Compression

Scenario

LR & Compression

Scenario

Normal 41.2% 33.5%

PVC 33.4% 30.9%

PAB 34.7% 31.2%

RBBB 33.8% 36.8%

LBBB 32.6% 31.3%

APC 41.9% 33%

VFW 33.4% 32.8%

VEB 33.6% 33%
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4.3 Multi-Class Classification

In light of the promising results of energy saving in the binary classification approach

[107], we investigate the possibility of changing the number of required ECG leads to

diagnose specific cardiac abnormalities using multi-class classification. The alteration

of the ECG patch mode of operation (i.e., changing the number of ECG channels)

will affect the total power needed to transmit the ECG data over BLE to the internet

gateway device. In this section, we will compare the popular existing deep learn-

ing models that work on single lead or 12 leads to classify irregular cardiovascular

rhythms, and discuss the impact of applying these models on the total energy saving

of our real-time ECG platform.

4.3.1 Multi-Class Classification Using a Single ECG Lead

Hannun et al. [108] introduce a cardiologist-level arrhythmia detection to classify

12 rhythm classes using a single lead ambulatory ECG. The authors aim to classify

a wide range of distinct arrhythmias with high diagnostic performance similar to

the level of ECG evaluation from expert cardiologists. Our proposed scenario is to

operate the ECG patch on the single lead as a default operation mode. Figure 4.6

shows the system flow in the multi-classification scenario where the streamed data

from the single lead will be classified using the neural network model. Based on the

detected ECG class, we will change the number of streamed ECG channels to ensure

accurate ECG readings. The ECG patch operation mode would reset to single lead

mode after 30 minutes of streaming the required channels.
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Figure 4.6: System flow using the multi-class classification approach

4.3.1.1 Dataset

The authors in [108] collect a large, novel ECG rhythm dataset which is annotated

by a group of cardiologists [109] and contains 10 arrhythmias, such as Atrioventric-

ular Block (AVB), Atrial Fibrillation, Ventricular tachycardia, Bigeminy, Trigeminy,

Junctional Rhythm, Idioventricular Rhythm (IVR), Ecoptic Atrial Rhythm (EAR),

Wenckebach, Supraventricular Tachycardia (SVT) as well as sinus rhythm and noise.

The rhythm dataset consists of 91,232 ECG records from 53,549 patients.

The ECG records are captured using Zio monitor [110], an ambulatory cutaneous

single lead ECG monitoring device, that continuously records data from Lead II at 200

Hz. The test dataset contains 328 ECG records collected from 328 unique patients,

which is also annotated by a committee of expert cardiologists.
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4.3.1.2 Deep Neural Network Architecture

Hannun et al. propose a Deep Neural Network (DNN) which accepts ECG raw signal

sampled at 200 Hz as input for the 1st convolutional layer as shown in Figure 4.7.

The DNN contains 33 convolutional layers total followed by a linear output layer to

one of 12 rhythm classes. Additionally, 16 residual blocks act as short connections for

fast back-propagation. The batch normalization and rectified linear activation unit

(ReLU) activation function are used to control the vanishing gradients. Furthermore,

max pooling is applied to reduce the dimensionality of data features, and eliminate

data over-fitting. The dense layer is used for changing the dimensions of the neurons

vector and the output of the dense layer will be the input of the softmax activation

function that produces a vector to represent the probability distributions of the 12

rhythm classes.

Figure 4.7: DNN architecture using single lead (Adapted from [108])
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4.3.1.3 Methodology

We target deploying the DNN introduced by Hannun et al. [108] using the MIT-BIH

arrhythmia database to assure the diversity of cardiac risks between arrhythmias

and heart blocks. The training was applied offline before model deployment on the

gateway device. We select 80:20 as a ratio between the training set and the testing

set. The multi-class classification with the MIT-BIH arrhythmia database produces

seven cardiac classes as shown in Table 4.9.

