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Abstract—Leveraging task offloading in Vehicular Edge Com-
puting (VEC) via V2X can present unique and robust solutions
to the challenges associated with cooperative perception in
Autonomous Vehicles (AVs). However, making task offloading
decisions that account for the risk of communication failure due
to path loss, while adhering to the stringent QoS requirements of
cooperative perception has been mostly overlooked. In this paper,
we propose PLTO, a Path Loss-Aware Task Offloading scheme
that accounts for path loss for Line-of-Sight (LOS), Obstructed
LoS (OLoS), and Non-LoS (NLoS) propagation in vehicular
communications. We formulate the task offloading problem as
a 0-1 Integer Linear Program (0-1 ILP) that aims to minimize
the path loss and response delay, while sustaining a certain sat-
isfactory level of improved perception and situational awareness
demanded by users. We also propose PLTO-Heuristic (PLTO-
H), a scheme to solve the task offloading problem using the
MTHG heuristic. Extensive simulations show that PLTO yields
significant improvements of up to 17%, 10%, and 23% in terms of
packet delivery ratio, Received Signal Strength Indicator (RSSI),
and average response delay, respectively, compared to a baseline
task offloading scheme that does not consider communication
efficiency. In addition, PLTO-H achieves a near optimal solution,
with a small gap of up to 6%, 5% and 1.2% in terms of packet
delivery ratio, RSSI, and satisfaction ratio, respectively.

Index Terms—Autonomous Vehicles, Vehicular Edge Comput-
ing, Cooperative perception, Task Offloading, Path Loss.

I. INTRODUCTION

The wide proliferation of Autonomous Vehicles (AVs) is
expected to achieve over 800 billion annual social benefits
by 2025, since AVs can help improve road safety, reduce
congestion, and decrease energy consumption [1]. A core
function for the perception system of an AV is the accurate
representation of the driving environment [2], which neces-
sitates the reliance on multiple on-board sensors (LiDAR,
radar, and GPS, etc.) [2] [3]. However, inaccurate sensing of
the surrounding environment can result in tragic accidents,
as have been reported in recent incidents by Tesla [4] and
Uber [5]. The vehicle’s traffic perception can be improved
by aggregating the sensed data from other vehicles [6]. This
can be achieved by sharing sensor data among vehicles and
exploiting extraneous data from other vehicles to ameliorate
the detection capabilities of a single vehicle and enhance
traffic situational awareness [3]. This data aggregation benefits
a multitude of cooperative vehicular applications, such as
collaborative perception [7], collaborative maneuvering [8],
and traffic monitoring and route planning [9].

In cooperative vehicular applications, the surging need for
collaborative and real-time decision making imposes severe
demands on the on-board computing resources to meet the
stringent real-time requirements of such applications. Lever-
aging task offloading in Vehicular edge computing (VEC)
via Vehicle-to-everything (V2X) can bring the computing
service closer to vehicles and end-users, which can drastically
curtail the delay [10], and significantly reduce ineffective
transmissions [9].

The advantageous prospect of task offloading in VEC can
be hindered by the risk of propagation loss in vehicular
communications, which is triggered due to the impact of
other vehicles and buildings that act as physical obstructions.
Ignoring communication uncertainties (due to path loss, fading
and shadowing, packet collision, etc.) can lead to unrealistic
assumptions about the performance of cooperative systems
[11]. In [12], [13], it has been reported that shadow fading
due to Obstructed-Line-of-Sight (OLoS) communication of
about 10-20 dB can be induced from a single obstructing
vehicle, depending on its shape, size, and location. Moreover,
buildings acting as obstacles can induce additional path loss
due to Non-Line-of-Sight (NLoS) communication [14]. Man-
gel et al. [14] show that when two vehicles are approaching
an intersection with a speed of 50 km/h, only 30% of all
intersection corners provide LoS, while the rest incur NLoS
communication. However, accounting for the impact of the
different obstacles contributing to path loss, while satisfying
the strict requirements of cooperative perception in terms of
time and situational awareness, has been mostly overlooked
in task offloading in VEC, particularly in condensed urban
environments [15].

