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Abstract 

Distributed Web caching systerns aiiow better load sharing and more fault tolerance in 

Web caching systerns. Layer 5 switching-based transparent Web caching schemes 

intercept H ï T P  requests and redirect them according to their content. Employment of 

these schemes in distributed Web caching systerns provides balanced server workload, 

reduced response t h e  and improved cache sharing. However, none of the existing 

schemes attempt to minirnize the HTTP request response the .  

In this thesis, we propose a Minimum Response Tine (MRT) Layer 5 switching-based 

Web caching scheme for distributed Web caching systems. MRT distinguishes non- 

cacheable requests from cacheable requests based on IFITP request header. It 

inteugently redirects cacheable requests to the cache server with the minimum HITE' 

request response tirne based on the information about cache server content. cache server 

workload, Web server workload and network latency. MRT extends ICP to support the 

communication between cache servers and Layer 5 switches. The MRT heuristic is a 

solution to optimize the performance of the distributed Web caching. 

A nurnber of simulation experiments are conducted under Werent H ï T P  request 

intensities, net work latenc y factors. object expiration time values and number of 

cooperating cache servers. Simulation results show t hat MRT outperforms existing 

switc hing-based Web cac hing SC hernes. narnely Content, Workload, R n  and LB-L5 in 

terrns of HTTP request response the. 
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Chapter 1 

Introduction 

The rapidly increasing number of Web applications, coupled with the rapidly increasing 

number of documents accessible by Web clients, has resulted in an explosive increase in 

Web t r a c  expressed both in tenns of H ï T P  requests and H T ï P  replies. H ï T P  Web 

tratnc has grown to account to 75-80% of aii Intemet t r a c  [Il.  There is no indication 

that this increase wiU abate in the near future. In fact, the number of Web users keeps 

increasing and the Web is used in ever more different ways to access a wide variety of 

text, stiil images, audio and video documents. This popularity is raising an urgent need 

for solutions ajmed at improving the quality of the service provided by the Web. 

Web caching [l] [2] is one of the most popular solutions to the problem mentioned 

above. It is a technique that uses caches over the Intemet for replication of the most 

frequently accessed data. Various approaches have been examined in order to increase 

the performance of Web caching. These include the use of large caches and of more 

efficient cache management techniques. Ho wever, the effectiveness of a single cache 

remah poor as it is, in general, no bigher than 40% [3]. Furthemiore, the use of large 
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caches raises financial and technical problerns. Other efforts have focused on pre- 

fetctung of data to caches but the resulting t r a c  overhead is too costly 141. Another way 

to increase Web caching performance is to expand solutions fkom the level of a single 

cache to the level of a set of cooperating caches. Cache cooperation provides a 

mechanism to share documents among caches and to share one cache among a nwnber of 

clients [SI 161 [7] [SI. 

The most popular types of cooperative cache systems are the hierarchical and the 

distributed systems, which are both implemented by the Squid software [l] 193 as part of 

the Harvest project [IO]. Several Web caching schernes are deployed by Squid to support 

cache cooperation. Intemet Cache Protocol (ICP) [Il] is employed to exchange the 

messages between cache servers. A Bloom Fiiter [12] is used in Squid to represent the 

cache content compactly. Ln this type of cooperation, approaches for inter-proxy 

cooperation try to rnaximize the global hit ratios. A Web client's local proxy redirects 

requests to one of its cooperative cache servers when it is a cache-rniss on the local cache 

server. The redirection is based on the query results of the contents of the cooperative 

cache servers. 

Traditional hierarc hical Web cac hing systems [ 11 [9] have several draw backs. Shared 

higher-level cache servers may be too far away fiom the client. Cache misses are 

signincantly delayed by having to traverse the hierarchy. As weli, redundant data are 

stored on higher-level cache servers and the higher-level cache servers may becorne a 

bottleneck. Distributed Web caching systems [ 11 [9] [ 131 1141 [ 151 [16] rely on replicated 
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objects and services to improve performance and reliability. There are no hierarchies 

among cache servers. AU cache servers are employed at the same level. So distributed 

Web caching systems overcom the drawbacks of hierarchical Web caching systems. 

Moreover, they have better fault tolerance, distriiution of server loads and improvement 

of client performance by bringing cache servers closer to Web clients. 

In both traditional hierarchical or distributed Web caching system, the redirection of 

HTTP requests is done by cache servers. There are cases in which copies of objects in 

sorne distant cache servers may not be worth fetching. Instead the original Web server 

itself may be a better choice. Sometimes copies in a heavily loaded cache rnay be costly 

to fetch and instead a Lightly loaded cache may be a better choice. It is dificult for a 

cache server to colect and process the load information of all the cooperative cache 

servers and network load information. The packet processing hinctions and packet 

forwarding functions may not be efficient if perfonned at cache servers. 

Recently, a new type of Web caching technique has emerged. It is cded switching-based 

transparent Web caching [17] [18]. A switch sits in the data path between the Web 

clients and the server cluster. It intercepts the Web traffic and transparently redirects the 

HTTP requests to different cache servers or to the Web server. Transparent Web caching 

makes the configuration of the caching sptem easier. Switches can rapidly process and 

forward the packet S. This switc hing-based transparent Web cac hing technique can use 

content-aware Layer 5 switches in a distnbuted Web caching system with enhanced 

cache cooperation 1191 [20] [21] [22]. The switches perform content checking based on 
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Layer 5 header information of the HM'P request packets. A HTTP request is redirected 

by switches to the cache server that can best service the request. 

From the perspective of the Web clients, the request response time is an essential 

component of quality of service. However, fluctuations in network congestion and server 

load make it dificult to collect the information and to predict response times. In the 

existing switching-based transparent Web caching system, the switch uses several 

performance estimators to approximate the HTTP request response time. For example, a 

ping probe [23] masures current network latency but does not masure server workload. 

