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Abstract—Multi-access Edge Computing (MEC) is a revo-
lutionary computing paradigm that facilitates delay-sensitive
and/or data-intensive applications associated with the Internet of
Things (IoT). Harvesting copious yet underutilized computational
resources of the Extreme Edge Devices (EEDs) is foreseen as
a promising endeavor. Such EEDs offer a unique opportunity
to bring the computing service closer to IoT devices to curtail
delay. However, the efficacy of extreme-edge parallel computing
paradigm is profoundly impacted by i) wireless device-to-device
communication performance, that is required for task offloading;
and ii) computing capabilities of the EEDs, that governs the
execution time of each task. In this context, we propose a novel
spatiotemporal framework that employs stochastic geometry and
continuous time Markov chains to jointly analyze the interwoven
communication and computation performance of extreme edge
computing systems. Based on the incorporated framework, we
study the influence of various system parameters on the task
response delay. Our findings reveal the existence of an optimal
number of EEDs that need to be recruited in order to minimize
the task response delay. Moreover, we show that in some cases,
our model can outperform the normal MEC offloading systems.

Keywords-Multi-access Edge Computing, Stochastic Geometry,
Continuous Time Markov Chain, Computation offloading.

I. INTRODUCTION

With the advent of the Internet of Things (IoT), it is
anticipated that 75.44 billion IoT devices will be connected
to the Internet by 2025 [1]. In addition, it is expected that
the IoT market size will rise up to $15 trillion by the same
year [1]. This can trigger a broad spectrum of latency-sensitive
IoT applications with strenuous Quality of Service (QoS)
requirements [2]. Such requirements cannot be adequately
satisfied by cloud computing, due to the distant geographical
location of cloud data centers, as well as the huge traffic influx
imposed at backhaul links [2]. Multi-access Edge Computing
(MEC) has emerged as a propitious computing paradigm that
can bring the computing service within close proximity to end
devices, thus significantly reducing the delay and successfully
satisfying the soaring demands of IoT applications [3].

In MEC, efficient task offloading decisions are pivotal to
achieve promising performance gains. Most existing MEC
platforms depend on the availability of computationally ca-
pable Base Stations (BSs) to perform the offloaded compu-
tational tasks [3]. Recently, various research efforts [4]-[6]
have explored the potential of leveraging the drastic surge in
IoT devices, also referred to as Extreme Edge Devices (EEDs)
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[7], and exploiting their collective processing capabilities to
further improve the performance.

Harvesting abundant yet underutilized computational re-
sources at EEDs can break the monopoly caused by the
fact that most Edge Computing (EC) paradigms, including
MEQC, are controlled solely by cloud service providers and/or
network operators. Breaking this monopoly can democratize
the edge and allow additional participants to build and manage
their own edge cloud. In addition, in EED-enabled computing
environments, EEDs are recruited to amplify the compute
resource pool, perform parallel computing, and enhance the
task offloading service, which can enable further improvement
of the delay. However, achieving network objectives, such as
low latency, reliable communication, and efficient computing,
relies heavily on effective network design, analysis, and opti-
mization, where a combined communication and computation
perspective must be taken into consideration.

Task offloading in MEC environments is largely dependent
on the availability and reachability of the available resources,
as well as their resilience to failures [8]. Service interruptions
triggered by failures of physical machines (PMs) and virtual
machines (VMs) are addressed in [9]. In [10], the scalability of
the network is explored in wireless-based task offloading, and
both the communication and computation performance bounds
are determined. The work in [11] analyzes task offloading un-
der heterogeneous computational resources by estimating the
network-wide outage probability. To perform energy-efficient
task offloading, the spatial and temporal network parameters
are considered in [12].

The aforementioned body of works either adopt a depend-
ability perspective of the network [8], [9], or a spatiotemporal
one [10]-[12]. A combined view of both perspectives is
provided by the spatiotemporal framework presented in [13],
where the authors consider the joint limitation of network
interference and parallel computing by multiple failure-prone
VMs that reside on the same edge server. However, feasible
and dependable task execution that accounts for the joint
device-to-device (D2D) communications under network-wide
interference as well as the parallel computing at the EEDs has
been overlooked.