In this paper, we propose PLTO, a Path Loss-Aware Task
Offloading scheme that accounts for path loss due to LoS,
OLoS, and NLoS, while adhering to the stringent requirements
of the cooperative perception task. The main contributions of
this article can be summarized as follows: 1) We propose
PLTO which makes task offloading decisions that balance
between the time criticality of cooperative perception, the
underlying requirement of improved perception awareness, as
well as the risk of path loss in vehicular communications.
Towards that end, PLTO formulates the task offloading prob-
lem as a multi-objective 0-1 Integer Linear Program (0-1 ILP)
that jointly minimizes the response delay and the risk of
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communication failure due to path loss, while ensuring that the
benefit gained by users (i.e., the level of additional and non-
redundant perception acquired due to perception aggregation)
is no less than a certain satisfactory level demanded by users.
2) We propose PLTO-Heuristic (PLTO-H), a scheme that uses
the Martello and Toth’s heuristic (MTHG) heuristic to solve
the task offloading problem in a time-efficient manner to
overcome the known complexity of ILP problems. We use
PLTO as a baseline for the upper bound on the reachable
potential that PLTO-H can achieve. 3) Finally, we conduct
extensive evaluations and analysis to demonstrate the inherent
limitations and leverages of PLTO. We compare PLTO to a
baseline that does not account for communication loss, and we
highlight the importance of accounting for the various com-
munication losses when designing a cooperative perception
system in VEC.

The remainder of the paper is organized as follows. Section
II highlights important related work. Section III describes the
proposed schemes (PLTO and PLTO-H). Section IV discusses
the performance evaluation and simulation results. Section V
presents our conclusions and future directions.

II. RELATED WORK

Task offloading via V2X can be used to foster a broad range
of applications. Extending situational awareness through coop-
erative perception, with the focus of offloading computational
tasks to Roadside Units (RSUs) or moving vehicles that act
as mobile edge nodes through V2X has recently been studied
in multiple works [16]–[19].

Zhu et al. [16] study the task allocation of video appli-
cations (with different qualities) to vehicles or RSUs for
object detection. They propose a multiobjective scheme that
focuses on minimizing latency and quality loss. Krijestorac
et al. [17] propose a task offloading scheme that strives to
maximize the data transmission rate of vehicles to maximize
the number of tasks that can run on vehicles or RSUs. Kazmi
et al. [18] present a task offloading scheme that considers
the task’s deadline requirement, as well as the energy re-
striction of vehicles when acting as edge nodes. Zaki et al.
[19] introduce Cooperative Perception-based Task Offloading
(CPTO) as a scheme for cooperative perception using VEC.
CPTO aims to both minimize the latency of the task of
perception aggregation at the worker while maximizing the
level of cooperation between users to enhance the situational
awareness of vehicles. It should be noted that maximizing the
number of users sharing a worker, would increase the latency
of the task of perception aggregation running at this worker.
However, their work only considers enhancing the situational
awareness through maximizing the number of collaborating
users without accounting for perception redundancy that may
occur. In addition, optimizing the communication efficiency is
not considered in their study.

Lin et al. [20] employ a contextual Multi-armed Bandit
approach to minimize the total expected offloading energy
consumption, while satisfying stringent delay requirements.
They model the channel gain between users and workers due

to small-scale fading and path loss to consider the trans-
mission rate of both the uplink and downlink channels. In
addition, they utilize a simple metric reflecting the channel
state dynamics to train their Multi-armed Bandit scheme.
However, making path loss-aware task offloading decisions
and optimizing communication efficiency is overlooked in
these type of schemes. Moreover, the simulated vehicles in
their analysis move in a two lane freeway, thus NLoS path loss
is not considered. Zeng et al. [21] propose a QoS-aware task
offloading with the aim of enhancing the network resource
utilization, while adhering to the delay and energy require-
ments of users. Their work decomposes the task offloading
combinatorial problem into two subproblems. First, a resource
block group allocation scheme is proposed to get the effective
data transmission rate, then a task offloading scheme based on
game theory is employed to reach the best scheduling among
multiple edge servers. The channel gain of the wireless channel
between users and workers is utilized to model the upper
limit of effective data transmission rate. However, the risk of
communication failure due to path loss is not considered in
the task offloading decision.

