
SOCA (2016) 10:55–70
DOI 10.1007/s11761-014-0164-8

ORIGINAL RESEARCH PAPER

Personal mobile services

Khalid Elgazzar · Patrick Martin ·
Hossam S. Hassanein

Received: 11 October 2013 / Revised: 18 August 2014 / Accepted: 19 August 2014 / Published online: 17 September 2014
© Springer-Verlag London 2014

Abstract Ubiquitous information access through mobile
devices has become a typical practice in everyday life. The
mobile service paradigm shifts the role of mobile devices
from consumers to providers, opening up new opportuni-
ties for a multitude of collaborative services and applica-
tions ranging from sharing personal information to collab-
orative participatory sensing. Although many basic princi-
ples of the standard Web service approach continue to apply,
the inherent constraints of mobile devices and broadband
wireless access render the deployment of the standard archi-
tecture in mobile environments inefficient. This paper intro-
duced personal services, a user-centric paradigm that enables
service-oriented interactions among mobile devices that are
controlled via user-specified authorization policies. Personal
services exploit the user’s contact list (ranging from phone-
book to social lists) in order to publish and discoverWeb ser-
vices while placing users in full control of their own personal
data and privacy. Experimental validation demonstrates the
ability of personal services to foster a new generation of col-
laborative mobile services. Performance evaluation results
show that the publication and discovery through contact lists
are efficient and that service announcements and discovery
requests can reach a huge number of users in a few seconds.
Results also support a conclusion that resources-constrained
devices can collaborate to carry out functionalities beyond
the ability of their resources limitations.

K. Elgazzar (B) · P. Martin · H. S. Hassanein
School of Computing, Queen’s University, Kingston, Canada
e-mail: elgazzar@cs.queensu.ca

P. Martin
e-mail: martin@cs.queensu.ca

H. S. Hassanein
e-mail: hossam@cs.queensu.ca

Keywords Mobile services · Mobile devices ·
Personal services · Service oriented

1 Introduction

Mobile service provisioning is intended to serve interoper-
able functionality from mobile devices over the network.
Although many basic principles of the standard Web ser-
vice architecture continue to apply, the intrinsic limitations
of both mobile devices and wireless networks render the
deployment of such architectures inefficient. For instance,
resource constraints of mobile devices limit the options of
applying advanced service discovery mechanisms (such as
semantic approaches), and the intermittent connectivity of
wireless networks poses challenges for synchronous ser-
vice communications. Current mobile service provisioning
architectures are borrowed from traditional approaches that
were designed for fixed networks and resource-rich com-
puting infrastructures. Several adaptations have been added
to these architectures to accommodate the characteristics of
dynamic mobile environments; however, these adaptations
were unable to satisfy the requirements of efficient mobile
service delivery.

Mobile devices have access to a variety of contextual infor-
mation through a wide range of embedded sensors. Mobile
devices also are typically associated with users who have
personal information that they might be interested in shar-
ing with family members, close friends or business partners.
Users maintain a variety of contact lists ranging from phone-
books and mailing lists to social circles. The mobile service
approach offers userswhowish to share personal information
with privacy preservation or want to participate in offering
public information such as crowdsourcing the opportunity to
do so. As such, mobile service architectures do not need to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-014-0164-8&domain=pdf

56 SOCA (2016) 10:55–70

be constrained to traditional service architectures.Newarchi-
tectures need to be developed to take advantage of the unique
features of mobile environments while accommodating their
various constraints.

The privacy and security of personal information have
been deemed, until recently, at the lowest priority of busi-
nesses [1]. Lately, however, personal data and privacy preser-
vation have become a global concern. The user-centric
nature of personal services means that privacy is a key
issue. The paradigm enables each user to play a pivotal role
in controlling their privacy and their personal data com-
munications. For example, personal service providers may
expose reports derived from raw data in contrast to allow-
ing access to the data itself. In addition, providers may
allow access to their personal information based on differ-
ent levels of access privileges. A user may categorize cer-
tain kinds of personal data as private and restrict access
to this data to close friends and family members. At the
same time, other kinds of data may be classified as pub-
lic and made accessible to business partners or the general
public.

This paper presents a reference architecture for personal
services that enables user-centric personal data sharing and
crowdsensing services, while preserving the provider’s pri-
vacy. Personal services may be offered for a set of con-
sumers that are explicitly authorized by the user providing
the service (e.g., healthcare and behavior monitoring) or for
public access such as community sensing (e.g., environment
and transportation monitoring). In this architecture, mobile
devices act as service providers, bringing together the con-
venience of mobile devices, the benefits of real-time access
to a wide variety of contextual information. The architecture
takes advantage of the provider’s contact lists to announce
and discover services.

Personal services open up opportunities for users who
wish to share personal information and functionalities, yet
maintain full control over their personal data. Such ser-
vices capitalize on the ability of mobile devices to access
a wide range of context information in real time. Poten-
tial domains include location-based mobile sensing appli-
cations (e.g., environmental and traffic monitoring, weather
forecasting, air quality, noise level, etc.), personal health-
care monitoring, cooperative mobile learning, and per-
sonal social networking. For example, personalized group
tweeting is an interesting application, where a clique of
users can construct a personal distributed mobile tweet-
ing circle. Users maintain their own tweets locally and
share with subscribed users (from their contact lists). Users
collaborate to disseminate and search for tweets. More
detailed descriptions about potential applications can be
found in [2]. To the best of our knowledge, no previ-
ous research has addressed personal services from this
perspective.

The contributions of this paper are summarized as follows.

– Presenting a user-centric architecture for providing per-
sonal services from mobile devices.

– Introducing the concept of cooperative service publishing
and discovery for resource-constrained environments.
The architecture takes advantage of the user’s contact
list to advertise and discover services.

– Demonstrating the feasibility and utility of personal ser-
vices through the development of a Smart contact List
Management (SLiM) system, inspired by the proposed
architecture.

– Conducting performance analysis of the proposed per-
sonal service architecture and determining the overhead
that personal services incur onmobile terminals, whether
as providers or collaborators that forward service com-
munications.

The remainder of this paper is organized as follows.
Section 2 outlines related work. Section 3 presents the defin-
ition, distinguishing characteristics, architecture, and design
of personal services. Section 4 highlights the access con-
trol scheme used to protect access to personal services.
Section 5 shows a functional prototype to demonstrate the
utility of personal services. Performance evaluation and over-
head analysis are discussed in Sect. 6. Lastly, Sect. 7 con-
cludes the paper and provides future directions.

2 Related work

The ability of mobile devices to access a wide range of
context information is mostly utilized to personalize service
delivery to mobile users [3]. However, this ability also opens
the doors to using mobile devices as a personal service pro-
visioning platform, offering access to both personal informa-
tion and public sensor data in real time. Personal services take
different forms, in all of which the user is the key architec-
tural component. Users carrying their mobile devices enable
opportunistic real-time service provisioning for public access
or for a specific group of common interest. In this section, we
review research efforts that involve mobile devices offering
data services.

Fednet [4] enables users to share personal resources and
services in a P2P fashion. In this approach, each user main-
tains his own personal network (PN) that may encompass
distributed personal devices and provide access to personal
resources through a single end point. These PNs belong-
ing to different users cooperate to provide access to per-
sonal services. Augusto et al. [5] use mobile devices as
a central authority to manage the user identity and autho-
rization. The authors present an Open Federated Environ-
ment for Leveraging Identity and Authorization (OFELIA)

123

SOCA (2016) 10:55–70 57

to provide user-centric identity management to control dis-
tributed personal data and services that can be run by different
providers.