Another example is Cisco CSS 1 1000 [22], which requires the cooperative cache servers 

be within the same LAN. Z. Liang proposes a Load Balancing Layer 5 switching-based 

transparent Web caching scheme (LB-LS) [20]. LB-L5 considers both workload and 

network latency, but LB-L5 has one main drawback in that it cannot guarantee minimum 

response time for Web requests. 

In this thesis, we propose the Minimum Response Time (MRT) switching-based Web 

caching scheme. The main goals of our research are: 

To propose a solution to optimize the performance of distributed switching-based 

transparent Web caching systems. The proposed scheme should minimize the EFITP 

request response time and balance the workload among the caches based on a 

combination of request content, cache server content, network latency and server 

workload. 
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O To deveiop a trace driven simulation to evaluate the performance of the proposed 

scheme. 

The rest of the thesis is organized as foiiows. Chapter 2 surveys existing work on 

distributed Web caching systerm. In Chapter 3. we descni the proposed MRT scheme. 

Simulation results and analysis are reported in Chapter 4. Finaiiy, in Chapter 5 we 

conclude the thesis, List the contn'butions of our work and discuss future research 

directions. 
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Chapter 2 

Related Work 

Web caching improves the quality of the semce provided by the Intemet. A single cache, 

however, has a h i t e  size and there is a b i t  to the number of objects that c m  be cached. 

A group of cache servers can be used to realize cache cooperation. The two most popular 

types of cooperative cache systems are the hierarchical and the distributed systems. In 

hierarchical Web caching architecture, cache servers are placed at multipie levels of the 

network. On the other hand, in distributed caching architecture, caches are placed at the 

bottom levels of the network and there are no intermediate caches. Such distributed 

systems rely on replicated objects at different locations and services to improve 

performance and reliability. The design of efficient server selection algorithms is critical 

for distributed Web caching sc hemes. 

This chapter presents a literature review of server selection algonthrns in distributed Web 

cachiG systems. Section 2.1 gives a bnef introduction to the hierarchical and the 

distributed Web caching modeis. The server selection rnethods f d  into three categones: 
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client-initiated [23] [24] [25] 1261 [27], switch-based [17] 1181 1191 [20] [21] [22] and 

semer-initiated [28] [29] methods (depending on who makes the selection). Both client- 

initiated and switch-based approaches are aimed at a group of servers that are 

heterogeneous. Section 2.2 discusses current client-side selection algonthms. Section 2.3 

presents selection methods that rely on network switches, which are the focus of our 

work. Switches choose arnong the interfaces by deciding which is "best", where best is 

dehed by request contents and the switch meincs. In semer-initiated methods, the 

servers decide where to send the requests. The server side algorithms are used for Web 

server clusters, which typically contain members with similar resources and a shared 

local network. As they do not directly pertain to the work in this thesis, they are not 

discussed further. Finally a summary is given in section 2.4. 

2.1 Hierarchical and Distributed Web Caching 

Hierarchical Web caching is one form of cooperation among cache servers. Traditional 

hierarchical cache server architectures such as Squid [ 1 ] 191 define parent-sibling 

relationships among cache servers. A parent cache server is essentially one level up in a 

cache hierarchy. A sibling cache server is on the same level. Each cache server in the 

hierarchy is shared by a group of clients or by a group of children cache servers, as 

show in Figure 2.1. 
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Figure 2.1 Hierarchical Architecture for Web Caching 

Data access proceeds as foilows: if the lowest-level cache server contains the data 

requested by a client, it sends the data to the client, othenvise, the cache server asks each 

of its siblings for the data. If none of the siblings possess the data, then the cache server 

sends a request to its parent. This process recursively continues up the hierarchy until the 

data is located or the root cache server fetches the data from the Web server. The cache 

servers then send the data down the hierarchy and each cache dong the path stores the 

data. 

Traditional cache hierarchies have severai problems. Fust, a request rnay have to travel 

rnany hops in a cache hierarchy directory to get to the data, and the data rnay traverse 

several hops back to get to the ciients. Second, cache misses are significantly delayed by 

having to traverse the hierarchy. Third, there is little sharing of data among caches. 

Fourth, shared higher-level cache servers may be too far away from the client and the 

tirne for the object to reach the client is simply unacceptable. 
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Distributed Web caching aüows the distribution of caching proxies geographically over 

large distances and attempts to overcome some of the drawbacks of traditionai 

hierarchical Web caching. Cache servers are organized into cache clusters with no 

definite hierarchy among them, as shown in Figure 2.2. A &vice, such as a switch or a 

locai cache of the client cluster, sits between the client cluster and the cache server 

cluster. 

Figure 2.2 Distributed Architecture for Web Caching 

Data access proceeds as foliows: if a local cache server contains the data requested by a 

client, it sends the data to the client. Otherwise, the local cache server or a switch device 

redirects the client request to one of the cache servers. If that cache server has a copy of 

the requested object, it sends the data back to the client. Otherwise the request is 

redirected to the Web server. Distributed Web caching systems have several benefits 
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including fault tolerance, distribution of server loads and improvenient of client 

performance by bringing cache servers doser to the client. 

2.2 Client-lnitiated Selection Algorithms 

Client-initiated methods are a class of cache server selection algonthms in which the 

clients or their local proxies select the server. The algorithms are designed for a set of 

heterogeneous, topologically dispersed servers, whose response times depend upon both 

server and network effécts. The H ï T P  request response time is the most appropriate 

performance metrïc from the users' point of view. The request response time is the sum 

of connection establishment time, latency and îransmission the: 

T = Tcomct + Thtency + Tmmining (2.1) 

where. T- is the time to establish a TCPlIP connection, Ti=- is from the time of 

sending the request to the time of receiving the first packet of the reply, and T e g  is 

the tirne to receive the remaining reply packets. It is not easy to measure the request 

response tirne. Th,, is related to the network load, network propagation delays, cache 

server load and cache server speed. T-,, is determined by the size of objects. 

