
PSVShare: A Priority-based SFC placement with

VNF Sharing

Amir Mohamad

School of Computing

Queen’s University

Kingston, Ontario, Canada

Email: {a.mohamad}@queensu.ca

Hossam S. Hassanein

School of Computing

Queen’s University

Kingston, Ontario, Canada

Email: {hassanh}@queensu.ca

Abstract—Edge computing resources deployed at the access
network are distributed and limited compared to the abundant
core cloud resources. With the increasing demand on edge
resources by emerging delay-sensitive use-cases, efficient resource
utilization is to play an indispensable role. Taking advantage of
operation dynamics and common functions in network/enterprise
services, we propose PSVShare a priority-based, least-cost and
resource-efficient service placement algorithm. The algorithm
considers practical settings and conditions such as service cate-
gories (premium and best-effort), service arrival and completion
times, and service relocation/migration due to changing traffic
loads. PSVShare satisfies more services, achieves lower rejection
rates, and is agnostic to arrival order and ratio of premium to
best-effort services.

Index Terms—NFV, VNF placement, Service Function Chain-
ing, edge computing, MEC

I. INTRODUCTION

Edge Computing is witnessing a phenomenal growth [1]

and is a major player in the next generation of mobile

networks (5G) and some enterprise use-cases. 5G requires

innovation both on the network core side as well as the

radio side. The network core is going to be fully virtualized

utilizing the Network Function Virtualization (NFV) [2]. Edge

computing will provide the required platform which will host

the separated and virtualized user plane functions [3]. On the

radio side, radio access network (RAN) components are dis-

aggregated into distributed units (DUs) and centralized units

(CUs). DUs are installed at cell sites and CUs are pooled and

deployed in base-band units (BBUs) Hotels or Central Offices

(COs). Edge computing secures the required infrastructure

to host the virtualized CUs which has stringent real-time

requirements and need to be placed as close as possible to

the cell-sites.

In mobile/multi-access edge computing (MEC) as the mo-

bile networks version of edge computing, hosted services

will have access to user mobility data as well as wireless

channel related measurements [4]. With such visibility, service

providers will be able to take actions to enhance both the

quality of service (QoS) and users’ perceived quality of

experience (QoE) at a millisecond scale.

This research is supported by a grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC) under grant number:
RGPIN-2019-05667.

Most enterprise and network services consist of component

functions that are stitched together in a specific order to

form service function chains (SFCs). NFV brings elasticity

to the creation and deployment of services by virtualiz-

ing their functional components and decoupling them from

their specially-built hardware [5]. Communications Service

Providers’ (CSPs) telco cloud, edge and core, provides the

required infrastructure that hosts SFC’s virtual network func-

tions (VNFs). VNFs are assigned all required compute and

bandwidth resources and are expected to operate at their full

capacity. However, due to operation dynamics, some VNFs

might be underutilized, receiving and processing traffic less

than their full capacity. Services might have common VNFs,

as seen in Figure 1, services S1 and S2 both have a common

functional component V2.

Edge computing has limited resources compared to the

core cloud. Considering the anticipated high demand for edge

resources and the importance of the edge being a precious

asset for CSPs, the efficient utilization of edge resources

will play a pivotal role in the fulfilment of delay-sensitive

requirements of services and applications. With SFC requests

continuously arriving, it would be more resource-efficient to

utilize deployed underutilized VNFs first, and only deploy a

new VNF instance if no deployed underutilized VNF of the

same type exists. This should be done while being mindful of

the SFC performance requirements. We decided to use end-

to-end latency as the performance requirement that has to be

satisfied.

To date, only a few research works with limited scope exist

on VNF sharing. Previous studies either consider predefined

number of traffic flows a VNF can handle, ignoring the

operation dynamics, or propose prioritization mechanisms that

dynamically assign priorities based on current system state.

Hence, in this paper, we propose PSVShare a priority-based

SFC placement algorithm with VNF sharing. PSVShare takes

SFC placement decisions at the point-of-presence (PoP) level,

and supposed to be part of the NFV orchestrator (NFVO).