In addition to overlooking path loss in the task offloading
decision, most schemes also fail to reduce redundancy and
disregard the quality of perception. In this paper, we make
task offloading decisions that jointly minimize the response
delay of cooperative perception and the path loss triggered by
various obstacles in urban environments, while abiding by a
certain satisfactory level of perception demanded by users to
ensure that the gained level of additional and non-redundant
perception exceeds a certain customized threshold.

III. PATH LOSS-AWARE TASK OFFLOADING (PLTO)

In this section, we provide a detailed description of the
the system model, the ILP optimization problem presented in
PLTO, and the heuristic utilized in PLTO-H.

A. System Model

Consider a set of users U = {u1, u2,..., un} that are
identified as vehicles moving in an urban intersection, and
a set of workers W = {w1, w2, ...wm} that can execute the
cooperative perception tasks offloaded by users. Note that a
worker can either be a static RSU or a moving vehicle. Each
user ui ∈ U subscribes to the service by periodically sending
its current location and perception area to the orchestrator.
The latter is a centralized entity that is responsible for making
the task offloading decision. The orchestrator solicits the
computational resources of moving vehicles acting as workers
in exchange for some incentives. Once the task offloading
decision is made, the orchestrator sends the resulting user-
worker association to all users. Each user ui ∈ U then sends
its cooperative perception task to the designated worker wj .

The perception task of ui is denoted Ψi = {qi, λi} ,
where qi is the computation workload or intensity (in CPU
cycles/bit), and λi constitutes the size of the perception frame
(in bits). Note that cooperative perception, and thus task
offloading, is performed periodically over a certain number
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Ego

v1 v2

Fig. 1: Triangular rasterization of the ego-vehicle’s perception
to the projection matrix. Detected awareness is the percentage
of the matrix covered by the aggregation of the ego’s percep-
tion (green) and the perception of the collaborating vehicles
(v1 and v2 in gray).

of time steps τ (i.e., rounds of operation). In order to improve
the task offloading decision in a given round, we determine
the total non-redundant area of perception, denoted aij , gained
by each user ui due to perception aggregation performed by
worker wj . Towards that end, the perception of each user ui
is rasterized, as shown in Figure 1, to a perception projection
matrix denoted M, which represents the covered area of a
specific perception range around each ego vehicle.

The non-redundant perception area of ui, aij , is defined
as the percentage of the covered area by the sensors of user
ui (ego vehicle) and the aggregated result of its association
with worker wj (i.e., the percentage of the area that the green
and gray cells constitute in Figure 1). In order to determine
aij , we project the triangular coverage area of a vehicle’s
sensor to the projection matrix M , and then apply triangular
rasterization. Each intersecting cell of the matrix with the
triangular coverage area is assigned 1, while the remaining
cells are assigned 0. More specifically, the associated worker
wj receives different perceptions from multiple users, where
it performs the aggregation task. It then sends the output back
to the associated users, hence extending their perception.

Each worker wj ∈ W has a maximum CPU frequency,
denoted Cj (in CPU cycles/sec). The CPU frequency of
worker wj is divided equally among all the perception tasks
offloaded to it. The number of offloaded tasks to worker wj

is the number of vehicles currently using this worker (i.e.,
cooperating together), and is denoted as perception intensity
ηj . The distance between user ui and worker wj is denoted
dij , and the propagation speed is denoted v. The data rate of
the transmission link is denoted Rij .

An association range, denoted ξ is used to limit the selection
of workers to only the ones found in proximity to the ego-
vehicle. This association range is selected to be lower than
the communication range of DSRC [22], which is the com-
munication technology utilized throughout our experiments. If
a user moves outside the association range, it needs to offload
to a closer worker.

The total response delay of the perception aggregation task
of user ui on worker wj is denoted tij , and is given by Eq.

1. It is composed of the computation latency αij , propagation
latency βij , and the transmission latency γij .

tij = αij + βij + γij (1)

The computation latency αij , as given by Eq. 2, is the
time it takes worker wj to run the perception aggregation
task of user ui. Note that the computation latency is affected
by the ηj (i.e., the number of users currently sharing the
same worker). As the number of users increases, the worker’s
computational capability decreases, and thus the computation
latency increases.

