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Abstract—The demand for ultra-low latency requirements
is fueled by the growing popularity of time-sensitive appli-
cations including virtual, augmented and mixed reality, and
industrial IoT. Edge computing is positioned to fulfill such
stringent latency requirements. Addressing the increasing
demand for time-sensitive applications becomes challenging
due to limited resource at the edge. Even though virtual
network function (VNF) sharing is known to improve
the utilization of the service providers’ resources, service
requests -including time-sensitive ones- can nevertheless be
rejected. This paper proposes PSVS: a Prediction-based
Service placement scheme with VNF Sharing at the edge.
PSVS utilizes the predicted required resources in a defined
lookahead window to minimize the rejection rate of pre-
mium services. A safety-margin is empirically-defined and
used to add resiliency against prediction errors. Results show
more than a 50% reduction in the rejection rate of premium
services. Moreover, PSVS is resilient to prediction errors.

Index Terms—Edge Computing, SFC, NFV, VNF

I. INTRODUCTION

Communications service providers (CSPs) are revolu-

tionizing the way in which they build and operate their

networks by disaggregating and virtualizing conventional

proprietary functions both in the core and radio access

network (RAN). At the core side, control and user plane

separation (CUPS) is introduced to evolve, provision, and

scale control and user functions separately. To host the

user-plane functions, a distributed cloud infrastructure is

required near end users. This goes hand-in-hand with the

service-based architecture (SBA) adopted by 3GPP for

the 5G core and the adoption of cloud-native platforms

and tools [1]. The same distributed cloud is required

to host the open RAN (O-RAN) disaggregated and vir-

tualized components: radio unit (RU), distributed unit

(DU), centralized unit (CU), and near real-time RAN

intelligent controllers (nRT-RICs) [2]. The disaggregated

RAN functions must be provisioned with stringent time

constraints [3].

The majority of emerging 5G use cases are time-

sensitive/critical in nature, such as real-time media (aug-

mented reality (AR) and virtual reality (VR)), industrial

This research is supported by a grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC) under grant number:
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control, remote control, and mobility automation [4].

Time-sensitive, henceforth premium (Pr), services and ap-

plications are a class of software that have stringent time

constraints and a service would fail if such constraints

were not met [5]–[7]. For applications with extremely

limited time budget, catastrophic consequences might fol-

low as a result of service failure, for example, a collision

warning service failure might result in more collisions

and more fatalities.
Edge computing, especially multi-access edge comput-

ing (MEC) is the distributed cloud to fulfill the ultra-

low latency and high-reliability requirements of use cases

mentioned earlier. As a result, interest from industry

in edge computing has grown substantially. CSPs are

capitalizing on edge computing to host their services,

core and RAN virtualized network functions (VNFs), in

addition to third-party services, including over-the-top

(OTT) services. The edge computing market is projected

to grow from $3.6 billion in 2020 to $15.7 billion by

2025, at a growth rate of 34.1% during the forecast period

[8].
By adopting network function virtualization (NFV) and

software-defined networking (SDN), service provisioning

is more agile, scalable, and costs less as CSPs can reduce

capital and operations expenditures [9]. To provision a

service, an orchestrator has to take a placement decision

to deploy service functions (VNFs) on hosting physical

nodes. Since the introduction of NFV in 2012, there has

been a large body of research addressing VNF placement

and resource allocation. Most enterprise and network

services consist of component functions/VNFs forming

service function chains (SFCs) and traffic should traverse

these functions in a specific order. In Figure 1, there are

two SFCs with different number of VNFs and the total

number of CPU cores required per each SFC. SFCs may

have common VNFs, for example sfc1 and sfc2 have

V1, V2 and V3 common VNFs.
Edge resources are limited compared to the abundant

cloud resources. To address the increasing demand for

edge computing, efficient utilization of edge resources

will play an indispensable role in SFC placement. Time-

sensitive premium (Pr) SFCs cannot tolerate waiting for

resources to be deployed. If a Pr SFC (sfcpr) request is
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Fig. 1. Example SFCs of different lengths and common VNFs

received and no resources are available, the request will

be rejected. Conversely, lower-priority best-effort (BE)

SFC (sfcbe) requests can tolerate waiting for resources

availability. Prioritizing sfcpr requests over sfcbe re-

quests will help in slightly reducing the rejection rate

of sfcpr requests. However, such prioritization will not

significantly reduce or even eliminate sfcpr requests

rejection.