The main contributions of this paper are: the introduction

of VNF sharing-based SFC placement, prioritizing premium

(Pr) services over best-effort (BE) services; and a migration

scheme to handle situations where a host VNF cannot accom-

modate traffic increase, as a result of sharing its capacity with

2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

978-1-7281-8159-2/20/$31.00 c©2020 IEEE 25

Authorized licensed use limited to: Queen's University. Downloaded on April 01,2021 at 13:26:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: SFC S1 and S2 with common VNF V2

guest VNFs.

The remainder of this paper is structured as follows. Section

II covers related work. Proposed sharing-based SFC place-

ment, system model, and problem formulation are detailed

in section III. Performance evaluation and results analysis

are covered in section IV. Conclusions and future works are

presented in section V.

II. RELATED WORK

The work in [6] represents the generic VNF/SFC placement.

Others introduced placement at the edge-central cloud and

at mobile network edge [7]. With the introduction of NFV

in 2012 [2], service provisioning became more agile and

placement of VNFs as the building block of SFCs started

to gain traction. Sharing of a VNF by more than one SFC

flow is triggered by the fact that some VNFs could be shared

by SFC flows, such as anti-virus and parental-control. With

the exception of the work in [8] and [9], existing work does

not consider sharing deployed underutilized VNFs while de-

ploying new SFC requests. The work in [8], proposes sharing

VNF among SFC flows based on a predefined number of flows

that a VNF can handle ignoring the operation dynamics. The

work in [9] is relatively newer and proposes a different way

of priority-based provisioning with VNF sharing. The priority

is dynamically assigned to flows or VNFs, depending on the

situation, rather than predetermined before deployment. Also,

VNF container, virtual machine or container, is treated as an

infrastructure asset, rather than an ephemeral component. In

our work [10], using simple system settings, we demonstrated

the performance gain of SFC placement with VNF sharing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In a typical service domain, services are not equal in terms

of priority and preferences. It has been pointed out, including

the work in [11], that services come in two types/classes:

premium (Pr) service that is provisioned with highest ex-

pected load, not oversubscribed, and served with dedicated

high-priority queues; and best-effort (BE) service is sent

and queued with lower priority. Moreover, due to operation

dynamics, the traffic flow that deployed services/SFCs receive

and process, continuously varies up and down. A practical

and efficient SFC placement algorithm should consider both

the aforementioned practical service domain aspects. To do

so, PSVShare is a priority-based SFC placement with VNF

sharing, which will have to handle complex situations. Take

for example the operation dynamics, which results in a varying

traffic load that SFCs and their VNFs serve. The capacity

of a host VNF is distributed among its guest VNFs. Any

increase of the traffic flow of the host VNF or any of its

guest VNFs, may require one or more VNFs, hence SFCs, to

be deported to accommodate the traffic increase. Doing so in

light of two service categories, should strive to minimize the

migrations a Pr SFC will have to experience. Out of limited

resources at that time, an SFC that is deported may end up

in a queue, waiting to be redeployed once resources become

available. Even though PSVShare is designed for edge service

provisioning at the network edge, it is usable for core services

as well.

A. System Model

An SFC request consists of an ordered list of VNFs and

comes with a service category, Pr or BE. VNFs are selected

from a list V of on-boarded VNFs. In this list, each VNF

has resource requirements and a maximum traffic flow it can

handle once assigned the resources required. Some VNFs can

be shared among SFC flows while others not. S(vi) is a flag to

determine whether VNF vi is shareable or not. Once selected

in sfcj , the inflow and outflow of VNFs should be determined.

The substrate network is modeled as a graph G(N,E), where

N is the set of nodes, with compute resources, and E is the

set of links. Each link has bandwidth capacity and propagation

delay. The substrate network topology is fixed and described

by a connectivity matrix. The description of substrate network

and SFC parameters is provided in Table I.