Mobile sensing (or crowdsensing) is becoming a popu-
lar approach that offers personal-based or community-based
sensor data [6]. This paradigm capitalizes on the increas-
ing sensing capabilities of mobile devices and the growing
interest in mobile sensing services. Mobile devices are flex-
ible and programmable platforms that can efficiently offer
customized sensor data as opposed to deploying specialized
sensors of limited mobility and functionality. MetroSence
[7] is a research project at Dartmouth that contains multiple
projects aiming at leveraging smartphones to offer advanced
personal and public mobile sensing platforms. The project
addresses mobile sensing in terms of new applications, clas-
sification techniques, privacy approaches, and sensing para-
digms. MOSDEN [8] is a distributed mobile sensing frame-
work that enables smartphones to capture and share sensor
data. The platform enables collaborative processing of sen-
sor data and provides flexible opportunistic sensing services
for applications and users.

Remote health monitoring is another domain that uti-
lizesmobile devices as personal healthmonitoring platforms.
The typical setting is that mobile devices gather vital signs
through body sensors, perform pre-processing, and commu-
nicate this data to healthcare providers [9]. Mobile devices
may also be used as a proactive interface to connect patients
with their healthcare providers when certain vital signs
exceed pre-specified thresholds [10]. Lomotey and Deters
[11] present a cloud-assisted platform that enables mobile
devices to provide access to the patient’s medical record.
The framework implements medical records as web services
to facilitate interoperability with heterogeneous healthcare
systems. The authors also propose an abstract policy-based
access control scheme to maintain authorized access to med-
ical data records and enforce privacy restrictions.

Services that are provided frommobile devices entail com-
putation and energy consumption. Mobile users need incen-
tives that encourage them to participate by either providing
mobile services or offering proxy- and data-forwarding ser-
vices.Mizouni et al. [12] propose a businessmodel formobile
sensing as a service. This model presents a user identifica-
tion mechanism and charging scheme. However, this model
assumes that the mobile network provider takes responsibil-
ity for collecting and disseminating sensor data to interested
entities. Privacy breaches are another factor that discourages
mobile users from providing data services. Li et al. [13] pro-
pose two privacy-aware incentive schemes to promote user
participation in mobile sensing. These schemes allow users
to earn credits for sharing data, while ensuring that dishonest
users cannot abuse the system. This credit can be used toward
the user’s benefit as per personal preferences, such as trad-
ing for other services, paying for 3G services, or converted

to monetary value. Zhang et al. [14] propose three incentive
schemes to motivate users to contribute their resources in
participatory sensing services. These schemes are developed
based on online reverse auction.

Mobile social network is an emerging domain that utilizes
personal services to improve the user experience. This kind of
social communication is attractive due to the ability to link
people in certain locations together. For example, JAMPS
[15] is a social network platform that allows users to share
multimedia resources and messages on their mobile devices
when they are in close proximity. The platform stores shared
contents on mobile devices and enables access through soft-
ware agents. However, users must maintain their registra-
tion in a zone-specific container that manages active soft-
ware agents. CloudMoV [16] is a mobile social TV system
that enables users to interact while sharing videos. Each user
is represented by a surrogate on the cloud to synchronize
and maintain the view progress of the shared video. It also
stores the user’s friend list. Communication between users
are routed through surrogates. Greer and Ngo [17] developed
a custom Facebook App to help people prepare for emergen-
cies and receive support from family members and friends
during disasters and aftermath. The application enables users
to use their mobile devices to provide their location informa-
tion to first responders and communicate with friends during
emergency situations and disaster relief efforts.

The use of mobile devices to offer personal services is
on the rise, supported by growing public interest. However,
existing architectures for these services are domain specific,
providing limited or no access control to personal data. In
addition, such systems lack interoperability between hetero-
geneous platforms and possibly need further efforts to inte-
grate with similar systems or to be deployed on different
mobile platforms. Furthermore, none of the previous pro-
posals address how personal services are published so that
interested users are aware of them and know how to submit
access requests. In contrast, we present a reference archi-
tecture for developing personal services that offer global or
personal information access throughmobile devices.We also
present efficient publishing and discovery mechanisms that
are aware of the resource limitations of mobile devices, yet
announce and discover personal services in near-real time.

3 Personal services

3.1 Definition

Personal services are lightweight user-centric services hosted
on resource-constrained mobile devices. They offer personal
and contextual information to a limited subset of authorized
users, in a givenperiodof time, basedon auser-defined access
control policy.

123

58 SOCA (2016) 10:55–70

Formally, a personal service s exposes a set of methods
(Web resources) M to a list of users l ⊆ L , where L is the
user’s contact list, L = {c1, c2, . . . , cn}, n is the length of
L , ci is one of the user’s contacts, and 1 ≤ i ≤ n. Each
Web resource m j ∈ M has a set of access constraints Am j

set by the mobile user (provider) P . Each contact ci has a
set of credentials Rci . A contact ci is granted the appropriate

access privileges to a Web resource m j if Rci

satis f y→ Am j .

3.2 Distinguishing characteristics

Personal services are direct descendants of mobile Web ser-
vices [18], and as such, they share both the advantages
and constraints outlined in [19,20]. There are, however, the
following unique characteristics that give personal services
advantages over mobile Web services:

– Personal services are primarily offered to people in con-
tact list L , which implicitly indicates that these services
are accessed by a limited number of consumers. There-
fore, the resource constraints of mobile providers are less
likely to impact the quality of service provisioning.

– Thepersonal service paradigmplaces the service provider
at the core of the service communications. Thus, the
provider P manages access privileges of customers
according to how their credentials Rci satisfy the access
constraints Am j of a resource m j .

– The aim of personal services was to enable access to per-
sonal data. Such services are offered at a best EFFORT
level of service with no guarantee of continuous avail-
ability. As such, providers and consumersmay communi-
cate with each other whenever a reliable network connec-
tion is available. This avoids the major challenge stem-
ming from the intermittent connectivity that characterizes
wireless communications.

– The personal service paradigm takes advantage of the
provider’s contact list L to disseminate service announce-
ments and requests with minimal resource consumption
at the provider’s side. Mobile users cooperate, using
their own resources, to extend the reachability of ser-
vice providers to advertise their services and expand the
horizon for consumers to find better matches.

3.3 Personal service architecture

In this section, we present the architecture for personal
services, which is shown in Fig. 1. Personal services are
deployed onmobile devices, where an embedded lightweight
Web server exists to provide the essential functionalities of
HTTP-based service communications. The mobile device

Fig. 1 The architecture of personal services

user represents the service provider, and service consumers
are direct or indirect contacts of the provider. The service
provider advertises personal services to the members of
his/her contact list. The service advertisement determines
whether recipients are allowed to forward it further to their
local contact list. Similarly, the personal service discovery
procedure sends discovery requests to the members of the
requester’s contact list, after checking its own local directory.
The discovery procedure looks up the required service(s) in
the recipient’s local service directory first, if such a directory
exists, (step 1). If no match is found, the discovery procedure
forwards the request to people in the recipient’s contact list
(step 2), delegating the discovery task to them. Once a match
is found, interactions between the provider and the consumer
are performed over a direct link.

While the personal service architecture is optimally
designed for mobile devices, there is no barrier preventing
non-mobile based contacts from participating. The contact
list concept is generic and itmay integrate contacts frommul-
tiple sources (e.g., phonebook address, social circles, mailing
lists), through which the provider can reach a wide range of
customers.

3.4 Service directory

The standard Web service architecture uses a registry like
UDDI [21] to support service publication and discovery. The
personal service paradigm adopts a distributed service direc-

123

SOCA (2016) 10:55–70 59

tory approach, where each mobile device manages its own
offered services andmaintains references to services it knows
about. From this perspective, there are two categories of ser-
vices: local services and remote services. Local services are
hosted and provided by the local system, whereas remote
services are “active and running” services hosted on other
mobile devices. Maintaining a service directory is optional
for consumers or participants who collaborate to forward
service announcements or discovery requests. However, the
more service directories exist in an overlay network, the less
time a discovery request may take to find matching services.