Hence, we propose a prediction-based SFC placement

scheme with VNF sharing (PSVS) to reduce the rejection

rate of sfcpr requests. Taking advantage of shareable

common VNFs among SFCs and the predictability of

sfcpr requests arrival, PSVS will decide to satisfy sfcbe
requests pending deployment or to defer the deployment

to save resources for future sfcpr requests. PSVS uses

a safety-margin to mitigate the unavoidable prediction

errors.

The main contributions of this paper are:

• Introduction of a prediction-based placement scheme

that significantly reduces the rejection rate of sfcpr
requests.

• Introducing the safety-margin that provides the de-

sirable resiliency against prediction errors including

extreme errors at high error rate/probability.

The remainder of this paper is structured as follows.

Section II covers related work. Proposed prediction-based

SFC placement, system model, and problem formulation

are described in Section III. Section IV, details the

simulation framework, performance evaluation and results

analysis. Conclusions and future work are presented in

Section V.

II. RELATED WORK

Unlike the placement of single VNFs, the placement of

SFC is a two-step process. First, SFC’s VNF components

are associated with hosting nodes then resources are allo-

cated for each VNF to satisfy performance requirements.

Second, forwarding/traffic steering rules are defined to

enforce the orderliness of traffic processing within an

SFC. SFC/VNF placement and/or resource allocation can

be done at different levels. The work in [10] proposes

resource allocation at the CPU core level in many-core

architectures. At one deeper level, authors of [11] allocate

CPU at the time/share and deal with degradations due to

operation dynamics.

6

cores

SFC2

V1 V2 V3

V2 V4

SFC1 9

cores

Non-shareable

Shareable

Fig. 2. Resource savings when sharing VNFs

Indeed, “VNF sharing” is one of the techniques used

to reduce the deployment cost by efficiently utilizing

resources. As shown in Figure 2, the required resources

to satisfy sfc1, sfc2 are 21 CPU cores compared to

only 15 cores when VNF sharing is used. Unlike some

surveyed VNF sharing papers which consider all VNFs

are shareable, in this example having V2 as non-shareable,

the VNF sharing is able to use 29% fewer resources.

There is an increasing interest in VNF sharing among

CSPs and OTT service providers. For example, sharing

non-security-critical VNFs such as mobility management

across end-to-end 5G slices is proposed by [12]. In [13],

authors proposed sharing the same cache VNF (vCache)

among ISPs with a common infrastructure. Consequently,

VNF sharing can play an imperative role in reducing

the cost of service provisioning by efficiently utilizing

resource-limited edge environments. Idle resources and

fragmentation are unwanted consequences when not shar-

ing VNFs [14]. Unlike the work in [15], sharing VNF

among SFC should consider operation dynamics and

refrain from specifying a predefined number of flows

that a VNF can serve, which may leave some VNFs

underutilized. In the same vein, concerning priority-based

SFC/VNF placement, unlike the work in [16], [17], we

believe that SFC request priority should be the same for

all SFC’s VNFs, the priority should not change, and it

should be known before satisfying the SFC request.

To better serve customers, service providers utilize

prediction in different aspects. Service provider can use

models/tools to predict service arrivals which can help

reserve resources for Pr SFCs to avoid rejection/failures

[18]; traffic demand and user mobility that both help with

proactive replication and/or migration [19], [20]; the re-

sources to allocate to guarantee performance requirements

(profiling) [21]; finally, to predict the degradation and/or

failure of physical nodes hosting SFC’s VNFs that help

mitigate service interruptions and downtime.