TABLE I: Parameters description

Parameter Description

N Set of substrate network nodes

E Set of substrate network links

cpuc(n) CPU capacity in cores of node n ∈ N

ramc(n) RAM capacity in GBs of node n ∈ N

cpuav(n) Available CPU cores at node n ∈ N

ramav(n) Available RAM GBs at node n ∈ N

L
nn

′ A link exists from node n to node n
′
, n, n

′
∈ N

bwc(Lnn
′) BW capacity in Mbps of link L

nn
′

bwav(Lnn
′) Available BW at link L

nn
′

Del(L
nn

′) Propagation delay of link L
nn

′

V Set of available/on-boarded VNFs

vi Is a VNF, where vi ∈ V

cpu(vi) CPU cores required for VNF vi ∈ V

ram(vi) RAM GBs required for VNF vi ∈ V

Fmax(vi) Maximum inflow VNF vi can handle

S(vi) Flag to indicate VNF vi is shareable

Drop(vi) Flag to indicate that VNF vi drops/compresses inflow

sfcj SFC request j

cat(vi) Category of VNF vi’s SFC , BE = 1 & Pr = 2

|sfcj | Number of VNFs in sfcj

v
j
i The ith VNF of sfcj

Fin(v
j
i) Actual inflow that VNF vi will be serving

Fout(v
j
i) Outflow VNF v will produce

Del(sfcj) Maximum end-to-end delay of sfcj

26

Authorized licensed use limited to: Queen's University. Downloaded on April 01,2021 at 13:26:56 UTC from IEEE Xplore. Restrictions apply.

B. Problem Formulation

The PSVShare algorithm utilizes an integer quadratically-

constrained program (IQCP) model. The objective is to min-

imize the total deployment cost by optimizing resource uti-

lization while satisfying QoS requirements/constraints. The

PSVShare prioritizes Pr SFCs over BE SFCs and handles

migration situations that arises due to VNF sharing and traffic

increase. PSVShare, listed in Algorithm (1), considers SFC

requests arriving at the beginning of each time-slot (TS).

Once received, PSVShare uses the IQCP to find the least-cost

deployment solution. If a solution exists, the state of satisfied

SFC changes from received to running and gets added to

the Pr or BE running queue Runpr|be. Runpr queue is for

Pr SFCs and Runbe queue is for BE SFCs. In case of no

solution, SFC state will change to waiting and gets added to

the Newpr|be queue. Once deployed a running SFC is subject

to one of three possible state changes. If the SFC’s time-

to-live (TTL) is zero at the start of a TS, its state changes

from running to completed and gets moved from the Runpr|be

to the Comppr|be queue. If traffic flow increase cannot be

accommodated, either because host VNF own flow or due to

an increase of a guest VNF flow, one or more migrations are

unavoidable. If an SFC migration is successful, SFC ends in

the running state, but passing by a terminated state. Otherwise,

the state changes to pending-migration and the SFC moves

from the Runpr|be to the Migpr|be queue.

Besides the TTL checks/decrements, PSVShare starts with

satisfying the Pr SFCs pending migration in the Migpr,

then BE SFCs in the Migbe. For those SFCs waiting in

the Newpr|be queue, PSVShare attempts to satisfy Pr SFCs

then BE SFCs. Finally, it checks if there is any migration is

triggered, because of traffic flow increase. To do so, and for all

SFCs in the Runpr|be queues, PSVShare checks if the traffic

increase is not applicable. The SFC under-investigation, with

inapplicable traffic increase, is sent to the migReqrd module,

detailed in Algorithm (2), to return a list of SFCs to be

deported to accommodate the traffic increase. If a host VNF of

the SFC under-investigation cannot handle the traffic increase,

first migReurd tries to add VNF’s BE guest SFCs with

highest inFlow and TTL to SFC migration list migList. If

all the guest BE SFCs of host VNF are not enough to accom-

modate the traffic increase, migReqrd will resort to complete

the remaining required flow by looking to VNF’s guest Pr

SFCs. If a guest VNF of the SFC cannot accommodate the

traffic increase, the SFC under-investigation itself is added to

the migList. PSVShare checks if the migList contains the

SFC under-investigation, if so, only that SFC is terminated.

Otherwise, all SFCs in the migList are terminated. After

accommodating the traffic increase, PSVShare attempts to re-

satisfy all terminated SFCs.