Listing 1 The structure of the personal service Metadata profile fs

<?xml version="1.0" encoding="utf−8"?>
<WebService>
<contactID>id</contactID>
<contactEndPoint>HTTP−address</contactEndPoint>
<sID>sid</sID>
<publicationDepth>d</publicationDepth>
<t i t l e>t i t l e−s t r</ t i t l e>
<description>desc−s t r</ description>
<endPoint>HTTP−address</endPoint>
<TTL>time</TTL>

</WebService>

The service directory records Metadata about services,
which provides a summary description of the service func-
tionality and how consumers can reach the service resources.
Listing 1 shows the XML structure of the personal ser-
vice Metadata profile fs . The sID represents a unique ser-
vice ID, the publicationDepth determines how far the ser-
vice announcement can reach, the title is a string that holds
the service name and typically projects its core functional-
ity, the description is a plain text that explains the offered
functionality, and endPoint is the service base URI. The
title and description attributes are used by the discovery
process to match a user objective. Therefore, the name and
description should contain sufficient detail about the service
functionalities to permit successful service discovery. The
endPoint attribute is used to retrieve the service specifica-
tion details. The endPoint address is in the form of a Web
service resource with the following generic format: http://

www.device-URI/service-root/metaProfile. Although some
broadband network providers offer a fixed IP address for
mobile devices though which the device can be addressed,
we remark that Internet addressing is beyond the scope of this
thesis. Nevertheless, there is a number of research efforts on
how to get a personal Uniform Resource Identifier (URI) for
mobile devices, viz. RFC6116 [22], which proposes a trans-
lation of a telephone number into a URI using a special DNS
record type.

Table 1 shows the table structure for the personal ser-
vice directory. The status determines whether a service is
up and running or temporarily suspended. The contactEnd-
Point attribute identifies the base Internet address atwhich the
service provider can be reached. This attribute also sets the
URI address of two APIs: contactEndpoint/registry/publish
and contactEndPoint/registry/discover to register and look
up services, respectively. Table 2 shows a full list of inter-
faces that the service directory exposes to handle the basic
directory operations.

Each personal service announcement is associated with
a Time To Live (TTL) parameter. The TTL determines the
age of the announcement. Personal services must be re-
announced before their respective TTL expires to remain
valid. Providers define the TTL for each service. The ser-
vice directory removes services whose TTL is expired. The
personal service paradigm uses the TTL concept to control
the validity of the service announcement and maintain the
consistency of distributed service directories. Personal ser-
vice providers may temporarily suspend their services that
are likely to be re-offered in future.

To avoid temporal inconsistency of service directories,
nodes that rejoin from a disconnected state or switch ON
from anOFF statemust query service providerswhether their
services are still valid using the “status” method offered
by the directory manager. These nodes then must update
their local directory and contacts accordingly. If service
providers do not respond to the status query, their hosted
services are marked inactive until a new re-announcement is
received.

Table 1 The structure of the
personal service directory Column Type Description

contactID int (PK) A system generated reference to the provider (contact)
that services belong to

contactEndPoint String The provider’s base Internet address

sID int Service ID

title String Service title

description String Service description

endPoint String A reference to the service description file

TTL int Time to live

type int 0 = local, 1 = remote

status int 0 = active (default), 1 = inactive

123

http://www.device-URI/service-root/metaProfile
http://www.device-URI/service-root/metaProfile
http://www.contactEndpoint/registry/publish
http://www.contactEndPoint/registry/discover

60 SOCA (2016) 10:55–70

Table 2 The essential service directory functionalities

Functionality Return Purpose

add(contactID, sID, title, description, endPoint) int Adds a new service

delete(contactID, sID) int Deletes an existing service

get(contactID, sID) object Retrieves a service information

getall(contactID) object Gets all services belong to a provider

status(contactID, sID) int Queries the status of a service

search(capabilities[]) object Searches for services that match a list of capabilities

3.5 Personal service publication

Service discovery is a crucial component in a Web ser-
vice architecture, especially in heterogeneous mobile envi-
ronments. Failure to find the services relevant to a user’s
objective renders the Web service approach useless. Limited
resources on mobile devices present unique challenges for
service discovery [23]. The standard Web service discovery
approach has not been widely adopted [24] due to the limi-
tations and lack of robustness of the UDDI [23]. Therefore,
providers usually resort to other methods to publicize their
services, for example, on their own websites.

The personal service paradigm enables providers to selec-
tively advertise their services based on preauthorization. Fig-
ure 1 illustrates the publication procedure using contact lists.
Once a personal service is deployed on the mobile device,
the publication procedure registers it with the local direc-
tory and sends a message containing the Metadata profile of
the service to members of the contact list, if applicable. The
provider controls the parameter d, which represents the pub-
lication depth for a particular service. If d is set to “0”, the
service is only registered with the local directory. If d > 0,
the recipient of the announcement is allowed to forward it to
others. The depth controls how far a service announcement
can reach. Recipients of service announcements discard the
message if the service already exists in the local directory, to
avoid duplicate announcements coming frommultiple passes
(contacts), and add a new entry if the service is new. Service
providers are not allowed to republish an existing service
before its TTL expires to avoid possible denial of service
(DoS) attacks.

Algorithm 1 outlines the proposed publicationmechanism
for personal services. The publication process is distributed
and recursive in that providers can allow contacts to propa-
gate the publication of the service on their behalf using their
own resources. The publication depth d indicates how far the
service provider wants the advertisements to reach. The con-
tact list L is initially set to the providers’ contact list L(P)

or a subset of it l ⊂ L(P). A contact ci receives the service
advertisement, reduces d by 1 and republishes the service to
its local contact list Lci , excluding the direct source of the
message to avoid open loops that can occur if the source and

Algorithm 1: Personal service publication.
Input: service Metadata profile fs
Output: Boolean (0/1)

1 Function Publish(fs)
2 Parse fs
3 Set the provider P
4 Set the publication depth d
// check if service exists in the local

directory
5 if s exists in sdir then

// discard duplicate announcement
6 return 0
7 end
8 else
9 add s

// check if forwarding is allowed
10 if d > 0 then
11 d = d − 1
12 update d in fs

/* set L to local contact list,
excluding publishing peer */

13 source ← publishing_peer
14 L = Llocal/ source // or subset l ⊂ L

// delegate publication to contacts
15 foreach contact ci in L do

// distributed recursive call
16 Call Publish(fs) // at the contact side
17 end
18 end
19 return 1
20 end

the delegate are reciprocal contacts. The publication stops
when d reaches “0”.

3.6 Personal service discovery

Personal service discovery begins with a service request
(S R). The service request describes the required function-
alities that fulfill a particular user objective in plain text.
A simple feature extraction approach can be applied [25] to
identify the required functionalities (RF) from a user request
(S R) and to extract service capabilities (SC) from the service
description field description in the service Metadata pro-
file fs . The personal service paradigm uses keyword-based
matching to reduce the resource consumption of mobile

123

SOCA (2016) 10:55–70 61

Algorithm 2: Personal service discovery.
Input: Web service request SR, discovery depth d
Output: set of relevant Web services RelS

1 Function Search(SR,d)
2 extract functionalities RF from SR
// search local service directory first

3 foreach s in sdir do
4 extract capabilities SC from descriptions
5 rank=match(RF ,SC)
6 add s to RelS indexed by rank
7 end
8 if RelS is null then

// check if deep search is allowed
9 if d > 0 then

10 d = d − 1
// delegate discovery to contacts

11 source ← searching_peer
12 L = Llocal/ source
13 foreach contact ci in L do

// distributed recursive call
14 Call Search(SR, d) // at the contact side
15 end
16 end
17 end
18 return RelS

devices. Although semantic discovery approaches yield bet-
ter results, they are computationally intensive and negatively
impact the performance of resource-constrained environ-
ments. Generally, according to the potential applications of
personal services and their associated lifetime parameter, the
number of expected active services in one’s local directory is
not expected to be large. This means that a simple discovery
process that incurs low burden on local resources is effective.
However, in cases where the number of active services in the
local directory is large, offline clustering techniques [25]may
be used to limit the search in only a subset of services that is
relevant to the request.