In this paper, we utilize service requests arrival pre-

dictions to reduce the rejection rate of premium ser-

vices. In addition, we utilize a VNF sharing-based SFC

placement that considers operation dynamics when taking

VNF sharing decisions and prioritizes premium over best-

effort services. PSVS, the proposed scheme, considers one

priority for all SFC components and that priority is known

prior to receiving SFC requests.

27
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III. SYSTEM MODEL AND PROBLEM FORMULATION

More than two service categories/priorities could have

been considered; however, we decided to utilize two qual-

ity of service (QoS) categories for simplicity, premium

and best-effort. Premium service is provisioned with high-

est expected load, not oversubscribed, and served with

dedicated high-priority queues; and best-effort service is

sent and queued with lower priority. Findings in this paper

are applicable to service domain with more than two

service categories.

Due to operation dynamics, traffic processed by SFC’s

VNFs vary and VNFs can be underutilized at times. VNF

sharing-based SFC placement scheme takes advantage

of operation dynamics and shareable VNFs to enhance

resource utilization, reduce SFC deployment cost and re-

jection rate. To satisfy a new SFC request, the placement

scheme searches running VNFs for similar underutilized

VNF which can serve the required load of peer VNF

of SFC requests being satisfied. The scheme will only

instantiate a new VNF when: considered VNF is non-

shareable; there are no similar previously deployed VNFs

or a similar VNF(s) deployed but fully utilized. Our work
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Fig. 3. Rejection rate of Premium (Pr) SFCs using VNF non-sharing
vs VNF-sharing for different system configurations/loads (Experiment
duration is 200 TSs, arrival rate λ = 2 sfc requests/TS) [22]

PSVShare [22], is a scheme for priority-based placement

with VNF sharing at the edge. According to the results

achieved from our extensive experiments of PSVShare,

SFC placement with VNF sharing reduced the rejection

rate of sfcpr requests, but it is still concerning. As shown

in Figure 3, the best-case scenario is ‘lightly-loaded’.

Using VNF sharing-based placement results in a 50%
reduction in sfcpr requests rejection rate. However, the

rejection rate of the VNF sharing-based placement is still

about 19%. It is worse for higher system loads, with

longer duration and/or higher number of sfcbe requests.

These rejections lead to unsatisfied customers and lost

revenue for CSPs.
To address such concerning rejections, we propose

a prediction-based SFC placement scheme with VNF

sharing (PSVS) to help CSPs improve the edge resource

utilization and minimize lost revenue opportunities. To

minimize the situations where resources are not available

to satisfy sfcpr requests, PSVS will utilize predicted

sfcpr requests to arrive in a lookahead window of length

ω to decide to satisfy the pending sfcbe requests or

not. To the best of our knowledge, prediction-based SFC

placement has never been used in the context of SFC

placement with VNF sharing at the resource-limited edge

environments.

3/4/2022 1:00 AM3/4/2022 2:00 AM3/4/2022 3:00 AM3/4/2022 4:00 AM3/4/2022 5:00 AM3/4/2022 6:00 AM

ω time-slots  

Lookahead windowCurrent TS (t)

sfc
t-2

be2sfc
t
be1 sfc

t-1
be1sfc

t
be2

2nd sfcbe request received in TS (t-2)

sfc
t
pr1sfc

t
pr2

1st sfcpr request received in current TS (t)

Recpr

Penbe

tt-1 t+1

- Recpr : a queue holding sfcpr requests received in current time-slot (TS)

- Penbe : a queue holding sfcbe requests received in current TS plus those requests received in 

previous TSs but never deployed due to resource limitations

Fig. 4. PSVS lookahead window, different queues (Recpr and
Penbe), and queued sfcpr/sfcbe requests.

As shown in Figure 4, in each time slot (TS), arriving

sfcpr and sfcbe requests are placed in Recpr and Penbe

queues, respectively. While sfcbe requests can tolerate

waiting for deployment if not satisfied in the same TS they

were received, the sfcpr requests can not tolerate waiting

and are rejected if not satisfied (in Figure 4, unlike sfcbe
requests in Penbe, there are no sfcpr requests older than

current TS in Recpr). We assume that a simple prediction

technique/model exists that can predict the sfcpr requests

to arrive in the next ω TSs and the required resources

with 100% accuracy (in Section IV, we demonstrated

the performance under different prediction errors and

error rates). It is known that the longer the lookahead

window, the less accurate the predictions, which is why

we experimented with ω ∈ [1, 3] TSs. The actual duration

in seconds of each TS is variable and depends on the

number of requests that need to be deployed.