Measurement of these times may lead to substantial overhead. Different selection 

methods that have been used to approximate the HTTP request response t he ,  and upon 

which the clients or their local caches rnake their selections. 

2.2.1 Minimum Number of Hops 

The number of hops between a client and a cache server is one cornmon approximation of 

the request response time [23] 1241 [25]. It can be used by clients to determine the 
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proximïty of distributed servers. The fewer the number of hops then the smaller the 

distance between the cache server and the client- The number of hop can be obtained 

directly from the routing tables without incurring any additional network load. The 

approach is very simple and easy to implement. 

For example, J.Guyton [24] and R.Cater et al 1231 [25] investigate this approach under 

the assumption that each cache contains contents that are also held in other caches- A 

client sends al1 requests to the closest server in ternis of the number of hops [24]. The 

problem with this approach is that the number of hops cannot reflect the varying network 

load. Even for hornogeneous server sets with well-balanced load, response times can 

differ signincantly because network routes between the client and the semers have 

different bandwidths and congestion patterns. The correlation between the number of 

hops and the HTTP request response time has been shown to be relatively low 1261. 

2.2.2 Minimum Round Trip Time 

The round trip time (RTT) of the packets sent by the ping utiiity is another cornmon 

metric for determining the proximity of distributed servers. The standard ping utility uses 

the Intemet Control Message Protocol (ICMP) [30] to send ECHO-REQUEST datagrams 

to the cache server's echo port and listens for the ECHO-RESPONSE. Unlike the 

number of hops, the ping round trip t h e  reflets the actual network load on the route 

between the client and the semer. 
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Internet Cache Protocol (ICP) [SI and National Laboratory for Applied Network 

Research (NLANR) [6 1 use R?T. The Squid cache severs of NLANR are confSgured into 

a tree-stmctured hierarchy. In such a hierarchy, every participahg cache server is 

organized with a connection of neighboring pers and a parent. ICP is used for 

communication. When a client's local proxy cannot service the request fkom its cache, it 

uses a set of configuration rules to determine if the Web server is local. If not, the proxy 

issues a set of simultaneous ICP-OPQuery messages to ail its peers. When a peer 

receives the query message and fin& that it has the requested object, it sends back 

ICP-OP-HIT. The client's local proxy forwards the request to the peer that responds 

first . if aii peers reply with LCPCPOPOMISS, the following three situations apply: 

1) If the peers are using the ICP-FLAG-SRC-RTï feature, the request is forwarded to 

the peer with the lowest RTT to the origin Web server. 

2) If there is a parent available, the request will be forwarded to the local cache's parent. 

3) If the ICP query/reply exchange does not produce any appropriate parents, the request 

is sent directly to the origin Web server. 

The drawback of this approach is that the ping round trip time does not provide any 

indication of the cache server load and the speed of the cache server. The correlation 

between the round trip time and the HTTP request response time is found to be slightly 

higher than for the Minimum Number of Hops, which is still not indicative of the request 

response time [26]. 
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2.2.3 Minimum HlTP Request Latency 

Under the assumption that the H T ï P  request response iimes are stable within a short 

period of the,  the response tirne of a new H ï T P  request can be estimued kom the 

response times of IFITP requests previously sent to the sarne server. However, the 

response t h e  also depends on the size of the requested object, which is not known at the 

tirne the object is requested. Instead, HITP request latency, which is the tïme from 

sending the request until the fkst byte of a response is received, can be used as a 

substitute for estirnating the H'M'P request response time. Unlike R n ,  the H T ï P  

request latency reflects not only the actual network load on the route between the client 

and the server but also the server workload and speed. Although it is independent of the 

size of objects it is still a reasonable predictor of the H T ï P  request response time because 

most web objects tend to be small[26]. 

For example, S-Dykes et al [27] use HTTP request latency to approximate the H T ï P  

request response tirne, under the assumption that each cache contains contents that are 

also held in other caches. With the H T P  request latency algorithm, a client sen& 

requests to the server with the lowest median H T ï P  request latency in prior transfers. 

The problem with this approach is that prior latency does not successfully estirnate the 

current response time because network load and server load change ail the time. 

2.2.4 Hybrid Approach of Bandwidth and R H  

S.Dykes et al propose a hybnd approach [27] for client-side selection. They combine the 

R'ïT approach with bandwidth. First, the client selects n servers with the fastest median 
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bandwidth fiom pnor transfers. Then it sends a dynamic ping to each of these servers and 

selects the b t  to reply. It inrmediately forwards the request to that server without 

waiting for replies fi-om other servers. The bandwidth rneasured only reflects past cache 

server workload and provides no information about current cache server load. 

2.3 Switch Selection Algorithms 

Cache server selection can be done by a networking device such as a switch. This kind of 

selection algorithm is used in a distributed switching-based transparent Web caching 

system, which is shown in Figure 2.3. 

Client 

Cache Server - Ï  Cache Server F 7  
Figure 2.3 Transparent Pmxy Web Caching with Redirection 

A switch, running special software acting as a redirector. sits in the data path and 

examines all packets bound for the Intemet. It sends the HTTP trafic to cache servers for 

processing and passes on the remaining traffic. In particular, cache servers are not 
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invoived in the network functions, such as network address translation and routing 

(usually performed by cache servers in the other Web caching schernes). 