αij =
qiλi
Cj

ηj

(2)

The propagation latency βij , given by Eq. 3, is the time it
takes the perception task to propagate from user ui to worker
wj .

βij =
dij
v

(3)

The transmission latency γij , given by Eq. 4, is the time it
takes to push the entire perception frame on the transmission
link between user ui to worker wj . The associated delay of
the result of task offloading is so small that it can be neglected
[17].

γij =
λi
Rij

(4)

PLTO minimizes the response delay tij by maximizing the
latency difference gij , which acts as the utility gain from
offloading the task of user ui to worker wb instead of the
current worker wa, as given by Eq. 5.

gij = tia − tib (5)

B. Communication Loss Model

The communication loss in vehicular communications be-
tween a sender ui and a receiver wj can be defined as given by
Eq. 6 [15], where sij is the received power at worker wj , Pti
is the transmission power of user ui , and L(LoS/OLoS/NLoS)ij
is the path loss component resulting from various fading and
shadowing effects due to obstacles in an urban environment.

sij = Pti − L(LoS/OLoS/NLoS)ij
(6)

In this work, we consider the path loss component to be
categorized into three categorizes; LoS when there is a direct
uninterrupted line of sight between the user and the worker,
OLoS due to signals getting obstructed by vehicles, and NLoS
due to scattering and reflection from buildings at intersections.
If sij drops beyond a specific threshold (receiver antenna
sensitivity), the packet is assumed to be dropped.

For both LoS and OLoS, we consider empirical shadow
fading models built for vehicular scenarios [13]. Such models
take a dual-slope form, where the slope of the path loss
changes after a break-point distance db, which is defined by the
height of both the antennas of the receiver and the transmitter
[13]. The path loss for LoS and OLoS is shown in Eq. 7,
where L0 is the path loss at a reference distance d0, both n1
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and n2 are path loss exponents estimated by linear regression,
db denotes the break-point distance, and Xσ is the zero mean
Gaussian distributed random variable, with standard deviation
σ.

L(LoS/OLoS)ij
=


L0 + 10n1log10

dij
d0

+Xσ if d0 ≤ dij ≤ db

L0 + 10n1log10
db
d0

+ 10n2log10
dij
db

+Xσ if db ≤ dij
(7)

On the other hand, NLoS path loss occurs when the line of
communication between user ui and worker wj is blocked by
a building at an intersection. The adopted path loss is shown
in Eq. 8 [14], [15], where di is the distance between the sender
ui to the center of the intersection, dj is the distance between
the receiver wj to the center of the intersection, wr is the
width of the street, dwi is the distance between a user and a
wall, and λ is the wavelength of DSRC signals. n3 is path loss
exponents estimated by linear regression and L0−NLoS is the
path loss at a reference distance.

LNLoSij =


L0−NLoS + 10n3log10

di
0.957

(dwiωr)
0.81

4πdj
λ

+Xσ if dj ≤ db

L0−NLoS + 10n3log10
di

0.957

(dwiωr)
0.81

4πdj
2

λdb
+Xσ if db ≤ dj

(8)
The values of the aforementioned model parameters are

adopted from the experimental studies conducted for urban/-
suburban environments for LoS/OLoS [13] and the studies
done for NLoS for urban intersections [14].

C. Problem Formulation

PLTO aims to jointly minimize the path loss and response
delay, thus enhancing the communication efficiency of the
system. It minimizes the response delay tij by maximizing
the latency difference gij (given by Eq. 5). To minimize the
path loss, PLTO defines a matrix, called the signal strength
matrix S. Each matrix entry ŝij ∈ S represents the score of the
average RSSI sij , where sij is the average RSSI transmitted
from user ui to worker wj , over a defined number of time
steps τs. A definition of the scoring function is provided later.