A. System Model

Each SFC requests consists of a list of VNFs. SFC’s

VNFs are selected from a list of on-boarded VNFs V .

Each VNF type v ∈ V has resource requirements like

CPU cores and memory. A VNF is expected to operate

at maximum capacity/throughput, Fmax(v), if assigned

the required resources. As outlined earlier, not all VNFs

are shareable, S(v) is a flag to determine if a VNF v

28
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is shareable. The time a VNF becomes part of sfcj ,

that VNF’s inflow Fin(v
j
i ) and outflow Fout(v

j
i ) are

determined. Due to operation dynamics and the fact that

some VNFs, like firewalls and optimizers, may drop or

compress inflow, both inflow and outflow are subject to

change (Fout(v
j
i ) ≤ Fin(v

j
i )). The substrate network of

nodes that hosts VNFs is represented as a graph G(N,E),
where N is the set of nodes and E is the set of links. Each

node n ∈ N has compute resources, CPU cores and

memory, and each link e ∈ E has bandwidth capacity

bwc and propagation delay Del. Table I lists detailed

description of substrate network and SFC parameters.

TABLE I. System Parameters Description

Parameter Description

cpuc|av(n) CPU capacity | available in cores of node n ∈ N

ramc|av(n) RAM capacity | available in GBs of node n ∈ N

e
nn

′ A link exists from node n to node n
′

, n, n
′

∈ N

bwc|av(enn
′ ) BW capacity | available in Mbps of link e

nn
′

Del(e
nn

′ ) Propagation delay of link e
nn

′

cpu(vi) CPU cores required for VNF vi ∈ V

ram(vi) RAM GBs required for VNF vi ∈ V

Fmax(vi) Maximum inflow VNF vi can handle

S(vi) Flag to indicate VNF vi is shareable

sfcj SFC request j

|sfcj| Number of VNFs in sfcj

v
j
i The ith VNF of sfcj

Fin(v
j
i ) Actual inflow that VNF vi will be serving

Fout(v
j
i ) Outflow VNF v will produce

Del(sfcj) Maximum end-to-end delay of sfcj

B. Problem Formulation

Algorithm 1 describes the proposed PSVS scheme.

The scheme hinges on the placement algorithm and the

required resources prediction component. The placement

algorithm is modeled as an integer program with bi-

nary decision variables and utilizes VNF sharing. PSVS

utilizes a discretized time scale of TSs. First, at the

beginning of each TS, PSVS terminates and releases

utilized resources of running sfcpr|be ∈ Runpr|be whose

time-to-live (TTL) is zero and moves them to Compr|be

list. If SFC’s TTL is not zero, PSVS decreases the TTL by

one. Second, to prioritize sfcpr, PSVS attempts to satisfy

received requests in Recpr queue first. Finally, if there are

requests in Penbe queue, the predicted required resources

in the next ω TSs are utilized to either satisfy some or

all of the requests in Penbe or defer deployment to leave

room for future sfcpr requests to arrive. We utilize no

Penpr queue because sfcpr requests gets rejected if not

immediately satisfied. Similarly, no Rejbe list is used,

since sfcbe requests can tolerate waiting for deployment.