The discovery procedure applies Algorithm 2 to find ser-
vices relevant to a discovery request bymatching the required
functionalities with capabilities offered by personal services.
The discovery algorithm is distributed and recursive, where
each node initiates its own instance on local resources once
it receives a discovery request. Relevant services (RelS) are
collected at the request originator and ranked according to
their similarity factor.

The “match” function applies the formula in Eq. 1 to
match the required functionalities with the offered capabili-
ties.

match(RF, SC) = M(r fi , sc j)

L RF
(1)

where r f ∈ RF and sc ∈ SC , M(r f, sc) is the number of
distinct matched pairs between request functionalities RF
and Web service capabilities SC , and L RF is the total num-
bers of extracted functionalities from request S R.

4 Service access control

Personal service providers need to control access to their
offered services. Access management schemes allow
providers to selectively assign access privileges to services
based on user credentials and provider-defined access poli-
cies. Therefore, interacting parties need to establish a certain
level of trust before serious interactions occur. Trust is con-
sidered a primary security mechanism to make access deci-
sions for digital contents [26,27]. During trust establishment,
providers may request to exchange information with the ser-
vice requester to make informed access decisions. However,
providers offering personal services need to take extra pre-
cautions when granting access to their sensitive personal data
due to the fact that such data could be cached for future
reuse without the owner’s consent. The personal service par-
adigm builds its access control mechanism based on the cen-
tralized access control scheme proposed by Machulak et al.
[28]. Although a sophisticated access control mechanism is
beyond the scope of this research, our proposed approach
provides the required fundamental functionality, aiming to
ensure that only users with the proper access privileges can
access service functionalities. However, our current access
control mechanism is not intended to limit service publica-
tion or discovery to only authorized users.

Figure 2 illustrates the architecture of the proposed access
control mechanism. Four entities interact together to estab-
lish control over access: a service provider (P), a mobile
device (H), an authentication manager (AM), and a user(U).
The user represents the service requester who is interested in
the offered services. The user could be a person, or an applica-
tion acting on its behalf. The service provider represents the
service owner who sets and administers access policies. The

Fig. 2 The architecture of the proposed access control mechanism

123

62 SOCA (2016) 10:55–70

mobile device offers the hosting environment to protected
services and enforces access control decisions. The authenti-
cationmanagermanages the access control and acts on behalf
of the service provider. It evaluates the incoming requests
against relevant access policies and makes access decisions
whether to grant or deny access to protected resources.

The AM could be provided by a third party (e.g., mobile
network providers) or hosted on the platform of the per-
sonal service provider, depending on the type of service, how
vulnerable it is to security attacks, and how capable is the
personal service provider to support security mechanisms.
Despite that there are lightweight security techniques that
can be applied on resource-constrained platforms, a trade-off
between performance and required level of security must be
made.Our design suggests that theAMcomponent is better to
be deployed on the network provider’s infrastructure for the
following reasons: (1) mobile network providers have their
own established security provisioning system; (2) commu-
nications with the personal service provider go through the
mobile network infrastructure; hence, the network provider
is a natural candidate to offer subscribers efficient security
services; (3) the computing infrastructure of the mobile net-
work provider is capable of offering better performance and
deploying advanced security techniques that can detect and
protect subscribers from malicious attacks.

4.1 Access control functionality

The access control scheme provides necessary functionality
to protect personal services from unauthorized access. To
gain access to protected services, the user needs to associate
the request with a valid access token. A request without a
valid access token results in a response with an unauthorized
access message. This response includes Meta information
about the AM such as its URL where the user may seek a
valid access token to the service of interest. In what follows,
we describe the basic functionalities offered by an AM.

4.1.1 Defining access control policies

The service providers define access policies for their offered
resources. Providers may use simple rules or sophisticated
policy structures to govern access to their online resources.
Policies could be generic or tightly coupled with services
[29]. Policies may require the user to reveal identity or verify
the possession of certain attributes. For example, physicians
who wish to access the health record of their patients either
submit their registration ID or are able to verify that they are
the patient’s healthcare provider. An access policy encom-
passes a set of rules and claims. A rule represents a category
of users and their associated access privileges, where a claim
represents an attribute or a property that an authorized user

Fig. 3 Typical interactions of a successful service request

must satisfy. The provider links services with related access
policies.

4.1.2 Requesting access tokens

Figure 3 illustrates the token acquisition procedure. Users
send access requests to personal services. Each request must
be associated with a relevant access token to the requested
service. If this token ismissing or invalid, the service host dis-
patches an access denial message with a URL referring to the
AM. The user communicates with the AM to obtain a valid
access token. The user registerswith theAMand provides the
necessary information or credentials. The AM evaluates the
user’s credentials against access polices and, if appropriate,
provides the user with a valid access token. This token could
be valid for only the current request, or for a certain period
of time t , defined by the service provider per service ses-
sion. The AM may require the user to submit further claims
before access is granted, such as adhering to certain terms
and conditions. The AMmay request the consent of the user
to collect and verify user credentials in real time.

4.1.3 Making access decisions

The AM makes access decisions by asserting the user’s cre-
dentials against access policies of the requested service.
It performs such evaluation using a simple access control
matching matrix or a policy engine that supports advanced
policy handling and composition mechanisms. According to
thematching results, theAMmaypermit access, deny access,
or verify users.

4.1.4 Enforcing access decisions

Users present access tokens when submitting service
requests. The service host (mobile device) verifies with the

123

SOCA (2016) 10:55–70 63

Table 3 Personal service exposing a patient’s eHealth record

Web Resource Description Access Policies

/serviceRoot/vitalSigns Fresh reading of vital signs (ECG, SPO2,
etc.)

(1) Dr. Barber, (2) Members of Queen’s
Family Health Team, (3) Paramedic

/serviceRoot/imagingReport/[list] Display imaging report by selecting form
available list

(1), (2), (4) General Hospital, (5) Imaging
Center, (6){Student of Queen’s Medical
School+ Claim_1 (I understand that this
information is confidential and made
available for educational purposes. I
hereby undertake not to disclose all or
part of it to any unauthorized person.)}

/serviceRoot/summarySatus A summary status about the current health
issues

(1), (2), (7) Wife, (8) Family memeber

/serviceRoot/onMedications List of current medications (1), (2), (3), (7)

/serviceRoot/prescriptions/[list] Display prescription items, show a list of
available prescriptions on a
chronological order

(1), (7), (9) myPharmacy

AM whether or not the access token is valid. The request is
granted or denied access based on the validation result.

4.2 Scenario

This scenario elaborates on the possible interactions between
different entities during a service access request. Adam
(provider) maintains his own eHealth record on his mobile
device (host). Adam offers variousWeb service methods that
provide access to his eHealth record with various details as
shown in Table 3. Adam protects such personal informa-
tion using an authentication manager running on his mobile
device. John (user) is a resident family physician work-
ing with the Queen’s Family Health Team, which provides
healthcare services to Adam. John sends a request to access
the latest status of Adam’s vital signs. John’s request is miss-
ing the appropriate access token, resulting in the following
access denial message: Access denied, please consult the AM
at http://www.adam-phone-domain-or-ip/am. John presents
to theAMapasswordwithwhich theAM is able to verify that
John belongs to the Queen’s Family Health Team. The AM
evaluates John’s credentials against the relevant access poli-
cies and provides a valid access token. John uses this token
to resubmit the unsuccessful service request. Adam’s mobile
device verifies the request with the AM and responds with
Adam’s current vital signs. Interactions between the various
entities communicating in this scenario are shown in Fig. 3.

5 SLiM: Smart contact List Management

We demonstrate the feasibility and usefulness of personal
services by implementing a SLiM service, a functional proto-
type that automates themanagement of personal contact lists.