The matrix S is first initialized by a default value (i.e., cold
start). Then sij gets updated with the RSSI experienced by
the associated worker wj after each perception aggregation.
As given by Eq. 9, sij is averaged over a defined number
of time steps τs to better capture the traffic dynamics. A
scoring function is then applied to penalize high path loss,
and to reward low ones, as given by Eq. 10, where PrH and
PrL denote both the highest and the lowest power that can
be received, while ψL and ψH denote the values utilized by
the scoring function for rewarding and penalizing the different
RSSI values.

Finally, after τs time steps, the S matrix is reset again to
its default value. If the value of ŝij rendered by the associated
worker wj is less than a certain threshold S, offloading to
worker wj is considered inefficient.

sij =
sij
τs

(9)

ŝij = fscore(sij) =
((sij − PrL)× (ψH − ψL))

(PrH − PrL)
+ψL (10)

In addition to minimizing the communication loss and
response delay, PLTO strives to keep the benefit gained by
each user ui due to perception aggregation by worker wj

above a certain satisfactory level Ai. Note that this benefit
represents the total perception area gained by user ui due
to aggregation. Towards that end, PLTO defines matrix A,
in which aij ∈ A represents the average perception area of
user ui due to its association with worker wj . A perception
constraint denoted as Ai is defined by each user ui which
defines the minimum acceptable covered area received due to
the aggregation of perceptions at the associated worker wj .
If the received average perception aij falls below the user’s
satisfactory level Ai, offloading is considered ineffective. At
the beginning, the A matrix is first initialized by a default
value (i.e., cold start) to allow for the exploration phase. The
value of aij of the ego-vehicle ui then gets updated in each
time step to reflect the total perception area gained due to
perception aggregation by the associated worker wj . As given
by Eq. 11, such value is averaged over a defined number of
time steps τa to better capture traffic dynamics. Finally, after
τa time steps, the A matrix is reset again to its default value.

aij =
aij
τa

(11)

We formulate the task offloading problem as a 0-1 Integer
Linear program (0-1 ILP), where the binary decision variable
xij is set to 1 if user ui is assigned to worker wj , and 0
otherwise. The problem formulation is given by Eq. 12, where
the objectives given by Eq. (12a) and Eq. (12b) strive to
maximize the sum of the response delay difference gij and
the sum of ŝij (i.e., RSSI), respectively.

max
x

n∑
i=1

m∑
j=1

xijgij (12a)

max
x

n∑
i=1

m∑
j=1

xij ŝij (12b)

s.t. (xijaij) + ((1− xij)× 2Ai) ≥ Ai ∀j ∈ W ∀i ∈ U (12c)
n∑

i=0

xijdij ≤ ξj ∀j ∈ W (12d)

m∑
j=0

xij ≤ 1 ∀i ∈ U (12e)

xij ∈ {0, 1} ∀i ∈ U ∀j ∈ W (12f)

The objectives in Eq. (12a) and Eq. (12b) are subject to
the constraints (12c)-(12e). Constraint (12c) ensures that the
perception area gained by each user ui due to perception
aggregation by the associated worker wj is above the user’s
demanded satisfactory level Ai. Constraint (12d) ensures that
the distance between user ui and its associated worker wj
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Algorithm 1 : PLTO-H
Input: Workers (W), Users (U), Normalized Averaged

Signal Strength (S), Distance (D), Distance threshold (ξ)
Output: WorkerAssignments

1: WorkerAssignments = {}
2: cost = {}{}
3: resourceConsumption = {}
▷ Enforce constraints using masks

4: for u ∈ Users do
5: if
6: user exceeded association threshold OR
7: ineffective awarness OR
8: ineffective rssi offloading then
9: for w ∈ Workers do

10: if (duw < ξ) then
11: cost[u][w]← (guw/ϕ) ∗ ŝuw ∗ −1
12: else
13: cost[u][w]←∞
14: end if
15: end for
16: resourceConsumption[u]← 1
17: end if
18: end for

▷ MTHG algorithm
▷ Step1: Constructive search

19: Compute the desirability fuw metric of all the assignments
20: while node not assigned do
21: Find the worker w (chosenWorker) with the max-

imum difference between the largest and second largest
assignment desirability fuw (greatest regret) that can be
feasibly assigned

22: WorkerAssignments[u]← chosenWorker
23: end while

▷ Step2: Local search
24: for w ∈ Workers do
25: Cuw ← min(fuw)
26: if (Cuw < regret of assigning this worker) then
27: WorkerAssignments[u]← w
28: end if
29: end for

does not exceed the association range ξj . Constraint (12e)
guarantees that each user is served by at most one worker.
Constraint (12f) ensures that the binary decision variable xij
representing the association between each user ui and worker
wj is either set to 1 or 0.