Algorithm 1: PSVS

// SimDur: Simulation duration in time slots

(TSs), ω ∈ [1− 3] TSs Lookahead window

length, and α ∈ [1− 3] Resource

safety-margin (a scaling factor)

Input : net-Model, SimDur, ω, α

Init. : Recpr, Runpr|be, P enbe, Rejpr, Compr|be

Output: Different queues\lists and collected

statistics

1 for i← 1 to SimDur do

2 Recpr ← received sfcpr requests

3 Penbe ← received sfcbe requests

// Update TTL of running SFCs

4 foreach sfcpr|be in Runpr|be do

5 if ttl(sfcpr|be) = 0 then
// Releases resources utilised

by finished sfc

6 Compr|be ← sfcpr|be

7 else decTTL(sfcpr|be)

8 foreach sfcpr in Recpr do
// Using IQCP & Gurobi solver

9 sol ←satisfy(sfcpr,net-Model)

10 if sol 6= ∅ then

11 deploy(sfcpr,net-Model)

12 Runpr ← sfcpr

13 else // sfcpr can not tolerate

waiting for deployment

14 Rejpr ← sfcpr

// Required resources/sfcpr requests

expected to arrive in ω TSs

15 ReqrdRespr ←
predReqResources(ω)

// AvailRes: free resource in current

TS and in next ω TSs

16 AvailRes ← getAvailResources(ω)

17 ExtraResbe ← 0

18 if AvailRes > (α * ReqrdRespr) then

19 ExtraResbe ← AvailRes − (α

*ReqrdRespr)

20 while (∃ sfcbe in Penbe)&(ExtraResbe
6=0) do

21 sol ←satisfy(sfcbe,net-Model)

22 if sol 6= ∅ then

23 deploy(sfcbe,net-Model)

24 Runbe ← sfcbe
25 ExtraResbe

←ExtraResbe-usedRes(sfcbe)

// else sfc stays in Penbe

29
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1) Placement Algorithm: With an SFC request sfcj
consisting of VNFs vi, i ∈ [1 − |sfcj |], the decision

variables are: χ
j
in: if a new instance of VNF vi belonging

to sfcj is to be placed at node n; and Υj
in: if VNF vi

of sfcj is to share and become the guest of a deployed

underutilized VNF of the same type at node n. Queues,

decision variables, and parameter descriptions are in Table

II.

a) Objective Function: The objective function,

equation (1), is designed to favour the placements that

minimizes the overall cost and resource utilization by

preferring sharing underutilized VNFs over instantiating

new ones. The cost of utilizing a deployed shareable VNF

in only the bandwidth cost, compared to instantiating

a new VNF instance which includes cpu and ram in

addition to bandwidth cost. The feasible solution has to

satisfy constraints 2-9.

min

|sfcj|∑

i=1

∑

n∈N

[cpu(vji )U
c
cpu(n) + ram(vji )U

c
ram(n)]χj

in+

Fout(v
j
i )Ucbw[χ

j
in +Υj

in]
(1)

TABLE II. Queues, Decision Variables and Constants

Variable/Queue Description

χ
j
in For placing a new VNF vi of sfcj at node n

Υj
in For sharing the flow of VNF vi of sfcj with

already deployed VNF of same type at node n

Di
n VNF of same type as vi is deployed at node n

Fav(vin) Available unused flow of vi at node n

Uc
cpu(n) Unit cost of cpu at node n

Uc
ram(n) Unit cost of ram at node n

Uc(bw) Unit cost of bw at all links

Recpr Queue of new Pr SFCs until deployed

Penbe Queue of new BE SFCs until deployed

Rejpr List of rejected Pr SFCs

Runpr|be List of deployed Pr or BE SFCs

Compr|be A list of finished Pr or BE SFCs

∑

n∈N

χ
j
in + Υj

in = 1 , ∀i ∈ [1, |sfcj|] (2)

∑

n∈N

χ
j
in + Di

n S(vi) Υ
j
in = 1, ∀i ∈ [1, |sfcj|] (3)

Fin(v
j
i ) Υ

j
in ≤ Fav(D

i
n), ∀n ∈ N & ∀i ∈ [1, |sfcj|]

(4)
|sfcj|∑

i=1

cpu(vji ) χ
j
in ≤ cpuav(n), ∀n ∈ N (5)

|sfcj |∑

i=1

ram(vji ) χ
j
in ≤ ramav(n), ∀n ∈ N (6)

enn′ (χj
in + Υj

in)(χ
j

(i+1)n′ + Υj

(i+1)n′ ) = 1

∀n, n
′

∈ N & ∀i ∈ [1, (|sfcj| − 1)]
(7)