1) IQCP: To satisfy an SFC, new or deported, the satisfy

function in Algorithm (1): lines[9,30, and 37] is implemented

as an IQCP, in which decision variables are binary and some

constraints are quadratic. With SFC request sfcj consisting

of VNFs vi, i ∈ [1 − |sfcj|], our decision variables are: X
j
in

Algorithm 1: PSVShare

Input : netM, No.TSs
Init. : queues:Newpr|be, Migpr|be, Runpr|be, Comppr|be
Output: Different queues

1 for i ← 1 to No.TSs do

2 if i > 1 then

3 foreach SFC rspr|be in Runpr|be do

4 if ttl(rspr|be) = 0 then

5 remove(rspr|be,Runpr|be)

6 add(rspr|be,Comppr|be)

7 else decTTL(rspr|be)

8 foreach SFC mspr|be in Migpr|be do

9 sol ←satisfy(mspr|be,netM)

10 if sol �= ∅ then

11 remove(mspr|be,Migpr|be)

12 deploy(mspr|be,netM)

13 add(mspr|be,Runpr|be)

14 foreach SFC nspr|be in Newpr|be do

15 sol ←satisfy(nspr|be,netM)

16 if sol �= ∅ then

17 remove(nspr|be,Newpr|be)

18 deploy(nspr|be,netM)

19 add(nspr|be,Runpr|be)

20 foreach SFC rspr|be in Runpr|be do

21 if traffChange(rspr|be,nIF) �= true

then

22 migList ←migReqrd(rspr|be,nIF)
23 if contains(migList,rspr|be)=

true then terminate(rspr|be)

24

25 else foreach SFC mspr|be in

migList do

26 terminate(mspr|be)

27

28 ApplyTraffChange(rspr|be,nIF)

29 foreach SFC mspr|be in migList do

30 sol ←satisfy(mspr|be,netM)

31 if sol �= ∅ then

32 deploy(mspr|be,netM)

33 add(mspr|be,Runpr|be)

34 else add(mspr|be,Migpr|be)

35

36 else foreach new SFC naspr|be do

37 sol ←satisfy(naspr|be,netM)

38 if sol �= ∅ then

39 deploy(naspr|be,netM)

40 add(naspr|be,Runpr|be)

41 else add(naspr|be,Newpr|be)

42

43

27

Authorized licensed use limited to: Queen's University. Downloaded on April 01,2021 at 13:26:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: migReqrd function
// nIF: newInFlow & nOF: newOutFlow

Input : rspr|be, nIF

Output: migList: if migration required, null: otherwise

1 Function migReqrd(rspr|be, nIF):

2 foreach VNF vi in rspr|be do

3 if isHost(vi)= true then

4 if (nIF-Fin(vi)) > Fav(vi) then

5 add(vi,diagList)

// vi is a guest VNF

6 else if (nIF-Fin(vi)) >

Fav(hostVNF(vi)) then

7 add(vi,diagList)

8 if (nOF-Fout(vi)) >

bwav(outLink(vi)) then

9 add(vi,diagList)

10 if diagList isn’t empty then

11 foreach VNF vi in diagList do

12 if isHost(vi)= true then
// Add BE SFCs sorted with ↑ inFlow and ↓ TTL

13 add(SFCsbe,migList)

14 if Added SFCs’ inFlow isn’t enough

then
// Add Pr SFCs sorted with ↑ inFlow and ↓ TTL

15 add(SFCspr,migList)

16 else add(rspr|be,migList)
17

18

19 return migList
// No migration(s) required

20 else return null

21

to place new instance of VNF vi of sfcj at node n; and R
j
in

means that VNF vi of sfcj is to share and become the guest

of a deployed underutilized VNF of the same type at node

n. Decision variables and other parameters descriptions are in

Table II.

a) Objective Function: The objective is to select the

placement that minimizes the overall cost, hence optimize re-

source utilization, and minimizes number of migrations of Pr

SFCs. The objective function in equation (1) is formulated in

a way to prefer sharing over instantiating new VNF instances.

