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Abstract—Video traffic is growing in dominance in today’s
Internet, prompting new challenges in timely delivery of video
content. As Dynamic Adaptive Streaming (DAS) is becoming the
de facto paradigm for video delivery, there is growing evidence
on how caching improves users’ Quality of Experience (QoE) in
DAS. However, there is no consensus on how to maximize the
utilization of in-network caching resources. Specifically, there are
conflicting proposals on the impact of caching based on its distance
(in hops) from the network edge. That is, contrasting ubiquitous
network-wide caching to edge-caching. Supporters of the ubiqui-
tous caching paradigm propose bitrate-aware caching schemes for
optimizing video streaming, while counter-proposals suggest that
edge-caching only the highest bitrate with online transcoding, may
offer superior performance to ubiquitous caching. In this paper,
we answer a contentious question: Can transcoding at the edge
outperform bitrate-aware ubiquitous caching for DAS? We devise
an extensive simulation environment using NS-3 to contrast both
paradigms, experimenting with different bandwidth fluctuation
patterns, under the FESTIVE user-based bitrate adaptation pro-
tocol. Caching performance was evaluated under five established
QoE metrics, gauging delivered video quality, playback freezing
and bitrate oscillation. We further assume zero processing delay
for online transcoding at the network edge, to contrast to an
upper bound performance from the edge-caching paradigm. Our
experiments demonstrate that neither transcoding nor bitrate-
aware caching offer a silver bullet for all cases. We present
our insights on networking scenarios where each model would
dominate in performance, and present our concluding remarks
on their development.

Index Terms—In-network Caching; Edge Caching; Dynamic
Adaptive Streaming; Performance Analysis; Guided Designs.

I. INTRODUCTION

The rapid evolution of video dissemination and usage on
the Internet is mandating novel paradigms to scale with the
volume of traffic and heterogeneity of users. By 2021, video
content is projected to dominate over 80% of global Internet
traffic [1]. This dramatic growth in video traffic has motivated
many developments in application-layer standards, yielding
Dynamic Adaptive Streaming over HTTP (DASH) [2] as a
leading contender in delivering video content over unstable
channel conditions.

At its core, DASH adopts three fundamental features in its
operation: video content is first partitioned into equal duration
segments, all segments are encoded at multiple bitrates, and an
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adaptive control algorithm is applied to the consumer side to
request the highest possible quality given estimates of real-time
network bandwidth. To maximize consumers’ satisfaction of
video streaming, there has been a lot of research on modelling
the behaviour of DASH [3] and improving this adaptation
control mechanism [4]. However, DASH intrinsically is an
application-layer solution, and thus cannot resolve the underly-
ing network scalability problem or ease bottlenecks caused by
massive video traffic.

A recent shift towards Information-Centric Networks (ICNs)
[5] is a promising solution from a network design perspective.
This new paradigm adopts a Publish-Subscribe model, along
with salient features such as content-host decoupling, dynamic
request forwarding and in-network caching. Among all these
features, in-network caching received the most attention, as it
has been shown in many studies [6]—[8], that it can significantly
leverage users’ Quality of Experience (QoE).

Although the importance of in-network caching is well
recognized, there is no consensus on how to manage these
resources to maximize their utilization. To date, two main
paradigms have been explored, one where caches are distributed
across the entire network or the other where caching nodes are
only allocated at the network edge. Evidently, both models have
their own merits. Ubiquitous caching on network intersections
would effectively reduce traffic load in the core network, but
miss the chance of satisfying requests closer to consumers.
Edge caches, on the other hand, would cause the least access
delay, but at the same time result in a higher degree of cache
redundancy and require more caching capacity.