∑

n∈N

∑

n
′∈N

Fout(v
j
i )(χ

j
in + Υj

in)(χ
j

(i+1)n′ + Υj

(i+1)n′ )

≤ bwav(enn′ ), ∀i ∈ [1, (|sfcj| − 1)]
(8)

|sfcj|−1∑

i=1

∑

n∈N

∑

n
′∈N

Del(enn′ ) (χj
in + Υj

in)

(χj

(i+1)n′ + Υj

(i+1)n′ ) ≤ Del(sfcj)

(9)

2) Required Resources Prediction: The assumption

here is that a simple prediction model exists and based

on the historical data, it can predicts number of sfcpr
requests to arrive in the next ω TSs and their required

resources. As can be seen in line 18 of Algorithm 1, when

comparing predicted required resources (ReqrdRespr) to

the available resources (AvailRes), we utilize a safety-

margin α.

The main purpose of using α is to compensate for the

difference in TSs between the size of lookahead window

ω ∈ [1, 3] and the duration of sfcbe requests (typically

10 or 20 TSs). For example, for α = 1, if the AvailRes

is greater than predicted ReqrdRespr, a deployed sfcbe
in the current TS will have a lasting impact on resources

availability that extends beyond the lookahead window,

hence the sfcpr requests rejections. The value of safety-

margin α should be carefully empirically selected/tuned.

On the one hand, small values of α will lead to higher

rejection rate. On the other hand, large values cause

starvation for the pending sfcbe requests as it will be over

restrictive and seize more resources for future sfcpr re-

quests, resulting in lower system utilization and prolonged

waiting times for sfcbe requests. It worth noting that, the

AvailRes are those resources free in the current TS in

addition to resources that will be released in the next ω

TSs, as running SFCs are finished (TTL=0) and moved

to Compr|be list. Extra resources (ExtraResbe) are those

available resources that exceed the α-scaled AvailRes

and are utilized to satisfy one or more requests pending

in the Penbe queue (see Algorithm 1 lines 19-25).

IV. PERFORMANCE EVALUATION

A. Simulation Framework

We developed a Java-based simulation environment

to synthetically generate SFC requests and the network

model (NSFNET network model that has 13 nodes and

32 directional links). The SFC requests arrival rate per TS

follows a Poisson distribution with average rate λ = 2.

SFC length, number of VNFs, is drawn from a uniform

distribution |sfcj | ∼ U [4, 7] [23]. The service time,

i.e., SFC duration in TSs, is fixed, where sfcpr = 7

30
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loaded, and (c)&(d) highly-loaded.
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Fig. 6. utilization throughout simulation time (200 TSs).

and sfcbe ∈ {10, 20}. The ratio of sfcpr:sfcbe requests

is either ‘50:50’ or ‘20:80,’ and the order of arrival is

shuffled. Each experiment is repeated ten times where the

network model, nodes, and links’ resources are the only

constant. Across the ten repetitions, the variations are:

number and type of requests per TS, the length and type of

VNFs in sfc requests, and sfc requests QoS/performance

requirements (end-to-end delay). We utilized a list of on-

boarded VNFs that contains 16 VNFs, 60% of which

are shareable. The placement scheme is solved using the

Gurobi solver [24].

B. Numerical Results and Analysis

To assess the impact of both lookahead window size ω

and safety-margin α on the Rejpr%, we experimented

with different values of ω and α, and with different

system loads. As can be seen in Figures 5a and 5b,

the moderately-loaded system witnesses an increase in
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completed requests (Compr|be), significantly fewer re-

jected requests (Rejpr), and about the same percentage of

received requests that are in the running state (Runpr|be).