min

|sfcj|∑

i=1

∑

n∈N

[cpu(vji)U
c
cpu(n) + ram(vji)U

c
ram(n)]Xj

in+

Fout(v
j
i)Ucbw[X

j
in +R

j
in]
(1)

b) Constraints: First, a feasible solution has to have

each VNF of SFC request mapped only once to a physical

TABLE II: Decision variables and Constants

Variable Description

X
j
in Binary decision for placing VNF vi of sfcj at node n

R
j
in Binary decision for sharing the flow of VNF vi of sfcj

with already deployed VNF of same type at node n

Di
n VNF of same type as vi already deployed at node n

Fav(Di
n) Available unused flow of vi at node n

Uc
cpu(n) Unit cost of cpu at node n

Uc
ram(n) Unit cost of ram at node n

Uc(bw) Unit cost of bw at all links

node. Moreover, the mapping should be either to place a new

or to share a deployed VNF instance, equation (2). Second,

when a sharing decision is to be taken, there has to be a

deployed shareable VNF of the same type as the one in hand,

equation (3), and there is unused capacity enough for new

VNF inflow, equation (4). Third, for the placement decision

X
j
in to be valid, there must be enough cpu and ram resources

at node n, equations (5 & 6). Fourth, for any two consecutive

VNFs v
j
i and v

j
i+1 of sfcj to be placed on two nodes n

and n
′

: first, there has to be a link Lnn
′ connecting the

two nodes, equation (7); second, the outflow of first VNF

Fout(v
j
i) should not exceed available bandwidth at that link

bwav(Lnn
′), equation (8). To minimize number of migrations

of Pr SFCs, Pr SFCs should only be hosted by Pr SFCs, while

BE SFCs can be a guest of Pr and BE SFCs, equation (9).

Finally, the performance requirements (end-to-end latency) of

sfcj must be satisfied, equation (10).

∑

n∈N

X
j
in + R

j
in = 1 , ∀i ∈ [1− |sfcj|] (2)

∑

n∈N

X
j
in + D

j
i S(vi) R

j
in = 1, ∀i ∈ [1− |sfcj|] (3)

Fin(v
j
i) R

j
in ≤ Fav(D

i
n), ∀n ∈ N & ∀i ∈ [1− |sfcj |] (4)

|sfcj|∑

i=1

cpu(vji) X
j
in ≤ cpuav(n), ∀n ∈ N (5)

|sfcj |∑

i=1

ram(vji) X
j
in ≤ ramav(n), ∀n ∈ N (6)

Lnn
′ (Xj

in + R
j
in)(X

j

(i+1)n′ + R
j

(i+1)n′) = 1

∀n, n
′

∈ N & ∀i ∈ [1− (|sfcj | − 1)]
(7)

∑

n∈N

∑

n
′∈N

Fout(v
j
i)(X

j
in + R

j
in)(X

j

(i+1)n′ + R
j

(i+1)n′)

≤ bwav(Lnn
′), ∀i ∈ [1− (|sfcj | − 1)]

(8)

28

Authorized licensed use limited to: Queen's University. Downloaded on April 01,2021 at 13:26:56 UTC from IEEE Xplore. Restrictions apply.

cat(vji) R
j
in ≤ cat(Di

n), ∀n ∈ N & ∀i ∈ [1− |sfcj|] (9)

|sfcj|−1∑

i=1

∑

n∈N

∑

n
′∈N

Del(Lnn
′) (Xj

in + R
j
in)

(Xj

(i+1)n′ + R
j

(i+1)n′) ≤ Del(sfcj)

(10)

IV. PERFORMANCE EVALUATION

To evaluate and demonstrate the performance of PSVShare,

we developed a Java-based simulation environment. The simu-

lation environment generates substrate network model, creates

SFC requests, executes the placement decisions, and tracks

SFCs different state/queue transitions. SFC requests arrival

follows a Poisson distribution. The service time, i.e. SFC

duration in TSs, follows an exponential distribution. The

average length of generated SFC requests is 5 VNFs. The

IQCP model is solved using the Gurobi solver [12]. All

simulation experiments executed on Dell Inspiron 15 7000

laptop with Intel(R) core i5-8250U CPU@1.6 GHz, 24 GB

RAM with Windows 10 Home. We used the NSFNET network

topology with 13 nodes and 32 directional links.