Table 4.9: Multi-class classification output classes using MIT-BIH arrhythmia
database

ECG Annotation Class

N Normal Beat

V Premature Ventricular Contraction

L Left Bundle Branch Block Beat

R Right Bundle Branch Block Beat

/ Paced Beat

S Supraventricular premature

A Atrial premature beat

We utilize the DNN architecture and initialize the Adam optimizer with the pa-

rameters described in Table 4.10.
Table 4.10: Hyper-parameters tuning with Adam optimizer

Hyper-Parameter Value

β1 0.9

β2 0.999

Learning Rate 0.001

Batch Size 128 Samples
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4.3.1.4 Multi-Class Classification Evaluation

After training and testing the single lead DNN model on the MIT-BIH arrhythmia

database, we found that the DNN model achieves 99% accuracy to classify the raw

ECG signals into seven different classes. To obtain valuable insights about the DNN

predictions, we visualize the true positives, true negatives, false positives, and false

negatives using the confusion matrix as shown in Figure 4.8

Figure 4.8: Confusion matrix of the single lead DNN model

In Table 4.11, we evaluate the single lead DNN model in terms of precision, recall,

and F1-score for each ECG class. Results show that both types of heart blocks and
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paced beats have the maximum precision, recall, and F1-scores. On the other hand,

the Supraventricular premature class has the minimum recall, and F1-score values.

Table 4.11: Evaluation report for multi-class classification with MIT-BIH arrhythmia
database

Precision Recall F1-Score

N 0.99 0.98 0.98

V 1.00 0.99 0.99

L 1.00 1.00 1.00

R 1.00 1.00 1.00

/ 1.00 1.00 1.00

S 1.00 0.5 0.67

A 0.83 0.99 0.90

4.3.1.5 Power Consumption Analysis

In this scenario, the number of required ECG leads varies between 1, 4, and 12 based

on the detected ECG class. For instance, the normal and paced classes will only

need one lead. Both right and left bundle heart blocks need four leads (V1, V2,

V5, V6) to be diagnosed [111][112] while the premature ventricular contraction, the

Supraventricular premature, and the atrial premature beat will need 12 leads for

efficient medical evaluation.

The commercial ECG monitoring devices are released with a different number of

channels between 1 and 8 channels where 1 channel could be represented by a single

lead, 3 channels are represented with 3 or 4 leads, and 8 ECG channels mean 12

leads. Given 24 bits of data for each channel, and 24 bits for channel status, the data
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size produced by (N) ECG channels and total data size at 500 sampling rate can be

calculated as follows:

Data Size of (N) Channels (Bits) = N ∗Channel Data Bits+Channel Status Bits

(4.3)

Data Size at 500 Sampling Rate (Bytes) =
500 ∗Data Size for (N) Channels

8

(4.4)

Table 4.12 shows the number of ECG channels needed for each cardiac class re-

sulting from the single lead DNN and the total data size streamed from these channels

at a 500 sampling rate.

Table 4.12: ECG channels for each cardiac class of the single lead DNN

ECG Class # of Required Leads # of Required Channels
Data Size for (N) Channels

(Bits)

Data Size at 500 Sampling Rate

(kB)

N 1 1 48 3

V 12 8 216 13.5

L 4 3 96 6

R 4 3 96 6

/ 1 1 48 3

S 12 8 216 13.5

A 12 8 216 13.5

Power consumption measurements are calculated using equations (4.1) and (4.2)

given 500 samples/Sec as a sampling rate and a minimum 2 Sec duration to capture

the full cardiac cycle.

Energy saving is achieved by changing the mode of operation for the ECG patch

based on the detected ECG class and eliminating the need of streaming the 12 ECG

leads continuously which drains the patch battery. In Table 4.13, we demonstrate the

power consumption before (i.e., 12-lead streaming) and after (i.e., streaming with a
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varied number of leads) the multi-class classification. We reach the maximum energy

saving in single lead and 4 lead scenarios with 77.7% and 55.5% respectively.

Table 4.13: Power consumption and energy saving after using single lead DNN

ECG Class
Power Consumption

Using 12 Leads (mJ)

Power Consumption

Using Adaptive Leads Selection

(mJ)

Power Saving

(%)

N 1706 379.1 77.7

V 1706 1706 -

L 1706 758.2 55.5

R 1706 758.2 55.5

/ 1706 397.1 77.7

S 1706 1706 -

A 1706 1706 -

4.3.2 Multi-class Classification Using 12 ECG Leads

To validate the energy saving using a multi-class classification approach, we need to

examine the output resulting from different conditions, such as the used DNN models

or the diversity of ECG datasets. In the previous section, we evaluated the power

consumption using the open source single lead DNN model provided by Hannun et

al. [108], and it was energy-efficient. However, we found the power consumption

evaluation is still largely unexplored for the constrained environments using 12-lead

datasets with DNN models. Ribeiro et al. [113] highlight the shortage of 12-lead

digital ECG datasets with systematic annotation of the full list of ECG diagnosis.