PLTO can be viewed as a multi-objective 0-1 generalized
assignment problem, which has been shown to be NP-hard
[23]. Using optimization solvers to solve this type of problems
can be impractical, due to time-inefficiency. Prompted by that,
we propose the PLTO-H scheme to solve the problem in a
time-efficient manner using the MTHG heuristic. We present
PLTO-H in the next subsection.

D. PLTO-Heuristic (PLTO-H)

To solve the aforementioned problem, we employ the
MTHG heuristic [24] [25]. MTHG is an effective polynomial-
time heuristic capable of solving the Generalized Assignment
Problem (GAP) [24]. It is a combination of both constructive
and local search heuristics. It is a combination of both con-
structive and local search heuristics, and it has been shown to
render near optimal solutions [26].

As detailed in Algorithm 1, PLTO-H first considers users
who have either exceeded their association distances, or have
experienced ineffective offloading due to low RSSI or low
perception (Lines 5-8). PLTO-H then enforces the association
constraint, which stops the algorithm from choosing workers
that exceed the specified association distance ξ. This is done
by masking the assignment cost values that lie outside this
constraint by setting their values to infinity to prevent them
from being considered by the MTHG heuristic (Lines 9–14).
The assignment cost is set to the negative value of the product
of the delay gain and the score of the average RSSI. A scaling
down factor, denoted ϕ is applied on the delay parameter in
order for it to match the same scale of the score of the average
RSSI (line 11). Additionally, in order to ensure that each user
is allocated to only one worker, we set the resource node
utilization of each user to 1 so that each device can use at
most one node (Line 16).

The MTHG heuristic is applied after setting the constraints
of the optimization problem. In its first phase (Lines 19–23),
MTHG calculates fdn, which measures the desirability of
assigning the user u to a certain worker w (benefit) using
the previously defined cost matrix. By iteratively considering
all unassigned users, the scheme assigns each user ui to the
worker that has the maximum difference between the largest
and second largest fdn (regret). In the second phase (Lines
24–29), MTHG improves on the solution found in the first
phase through local search, by iteratively analyzing a subset
of the search space close to the found solution (within its
neighborhood).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PLTO
compared to the Cooperative Perception-based Task Offload-
ing (CPTO) scheme [19]. CPTO is a representative of task
offloading decisions that focus on minimizing the perception
delay without accounting for the risk of communication loss
or perception redundancy and without adhering to a certain
satisfactory level of improved perception awareness demanded
by users. We also compare PLTO-H to PLTO to assess its
performance compared to the optimal solution.

We use the following performance metrics. 1) The average
response delay starting from the time a perception frame
request is sent until a response is received. 2) The average
perception intensity, which is calculated as the average number
of collaborating vehicles associated with workers. 3) The
average RSSI experienced by the associated workers, which
is calculated as given by Eq. 6. 4) The packet delivery ratio,
which is the ratio of data packets successfully received by
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workers to the total number of generated data packets. 5) The
satisfaction ratio, which is defined as the ratio of users that
achieve their specified satisfactory perception level Ai to the
total number of users.

A. Simulation Setup

CPTO, PLTO, and PLTO-H are implemented using python.
The IBM CPLEX optimization solver [27] is used to generate
the optimal solution in PLTO and CPTO. The Simulation
of Urban MObility (SUMO) traffic simulator [28] is used
to generate realistic vehicular mobility traces and traffic en-
vironments. Simulations are performed over a 2 x 2 road
grid topography that consists of four intersections, each of
which is composed of 3 two-way lanes. Two types of vehicles
are generated using the randomTraffic.py script provided in
SUMO. The first type is the passenger vehicles, where 120
vehicles are generated with an arrival rate of 0.5 seconds.
The second type are buses, where a total of 20 buses were
generated with a rate of arrival of 3 seconds. The width and
the length of the passenger vehicle are set to 1.8 m and 5 m
respectively, while for the buses they are set to 2.5 m and 12
m respectively. The number of moving workers is set to 10
throughout the different simulations. A total of 18 RSUs (i.e.,
static workers) are uniformly distributed along the different
lanes of the intersection.