The Layer at which the switch operates is determïned by how much header detail the 

switch reads as data passes through. The switch-based redirectors may operate at Layer 4 

(network level) or Layer 5 and above (application level). The redirectors that proide 

Layer 4 services use TCP or UDP transport layer information, e.g., port numbers found in 

TCPNDP headers, in making packet-forwarding decisions. A Layer 4 switch can be 

configured to direct all traffic with particular destination TCP ports to a particular 

network pon. For example, it may switch al1 traffic going to port 80 (used for HTTP 

traffic) to a particular port on the switch where a cache server is attached. More 

sophisticated Layer 4 switches may provide additional functionalities, such as load 

balancing arnong a cluster of caches. 

Layer 5 switches 13 11 add the ability to use information found in the payload of HTTP 

request header packets. In order to obtain the H'ITP request header, a Layer 5 switch 

sends a TCP SYN ACK message to the client and tricks it into believing that there is a 

TCP connection established between the client and the server. The client then sends the 

HTIP request to the Layer 5 switch. The information in the ICITP request can be used to 

provide more sophisticated capabilities. For example, the URL found in HTT'P GET 

requests can be examined to determine whether an image is king requested. If so, al1 

packets belonging to the TCP connection comsponding to this request can be switched to 

a server that is optimized to deber images. Another cornmon use for parsing the content 
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of HïTP requests at the switch is directing requests for non-cacheable content, e-g., 

results of a CG1 script, to the original web server instead of a cache server, thus 

eliminating unnecessary load on the cache server. Besides content checkuig, Layer 5 

switches can use other information metrics such as server workload and network latency 

to pick the best cache server to service the client IFITP request. 

2.3.1 Content-Based Selection 

A Layer 5 switch can make the routing decisions based on the content of the request. One 

example is the Arrowpoint Content SmariSwitch (CSS) [18]. On the client side CSS can 

be configured to redirect static HTTP requests to one cache server cluster since it cm 

distinguish among different "higher-lever' protocols, iike H ï ï P  [32] and The Secure 

SHeii (SSH) remote login protocol 1331, and divert them to the appropriate server or 

group of servers that senice the type of requested content. The CSS also bypasses 

dynamic H T ï P  requests and redirects them to the Web server. Arrowpoint CSS rnakes 

the routing decision based on the availability and type of the content. Each cache server 

cluster stores one specific type of content. Inside one cache ciuster, other approaches 

such as round robin or random or workload are needed to assist in selecting the 

appropriate server. 

2.3.2 Workload-Based Selection 

Som switches can intelligently redirect HTTP requests to lightly loaded cache serves. 

For example, the Extreme Networks switches [21] and Cisco CSS 1 1ûûû [22], use the 

foilowing load-balancing algorithm to redirec t the ICITP requests: 
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Round robin - A simple algorithm that distributes each new comectiodsession to 

the next available semer. 

Weighted round mbin with response time as weight - An enhancement of the round 

robin method where response times for each server within the virtual service are 

constantly measured to determine whic h server will take the next connec tionkssion. 

Fewest connections - determines which server gets the next connection by keeping a 

record of how many connections each server is currently providing. The server with 

fewest connections gets the next request. 

Extreme Networks switches and the cache servers are usuaiiy deployed within a LAN, so 

they do not need to consider the network delay or congestion. If some servers have huge 

network latency to the switches, then it will lead to serious performance problems, since 

the network delay greatly aEects the performance. Extreme Networks switches route at 

the Layer 2 and Layer 3 levels. They are blind to the content of the objects. Cisco CSS 

1 1 0  senes switches learn where specific content resides. The server selection done by 

the CSS 11000 switches is based on server Ioad and number of connections or round- 

robin algorithms. CSS 1 1000 is, t herefore, only suit able for a local cache cluster. 

2.3.3 RH-Based Selection 

Global server selection algorithms allow mkrored semers or server fanns to be 

distributed around the world, which enables requests to be directed to the best cache 

server. Switches determine the best cache server based on the cache server content, the 

proximity to the client and the round trip time to the cache server. An example is the 



Chapter 2: Related Work 18 
pp - - - - - - 

Aheon WebSystems' ACEdKector 1231. This kind of Layer 5 switch automaticaily 

exchanges the above information with ail other ACEdirector Layer 5 switches. With a 

global view of every cache semer's performance, each switch develops a Iist of candidate 

cache servers. The switches then direct trafic to cache servers in proportion to the 

servers' performance measurements. As a result, the best performing cache server receive 

more connections than others, due to their ability to handle more connections. 

This approach has the same probIem as client-initiated algorithms. It is difncult to 

measure or estimate the actual H T ï P  request response time. ACEdirector uses the RTT 

or proximity to the client as the performance rneasurement to approximate the IFZTP 

request response time. However, this works only when the workload of cache servers is 

fairly distributed. 

2.3.4 LB-L5 Selection 

2-Liang [20] proposes a fully distributed Web caching scherne that extends the 

capabilities of Layer 5 switching to improve the response time and balance cache server 

workload. In L B L S ,  a Layer 5 switch se1ects the best server based on cache content, 

cache server workload, network load and the H T i T  header information. If the network 

latency between a cache server that stores the object and the Layer 5 switch is srnaller 

than some threshold, then that cache server is considered as a candidate for access and the 

Layer 5 switch uses toad balancing algorithms to choose the best server fiom which to 

retrieve the object. The drawback of this approach is that it is difficult to set the threshold 

value. If the value is too large, then the network delay affects the performance. If the 
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vahe is too s d ,  then the advantage of cache cooperation is lost. LB-L5, therefore, 

cannot guarantee the minhm request response tirne. 