This prototype shows mutual benefits for both mobile users
and their contacts. A user’s contact information is automat-
ically kept up-to-date, as long as the contacts are reachable
online. This saves users both time and effort from having to
manually maintain their contact information.

Figure 4 illustrates the architecture of SLiM. For illus-
trative purposes, we show a provider, Adam, who maintains
his own profile and contact information on his smartphone.
Adam grants his contacts access to his profile and allows
them to update their records with his current information. If
Adam’s friends offer a similar service, Adam also can update
his contact list. Adam authorizes John to search his contact
list for contact information of common friends.

Fig. 4 A high level overview of the SLiM scenario

123

http://www.adam-phone-domain-or-ip/am

64 SOCA (2016) 10:55–70

Table 4 Methods exposed by the personal service

Resource Relative resource address Purpose

Service Description /contactInfo/description Get the service description and specifications

Contact Info /contactInfo/details Get the complete contact info

Phone /contactInfo/details/ phone Get the phone portion of the user contact

Email /contactInfo/details/ email Get the email portion of the contact info

Search /contactInfo/search/ [contactName,depth] Search for contacts

5.1 Contact list

Each mobile device user maintains a contact list of friends,
family members, business partners, etc. A typical contact
record has two main categories of information: contact-
related information anduser-related information.The contact-
related category includes information about the contact per-
son (or entity), such as a name and photo, and how the contact
can be reached, such as a phone number, email, and address.
The user-related category describes the contact from the per-
spective of the mobile user based on personal preferences,
such as the group to which this person belongs, the user-
assigned ringtone for this person. Both categories are cur-
rently entered and maintained manually by phone users.

SLiM aims to automate the maintenance of the contact-
related information while allowing the contact person (to
whom this information belongs) full control of granting
access privileges, perhaps with fine-grained control levels.
This automatic management of contact information might
also open new opportunities to expand the contact informa-
tion with new entries or parameters that enable taking smart
actions. For example, adding time attributes to the phone
entry would indicate that the person desires to be reached
at that phone number only during the associated time slots.
Such a feature renders automatic contact list management
even more exciting.

5.2 Implementation details

A personal service, contactInfo, is developed using
the Python programming language in compliance with the
“RESTful” principals to provide the core functionalities of
SLiM. The choice of Python is motivated by the fact that
the standard Python library comes with a lightweight Web
server that can provide essential HTTP functionalities. The
Python-based REST Framework Web.py [30] is used to han-
dle the low-level details of Web service development such as
protocols, sockets, and process management.

The contactInfo is deployed on Adam’s Samsung
Galaxy II I9100 smartphone (Dual-core 1.2GHz Cortex-
A9, 1GB RAM). The phone runs a rooted Android 4.0.4
platform [31] and is connected to a WiFi network. Table 4
shows the basic methods and functionalities exposed by

contactInfo, pertaining to Adam’s contact details. Each
method represents a Web resource that can be accessed
through a unique identifier (URI) by authorized users. The
generic format of the resource identifier is http://www.root-
address/service-name/resource-name/[parameters].
Theroot-address isAdam’s phone IP address or domain
name (contactEndPoint), service-name is the given
name of the personal service, and the resource-name
refers to a specific service resource/functionality.

The current version of SLiM focuses on personal ser-
vice provisioning, excluding discovery aspects. However,
the search functionality that SLiM presents is very sim-
ilar to the process of personal service discovery. SLiM
uses the contact list attribute Internet call, which
is an existing entry in Android’s contact information ded-
icated to hold the contact SIP address for Internet call,
to hold the contactEndPoint. We envisage that the
contactEndPoint could be added as a dedicated entry
to the contact information in mainstream releases of future
mobile platforms.

SLiM sets the publication depth d to “1” to limit the ser-
vice announcement to the members of Adam’s contact list.
The publication procedure registers the service with Adam’s
local directory through theAPI http://www.172.1.6.36:8080/
registry/publish and informs all Adam’s contacts of the exis-
tence of contactInfo.

In our implementation, the Web service offers different
representations of the same service response, namely, XML,
JSON and HTML using mimerender [32], which is a
Python library for RESTful resource representation using
MIME Media-Types. We set the XML format as the default
representation when no HTTP “Accept” header is identified.
Therefore, when a Web service resource is called, an XML-
formatted response is dispatched to the HTTP request han-
dler’s result. Other formats (HTML, JSON) are created for
testing purposes such that the Web service can be invoked
via a mobile or a standard web browser (i.e., customer appli-
cation) and the response is dispatched in HTML format.

The service directory is implemented using SQLite [33],
which is the Android default Database engine. The built-in
package android.database handles general database
operations, while android.database.sqlite contains classes
specific to SQLite [33]. A user interface (UI) for SLiM

123

SOCA (2016) 10:55–70 65

Fig. 5 SLiM test case scenarios

is developed on an Android platform using the Android
SDK [34]. Members of the contact list are SliM contacts if
their contactEndPoint attribute is active (i.e., set with
a value), whether the contact is offering a personal service
or just taking advantage of receiving automatic updates from
contacts about changes in their information.

Figure 5b shows a screenshot of the UI, in which contacts
with a SLiM icon (to their right) are active participants. The
Android contacts API android.provider.Contacts
Contract [35] is used to handle basic contact operations,
insert, update, delete, and Query. When a new contact is to
be inserted, the underlyingAndroid system handles the inser-
tion and checks to see whether there is an existing contact
representing the same person (or entity). If a match is found,
then the system gets the contact’s CONTACT ID and adds
the new contact information. Otherwise, a new contact record
is created.

5.3 Prototype validation

We have carried out a number of experiments to validate
the operation of SLiM in order to ensure that it functions as
expected. In the first test scenario, Adam changes his con-
tact information (in particular, his phone number and email
address) on his smartphone. Adam sets access policies so
that family members are granted full access, while business
partners can access only public information, such as email
address. John, a caregiver, opens up his contact list and taps
the SLiM icon right after Adam’s name. Adam’s contact
information is automatically updated on John’s end, given
that John fulfills access requirements or has been preautho-
rized by Adam, as shown in Fig. 5c.

The second test case examines the operation of the search
function offered by SLiM. Adam exposes a functionality that

enables his contacts to search his contact list for friends
in common. John is looking for Mike’s contact informa-
tion. John sends Adam a Web service request to look up
Mike’s contact information. The service request has the
form http://www.172.1.6.36:8080/contactInfo/search/Mike,
1, where search is the method name, Mike is the search
term, and “1” is the search depth (d). The depth being set to
1 means that John does not authorize Adam to forward this
request any further. Utilizing the comma-separated approach
in passing parameters to the HTTP request is merely an
implementation issue.

Figure 5d shows the service response presenting the search
results obtained fromAdam’s contact list. The service request
is sent only to Adam. Our current implementation to the
search function presents the results with a contact name,
photo, city, and phone, if the person shares his/her informa-
tion. Otherwise, the system only presents the contact name
and conceals all other information. Each row of the presented
results is linked to the corresponding contactEndPoint
that the requester can use to retrieve the contact information.
When the requester clicks on the contact name, it sends a
service request to that person to retrieve the contact informa-
tion.

6 Performance analysis

This section studies the performance of personal services in
general. The publication and discovery algorithms are imple-
mented in Python. We run these experiments on two mobile
devices whose configurations are mentioned earlier, one rep-
resents Adam and the other represents John. The mobile sys-
tem consumes a power unit pc = 0.9W/s for computing and
pt = 1.3W/s for sending or receiving data over a wireless

123

66 SOCA (2016) 10:55–70

WiFi link. At each device, we generated a pool of contacts
containing 500 records. Each contact is a structure record that
contains basic contact information, such as name, phone,
email, and most importantly contactEndPoint, by
which the contact can be reached. We set the contactEnd-
Point parameter to point to a unique IP address; however, two
records register the real IP addresses of the two test devices.
This is set out to study the impact of the depthd onpublication
and discovery procedures. When a mobile device receives a
service announcement or a discovery request, it picks up a
random set of contacts ranging from 50 to 500 contacts to
create an ad hoc random contact list. This setup means that
whenever d > 0, the two devices keeps forwarding the cur-
rent request to each other until d = 0. Each device maintains
a local service directory containing 50 service entries. The
two devices communicate over aWiFi linkwith a Round Trip
Time (RTT) = 17ms and a data bandwidth B = 12.4 MB/S.
We run each experiment 10 times and take the average read-
ings of execution time, overall response time,CPUusage, and
length of contact lists. We remark that confidence intervals
are found to be negligible and hence are not reported.