The computation frequency of workers ranges from 5 to 7
GHz [17]. The uplink data rate of ego vehicles ranges from
20 to 21 Mbps. Note that DSRC, which supports data rates
of 4.5 to 27 Mbps [22], is the communication technology
adopted. In accordance with the range specified by ETSI
for short and medium distances [7], the perception range is
set to 20 m around each ego-vehicle. In PLTO, we set the
time-steps τs and τa to 5. The perception constraint Ai is
set to 35%. The ineffective RSSI threshold (S) is set to -
84 db. The transmitter power is set to be 20 db [13]. PrH
is set to be of -40 db which represents the highest RSSI,
while the lowest RSSI (PrL) is set to -100 db. These values
correspond to the lowest and highest channel gains for urban
environments as per the analysis done by [13]. The value of the
scoring function ranges between -5 to penalize low received
power denoted ψL and 10 to reward high power received
denoted ψH . The association range ξ is set to 40 m and the
receiver antenna sensitivity is set to -60 db. The perception
task used is similar to the one adopted in [17] [19], which
is the computation of image data. This computing task can
serve a broad range of endeavors, such as feature detection,
and perspective transformation, which are essential tasks for
traffic perception. The task’s computation intensity is set to
1e9 cycles/sec and the compressed perception frame size is set
to 20 KB. The resolution and field-of-view are conservative
estimates of a new generation of advanced driver-assistance
systems (ADAS) front cameras [29]. A camera with a field-
of-view of 90 degrees and a range of 20 m is assumed to be
used.

The simulation period is set to 30 seconds, and the op-
timization problem is solved periodically every 1 second.

The number of users (i.e., ego vehicles) involved in the
optimization problem changes in each run of the decision
making process. Only the users who have either exceeded their
association range or have experienced ineffective offloading
due to low RSSI or low perception are considered in the
offloading decision.

B. Simulation Results and Analysis

We evaluate the performance of CPTO, PLTO, and PLTO-H
over a varying number of users, ranging from 60 to 120, to
study the impact of the density of users on the task offloading
procedure. Simulation results are presented at a confidence
level of 95%.

We evaluate the average perception intensity of CPTO,
PLTO, and PLTO-H over a varying number of users. As shown
in Figure 2a, as the number of users increases in the system,
the perception intensity increases in CPTO. This is since
CPTO strives to maximize the number of users associated with
each worker. Consequently, increasing the number of users
in the system tends to increase the chance of increasing the
number of collaborating users associated with each worker,
thus increasing the perception intensity. In contrast, as depicted
in Figure 2a, as the number of users increases, the perception
intensity decreases in PLTO and PLTO-H. This is since PLTO
and PLTO-H account for path loss. Thus, they tend to filter
out user-worker associations that yield low received signal
strength, and only select those that render high communication
efficiency. This filtering capability increases as the number of
users increases, since vehicles are more densely packed. In
addition, PLTO and PLTO-H strive to minimize the response
delay, while maintaining a certain level of perception aware-
ness. Thus, they avoid increasing the aggregation delay by
focusing on achieving a satisfactory level of non-redundant
perception rather than relying on uselessly maximizing the
perception intensity. Due to the aforementioned reasons, PLTO
renders a lower perception intensity of up to 22.4% compared
to CPTO. In addition, PLTO-H yields a performance gap of
up to 6%, compared to PLTO.

Figure 2b shows the average response delay of CPTO,
PLTO, and PLTO-H over a varying number of users. It can
be observed that the average response delay is directly pro-
portional to the perception intensity shown in Figure 2b. This
is because as the perception intensity increases, the amount
of data that needs to be aggregated at the worker increases,
which increases the computation delay of the aggregation task,
thus increasing the average response delay. As a result, PLTO
significantly outperforms CPTO, with a reduction of up to
23.3% in delay. In addition, the yielded performance gap
between PLTO-H and PLTO is 6.5%.