All experiments utilized the same network model, with the

same topology, nodes resources, and links bandwidth. Unless

we are experimenting with the arrival rate λ, experiments are

done with λ = 2 SFCs per TS. With simulation time set to 100

TSs, we generated and saved SFCs for 100 TSs, i.e. number of

SFC requests per TS and length of each SFC. Unless otherwise

stated, SFCs generated are 50% Pr and 50% BE with shuffled

order of arrival. The only difference among experiments, is

the type of VNFs each SFC is comprised of as well as the

QoS requirements. SFC requests are generated with VNFs

in the list of on-boarded VNFs. The list contains VNFs of

different flavours and requirements. Unless stated otherwise,

in all experiments, PSVShare utilizes 60% shareable VNFs.

Finally, if not evaluating the queue sizes or SFC expiration,

the queue sizes are not bounded and SFCs never expire.

A. Numerical Results and Analysis

To assess the proposed PSVShare under extreme cases, we

compare PSVShare with SFCs created from ”100%” shareable

VNFs vs SFCs created from ”0%” shareable VNFs. Figure 2

shows the different queues sizes as percentage of received

SFCs at the end of simulation. As shown, having ”100%”

shareable VNFs resulted in satisfying, completed and running,

26% more SFCs compared to the ”0%” shareable case.

This reveals the positive impact PSVShare has over efficient

resource utilization and the provisioning cost of services. This

is attributed to VNF sharing that PSVShare utilizes, which

increases the effective capacity of network, and hence satisfy

more SFCs.

To assess the performance of PSVShare under different

loads, we experimented with different arrival rates λ =
{1, 1.5, 2, 2.5, 3, 4}, using the same network model (same

Fig. 2: PSVShare with 100% shareable VNFs vs 0% shareable VNFs. λ = 2
and shuffled 50− 50% Pr-to-BE ratio

capacity). Results, in Figure 3, show that PSVShare started to

shine at higher loads. As we can see, at λ = 1, the satisfied

(Completed and running) and pending SFCs are the same

both for PSVShare and No-Sharing scheme. Once the load

increased to λ = 1.5 and higher, the percentage of PSVShare

satisfied SFCs is 14% to 25% more than No-Sharing. Again

this is contributed to VNF sharing before deploying new VNF

instances when satisfying SFC requests.

The rejection rate is a very important aspect that im-

pacts real-time and time-critical services that need to be

deployed once requested. In all previous experiments, the

queue sizes were not bounded. For this study, we limited the

NewPr &Newbe queues to a finite size equal to a percentage

of total number of received SFC requests. We experimented

with queue size equal to 0, 2, 4, and 6% of received SFC

requests. In Figure 4, results show that PSVShare maintained

a stable superior performance against the No-Sharing scheme,

95% confidence interval considered. The rejection rate of

PSVShare ranged from 15% to 22% less compared to that

of No-Sharing. The reason for such behaviour is that, at the

time the No-Sharing network model started to saturate, i.e. no

more resources were available for satisfying new SFCs, the

PSVShare is still able to satisfy SFC requests. This is due to

the efficient resource utilization of PSVShare.

To check whether PSVShare still outperforms the No-

Sharing scheme when most of the received SFCs are Pr or

BE, we experimented with different Pr-to-BE ratios. Figure 5

shows similar behaviour in the extreme cases with ’0-100’

and ’100-0’ Pr-to-Be ratio, with about 20-23% more satisfied

Pr SFCs for PSVShare. The same applies for the ’20-80’ and

’80-20’ cases. For the ’40-60’, ’50-50’, and ’60-40’ cases, Pr

SFCs have the higher priority, so PSVShare and No-Sharing

satisfied almost the same percentage of received Pr SFCs. The

advantage of PSVShare over the No-Sharing scheme is evident

in the percentage of satisfied BE SFCs. This is mainly because,

No-Sharing depleted big share of network model resources

when satisfied most Pr and almost half of the BE SFCs, and

left not enough resources for the rest of BE SFCs. Although,

PSVShare satisfied the same percentage of Pr SFCs, yet it

29

Authorized licensed use limited to: Queen's University. Downloaded on April 01,2021 at 13:26:56 UTC from IEEE Xplore. Restrictions apply.