Motivated by the above, we propose a spatiotemporal anal-
ysis that investigates the total task response delay at EEDs.
Consider a computational task that can be divided into smaller
slices called jobs to be offloaded at EEDs for faster execution
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and less computational delay at each device. Consequently,
the response delay includes a) the D2D communications
delay to recruit and offload the jobs to the EEDs, and b)
the computation delay to execute the offloaded jobs at the
recruited EEDs. To this end, an absorbing continuous time
Markov chain (ACTMC) is constructed to track the sequential
recruitment of the EEDs via D2D communications as well as
the parallel task execution at the recruited EEDs. To capture
the interwoven communication and computation delays, the
recruitment rate of the ACTMC is computed via tools from
stochastic geometry to account for the D2D communications
success probability. The results reveal the existence of an
optimal number n* of EEDs that minimizes the response delay.
Going beyond n* leads to an overwhelming communication
latency that dominates the reduced computation latency.

II. SYSTEM MODEL

The computationally capable EEDs, denoted hereafter as
workers, are modeled via a Poisson point process (PPP) &,, C
R? with intensity v,,. The EEDs offer computational services
to resource-constrained devices (e.g., IoT), which hereafter are
denoted as requesters. The requesters are spatially distributed
according to an independent PPP @, C R? with intensity v/.
There is an edge orchestrator, which can be a base station
or an access point, which organizes the transactions between
workers and requesters. In particular, the EEDs register their
availability at the edge orchestrator, which in turns informs
each requester about the availability of proximate EEDs. It is
assumed that v,, > v,., and hence, the edge orchestrator avoids
conflicting requests to the same worker. To utilize parallel
computing and reduce response delay, the requester divides
each computational task into n smaller and equivalent jobs to
be offloaded and executed at n different EEDs. Due to the
heterogeneity of the computational powers of the EEDs, the
finishing time of each job is exponentially distributed with
mean !/nu;, where iy is the task execution rate if computed
at a single worker.

In compliance with 5G and beyond systems, the requesters
utilize millimetre wave (mmW) for D2D communications in
order to offload jobs to their proximate workers. The high
vulnerability of mmW communications to blockage is taken

into consideration via the general line of sight (LOS) ball
blockage model [14], [15]. That is, devices within the distance
of R; from the requester are LOS devices, and otherwise,
are considered non LOS (NLOS) devices. Distance dependent
power-law path-loss is considered with exponents a;, and oy
for LoS and NLOS devices, respectively. All transmissions
experience Nagakami multi-path fading. Hence, the channel
power gains have independent and identical gamma distribu-
tion parameter Ny for LoS devices and parameter Ny for
NLOS devices. We also ignore the fading in the frequency
selective, as measurements show that the delay spread is
generally small [16]. Also, results indicated that small-scale
fading at mmWave is less severe than that in conventional
systems when narrow beam antennas are used [16]. Thus, we
can use a large Nakagami parameter Ny, to approximate the
small-variance fading as found in the LOS case.

Universal frequency reuse and constant transmit power P is
utilized via all requesters. The requester and workers deploy
antenna arrays for mmW beamforming. The array patterns are
approximated by the sectored antenna model with main lobe
gain of M,, side lobe gain of m,, and 3 dB beamwidth of
0., where the subscript © € {w,r} to differentiate between
the antenna patterns of the requesters and workers. Without
loss of generality, we consider that the requester is located at
the origin and can establish D2D links with proximate LOS
EEDs only. Perfect antenna alignment is considered for the
intended D2D link and uniform random antenna alignment is
considered for the interfering links. A pictorial illustration of
the system model is shown in Figure 1.

The requester is assumed to have one task that is sliced
into n smaller and equal tasks called jobs. The jobs are
encapsulated into n packets that are transmitted via D2D
communications to n different proximate workers. Since a
single mmW interface is available at the requester, the workers
are recruited one after another in a sequential fashion. The
workers are selected randomly among the list of available LOS
EEDs provided by the edge orchestrator. The communication
between the requester and worker is subject to errors, and
hence, the requester may need several attempts to successfully
deliver the job packet and recruit a worker. The time required
for each packet transmission attempt via D2D communications
is 7. seconds. The worker starts the computation immediately
upon the successful reception of the job. The requester is then
notified to proceed with offloading the pending jobs to other
available LOS workers. All notification are assumed to be sent
over perfect feedback channel.