6.1 Single-level publication

This experiment investigates the time that the publication
procedure takes to announce a service to local resources. The
provider first registers the service with the local directory,
which takes on average 225 ,ms to insert a new record into
the directory database. Then, the provider traverses through
the contact list and sends a message with the service(s)
announcement to each participating contact. This message
contains the service Metadata profile with an average length
of 1.5KB per service. Although we announce a single ser-
vice, the message may contain multiple service announce-
ments, say X, which would increase the size by X multiples.
Figure 6 shows the execution time of the publication proce-
dure on local mobile resources. The publication execution

0

500

1000

1500

2000

2500

3000

3500

4000

4500

50 100 150 200 250 300 350 400 450 500

P
u

b
lic

at
io

n
 E

xe
c.

 T
im

e
(m

s)

Length of Contact List

Depth(d)=1

Fig. 6 The execution time of the publication procedure on local
resources

time is dependent on the length of the contact list. The more
contacts in the list, the more time the publication procedure
takes to finish. However, such a time is<1.5 s for a list of 50
contacts. The procedure does not verify whether the contact
successfully received the announcement, which is left to the
underlying transport protocol. This explains why the pub-
lication local execution time is independent of the network
latency between communicating parties.

6.2 Multi level publication

This experiment evaluates the total execution time of multi
level service publication, beginning when a provider origi-
nates a service advertisement until all contacts at a certain
d level are informed. We measure the elapsed publication
time versus a varying depth 0 ≤ d ≤ 10. Whenever a device
receives a service advertisement, it picks up a random set
of contacts ranging from 50 to 500 contacts to create an ad
hoc random contact list, ensuring that at least one contact
referring to the other device is picked up. This setup means
that a device services a single request at a time. The mobile
device only registers the service into the local directory when
d = 0. When d > 0, it also forwards the announcement to
all participating contacts. Our setup of contacts makes the
two devices alternate searching at each level further of d and
processes only a single request at each round. To calculate
the number of informed contacts, we add up all contacts in
the contact tree whose root begins at the source of the ser-
vice announcement, assuming that contacts within the same
round (or d level) disseminate the announcement in parallel
using their own resources.

Figure 7 time, the earliest advertisement time, and the
number of informed contacts versus a varying number of
depth levels d. The elapsed time represents the overall accu-
mulated time until all contacts in a respective level are
informed. The earliest advertisement time represents the ear-

0

100

200

300

400

500

600

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

o

f
In

fo
rm

ed
 C

o
n

ta
ct

s
(X

10
00

)

A
ve

ra
g

e
P

u
b

lic
at

io
n

 T
im

e
(s

)

Depth Level (d)

Elapsed pub. Time

Earliest pub. time

306

Fig. 7 Total publication time versus a varying number of depth levels
d

123

SOCA (2016) 10:55–70 67

Table 5 Detailed results of personal service publication procedure

Deth (d) 0 1 2 3 4 5 6 7 8 9 10

Elap. Pub. time 0.23 3.51 6.325 8.82 11.915 14.69 17.275 19.43 22.055 24.96 28.095

Earliest Ad. time 0.23 0.46 0.695 0.93 1.165 1.4 1.635 1.87 2.105 2.34 2.575

Pub. time/level 0.19 3.29 2.815 2.495 3.095 2.775 2.585 2.155 2.625 2.905 3.135

Length of contact list 1 306 259 227 287 255 236 193 240 268 291

of informed contacts 1 307 79,561 138,354 203,503 276,688 336,868 382,416 428,736 493,056 571,044

Table 6 Detailed results of investigating the total discovery time

Deth (d) 0 1 2 3 4 5 6 7 8 9 10

Elap. Disc. time 2.5 5.91 10.68 15.8 20.8 25.59 30.83 35.94 41.44 46.65 51.72

Min. Resp. time 2.5 3.06 5.62 8.18 10.74 13.3 15.86 18.42 20.98 23.54 26.1

Exec. time/level 2.5 5.41 4.77 5.12 5 4.79 5.24 5.11 5.5 5.21 5.07

Length of contact list 1 286 222 257 245 224 269 256 295 266 252

of inspected contacts 1 287 63,779 120,833 183,798 238,678 298,934 367,798 443,318 521,788 588,820

liest time at which a contact from the respective level can
be informed. The total number of informed contacts indi-
cates the aggregated number of contacts that are informed by
the end of each level. A mobile device needs around 0.225s
to register an announcement into the local directory. In this
experiment, we send a separate announcement message for
each contact. It takes 3.51 s to serve a contact list of 300mem-
bers on average. It also takes around 28s to inform more
than half million participants in 10 levels. Despite the fact
that this number is not strictly accurate in practice, as we
assume a fixed length of contact list at each level and some
contacts might be duplicate, the numbers give a deep insight
about the significant number a request can reach as the depth
progresses further. Table 5 provides more details about this
experiment.

6.3 Multi level discovery

This experiment is similar to the previous one except that it
investigates the total discovery time and how many contacts
are searched with each level of depth allowed by d. The setup
is also the same. However, the random generation of con-
tact lists yields lists of different lengths. The mobile device
searches only the local directory when d = 0 and forwards
the discovery request when d > 0. At each level, participants
search in parallel their local directories. The service match-
making algorithm is keyword-based, matching the keywords
of the request with the keywords of service description.

Figure 8 shows the elapsed discovery time, the minimum
response time, and the number of inspected contacts versus
a varying number of depth levels d. The elapsed time rep-
resents the overall accumulated time until all contacts in a
respective level are inspected. The minimum response time

0

100

200

300

400

500

600

700

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

o

f
In

sp
ec

te
d

 C
o

n
ta

ct
s

(X
10

00
)

A
ve

ra
g

e
D

is
co

ve
ry

 T
im

e
(s

)

Depth Level (d)

Elapsed discovery time
Min. discovery time

286

Fig. 8 Total discovery time versus a varying number of depth levels d

represents the minimum time at which a response can be
received at each level, i.e., a match found at the first con-
tacted participant. The total number of inspected contacts
indicates the aggregated number of searched contacts by the
end of each level. The relative difference between the elapsed
time and the minimum response time represents the time
window in which a response can be received at each level.
We observe at the zero level (d = 0), where the requester
searches only the local directory of 50 entries in our case, the
overall discovery time is almost 2.5 s. Whereas at the first
level (d = 1), the requester investigates 286 contacts, each
searches its own local directory, within around 8s, noting that
the request travels from the requester to each contact in 17ms,
on average. We also observe that the number of inspected
contacts increases exponentially with each additional level.
For example, at level 5, the total number of searched contacts
exceeds 183,000. Table 6 shows the fine grain details of the
results of this experiment.

123

68 SOCA (2016) 10:55–70

6.4 Overhead on local resources

This experiment investigates the overhead that the personal
service functionalities incur on mobile nodes, whether for-
warding or processing requests. We record the CPU usage
and the overall execution time for both publication and dis-
covery, under a varying stress load, ranging from 1 to 200
simultaneous requests. We calculate the energy consumption
as a function of the execution time and data transfer as the
following:

E = T × pc + D

BW
× pt (2)

where E is the total energy consumption of a mobile node,
T is the total CPU time of the node, pc is the power consump-
tion unit of computation, pt is the power consumption unit of
data transfer, D is the total amount of data transfer, and BW
is the link bandwidth. In this experiment, we change the con-
tactEndPoint attribute for all contacts in our pool to point to
one of the two devices. Each device picks up contacts with a
contactEndPoint referring to the other device. This setup cre-
ates a synthesized load of concurrent requests, in this case
originating from the same source. Therefore, each device
receives multiple concurrent requests, whether for discovery
or advertisements.