2.4 Summary 

A distributed Web caching system uses a cluster of servers to provide load balancing, 

fault tolerance and reduced redundant copies of content. One important problem of a Web 

caching scheme for distributed systems is to find the best server to s e ~ c e  the request. In 

this chapter we provide descriptions of several cache server selection algorithms for 

distributed Web caching systems. We class8y the algorithms according to where the 

cache server selection is made. 

Some researchers, like C. Yoshikawa et al [34], argue that the client, rather than the 

server or a switch, is the right place to irnplement transparent access to distributed 

network sewices. They believe this approach offers increased flexibility. For exarnple, 

clients are aware of the relative load on a number of servers and can easily reduce the 

load on heaviiy loaded servers compared to server-initiated algonthnrs. Clients also do 

not require special network topology to do the selection. Finally, uniilce a single switch, 

different clients do not represent a bottleneck. 

We believe, however, that offloading the selection function fiom clients to a switch is 

much better. Client-side selection has several drawbacks. First, if the client browser does 

the selection, it requkes a program such as an applet running on the client side 1341. This 

kind of application program has to process packets and may result in an inefficient 
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selection decision. Moreover, if a client local proxy does the seiection, it adds load to the 

local cache and the local proxy becomes the single point of failure. 

Compared to client selection algorithms, switching-based selection algorithms have the 

following advantages. F i t ,  a switch is optùnized for examinhg and processing packets, 

so there is minimal impact on non-Web trafic. Second, rernoving the packet 

examination, server selection, network address translation and routing functions fkom the 

cache server kees up CPU cycles for s e h g  Web pages. Third, using a switch redirector 

that is separate from the cache servers allows the client load to be dyndcally spread 

over multiple cache servers, which, in turn, cm reduce response the.  Further, redundant 

redirectors can be deployed, eliminating any single point of failure in the systen 

Our research focus is distributed Layer 5 switching-based transparent Web caching. Our 

research objective is to design an efficient switching-based transparent Web scherne to 

optimize the performance of distributed Web caching systerns (min- respow time 

and balance the workload). Among ail existing switching-based Web schemes there are 

no effective methods to estimate the actual HTTP request response tirne, while at the 

sarne t h e ,  to balance the workload among the cache semer cluster for a global 

distributed web caching system Som switches, such as Cisco CSS 11000 series, are 

only suitable for a local cache cluster and do not consider the network ioad. Other 

switches, like Alteon WebSystems' Amdirector, use R'IT to approxirnate the request 

response tirne and not concem the server workload The Layer 5 switch used in the 

proposed LB-L5 scheme has difficulty in setting its threshold. 
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Chapter 3 

Minimum Response Time Scheme 

Layer 5 Switchuig-based schemes suppoa distributed Web caching system and can 

inteiligently redirect a client request to the proper server (cache server or the Web server) 

using the content information in the HTTI? header. However, these existing schemes 

cannot guarantee optimized performance in terms of request response tirne. This may 

result in huge request response times when the caching system is heavily loaded or the 

network is highly congested. 

In this chapter, we present the Minimum Response Time (MRT) scheme, which is a 

distributed transparent load-balanced Web Caching scherne that uses the client request 

header, cache semer content, cache server workioad, Web server workload and network 

latency to inteiligently redirect requests. The goal of our work is to optimize the 

performance of distributed Web caching systems to achieve the minimum response t h e  

and baianced load. Section 3.1 is an overview of the MRT scheme. Section 3.2 contains a 

detailed description of the MRT scheme. Findy, section 3.3 provides a su- of the 

chapter. 
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3.1 Ovewiew of the MRT 

The proposed MRT sçheme is intended for response-tirne-sensitive Web caching 

systems. It is based on the switching-based transparent distributed Web caching systems, 

as shown is Figure 3.1. There is no communication among cache servers in the cache 

cluster. The cache sharing is achieved through Layer 5 switches [30]. Layer 5 switches 

directly c o ~ e c t  to the Web server. 

Client Cluster Client Cluster 

Figure 3.1 Distributed Switching-Based Transparent Web Caching System 

MRT uses Layer 5 switches to check the HM'P request content. It sen& the non- 

cacheable requests directly to the Web sewer. It redirects the cacheable requests to the 

most appropriate cache server. MRT predicts the request response time for each cache 

server using some information (to be described later) and chooses the cache server with 
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the minimum predicted response tirne. The MRT scheme has two components: content 

checking and server seleçtion. 

The following Table 3.1 summarkes all syrnbols used in the reminder of this chapter. 

Symbol Name 
F 
D 
W 

3.1.1 Content Checking 

MRT uses a Bloom Filter to represent cache server contents. The use 

compactly represent cache server contents is proposed in Cache 

S ymbol Meaning 
The size of a Bloom Filter 
The number of objects stored in a cache sever 
Nurnber of hash fiinctions- It is the number of bits to represent an object in a 

FD 
EiRT), 

of Bloom Filter to 

Digest 1121 and 

cache serves 
False hit rate 
The expected value of the http request response time if the switch sends the 

Summary Cache [35]. Objects in a cache server can be represented by a Bloom Filter, 

which is an array of bits. To represent an object in a Bloom Filter, a fixed number of 

independent hash functions are computed for the object's 

number of hash functions specifies how rnany bits are used 

hash values spec8y the bit positions that should be set tol in 

key, which is the URL. The 

to represent one object. Their 

the BIoom Filter. 



Chapter 3: Minimum Response Time Scheme 24 

A cache server in MRT cm inform the switches about its content by sending them its 

content information in the forrn of a Bloom Filter. A switch stores the content 

information for each cache server. When a switch needs to check whether a cacheable 

requested object is in a cache server, it uses the same set of hash functions for the 

request's URL and examines the corresponding bits in the semer's Bloom Filter. If ail of 

the matchhg bits are 1's then the requested object is assumed to be in that cache server. 

Otherwise the object is not in the cache semer. 