They build a large-scale labelled dataset and deploy a DNN model to classify six ECG

abnormalities. We will deploy the open-source DNN model proposed by Ribeiro et
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al. to measure the impact of their classifier on the ECG patch power consumption.

4.3.2.1 Dataset

The authors in [113] create a large annotated ECG dataset called CODE-test [114]

that contains 2,322,513 ECG records from 1,676,384 different patients of 811 counties

in the state of Minas Gerais/Brazil. Ribeiro et al. release 827 ECG tracings from

the total dataset records for public usage. All the records are annotated by cardiolo-

gists, residents, and medical students. The CODE-test dataset includes six different

rhythmic and morphologic ECG abnormalities.

4.3.2.2 Deep Neural Network Architecture

Ribeiro et al. [113] propose a Deep Neural Network (DNN) based on the previous

work of Hannun et al. [108] with fewer convolutional layers. The modified DNN

accepts ECG raw signal sampled at 400 Hz as an input (i.e., 4096 samples / each lead

in 10-sec duration) for the 1st convolutional layer followed by four residual blocks

as shown in Figure 4.9. Each residual block has two convolutional layers where the

batch normalization is applied to the output of each convolutional layer before being

parsed to the ReLU activation function. The convolutional layers have 64 filters with

a length of 16 for the first convolutional layer and residual block and increasing the

number of filters by 64 every second residual block. The output of the last residual

block is an input for the dense layer with a Sigmoid activation function as some

records have intersected classes. Both max Pooling and (1x1 Conv) are used in the

skip connections to guarantee the dimensions match between the skip connection and

the signals in the main network flow.
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Figure 4.9: DNN architecture using 12 leads (Adapted from [113])

4.3.2.3 Methodology

We use the DNN architecture introduced by Ribeiro et al. [113] using the CODE-test

dataset to evaluate the power consumption with a different set of cardiac irregularities.

As mentioned earlier, the training was applied offline before model deployment on the

gateway device. We select 80:20 as a ratio between the training set and the testing

set. The multi-class classification with the CODE-test dataset produces six cardiac

classes as shown in Table 4.14.

Table 4.14: Multi-class classification output classes using CODE-test dataset

ECG Annotation Class

1dAVb 1st Degree AV Block

SB Sinus Bradycardia

LBBB Left Bundle Branch Block Beat

RBBB Right Bundle Branch Block Beat

AF Atrial Fibrillation

ST Sinus Tachycardia
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We implemented the DNN architecture [113], and initialized Adam optimizer with

the parameters described in Table 4.15.

Table 4.15: Hyper-parameters tuning with Adam optimizer

Hyper-Parameter Value

β1 0.9

β2 0.999

Learning Rate 0.001

Batch Size 64 Samples

4.3.2.4 Mutli-Class Classification Evaluation

After training and testing the 12 lead DNNmodel on the CODE-test dataset, we found

that the DNN model achieves 99.5% accuracy to classify the raw ECG signals into five

different classes We visualize the true positives, true negatives, false positives, and

false negatives using the confusion matrix as shown in Figure 4.10 to obtain insights

about the DNN predictions.

Figure 4.10: Confusion matrix of the 12-lead DNN model
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In Table 4.16, We evaluate the 12-lead DNN model in terms of precision, recall,

and F1-score for each ECG class. The resultant scores from the reproducible im-

plementation and the paper results are the same. The left bundle block and atrial

fibrillation classes have the maximum precision scores. The left and right heart blocks

classes achieve the highest recall scores while the left bundle and sinus tachycardia

have the best F1 scores.

Table 4.16: Evaluation report for multi-class classification with CODE-test dataset

Precision Recall F1-Score

1dAVb 0.86 0.92 0.89

RBBB 0.89 1.00 0.94

LBBB 1.00 1.00 1.00

SB 0.833 0.93 0.88

AF 1.00 0.76 0.87

ST 0.94 0.97 0.96

4.3.2.5 Power Consumption Analysis

In this scenario, the number of required ECG leads varies between 3, 4, and 12 leads

for the abnormal ECG signals and 1 lead for the normal condition. As an example,

sinus bradycardia needs 3 leads (II, III and aVF) to be diagnosed [115] while sinus

tachycardia requires 4 leads (V3, V4, V5, V6) for the accurate medical evaluation

[116]. Furthermore, both right and left bundle heart blocks need 4 leads (V1, V2, V5,

V6) to be diagnosed [111][112]. The 1dAVB and the atrial fibrillation are under the

arrhythmias category where 12 leads are crucial to maintain an effective diagnosis.
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Table 4.17 shows the number of ECG channels needed for each cardiac class re-

sulting from the 12 leads DNN, and the total data size streamed from these channels

at a 500 sampling rate using equations (4.3) and (4.4) on each ECG class.