Figure 9 shows the overall execution time for discovery
and publication requests versus a varying number of concur-
rent requests. We observe that publication is typically faster
than discovery. This difference is due to the matchmaking
process that each node performs against its local service
directory to fulfill the discovery request. This process in itself
is computational-intensive, especially if the search corpus is
large. We also observe that as the load increases, the rate at
which the discovery time increases is greater than the rate of
increase in publication time. The figure shows that the time to
handle 200 concurrent advertisement requests is almost 3.8

0

5

10

15

20

25

1 20 40 60 80 100 120 140 160 180 200

E
xe

cu
ti

o
n

 T
im

e
(s

)

No. of Concurrent Requests

Avg. Publication Exec. Time
Avg. Discovery Response Time

Fig. 9 Execution time for discovery and publication requests versus a
varying number of concurrent requests

times the time to process only one request, whereas it takes
around 4.7 times in a similar discovery scenario. It is worth
spending this time, if necessary, to communicate request to
more than 600,000 nodes.

Figure 10 shows the percentage of CPU usage versus a
varying load. The CPU usage in general is lower in publi-
cation in contrast to similar discovery scenarios. The extra
overhead again is attributed to searching the local directory
for services that match the current discovery request. The
experimental results reveal that a mobile device may dedi-
cate almost 40% and 17% of its CPU capacity to handle 200
concurrent discovery and advertisements requests, respec-
tively. While 17% CPU usage could be tolerable in the case
of publication, on a non-continuous basis, we believe that
mobile users may not be able to afford offering half of their
computational resources to process and forward discovery
requests on behalf of others.

Figure 11 illustrates the energy consumption profile of
the publication and discovery procedures of personal ser-
vices. The results reveal a major challenge for devices in
meeting the energy needs of this processing. Although the
energy consumption of serving discovery requests is higher

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 20 40 60 80 100 120 140 160 180 200

C
P

U
 U

sa
g

e
(%

)

No. of Concurrent Requests

CPU Usage - Publication
CPU Usage - Discovery

Fig. 10 CPU usage versus a varying load

0

5

10

15

20

25

1 20 40 60 80 100 120 140 160 180 200

E
n

er
g

y
C

o
n

su
m

p
ti

o
n

 (
W

at
t/

S
)

No. of Concurrent Requests

Energy Consumption - Publication
Energy consumption - Discovery

Fig. 11 Energy consumption profile of the publication and discovery
procedures

123

SOCA (2016) 10:55–70 69

than the requirements of similar publication requests, both
energy requirements are significantly high. This might drain
the mobile device battery very quickly, which may cause
a negative impact on other functionality. The core problem
stems from sendingmultiple messages with the same content
to a group of recipients on an individual basis. This means
that each contact receives a unicast message with the respec-
tive request. This problem could be approached by sending a
single message to a group of different recipients using mul-
ticasting techniques. However, this is a direction for future
research.

According to the overhead that personal services may
place on mobile nodes, users may configure certain thresh-
olds and constraints, based on which the system can make
participation decisions. For example,when resources are low,
users could opt-out from participation, or when the con-
sumption of certain resource exceeds a certain threshold, all
upcoming requests are rejected. We also anticipate that there
would be some sort of incentives or business models that
encourage users to participate in such collaborative comput-
ing paradigms. For example, users can be credited for their
participation with a point-collection system, managed by the
network provider. The more the user participates, the more
the user can collect points. The user may redeem these points
at any time to pay for his/her service or cash them in a mon-
etary value.

7 Conclusion

This paper introduces personal services, a user-centric Web
service architecture hosted on mobile devices. The personal
services architecture takes advantage of the provider’s con-
tact list to announce service existence and discovery requests.
Contact list members cooperate to disseminate service adver-
tisement and discovery requests, if needed, using their own
resources. The motivation of proposing such an architecture
is twofold: overcoming the barriers of mobile service provi-
sioning on resource-limitedmobile devices and placing users
at the core of controlling their personal data.

A prototype is developed to demonstrate the usability of
the personal service architecture, and to depict how different
tasks of personal service provisioning can be performed. The
implementation of the prototype does not cover all the pro-
posed aspects of the personal service architecture, but it pro-
vides some insights into the major functionality. The oppor-
tunities made possible by the development of such a proto-
type, and validation scenarios, have made mobile devices an
increasingly attractive platform for everyday life tasks. We
carried out extensive performance evaluation for the main
activities of the personal service paradigm as well as evalu-
ated the overhead it incurs on local resources of participat-
ing nodes. Experimental results show that requests can reach

a huge number of contacts within a relatively short time.
Experiments also show that the energy requirements of such
a paradigm could be discouraging for users with low battery
level.

We believe that the personal service paradigm lays the
foundation of a new service architecture for mobile devices
that will expand the horizon of mobile applications and their
domains. It enables users to share personal information,while
maintaining full control over privacy. This paradigm will
reshape the way many applications, such as social network-
ing and public participatory sensing, are currently offered.

We plan to extend the architecture to enable providers
to advertise services that are bound to a specific physical
location and consumers to discover services that are offered
within their close proximity.

References

1. Kirkham T, Winfield S, Ravet S, Kellomaki S (2011) A personal
data store for an internet of subjects. In: The international confer-
ence on information society (i-Society), pp 92–97

2. Elgazzar K (2013) Discovery, personalization and resource pro-
visioning of mobile services. PhD thesis, School of Computing,
Queen’s University, Kingston, ON K7L 2N8, August 2013

3. O’Sullivan M, Grigoras D (2013) The cloud personal assistant for
providing services to mobile clients. In: The IEEE 7th interna-
tional symposium on service oriented system engineering (SOSE),
pp 478–485

4. Ibrohimovna M, de Groot S (2009) Policy-based hybrid approach
to service provisioning in federations of personal networks. In:
Third international conference on mobile ubiquitous computing,
systems, services and technologies, pp 311–317

5. Augusto, AB, Correia M (2012) Ofelia a secure mobile attribute
aggregation infrastructure for user-centric identity management.
In: Proceedings of the IFIP international information security and
privacy conference, pp 61–74

6. Campbell A, Eisenman S, Lane N, Miluzzo E, Peterson R, Lu H,
Zheng X, Musolesi M, Fodor K, Ahn G-S (July 2008) The rise of
people-centric sensing. Internet Comput IEEE 12:12–21

7. MetroSence (2014) http://www.metrosense.cs.dartmouth.edu/.
Accessed 1 Mar 2014

8. Jayaraman P, Perera C, Georgakopoulos D, Zaslavsky A (2013)
Efficient opportunistic sensing using mobile collaborative plat-
formmosden. In: The 9th international conference on collaborative
computing: networking, applications and worksharing (Collabo-
ratecom), pp 77–86

9. KozlovszkyM,Bartalis L, Jokai B, Ferenczi J, Bogdanov P,Meixn-
erZ, Nemeth L, Karoczkai K (2013) Personal health monitoring
with android based mobile devices. In: The 36th international
convention on information communication technology electronics
microelectronics (MIPRO), pp 326–330

10. Elgazzar K, Aboelfotoh M, Martin P, Hassanein HS (2012) Ubiq-
uitous health monitoring using mobile web services. In: The 3rd
international conference on ambient systems, networks and tech-
nologies, August 2012

11. Lomotey, R, Deters R (2013) Using a cloud-centric middleware
to enable mobile hosting of web services: mhealth use case.
In: Personal and ubiquitous computing, pp 1–14

12. Mizouni, R, El Barachi M (2013) Mobile phone sensing as a ser-
vice: business model and use cases. In: The seventh international