Ubiquitous and edge caching are both adapted to cater
to ever-expanding video streaming applications. With recent
advancements in mobile/edge computing, computational re-
sources are moving from the Cloud to the network edge, which
enables on-the-fly video transcoding at edge caches. For exam-
ple, a representative transcoding paradigm [9] describes that
network edge nodes may only cache the highest quality content
and transcode requests to lower qualities when such video
requests arrive. Ubiquitous caching, instead, relies on bitrate-
aware caching schemes to enhance multi-bitrate streaming. For
example, smooth playback can be achieved by safeguarding a
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Fig. 1. Contrasting the caching behavior of ubiquitous bitrate-aware caching
vs. Edge-based caching with transcoding, for DAS. In the latter paradigm, more
caching resources need to be allocated at the edge to cater for storing most of
the popular video segments at their highest bitrates.

network of caches for particular bitrates along each forwarding
route [8]. However, deciding which one of these paradigms is
superior in performance, has been a long-standing question. The
operational difference between these two caching paradigms are
depicted in Fig. 1.

The contributions of this paper are as follows: 1) We address
the lack of comparison between the impact of transcoding and
bitrate-aware caching on consumers’ QoE. To highlight the
potential gain of transcoding at the edge [9], we assume zero
processing delay of transcoding, to cater for an upper bound
performance that the edge caching paradigms may achieve. This
performance is compared against RippleFinder [8] as the best
known bitrate-aware caching scheme that delivers a comprehen-
sive improvement on users’ QoE. 2) We build an evaluation
framework using NS-3 based simulator ndnSIM [10], where
the leading FESTIVE protocol [11] is implemented to provide
realistic consumer-side bitrate adaptation, and we evaluate
consumers’ QoE under different bandwidth fluctuation patterns.
3) Since neither paradigms achieve a landslide win for all
scenarios, we provide recommendations on design decisions
that aid the selection of caching paradigms, and highlight
scenarios where each paradigm excels.

The remainder of this paper is organized as follows. In
Section II we present pertinent background and related work,
elaborating on state-of-the-art caching models, and the role of
transcoding at the edge. To compare these two paradigms, we
explain our experimental setup and performance evaluation in
Section III. We build on our insights from these experiments
and elaborate on design considerations for building caching
models under either paradigm in Section IV, and we conclude
in Section V and present potential directions moving forward.

II. BACKGROUND & RELATED WORK

A. Ubiquitous Network Caching

With the advent of next-generation routers that are capable of
caching, there are a number of networking paradigms consider-
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Fig. 2. Video content with different bitrates are safeguarded at different hop
distances from a consumer, under the RippleFinder paradigm

ing a wider-adoption of caching at its routers. While ICNs have
this feature inherent in its design, the expansion of adaptive
Content Distribution Networks, with more agile models for
allocating caching resources across networks, are opening up
new frontiers in network-wide caching. Ubiquitous caching [5]
is a fundamental feature of ICN. Due to the decoupling of
content and location in ICN naming mechanisms, information
is not bound to a particular host and can be retrieved from
anywhere in the network.

The interaction between in-network caching and bitrate
adaptation has attracted the attention of researchers, leading
to studies on bitrate-aware caching schemes. Previous work
that build on video throughput optimization [12]. As video
throughput is a key metric of DASH adaptation, a higher video
throughput would possibly trigger a video quality upgrade.
Araldo et al. [13] attempted to build a more direct relationship
between video quality and cache placement of multiple versions
of video content. The work of RippleFinder [8] is a further step
towards comprehensive improvement on users’ QoE. As shown
in Fig. 2, RippleFinder arranges a network of caches along
the forwarding path to cooperatively cache different bitrates of
video content. For example, the highest quality Bj; is catered at
router Rj, bitrate B, at router Ry, and lowest quality B; at the
farthest router R3 from the consumer. It is demonstrated that by
pushing low-bitrate content towards the core and safeguarding
cache space for high-bitrate content at the edge, it is possible
to achieve enhanced video quality, along with less video stream
stalls and reduced bitrate oscillations.

RippleFinder is a leading caching scheme that takes into
consideration the real-time interaction between consumer-side
adaptation and in-network caches. In addition, RippleFinder
also achieves improvement on multiple QoE metrics that are
fundamental in QoE models [14]. Previous work (e.g., [7],
[12], [13]) either focuses solely on improving video quality,
or assume simplified user behavior that fails to mimic the
realistic adaptive streaming scenarios. We choose RippleFinder
as a benchmark and representative of bitrate-aware ubiquitous
caching for comparison, as described further in Section III.