III. SPATIOTEMPORAL ANALYSIS

The job is correctly received at the worker if the signal-to-
interference-plus-noise ratio (SINR) is above a given threshold
&. Otherwise, the job has to be re-transmitted to another
worker. Hence, the first step to investigate the response delay is
to find the D2D communication success probability to recruit
a randomly selected LOS worker. Such probability is then
utilized within an ACTMC to find the total response delay.
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TABLE I: Directivity gain probability and value

k 1 2 3
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The successful D2D transmission of the job can be expressed
as

PhoM, M,,Crrg “*
o2+ I+ 1;

pS:]P’{SINR>£}:]P’{ >§}7 (1)
where hg is the intended channel power gain, Cp is the
intercept of the LOS channel, rq is the distance between the
requester and the intended LOS worker, I, is the aggregate
interference from other active LOS requesters, Iy is the
aggregate interference from other active NLOS requesters,
and o2 is the ambient noise power. Let ®;, C &, and
Oy =P, \ {(Pr)U(0,0)} be the point process of the LOS
and NLOS requesters seen from the origin, respectively. Then,
the LOS and NLOS interference terms are expressed as

In= Y hDCplx| ", 2)
i>0:x;EPL
and
In= > aDCylyill ™™, 3)
i>0:y; EPN

where h; is the 7" LOS interfering link channel power gain,
gi is the ¥ NLOS interfering link channel power gain, Cy
is the intercept of the NLOS channel, ||-|| is the Euclidean
norm, and D; is the antenna gain width for the i*" interfering
requester in ®; or ® . Due to the sectored antenna model
along with the uniformly random antenna alignment, D; is
a discrete random variable with the probability distribution
defined as P{D; = ap} = by with k € {1, 2, 3}, where a;,
and by, are constants defined in Table I and ¢ = 6,./27.

The D2D transmission success probability given in (1) is
characterized in the following lemma.

Lemma 1: The spatially averaged successful recruitment
probability via mmW D2D communications for a randomly
selected LOS worker out of ®,, is given by

Ry No
Ds :/0 Z

n=1

dr

“)
while W, (£) and Z, () are

(NL> 2r(—1)"H1eMn(§)0* =Wn (€)= Zn (&)
n
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where M,(§) = —&ar

given by

RL 1
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and

o0

1
Zn (&) = 27v,b / 1-— zdx.
o) =amb | ( (1+ menect” )NN>

Crz®N Ny

Proof: This lemma can be proved by following the sys-
tematic stochastic geometry analysis through the probability
generating functional of the PPP as in [14], [15]. [ |

The D2D successful recruitment probability given in
Lemma 1 is a core building block of the ACTMC that tracks
the jobs offloading and execution. The states of the ACTMC
is § = {z = (zp,2.)|> ;25 < mj € {f c}}, where
zy € {0,1,2,--- ,n} denotes the number of workers that
have finished their assignment and z. € {0,1,2,---,n}
denotes the number of recruited workers that are actively
executing the job. For each task, the ACTMC starts at the
state z = (0,0) where the requester has a task that is sliced
to n jobs but has not yet recruited any worker. Each time
the requested succeeds to recruit a LOS worker via mmW
D2D transmission, a transition from state z; = (zy,x.) to
z; = (zy,z.+1) occurs. Each time a worker is retired because
of a job completion, a transition from state z; = (xy,z.) to
z; = (x5 + 1,2z, — 1) occurs. Since the requester needs only
n workers, then z. + x5 <n and z = (n,0) is the absorbing
state that implies the termination of the ACTMC. Following
the aforementioned criterion, jobs offloading and execution at
the EEDs can be tracked with an ACTMC with the following
two-level hierarchical generator matrix

Ty 0 1 2 3 n
0 Ko H071 0 0
1 0 Kl H1)2 0 0
Q — 2 0 0 Kz H2’3 0 ,
n—1 0 ce 0 0 anl Hnfl,m
n 0 e 0 0 0 0

where Q is a block matrix of size (n + 1) x (n + 1) that
tracks the number of finished workers z ;. Since the task is
finished upon the completion of the n jobs, then the state
2y = n is the absorbing state that indicates the termination of
the edge computing. Within each level of Q, the sub-matrices
K,, and H,, ,,, 1 track the number of recruited workers ..
Exploiting that fact that x. + x; < n, the matrix H,, ;41
is of size (n — m) x (n —m — 1) that tracks z. due to the
completion of a job by any of the workers. Let H,;, 41 (4, 5),
withi € {0,1,2,--- ,n—m} and j € {0,1,2,--- ,n—m—1},
denote that (4, j)-th element of the matrix H,,, ,,,+1. Then, due
to the parallelized computing at the EEDs along with the fact
that only one worker can finish at a given instance, the matrix
H,, y+1 1s given by

ing, i=j+1
Hm,m+1(i>j) = (5)
0, otherwise

Using similar argument, the matrix K,,, is of size (n—m+1) x
(n —m+ 1) that tracks x. upon recruiting new workers. Let
K, (i,7), with 4,5 € {0,1,2,--- ,n—m} denote that (, j)-th
element of the matrix K,,,. Then, due to the sequential worker
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recruitment, we have

—(An+ipyp), i=j &i<n—m

An, i=j—1 & i<n—m

K (i,7) = (©6)
_(n_m):u’fa t=j=n—m

0 otherwise

where )\, = pg/7. is the recruiting rate, ps is the D2D
transmission success probability given in (4), and 7, is the
time required for each D2D transmission attempt.