If we know the size of the Bloom Filter of a cache server as F and the nwnber of the 

objects stored in that cache server as D, then we can calculate the optimum number of 

hash functions, W, for a Bloom Filter as foiiows: 

The detded proof of equation (3.1) can be found in Appendix A. 

A switch in MRT determines the cacheability of a requested object using the URL 

information in the request's IFLTP header. In this way, only the requests for cacheable 

objects are presented to the cache servers. Since an object may be placed at different 

cache semers, a Layer 5 switch may find a number of cache semers that contain the 

requested object. How to choose the best server to service the request is very important in 

a distributed Web caching system. The major part of Our work is to k d  the best cache 

server and optimize the performance of a distributed Web caching systea 



Chapter 3: Minimum Response Time Sc heme 25 

3.1 .2 Cache Server Selection 

A Layer 5 switch can use information iike cache server contents, server workload and 

network latency to estirnate the request response time for each cache semer and choose 

the cache server with the minimum response tim. A potential problem with such an 

approach is that the content prediction cannot always be correct, since a Bloom Fiter size 

is not intinitely large. A request predicted to be a cache-hit might be a cache-miss. It 

results in the incorrect predicted request response time and the wrong cache m e r  

selection. 

In our proposed MRT scheme. cache server selection is based on the expected value of 

response t h e  in case of H'ITP request cache-hit and in case of EFTTP request cache- 

miss. MRT selects the cache server with the minimum expected value of a HTTP request 

response tirne. The cache semer selection algorithm used in MRT has to determine three 

factors: 

1) Pcs-,, , ,  the probability that a predicted cache-hit H T ï P  request is a cache-miss on 

cache server CS. 

2) The delay components for a cache-miss IFITP request. Tcs-ks., 

3) The delay components for a cache-hit H T ï P  request, Tc~hi t -  

MRT then estimates the expected value of the request response time for CS as follows: 

E(RT)cs = Ptx-miss * Tc-iss + ( I - P c s - m d  * T c s ~ i t  (3-2) 
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False Hit Rate 

The probability that a predicted cache-hit request is a cache-miss can be approximated to 

be the f a k  hit rate of a cache server. This is the probability that an object is not actudy 

stored in the cache server, when the cache semer's Bloom Fiiter indicates it is there. We 

use the terms hit and miss to indicate whether the bits of the Bloom Filter predict that a 

aven object is in the cache server or not, respectively. There are two types of hits and 

misses: 

True hit: The Bloom Filter correctly predicts an entry is in the cache server. 

False hit: The Bloom Filter incorrectly predicts the entry is in the cache semer. 

True miss: The Bloom Filter correctly predicts the entry is not in the cache server. 

F&e miss: The Bloom Filter incorrectly predicts the entry is not in the cache server. 

A Bloom Filter size is not infinitely large so URLs cannot be hashed to unique bits. A 

Bloom Filter, therefore, dways has a non-zero number of false hits. The size of a Bloom 

Filter and the nurnber of objects in a Bloom Fiiter determine the probability that lookup is 

correct. A smaller filter size results in higher false rate than a large one for the same 

nurnber of objects. As A. Rousskov pointed out the number of false misses is negligible, 

while the number of false hits is relatively high [12] when a Bloom Filter is small. 

In a Bloom Filter representing D objects. if each object is represented by W bits, the false 

hit rate is derived as 1361: 

Fp = (1 - e-wDrr)w 
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Fp is a function of FID and W. In Figure 3.2, we plot the relationship between Fp and 

FID for different values of W according to the equation (3.3). 

Figure 3.2 False Hit Rates 

From Figure 3.2 we can see that false hit rate decreases when F/D infreases. The amount 

of decrease is more apparent for larger values of W. When W is greater than 2 and F/D is 

greater than 10, the false hit rate is close to O. If a Bloom Filters is not very large and if 

the F/D is srnaller than 10, the false hit rate highly varies with changes in Fm. It is 

possible that one cache server has a low false hit rate while another has a high false hit 

rate. This information is very useful when a Layer 5 switch in MRT d e s  the routing 

decision. In our scheme, if an object cm be cached at more than one cache server and 

these cache servers have similar values for workload and network luik delay, the requests 

for an object should be directed to a server where the false hit rate is low. 
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HTTP Request Response Time Components 

From the previous section we know that a Bloom Filter may result in false hits. When a 

fdse bit occurs the response time to retrieve the requested object wiU increase because 

the cache server has to retrieve the object from the original Web server. Since the request 

response time is predicted from the Layer 5 switch's point of view, we do not consider 

the time spent between the Web client and the Layer 5 switch in our discussion. 

The basic processing procedure for a cache-hit H7"ïP request in MRT is illustrated in 

Figure 3.3. After a switch receives a HTTP request from the Web client, 

(1) The switch sen& a TCP-SYN signal to a Proxy Cache Server for a connection 

request. The Cache Server sen& back a TCP-ACK to accept the connection. The 

time spent is the round trip time between the switch and the cache server. 

(2) The switch then relays the HTTP request to the cache server. The time required is half 

of the round trip tirne between the switch and the cache server. 

(3) The cache server processes the request. The tirne for the processing is proportional to 

the cache server's workload. 

(4) Since the request is a cache hit, the cache server immediately relays the requested 

objects to the switch. The t h e  spent is haif of the round trip time between the cache 

server and the switch. 

A cache-hit request response tirne is qua i  to the surn of the above components. 
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Web Client Layer 5 Swîtch Cache Server Web Server 

Figure 3.3 A Cache-Hit Request in MRT 

The basic processing procedure for a cache-miss H T P  request in MRT is illustrated in 

Figure 3.4. After a switch receives a HTTP request fiom the Web client, 

(1) The switch sen& a TCP-SYN signal to a Roxy Cache Server for comection request. 