B. Transcoding on the Edge

Despite studies that support ubiquitous caching, recent pro-
posals explored an alternative model. Fayazbakhsh et al. [15]
discovered that edge caching deployment provides the same
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Fig. 3. Illustration of transcoding scheme [9]. All-bitrate versions are cached
for the most popular x video content, while only the highest version is stored
for the rest.

performance as ubiquitous caching. Their discovery was rein-
forced in [16], where an analytical model derived a similar
result as [15]. However, these observations are constrained
to simplistic Least Recently Used (LRU) cache replacement
of non-video content. We argue that these results cannot be
generalized for video-caching models that explore the effec-
tiveness of edge caching under 1) varying video traffic and 2)
popularity-based caching models.

The potential of edge caching shown in previous studies then
motivates transcoding at the network edge to enhance adaptive
streaming service. Jin et al. proposed the adoption of partial
transcoding [9], as shown in Fig. 3, as a hybrid compromise.
In this model, each edge node selectively caches all bitrate
versions for a few popular video content, and only keeps the
highest quality for the rest (as long as the cache capacity allows
it). As a result, the partial transcoding ratio becomes a critical
parameter which decides how to divide the caching space for
these two different usages. This ratio is derived by minimizing
the total Cost of caching system.

There are three types of Costs: Storage, Transcoding and
Bandwidth. The Storage Cost is charged by allocating cache
space to each edge node. In our comparison, as we always
allocate the same total cache space to both edge caching and
ubiquitous caching, this type of cost is omitted in the remainder
of this paper. The Transcoding Cost is incurred when the
highest bitrate content is transcoded into any lower bitrate
version. The Bandwidth Cost is triggered by retrieving content
from a video producer when a cache miss occurs at the network
edge.

The optimal partial transcoding ratio then depends on the
trade-off between these three types of costs. However, different
cost models, which focus on various performance metrics (such
as energy consumption, access delay, or throughput), would
result in far different results. For example, CPU usage becomes
a significant component of Transcoding Cost in [17]. Finding
a generic cost model for transcoding is still an open issue, as it
varies from the underlying hardware, topology and so on. In this
work, we assume zero transcoding cost/delay as a benchmark.
With this assumption, the optimal partial transcoding ratio
would be 1, i.e., using the entire caching space to store only
the highest bitrate.

III. TRANSCODING VS. BITRATE-AWARE CACHING:
EVALUATION AND RESULTS

We compare the performance of caching under the ubiqui-
tous and edge caching paradigms, via simulation. One of the

TABLE 1
SIMULATION PARAMETERS

NDN
Number of video files 250
Number of video segments per file 40
Number of NDN nodes 16
Video segment playback time 4 sec
Number of video consumers 32
Request interval on video file/session (sec) 400
Skewness factor (a) 1.2
Content store size percentage (w) 0.02
FESTIVE
Drop Threshold 0.8
Combine Weight 8

important observations in our simulations is that conventional
cache metrics (e.g., cache hit ratio) are not ideal for measuring
streaming performance. Our evaluations are conducted on the
Named Data Networking (NDN) [18], as a favored representa-
tive architecture that implements ICN primitives.

A. Simulation Setup

We build an NDN environment using the NS-3 based sim-
ulator ndnSIM [10]. Caching space is either distributed evenly
across all NDN nodes or only at edge nodes to represent both
caching paradigms. We ensure equal cache capacity between
edge and ubiquitous caching. This total capacity is allocated
proportional to the size of all video content provided by the
video producer, formally as Zf:’zl Zle S8 % w where S? is the
size of a video segment with index n encoded at bitrate b. N is
the number of video segments, and B is the number of video
encodings. w is a control parameter that enables us to examine
the caching performance under different cache sizes.