The communication efficiency of CPTO, PLTO, and PLTO-
H is analyzed in both Figure 2c and Figure 2d. The RSSI of
the workers is shown in Figure 2c, while the packet delivery
ratio is shown in Figure 2d. As depicted in Figure 2c, the
RSSI of CPTO, PLTO, and PLTO-H decreases as the number
of users increases in the system. This is seen as a direct result
of the increased traffic congestion, which in turn increases the
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Fig. 2: Performance results of CPTO, PLTO and PLTO-H over a varying number of users.

signal obstruction, thus deteriorating the received signal. This
same behavior is reflected on the packet delivery ratio depicted
in Figure 2d, where the packet delivery ratio decreases with
the increase in the number of users. As depicted in Figure 2c,
PLTO and PLTO-H significantly outperform CPTO, with an
increase of up to 10.5% and 6% in terms of RSSI, respectively.
This positively impacts the packet delivery ratio shown in
Figure 2d, where PLTO and PLTO-H yield an improvement of
up to 17.5% and 9.8%, respectively, compared to CPTO. This
is since CPTO overlooks communication efficiency in the task
offloading decision and focuses on minimizing the delay and
maximizing the number of collaborating users, which increases
the risk of packet loss and communication failure. In contrast,
PLTO and PLTO-H account for path loss and endeavor to
maximize communication efficiency, thus rendering higher
RSSI and packet delivery ratio. Note that the performance gap
yielded between PLTO-H and PLTO is 5% in terms of RSSI
and 7% in terms of packet delivery ratio, which indicates a
room for improvement in the heuristic solution.

Finally, we assess the satisfaction ratio of CPTO, PLTO,
and PLTO-H over a varying number of users. As depicted in
Figure 2e, the three schemes exhibit an increased trend in the
satisfaction ratio as more users join the system. This is since as
the number of users increases, the chance of workers acquiring
more perceptions to be aggregated increases, which can thus
increase the level of perception rendered by users in CPTO,
PLTO, and PLTO-H. Note that PLTO and PLTO-H outperform
CPTO by up to 6% and 4%, respectively. This can be attributed
to the fact that PLTO and PLTO-H consider the quality of
perception by sustaining a certain satisfactory level of non-

redundant perception demanded by users. In contrast, CPTO
only focuses on increasing the number of collaborating users,
which increases the risk of useless and redundant perceptions,
thus reducing the satisfaction of users. It can also be seen that
PLTO-H closely approaches PLTO, with a small performance
gap of 1.2%, thus indicating its ability to achieve a near-
optimal solution.

V. CONCLUSION AND FUTURE WORK

This paper presents PLTO, a Path Loss-Aware Task Offload-
ing scheme for vehicular Cooperative Perception applications.
PLTO enhances the communication efficiency of cooperative
perception in VEC by selectively offloading to workers that
exhibit the least path loss and response delay, while adhering
to a certain quality of perception required by users. PLTO
formulates the task allocation problem as an Integer Linear
Program (ILP) and considers path loss for LoS, OLoS, and
NLoS propagation. We also propose PLTO-H, which utilizes
the MTHG heuristic approach to solve the task allocation
problem in a time-efficient manner. Extensive simulations
show that PLTO outperforms the baseline scheme that does
not consider path loss or the quality of perception, by up
to 10.5%, 17.5%, 23.3%, and 6% in terms of RSSI, packet
delivery ratio, perception delay, and satisfaction ratio. Perfor-
mance evaluation also shows that PLTO improves perception
awareness rather than perception intensity, which proves its
ability to focus on the quality instead of the quantity of
perception. Moreover, PLTO-H attains results close to the
optimal solution in a more time-efficient manner. This work
substantiates the importance of optimizing communication
efficiency and considering perception quality when designing
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task offloading schemes for cooperative perception in VEC. In
the future, we plan to apply reinforcement learning to estimate
the quality of perception and quantify the level of uncertainty
in such estimations.
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