The Cache Server sen& back TCP-ACK to accept the comection. The time spent is 

the round trip time between the LS S witch and the cache server. 

(2) The switch relays the HTTP request to the cache server. The time required is haif of 

the round trip time between the L5 S witch and the cache server. 

(3) The cache server processes the request. The time spent is proportional to the cache 

secver's workload. 
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(4) Since the request is a cache-miss, the cache server makes a TCP connection request to 

the original Web server. The Web server sen& back TCP-ACK to accept the 

comection. The time spent is the round trip time between the cache server and the 

Web server, 

(5) The cache server then relays the IFITP request to the Web server. The time spent is 

haif of the round trip time between the cache server and the Web server. 

(6) The Web server processes the request. The time spent is proportional to the Web 

server workioad, 

(7) The Web server sen& back the requested object to the cache server. The cache server 

receives the object and stores a copy. The time spent is half of the round trip time 

between cache server and the Web server. 

(8) The cache server irnrnediately relays the object to the switch. The time spent is half 

of the round trip time between the cache server and the switch. 

A cache-miss request response time is equal to the sum of the above components. 
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Web Client Layer 5 Switch Cache Server Web Server 

Figure 3.4 A Cache-Miss Request in MRT 

We need to represent the relationship between the server (both cache semer and Web 

server) processing time and the workload of the server. We define the workload as the 

number of active concurrent requests at a given time divided by the maximum number of 

concurrent requests that c m  be serviced. The server processing time, which includes the 

request queuing tirne, the tirne to search for the requested object and the disk access time 

to move the requested object from the disk to the mernory, measures the total delay fiom 

the time a request arrives the server until the server responds. The processing time on the 

server is proportional to the number of concurrent requests at the proxy cache server. 
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This assumption is supported by the data coilected by A. Rousskov [37] and also used by 

2. Liang [20]. As shown in Figure 3.5, if the average time to process one request at the 

cache server is PT and the cache semer's current workioad is NMax, then the time T 

needed to process the Nth request on the proxy cache server is: 

N T = (-)*MM* PT 
Max 

HTïP Requests Queue 
4 
-------- I I I t- --- 1 Cache Server 1 

Figure 3.5 Cache Server Processing Time and Number of Concurrent Requests 

A server can send its workload to a switch in the MRT periodiçah and the switch 

records the maximum number of concurrent requests for each server. The switch can then 

use the server workload to calculate the server processing time. 

3.1.3 MRT Routing Scheme 

The MRT scherne is intended for distributed architectures. Each cache server sends a 

representation of its content and number of objects to the switches. The switches 

periodically query the workload of each cache server. Web servers periodically send their 

workload to switches. A switch in MRT uses the HïTP request header, cache server 

content, cache server workload, Web server workload and network latency to route H T l T  

requests, and hence minimizes the average H'ITP request response t im and balances 

cache server workload. 
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A Layer 5 switch in MRT makes a routing decision as foilows: 

(1) If a request is non-cacheable, then redirect it to the Web server. 

(2) If a request is cacheable then for each cache server 

(2.1) If cache server CS is predicted to store the requested object, the probability 

that the request is a cache-miss is caiculated as: 

- W c s  / Fcs W 
Pa--s - Fp = (1- e ) 

(2.2) Otherwise: Pcs-mk = 2 

(2.3) The expected response time for CS is caiculated as: 

E(RT) = Pcs-mas * (2 *RTT'-cS + W&s *MaCs *PT'S + 2 *R ~'s-~ + WL,s * 

M a r ,  *PT'S) +(1- Pcs-mid *(2 *RTCvSWcT + Wcs *Mes *mes) (3-5) 

(3) Select the cache server with the minimum estimated response tirne. 

In equation (3.5), the tirne calculated within the first bracket represents Ta--. 

2 * R ~ S W S W C s  is the sum of time cornponents (l), (2) and (8) shown in Figure 3.4. 

WL,,*Max,,*PT,, and ms* Max,*% respectively represent time cornponents (3) and 

(5) shown in Figure 3.4. 2*RZT..s-w is the sum of time cornponents (4), (5) and (7) s h o w  

in Figure 3 -4. The tirne calculated within the latter bracket represents Tut. 2 *RTZ"SW~CS is 

the sum of tirne components (l), (2) and (4) shown in Figure 3.3. WZcs*M~*PTcs  

represent time component (3) shown in Figure 3.3. 
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3.2 Detailed Description of MRT Scheme 

This section provides a detailed description of the MRT scheme. It mcludes the extended 

ICP messages used between the switch and the cache server and the extended table used 

by the switch for routing decision, as well as the routing mechanisrn of the MRT scheme. 

3.2.1 Extencled ICP Messages 

As in LB-LS [20], we use four extended ICP (Internet Cache Protocol) messages for 

exchanging content and workload information between the switch and the proxy cache in 

MRT scheme. A single extended ICP message is sent periodically by the Web server to 

the Layer 5 switch with its workload. 

The ICP [Il]  message format consists of a 20-byte fbced header plus a variable shed 

payload, as shown in Figure 3.6. 

k I 

Request Number 

Options 

Option Data 

Message Lengt h Opcode 

Sender Host Address 

Version 

Payload 

Figure 3.6 ICP Message Fonnat 

Opcode specifies the type of an ICP message. Table 3.2 shows currently defined ICP 

opcodes in ICP version2 [Il]: 
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TABLE 3.2 ICP OPCODE 

From table 3.2 we see that there are some unused Opcodes, so our four new ICP 

messages use these Opcodes. The four messages are following: 

ICPCPUfDATE_CONTENT message is used by a cache server to periodically inform a 

switch about the changes in its cache contents and the changes in the number of stored 

objects in that cache server. The format of the message is shown in Figure 3.7. The 

Sender Address is the IP address of the cache server sending the message. The content of 

the Payload field has three parts: 1) a Bloom Filter, which represents the cache server 

contents. 2) a count to record the number of objects that are stored in the sender cache 

server. 3) A timestamp, which is used for error conuol. 