Consumer-side adaptation is simulated via our implementa-
tion of FESTIVE [11]. FESTIVE is a highly-cited approach,
and a representative of throughput-based adaptation control
algorithm. A video session would be triggered following a
Poisson process, where consumers’ interests on video content
are captured by a Zipf distribution (controlled via skewness
parameter @). Once a video session is initialized, video seg-
ments within the requested video file are retrieved under control
by FESTIVE. Video files are 160 seconds in duration and
are divided into 4-second segments. Each video segment is
prepared at 1, 2.5, 5, and 8 Mbps, which are recommended
encoding bitrates by YouTube [19]. The simulation parameters
are listed in Table I.

We evaluate RippleFinder [8] and the transcoding model
in [9] (which we name as Transcode). RippleFinder is a cache
placement scheme, where its caching decisions are updated
until a steady state is reached. We assume zero transcoding
cost/delay for Transcode to highlight the upper bound per-
formance of transcoding at the network edge. In addition,
we evaluate Cache Everything Everywhere (CE2) with Least
Frequently Used (LFU) replacement. Although CE2 is not
designed specifically for adaptive streaming, it is a widely
used benchmark for ubiquitous caching. LFU caters to content
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Fig. 4. ‘Last-mile’ bandwidth fluctuation pattern

popularity and outperforms LRU. We also test a variation of
CE2 where only edge nodes are allocated cache capacity, along
with LFU for content replacement. We name this approach as
EdgeOnly to represent generic edge caching. All results are
presented at a 95% confidence level.

A random topology is generated by BRITE [20] to mimic a
realistic streaming scenario [21]. In this topology, we carefully
chose a video producer such that the hop distance between
any consumer and the producer ranges from 3 to 6. This
variation on hop distance would cause different video access
delay by consumers. We choose in-network link capacity at 20
Mbps, and the ‘last-mile’ link bandwidth varies by fluctuation
patterns as we detail in III-B. As a result, the highest bitrate
(8 Mbps) cannot be retrieved directly from the producer and
must be provided by caches. We choose this relatively small
link capacity to examine the performance that is enhanced by
caching policies.

B. Bandwidth Fluctuation Pattern

We investigate different bandwidth variation patterns on the
‘last-mile’ link between each consumer and their edge node,
to mimic wired and wireless networks. Three patterns were
discovered in studies on real measurements for mobile users
[22], in addition to a stationary pattern for benchmarking. Thus,
we adopted four variation patterns are evaluated as shown in
Fig. 4. Throughout our experiments, we discovered that the
variations in performance of caching schemes under Patterns
C and D were not statistically significant. We thus opted to
present results under Pattern A, 8 and C only.

C. Cache Hit Ratio

Cache hit ratio is a standard metric to evaluate the perfor-
mance of caching schemes. As shown in Fig. 5, we observe
even the baseline CE2 with LFU outperforms Transcode,
because of high cache redundancy caused by edge caching. This
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Fig. 5. Cache hit ratio under bandwidth pattern A

relationship remains the same no matter the bandwidth fluctu-
ation pattern, cache capacity or content popularity skewness.
However, our following observations on QoE contradict the
current result, where Transcode outperforms CE2 across almost
every QoE metric that we examined. As the effectiveness of
caching for video streaming must be verified by consumers’
QoE, QoE metrics are thus more direct indicator of system
performance. Cache hit ratio itself, as a conventional cache
metric, has critical flaws when measuring schemes particularly
for video streaming. As cache hit ratio cannot distinguish
‘where’ this hit occurs, cache hits at the edge or within
the network can cause significantly different video throughput
that alters the behaviour of consumer-side bitrate adaptation,
impacting users’ QoE.

D. QoE Metrics

DASH industry forum has published a standard set of QoE
metrics [23]. In our experiments, we selectively adopt three
metrics from the standard set, Average Video Bitrate, Rebuffer
Percentage and Bitrate Switch Count. Other metrics, such as
Rebuffer Count or Bitrate Switch Rate are also evaluated but not
reported, since they either share a similar trend with presented
metric or the performance difference (caused by caching) is
insignificant.