The task response time cannot be directly obtained for
the matrix Q. Instead, we first need to obtain the embedded
discrete time Markov chain (EDTMC) of Q and the average
sojourn time at each state. The EDTMC of Q is given by

Ko Hoi O 0 .- 0
0 K1 Hiz O 0
pP=|0 0 K2 Hzz o |,
0 T 0 0 lCn—l Hn—l,n
0 0 0 0 1

where K, and H,, 41 track the transition probabilities due
to worker recruitment and job completion, respectively. The
matrices KC,,, and H,, are given by

. Nnting =i-1
Icm<7’7.7) - ) (8)
0 otherwise
and
UL .. .
)\h+£ﬂf, i=j+1 & i<n-—-m
Honm+1(4,7) = 1, i=n-m,j=n—m-—1-.
0, otherwise

©)
Let z., € z; be the number of recruited workers in state z;,
then the average sojourn time ¢, ,, is given by

1 if the transition from z; to z;
Tegpf’ is due to job completion
tzi,zj = (10)
1 if the transition from z; to z;
An? is due to worker recruitment

Equipped with P and ¢,, ,., the task response time is given
in the following theorem.

Theorem 1: The task response time in the extreme edge
computing networks with mmW D2D communications and n
workers is given by

Ty =o(l-Pr) 'w, (1)

TABLE II: Simulation Parameters

Parameter Value
Workers Intensity (v,,) / 10 km? 7x1074
Requester Intensity (v) / 10 km? 1%10~4
LOS and NLOS path loss exponent (ar,,ar) | 2, 4
Fading values for LOS and NLOS (N, Nn) | 3,2
Noise (02) -114 dBm
Maximum radius for LOS devices (Rp) 100m
SINR coverage probability threshold (§) -10 dB
D2D communication time (7¢) 1 second
Task finishing rate (1 7) 0.02 task/second
Number of task slices (n) 5 slices
where o« = [1,0,0,---,0], I is the identity matrix, P is

the transient state of P given in (7), which is obtained by
excluding the last row and column of P. The column vector w
contains the average sojourn time in states z; that is given by
Wq, = sz P(zi,2;)ts, 2,, Wwhere P(z;,2;) is the transition
probability from state z; to z;.!

Proof: Let Sy = S\ (n,0) be the entire state space of
the ACTMC excluding the absorbing state. Then, the time to
absorption from a state z; € S4 is given by

T = Y P(2i,2)(ts, 2, + Ta,)-

ZJ'ESA

12)

After some manipulations, the expression in (12) can be
written in the vector form for all states z; € S4 as follows

T=(1-Pr) 'w, (13)

where I is the identity matrix. Given that the task execution
starts at state zo = (0, 0), the task response delay is the first
element in T, which can be obtained by multiplying (13) with
« as given in (11). [ |

IV. NUMERICAL RESULTS

This section provides numerical and simulations results to
validate the developed spatiotemporal model and illustrate the
trade-off between the computation value and communication
cost in extreme edge computing networks. Unless otherwise
specified, the list of underlying network parameters utilized
in this section is summarized in Table II. The Monte Carlo
simulation are conducted over an area of 10 km?. In each
simulation run, a requester in the origin utilizes D2D commu-
nication to recruiter proximate LOS workers and the successful
recruitment probabilities as well as the task response delay are
recorded. The simulation results are then averaged over 10°
runs.

Figure 2 shows the successful recruitment probability p,
as a function of the desired SINR threshold ¢ for different
values of the radius R, that encloses LoS devices. The close

"In consistence with the hierarchical structure of P, we utilize
two dimensional indexing for its elements. Particularly, P(zi7 Z; ) =
P((zy,,2c;), (zg;, e, ) is the (zc;, Tc; ) element of the matrix (z,,z¢;)
sub-matrix in P. )
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Fig. 3: Task response time vs the number of recruited workers

match demonstrated between the simulation and the proposed
analytical framework validates Lemma 1. The figure shows
that the successful recruitment probability p, is inversely
proportional to £ due the increased link quality requirement.
Hence, increasing z; leads to higher number of attempts to
successfully offload a task to a worker, which increases the
communication cost. The figure also shows that a larger R,
also increases the communication cost due to i) the higher
probability of longer D2D distance between the requested and
the workers; and ii) the increases interference from other LOS
requesters.