�
�
�
�
�
��
�

Fig. 3: Completed, running and new-waiting SFCs under different loads. All with 60% shareable VNFs, and shuffled 50− 50% Pr-to-BE ratio

	
 �

Fig. 4: Rejected SFC requests (%) for different queue sizes

is still able to satisfy more BE SFCs. This is due to the

efficient resource utilization, both when satisfying Pr and then

BE SFCs.

Fig. 5: Satisfied SFC requests (%) of different Pr-to-BE ratios, shuffled

V. CONCLUSION AND FUTURE WORK

To take advantage of the changing operation dynamics and

common VNFs among services, we designed PSVShare, a

priority-based SFC placement with VNF sharing algorithm.

PSVShare handles migration situations arising from sharing

VNFs and traffic variation. Simulation results show a con-

sistent outperformance of PSVShare over No-sharing scheme

under different loads, with varying Pr-to-BE ratios, and with

different queue sizes.

Generally, Pr SFCs are very critical and need to be imme-

diately deployed once received with no tolerance to waiting

for deployment. As a future work, we will work on a priority-

based SFC placement utilizing VNF sharing with preemption.

In situations where resources are not available to satisfy Pr

SFCs, a criteria should be in-place to preempt lower prior-

ity/BE SFCs. The preemption criteria should strive to balance

between, immediately satisfying Pr SFCs and minimizing

number of preempted BE SFCs.

REFERENCES

[1] VMware Telco Cloud Blog, “Innovation at the Telco Edge,”
https://blogs.vmware.com/telco/innovation-at-the-telco-edge/, accessed:
03-08-2020.

[2] ETSI, “Network function virtualization: An introduction, benefits, en-
ablers, challenges & call for action,” in SDN and OpenFlow World

Congress, Oct. 2012, pp. 1–16.
[3] F. van Lingen, M. Yannuzzi, A. Jain, R. Irons-Mclean, O. Lluch,

D. Carrera, J. L. Perez, A. Gutierrez, D. Montero, J. Marti, R. Maso,
and a. J. P. Rodriguez, “The unavoidable convergence of nfv, 5g,
and fog: A model-driven approach to bridge cloud and edge,” IEEE

Communications Magazine, vol. 55, no. 8, pp. 28–35, Aug 2017.
[4] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,

“On multi-access edge computing: A survey of the emerging 5g net-
work edge cloud architecture and orchestration,” IEEE Communications

Surveys Tutorials, vol. 19, no. 3, pp. 1657–1681, thirdquarter 2017.
[5] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro,

“Service function chaining use cases in mobile networks,” IETF, Internet
Draft, January 2019.

[6] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” IEEE/ACM Transactions on Networking (TON), vol. 26, no. 4,
pp. 1562–1576, 2018.

[7] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “Vnf
placement optimization at the edge and cloud †,” Future Internet,
vol. 11, no. 3, 2019. [Online]. Available: http://www.mdpi.com/1999-
5903/11/3/69

[8] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE 3rd International Conference on

Cloud Networking (CloudNet). IEEE, 2014, pp. 7–13.
[9] F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalosub, “Reduc-

ing service deployment cost through vnf sharing,” IEEE/ACM Transac-

tions on Networking, vol. 27, no. 6, pp. 2363–2376, Dec 2019.
[10] A. Mohamad and H. S. Hassanein, “On demonstrating the gain of

sfc placement with vnf sharing at the edge,” in 2019 IEEE Global

Communications Conference (GLOBECOM), 2019, pp. 1–6.
[11] K. Nichols, V. Jacobson, and L. Zhang, “Rfc2638: A two-bit differen-

tiated services architecture for the internet,” USA, 1999.
[12] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2018.

[Online]. Available: http://www.gurobi.com

30

Authorized licensed use limited to: Queen's University. Downloaded on April 01,2021 at 13:26:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