1) Average Video Bitrate: This metric represents the average
video quality that consumers request among all video sessions.
Results are grouped by bandwidth fluctuation pattern, and in
each group we present the performance across cache capacity
and content popularity skewness. As shown in Fig. 6a, transcod-
ing at the network edge has no advantage over ubiquitous
caching with constant bandwidth at the ‘last-mile’ link (pattern
A). The video quality difference between CE2 and Transcode
was statistically insignificant. Instead, RippleFinder delivers
the highest quality to consumers, which reinforces bitrate-
aware caching as the superior paradigm under pattern A. The
reason for this is the case is that Transcode only maximizes its
utilization of cached content when it assumes that ° requests
to all bitrates are equally likely’. However, a constant link
capacity fails to provide enough bandwidth fluctuation, and
video throughput variations are mainly caused by in-network
traffic congestion. Thus, this assumption is not always satisfied
across all video segments, which diminishes the performance
of Transcode.

Fig. 6b presents delivered video quality when there is in-
termittent connection failure. The performance trend is similar
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Fig. 6. Average Video Bitrate across cache size and popularity skewness.

to pattern A. Transcode still suffers from the fact that not all
bitrates are frequently requested for each segment as requests
for lower quality content are dominating under this pattern 5.
Besides, it is noticeable that at low capacity (or low popularity
skewness), EdgeOnly delivers even higher video quality than
Transcode. This means online transcoding (even with zero
processing delay) brings no benefits to system performance. It
is because Transcode requires caching only the highest quality
no matter what are the frequently requested bitrates. When
requests for low quality content are dominating, Transcode
forces edge caches to store the highest quality segments, which
not only consume more caching space than needed (for lower
quality content) but also reduce the amount of video content
that can be served by the cache.

Transcode presents superior performance mainly under pat-
tern C as shown in Fig. 6¢. This is due to bandwidth fluctuation
between 4 Mbps and 20 Mbps creating more chances for
all encoding bitrates to be frequently requested, which boosts
the performance of Transcode. At large cache volume, this
enhancement by Transcode is significant since large caching
space gains more advantage from the efficient cache utilization
of Transcode that allows to cache only the highest quality video
segment.

2) Rebuffer Percentage: This metric is defined as the time
spent in a video freezing state over the active time of a video
session. It is noticeable that EdgeOnly causes a higher chance of
video freezing than ubiquitous caching scheme CE2. Intuitively,
as a representative of edge caching, EdgeOnly would satisfy
requests closer to the consumer, which should lead to less video
access delay than CE2. This counter-intuitive result is affected
by consumer-side bitrate adaptation. Cache hits on edge caches
have a higher chance than in-network caches to trigger a video
quality upgrade. However, this upgrade is harmful once high
quality content is not sustainable. The follow-up cache misses
would require consumers to retrieve content directly from the
producer, which results in a even longer access delay and a

higher chance of video stalling.

In contrast, Transcode performs better than EdgeOnly, since
it can satisfy video requests for any version of the content,
with a constant cost of caching space (by storing only the
highest version). RippleFinder achieves less video freezing than
Transcode under constant link capacity as shown in Fig. 7a.
Transcode re-gains its advantage under fluctuated link capacity
in Fig. 7c. Under an intermittent network connection, all tested
schemes suffer from significant video stream stalls (although
Transcode may perform slightly better). The impact of caches
on video stalling is thus negligible under pattern 5.

3) Bitrate Switch Count: This metric is defined as the
number of times the requested video bitrate changed during a
video session. It is evident that EdgeOnly causes more bitrate
oscillations than Transcode, which indicates that the edge
caching paradigm alone is not the key contributor to smooth
video playback. We suspect our assumption of zero transcoding
delay is the main reason for such performance, as the same
video throughput is guaranteed across all versions of popular
video content. Thus, a higher degree of bitrate oscillation is
expected when Transcode is applied under a realistic setting
that factors in the inevitable processing delay, which varies as
the highest quality version is transcoded to different bitrates.
In addition, RippleFinder can still achieve a similar Bitrate
Switch Count as Transcode under bandwidth pattern ‘A and
C. As shown in Fig. 8a, RippleFinder even matches the upper
bound performance of Transcode at high popularity skewness
(e.g., at @ = 1.2 or 1.4). This result highlights the potential of
bitrate-aware ubiquitous caching schemes in controlling bitrate
oscillations.