123

http://www.metrosense.cs.dartmouth.edu/

70 SOCA (2016) 10:55–70

conference on next generation mobile apps, services and technolo-
gies (NGMAST), pp 116–121

13. Li Q, Cao G (2013) Providing privacy-aware incentives for mobile
sensing. In: 2013 IEEE international conference on pervasive com-
puting and communications (PerCom), pp 76–84

14. Zhang X, Yang Z, Zhou Z, Cai H, Chen L, Li X (2014) Free market
of crowdsourcing: incentive mechanism design for mobile sensing.
IEEE Trans Parallel Distrib Syst 99:1–11

15. Fortino G, Palau C (2012) An agent-based mobile social network.
In: The international conference onmultimedia computing and sys-
tems (ICMCS), pp 961–967

16. Wu Y, Zhang Z, Wu C, Li Z, Lau F (June 2013) Cloudmov: cloud-
based mobile social tv. IEEE Trans Multimed 15:821–832

17. Greer M, Ngo J (2012) Personal emergency preparedness plan
(pepp) facebook app: using cloud computing, mobile technology,
and social networking services to decompress traditional chan-
nels of communication during emergencies and disasters. In: The
IEEE ninth international conference on services computing (SCC),
pp 494–498

18. Srirama SN, Jarke M, Prinz W (2006) Mobile web service pro-
visioning. In: The international conference on internet and web
applications and services, pp 120–126

19. ElgazzarK,MartinP,HassaneinH (2011)A framework for efficient
web services provisioning in mobile environments. In: The 3rd
international conference on mobile computing, applications, and
services, Springer’s LNICST, October 2011

20. Mizouni R, Serhani M, Dssouli R, Benharref A, Taleb I (2011)
Performance evaluation of mobile web services. In: The 9th IEEE
European conference on web services, pp 184–191

21. Clement L, Hately A, von Riegen C, Rogers T (2004) Uddi ver-
sion 3.0.2, January 19 2004. http://www.uddi.org/pubs/uddi-v3.0.
2-20041019.htm. Accessed 9 July 2013

22. The E.164 to Uniform Resource Identifiers (URI) Dynamic
Delegation Discovery System (DDDS) Application (ENUM).
http://www.tools.ietf.org/html/rfc6116. Accessed 9 July 2013

23. Elgazzar K, Hassanein H, Martin P (2011) Effective web service
discovery in mobile environments. In: P2MNETS, the 36th IEEE
conference on local computer networks (LCN), pp 697–705

24. Legner C (2009) Is there a market for web services? In: Service-
oriented computing - ICSOC 2007 workshops, pp 29–42

25. Elgazzar K, Hassan AE, Martin P (2010) Clustering wsdl doc-
uments to bootstrap the discovery of web services. In: Proceed-
ings of the 2010 IEEE international conference on web services,
pp 147–154

26. Xu F, He J, Xu J, Zhang Y (2013) Toward trust-based pri-
vacy protection in consumer communication. Int J Secur Appl
7(3):85–98

27. Gao F, He J, Ma S (2012) Trust based privacy protection method
in pervasive computing. J Netw 7(2):322–328

28. MachulakMP, Maler EL, Catalano D, vanMoorsel A (2010) User-
managed access to web resources. In: Proceedings of the 6th ACM
workshop on digital identity management, pp 35–44

29. UMA Scenarios and Use Cases (2013) http://www.kantara
initiative.org/confluence/display/uma/UMA+Scenarios+and+Use
+Cases. Accessed 30 June 2013

30. Web Framework for Python (2013) http://www.webpy.org/.
Accessed 9 July 2013

31. Android 4.0 Platform (2013) http://www.android.com/about/
ice-cream-sandwich/. Accessed 9 July 2013

32. Mimerender PythonModule (2013) http://www.code.google.com/
p/mimerender/. Accessed 9 July 2013

33. Android SQLite (2013) http://www.developer.android.com/
reference/android/database/sqlite/package-summary.html.
Accessed 9 July 2013

34. The Android SDK (2013) http://www.developer.android.com/sdk/
index.html. Accessed 9 July 2013

35. Android: using the contacts API (2013) http://www.developer.
android.com/resources/articles/contacts.html. Accessed 9 July
2013

Khalid Elgazzar is a post-
doctoral research fellow in the
School of Computing at Queen’s
University. Dr. Elgazzar received
his PhD from Queen’s Univer-
sity in 2013. He has 8+ years of
industrial experience in software
design and development and 9+
years of experience in interdis-
ciplinary academic teaching and
research. His research interests
span the areas of cloud com-
puting, mobile and ubiquitous
computing, context-aware sys-
tems, mobile services and appli-
cations, and elastic network-
ing paradigms. Dr. Elgazzar has

received several recognitions and best paper awards at top international
conferences. He leads a team on novel ubiquitous cloud paradigms.

Patrick Martin is a profes-
sor at the School of Comput-
ing at Queen’s University. He
holds a BSc from the University
of Toronto, MSc from Queen’s
University and a PhD from the
University of Toronto. He joined
Queen’sUniversity in 1984.He is
also a visiting scientist in IBM’s
Centre forAdvancedStudies.His
research interests include data-
base system performance, web
services, autonomic computing
systems and cloud computing.

Hossam S. Hassanein is a lead-
ing authority in the areas of
broadband, wireless and mobile
networks architecture, protocols,
control and performance eval-
uation. His record spans more
than 400 publications in jour-
nals, conferences and book chap-
ters, in addition to numerous
keynotes and plenary talks in
flagship venues. Dr. Hassanein
has received several recogni-
tion and best papers awards at
top international conferences. He
is also the founder and direc-
tor of the Telecommunications

Research (TR) Lab at Queen’s University School of Computing, with
extensive international academic and industrial collaborations. Dr. Has-
sanein is a senior member of the IEEE and is a former chair of the IEEE
Communication Society Technical Committee on Ad hoc and Sensor
Networks (TC AHSN). Dr. Hassanein is an IEEE Communications
Society Distinguished Speaker (Distinguished Lecturer 2008-2010).

123

http://www.uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://www.uddi.org/pubs/uddi-v3.0.2-20041019.htm
http://www.tools.ietf.org/html/rfc6116
http://www.kantarainitiative.org/confluence/display/uma/UMA+Scenarios+and+Use+Cases
http://www.kantarainitiative.org/confluence/display/uma/UMA+Scenarios+and+Use+Cases
http://www.kantarainitiative.org/confluence/display/uma/UMA+Scenarios+and+Use+Cases
http://www.webpy.org/
http://www.android.com/about/ice-cream-sandwich/
http://www.android.com/about/ice-cream-sandwich/
http://www.code.google.com/p/mimerender/
http://www.code.google.com/p/mimerender/
http://www.developer.android.com/reference/android/database/sqlite/package-summary.html
http://www.developer.android.com/reference/android/database/sqlite/package-summary.html
http://www.developer.android.com/sdk/index.html
http://www.developer.android.com/sdk/index.html
http://www.developer.android.com/resources/articles/contacts.html
http://www.developer.android.com/resources/articles/contacts.html

	Personal mobile services
	Abstract
	1 Introduction
	2 Related work
	3 Personal services
	3.1 Definition
	3.2 Distinguishing characteristics
	3.3 Personal service architecture
	3.4 Service directory
	3.5 Personal service publication
	3.6 Personal service discovery

	4 Service access control
	4.1 Access control functionality
	4.1.1 Defining access control policies
	4.1.2 Requesting access tokens
	4.1.3 Making access decisions
	4.1.4 Enforcing access decisions

	4.2 Scenario

	5 SLiM: Smart contact List Management
	5.1 Contact list
	5.2 Implementation details
	5.3 Prototype validation

	6 Performance analysis
	6.1 Single-level publication
	6.2 Multi level publication
	6.3 Multi level discovery
	6.4 Overhead on local resources

	7 Conclusion
	References