When comparing the rejection rate of α = {1, 2, 2.8, 2.9}
and ω = 3, we can conclude that the safety-margin

has a significant impact on reducing the sfcpr rejection

rate. The same effect is carried over to the highly-loaded

system, as shown in Figures 5c and 5d. Even though, the

+50% reduction in the rejection rate of sfcpr requests,

the Penbe queue did not expand that much (compare the

size of Penbe of ω = 3 and α = 2.9 for the highly-loaded

system.
The best values that α converged to might seem a

magic number. However, we can easily find simpler

more deterministic systems that use the same empirical

methodology to determine the best value/range for a

probability/factor that maximizes an important KPI. For

example, how the ‘p’ in p-persistent carrier sense multiple

access (CSMA) is calculated to maximize throughput

[25].
The utilization of both moderately and highly-loaded

systems, shown in Figure 6, reveals that PSVS does not

increase the completion and reduces the rejection rates

of sfcpr requests by totally ignoring the sfcbe requests

and leaving the system resources idle. Furthermore, PSVS

enhances the overall utilization of the moderately-loaded

system. For a detailed system utilization, we can consult

Figure 5 and see that the size of Runpr|be of both

system loads is almost the same for different values of

ω and α. There are two faces to the PSVS schemes,
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Fig. 7. Left: sfcbe average waiting time (AWT). Right: percentage of
pending sfcbe requests. Prediction is using α = 2.8 for 50:50 systems
and α = 2.9 for 20:80 system. The var-α uses a varying safety-margin

with lower-bound=2.8, upper-bound=2.9, and the step=+0.1,-0.01.

the impact on rejection rate of sfcpr requests and on

the AWT and pending sfcbe requests. Both the AWT

and percentage of pending sfcbe requests are reported in

Figure 7. PSVS increased the average waiting time (AWT)

and the percentage of pending sfcbe requests by 43% and

38%, respectively. In addition to compensating the differ-

ence between the short lookahead window (for accurate
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Fig. 8. The impact of prediction error value and rates/probabilities on
(a) Rejected Pr SFCs requests and (b) Pending BE SFC requests, for
moderately- and highly-loaded systems.

predictions) and the 20TS-long sfcbe requests, the safety-

margin α helps address the uncertainty arising from the

VNF sharing (the used resources to satisfy requests varies

depending on the current snapshot of deployed SFCs)

and increases the robustness of PSVS and its resilience

to prediction errors. To evaluate the robustness of PSVS

results and demonstrate the importance of safety-margin

α, we experimented with error rates/probabilities up to

70% of predicted required resources and with prediction

error value ε up to ±50%. As shown in Figure 8a, the

biggest increase in the highly-loaded system’s rejection

rate is only 17% in face of a the extreme error values

and rates. As shown in Figure 8b, the Penbe queue size

did not grow.
Figure 9 shows the impact of safety-margin α on

sfcpr requests rejection rate under extreme prediction

error values and rates/probabilities. For both system loads,

the higher the value of α, the less the rejection rate. In

the vein, the increase in the Penbe queue size is not

concerning, see Figure 9b.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed PSVS to reduce the rejection

rate when provisioning time-sensitive Pr services at the

edge. PSVS utilizes both the predicted required resources

and a safety-margin to address the difference between

ω and sfcbe requests duration and to provide resiliency

against prediction errors. We experimented and evaluated

different lookahead window sizes ω and safety-margin α

and concluded the best values to balance the reduction

in sfcpr requests rejection rate and sfcbe requests AWT.

Finally, more reduction in the rejection rate is attainable;

however, the sfcbe requests will suffer more starvation.
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Fig. 9. The impact of safety-margin on sfcpr requests rejection
rate under extreme prediction error values and rates/probabilities, (a)
Rejected Pr SFCs requests and (b) Pending BE SFC requests.

This might be desirable in emergencies where time-

critical premium services must be immediately satisfied.

Rejections of sfcpr requests are unavoidable with

prediction window size ω smaller than sfcbe requests

average duration. However, to get accurate predictions,

we had to continue using small lookahead window sizes.

However, in an environment where lower-priority services

can be suspended and the pre-emption cost is bearable,

a zero sfcpr rejections might be achievable by suspend-

ing one or more running BE services and pre-empting

resources to premium services. Future research includes,

a pre-emption criterion that pre-empts resources for sfcpr
requests and minimize the disturbance to BE services.
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