IV. INSIGHTS ON UBIQUITOUS CACHING VS
EDGE-TRANSCODING

Throughout our experiments, we discover that neither
transcoding nor bitrate-aware caching present blanket solutions
across all bandwidth fluctuation patterns. When consumers are
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dedicated to a fixed bandwidth or connect via a wired link,
bitrate-aware caching is better suited to facilitate streaming
services. RippleFinder outperforms even the upper bound per-
formance of transcoding with regards to video quality and
playback freezing, while almost matching Transcode in bitrate
oscillation.

However, when consumers are connecting via mobile de-
vices, transcoding has a great potential in overall QoE improve-
ment. In reality, as the processing delay of transcoding exists
and varies by case, it is necessary to evaluate against best-
known bitrate-aware caching schemes to validate this advantage

We also noticed the performance of Transcode diminishes
at low cache capacity or low popularity skewness. Edge
caching would cause a higher degree of cache redundancy

and the online-transcoding assumption may not hold in many
scenarios. Both of these factors undermine cache utilization,
which impacts performance when the available cache capacity
is limited. We thus emphasize the edge of transcoding based
approaches when high cache capacities are guaranteed, coupled
with minimal-contention on caching resources. Same reason
applies to high popularity skewness, where few video content
is popular and competes for cache.

In designing caching models, it is important to take into
consideration the impact of transcoding on computing and
networking resources. That is, simply assuming that edge nodes
are computationally more equipped than core routers, does
not warrant an assumption of superior performance that could
handle both computationally-intensive transcoding along with
edge computing requirements.
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As we previously mentioned, transcoding also carries a
significant storage and communication cost, which should be
factored into the design. In addition, even if edge nodes have
significant caching capacity, the notion that they can equate to
the caching capacity found in ubiquitous caching models is not
always true. Thus, relying on edge caching alone inherently
sacrifices potential space that could benefit more content.

V. CONCLUSIONS AND FUTURE WORK

In this work, we addressed the seldom investigated com-
parison between the impact of transcoding and bitrate-aware
caching on consumers’ QoE. We conducted extensive experi-
ments to examine their performance across various bandwidth
patterns, cache capacity, and popularity skewness measures.
Our experiments demonstrated that conventional metrics, such
as cache hit ratio, are not ideal indicators of video-related
system performance, as they often contradict QoE performance
benchmarks. We thus adopted industry-leading benchmarks in
quantifying QoE, and accordingly contrasted the performance
of both paradigms.

Even under the assumption of zero transcoding delay, we
discovered that bitrate-aware caching can often match or even
outperform the upper bound performance of transcoding. Based
on our observations, bitrate-aware caching is more suitable to
serve consumers with fixed and dedicated link capacity when
cache resources are constrained. Online transcoding is more
suitable to serve mobile consumers when there is a significant
amount of caching space and computational power at the edge,
in excess to the operational needs of the omnipresent edge
computing architecture.

One of the important future directions in this quest to
evaluate different caching models, is investigating user-centric
video request patterns in edge networks. We are in need of
more representative models for video behaviour in mobile
environments that capture video viewing activity, along with
inherited assumptions on omnipresent edge capabilities. Evi-
dently, the co-existence of transcoding functionalities with other
edge tasks is a problem that requires further investigation. This
is especially important when edge computing architectures are
tasked with significant offloading and migration requirements,
which may hinder their responsiveness to time-sensitive video
traffic management.

One of the other challenges that should be addressed is the
evident impact of Edge caching on video stalling, especially
under varying user request patterns. It is imperative to inves-
tigate the impact of consumer-side bitrate adaption on overall
video delivery, especially when frequent cache-misses occur.
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