Figure 3 depicts the system performance in terms of the
average task response delay over varying number of recruited
workers given different values of Rjy. The simulation and

the proposed analytical framework closely coincide, which
validates Theorem 1. The figure reveals an important trade-off
between the communication cost and the computation value
in extreme edge systems. As the number of recruited workers
increases, the total communication time increases, whereas the
total computation time decreases. This is due to the increase
in the number of collaborating devices among which the
task is divided, and with which communication occurs. As
a result, the average task response delay continues to decrease
as long as the reduction in computation delay is significantly
predominant. This persists until reaching a point beyond which
the increase in communication delay becomes too intense that
it dominates the reduction in computation delay, thus causing
the task response delay to start increasing. This indicates that
there is an optimal number of recruited workers that minimizes
the task response delay.

Figure 4 shows that the optimal number of recruited workers
significantly varies with the network parameters. Note that
the red dots show the minimum task response time, which
corresponds to the time at which the system reaches the
optimal number of recruited workers. In this context, Figure
4(a) demonstrates that the optimal number of workers depends
on the task size, which is depicted via the rate p1y. Lower
finishing rates implies larger tasks, and hence, more workers
need to be involved. Figure 4(b) illustrates that the optimal
number of worker depends on the relative values of Ay and pi.
The case of #s/x; = 1 implies that the communication delay
is equal to the computational delay, and hence, one worker
is sufficient to do the task. A lower ratio #s/x; implies faster
recruitment rate when compared to the computation rate, and
hence, more workers can be recruited to decrease the task
response delay. Figure 4(c) shows that increasing the threshold
& increases the communication cost, and hence, less number
of workers is preferred due to the dominating communication
delay.

Figure 6 and 5 show the average delay from our model,
along side the response delay obtained by offloading the task
to the an MEC PM. The task used here is py = 0.007 and
v, = 2%107* (the rest of the parameters are specified in Table
II). The requester will not divide the task before sending it, as
it will be computed in the PM as a hall. The PM computational
power is ten times more than the EEDs computational power.

Figure 5 shows the average response delay using three
different PM congestion cases: (a) the PM is currently not
serving any other users (v,,,,, = 0), in that case, the total
task delay will be less than the optimal value when the
task is offloaded to the EEDs, due to the availability in the
computational resources at the PM. (b) the number of served
requesters is half of the available requesters (v, .. = V),
but the PM is not fully congested, this will lead to increasing
the total task response delay, which happened because of the
increase in the computational time due to the increase of the
demand on the PM. (c) the PM is surfing all the available
requesters (Vr,, ., = 2v,) and the PM is fully congested, in
that case, offloading the task to the EEDs will be better than
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Fig. 5: MEC and EEDs average response delay using
varying BS congestion parameters

offloading it to the MEC, due to the response delay the MEC
will take compared to the delay from the EEDs.

Figure 6 shows the average response delay using three
different distance value with v,,, .. = v;: (a) the distance
between the requester and the BS R = 10, so the commu-
nication time will be at its best, as the BS is close to the
requester. (b) the distance between the BS and the requester
R = Rp/2, this will increase the communication time a
little due to the increase in the distance, which aggravates
the impact of fading and interference. Finally, (c) the BS is
located on the farthest LoS point from the requester R = Ry,
the communication time will be at its worst due to the low
successful recruitment probability. Combining the three cases,
we see that the distance does really increase the average
response delay that much, and the communication time in the
MEC case does not have a big effect.

150
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Fig. 6: MEC and EEDs average response delay using
varying BS distance parameters

V. CONCLUSION AND FUTURE WORK

This paper presents a novel spatiotemporal framework that
characterizes the task response time in extreme edge comput-
ing networks. The developed model accounts for the interwo-
ven communication and computation delays by constructing
an absorbing continuous time Markov chain (ACTMC) to
track the sequential offloading and parallel execution of tasks
at extreme edge devices (EEDs), where the offloading rate
is obtained via stochastic geometry analysis. The former
is used to capture the sequential recruitment of EEDs via
D2D communications, along with the process of parallel task
execution at such devices. The latter is adopted to model the
D2D communications success probability. Numerical results
validate the analysis and reveal the existence of an optimal
number (n*) of recruited EEDs that minimizes the underlying
task response time. Operating below n* leads to underutilized
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edge computational resources, and hence, prolongs the task
response delay. Exceeding n* leads to a dominating commu-
nication delay that also prolongs the response delay. To this
end, it is demonstrated that the optimal number of recruited
EEDs significantly varies with the network parameters. In the
future, we plan on handling service interruptions caused by
failure. We also plan to come up with a new hiring technique,
where EEDs hiring will depend on the distance of the devices.
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