Table 4.17: ECG channels for each cardiac class of the 12 lead DNN

ECG Class # of Required Leads # of Required Channels
Data Size for (N) Channels

(Bits)

Data Size at 500 Sampling Rate

(kB)

1dAVB 12 8 216 13.5

RBBB 4 3 96 6

LBBB 4 3 96 6

SB 3 3 96 6

AF 12 8 216 13.5

ST 4 3 96 6

Similarly to the single lead DNN, the power consumption measurements are calcu-

lated using equations (4.1) and (4.2) with a 500 sampling rate and a minimum 2 Sec

duration to capture the full cardiac cycle. In Table 4.18, we demonstrate the power

consumption before and after applying the multi-class classification. As a result, we

get the maximum energy saving in 3 and 4 leads scenarios with 55.5%.

Table 4.18: Power consumption and energy saving after using 12-lead DNN

ECG Class
Power Consumption Using 12 Leads

(mJ)

Power Consumption Using Adaptive Leads Selection

(mJ)

Power Saving

(%)

1dAVB 1706 1706 -

RBBB 1706 758.2 55.5

LBBB 1706 758.2 55.5

SB 1706 758.2 55.5

AF 1706 1706 -

ST 1706 758.2 55.5
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4.4 Summary

In this chapter, we investigate the effect of binary and multi-class classification on the

ECG patch power consumption. In the binary classification approach, we found LR

achieves 77.7% regarding the power saving for the normal conditions, when the mode

of operation is changed from 12 leads to one lead. We introduce the adaptive ECG

leads selection by applying multi-class classification with CNN on the MIT-BIH and

CODE-test datasets. The adaptive leads selection technique saves 77.7% of the total

power consumption in the normal ECG status compared to 55.5% energy saving in

the abnormal ECG conditions.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this work, we investigate distinct procedures to support continuous cardiac event

monitoring within the constrained embedded environment of TI-CC2650 MCU. We

study the impact of data compression, and adaptive selection of ECG leads on en-

ergy saving. The Huffman, delta, and base-delta encoding algorithms are evaluated

regarding the compression ratio, execution time, and energy consumption for data

transmission. The base-delta encoding outperformed the Huffman and delta encod-

ing techniques and achieved a 24 ms execution time, a 70% compression ratio in

normal cardiac status, and more than 40% in abnormal cardiac status. In addition,

the delta encoding technique saved 50% of the power consumption compared to no

compression.

We evaluate the effect of applying binary classification to switch the ECG patch

mode of operation in terms of execution time, airtime over BLE, and energy-saving

ratios. Changing the mode of operation approach exceeds base-delta in terms of en-

ergy saving of 77.7% for the normal conditions only when the mode of operation is
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changed from 12 leads to 1 lead. Nonetheless, base-delta encoding shows a stable

power saving of 41.2% in normal ECG and 33% in abnormal status. Additionally,

base-delta meets the embedded environment constraints with 25 ms execution time

and 20 ms transmission time compared to 857 ms and 154 ms in the binary classifica-

tion with Logistic Regression. We provide a flexible choice of ECG channels based on

the cardiac classification output from two varied CNN models that are deployed on

single-lead and 12-leads datasets. Based on the detected cardiac class, we change the

ECG patch mode of operation, extending the battery life and preserving continuous

ECG evaluation. The adaptive leads selection technique saves 77.7 % of the total

power consumption in the normal ECG status compared to 55.5 % energy saving in

the abnormal ECG conditions.

5.2 Future Work

The datasets used in the literature have a few limitations, such as the limited number

of leads, the small number of cardiac cases, or the unbalance recordings (i.e., the

number of normal recordings exceeds the abnormal recordings). It will be important

that future work considers creating an intensive dataset with a wide diversity of car-

diac abnormalities to overcome these limitations. Future studies could also examine

the effect of using hybrid compression techniques on the input of CNN models and

compare the performance of the ECG real-time platform and the total energy sav-

ing before and after applying these techniques. Furthermore, we plan to apply the

adaptive ECG channel selection as a bench-marking approach using datasets with

a broader range of cardiovascular diseases to expand the operational hours of the

low-powered ECG diagnosis platforms.
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