Opcode Sender Address Payload 

1 ICP-WDATE-CONTENT 1 ... IP Address 1 Blwm Filter 1 Count 1 TïmeStamp 

Figure 3.7 The Format of ICP-UPDATE-CONTENT 

ICP-WDATE-CONTENT-ACK message is used by a switch in MRT to acknowledge 

the ICP-UPDATE-CONTENT message. The format of the message is show in Figure 

3.8. The sender Address is the IP address of the switch that sends this message. The 
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content of the Payload field includes a timestamp, which is used with the timestamp in 

the ICPJJPDATE_CONTENT to deal with the situation when the 

ICPJJPDATE_CONTENT message is lost in the network. 

Opcode Sender Address Payload 

1 ICP-UPDATE-CONTENT-ACK 1 ... 1 IP Address TimeS tamp 

Figure 3.8 The Format of ICPCPUPDATETEcONT~NTENTAcK 

ICP-QUERY-WORKLOAD is used by a switch to periodically query the workload of 

cache servers. The format of the message is shown in Figure 3.9. The sender Address is 

the IP address of a switch. The content of the Payload field contains a timestarnp, which 

is used to deal with lost messages. 

Opcode Sender Address Payload 

1 ICP-QUERY-WORKLOAD 1 - - -  1 IP Address 1 Time Stamp 1 

Figure 3.9 The Format of ICP-QUERY-WORKLOAD 

ICPJJPDATE-WORKLOAD is used by a cache server to send its workload 

information to the switch after it receives the ICP-Query-Workload message. It can aiso 

be used by a Web server to periodicaily send its workload information to the switches. 

The format of the message is shown in Figure 3.10. The Sender Address is the IP address 

of a cache server sending the message. The content of the Payload consists of two parts: 

1) workload of the cache server and 2) a timestamp, wtiich is used, dong with the 

timestarnp in the ICP-QUERY-WORKLOAD to deal with lost messages. 

Opcode Sender Address Payload 

1 ICP-UPDATE-WORKLOAD ( ... ( IP Address 1 Workload 1 TimeStamp 1 

Figure 3.10 The Format of ICP-UPDATE-WORKLOAD 
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3.2.2 Extended Information Table 

In MRT, we use an extended information table in a Layer 5 switch to assist the switch in 

making the routing decision. Figure 3.11 below illustrates the format of the table. Each 

entry in the table consists ten fields: 

Figure 3.1 1 Cac heServerArray Information Table 

IEAdd:  IP address of a cache server. It is also an identification of the cache server. 

BloomFilter: The representation of contents of the cache server. It is updated 

periodicdy. 

Count: The number of objects stored in that cache server. It is updated periodicaily. 

Workload: The workload of the cache server. It is updated periodically. 

NetworkLatency: Half of the round trip time between the switch and the cache 

server. It is updated periodicaiiy. 

Max-Comection: The max number of concurrent TCP connections of the cache 

server. 

Workload-QueryTime: The time measured in milliseconds when the switch sends the 

query workload message. 

Workload-QueryRes-Tirne: The tirne rneasured in rnilliseconds when the switch 

receives the updated workload. 
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Last-ContenttUpdateMsg,TS : The Timestamp of the most recent content update. It 

is used for message loss control. 

Workioad-Query-TS: The tirnestarnp when the switch sen& the query workload 

message. It is used for message loss control. 

3.2.3 Routing Mechanism of MRT 

In the MRT scherne, every tirne a Layer 5 switch receives a IfITP request from the Web 

client, it uses the IITTP header, cache server contents, cache server workload, Web 

server load and network latency to route the request. For cacheable requests, the switch 

calculates the expected value of the request response time for each cache server based on 

the above infannation stored in the switch's CacheArrayTable. It sen& the request to the 

cache server with the minimum estimated request response thne. A detded pseudo code 

and explanation of the operation of the switch and cache server cm be found in Appendk 

B. FoUowing we explain how a switch in MRT obtains and updates all the information 

needed for routing: 

H l l T  header information: 

When a switch receives a TCP connection request from a Web client, it accepts the 

connection by sending back a TCP-ACK prior to estabüshing the TCP connection 

with the server. Thus it tricks the Web client into believing there is a connection 

between the client and the server. When the switch receives a HTTP request fiom the 

client, it unpacks the request message to get the H l T P  header information. Using the 

URL, the switch knows whether the request is cacheable or non-cacheable. 
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Cache Servet Content infornation: 

Each cache server computes a representation of its cache content information. It 

periodicaiiy multicasts the Bloom Filter and the number of objects to every switch 

with the extended ICP message ICP-UPDATE-CONTEEFT. When a switch receives 

an ICP-WDATE-CONTENT message, it nnds the sending cache server in the 

switch's CacheArrayTable, as shown in Figwe 3.11, and updates that cache server's 

content and the number of objects. After the update, it sends an 

ICP~UPDATE~CONTENT~ACK back to the cache server to acknowledge the 

update. 

Cache Server Workload Information: 

A switch obtains the workload uiformation from a cache server by periodically 

sending each cache server an ICP-QUERY-WORKLOAD message. When a cache 

server receives an ICP-QUERY-WORKLOAD message, it masures its cwent 

workload and replies to the switch with an ICP-UPD ATE-WORKLO AD message, 

whose payload field carries that cache server's most recent workload information. 

When the switc h receives an ICP-UPDATETEWORKLOAD, it h d s  the sending 

cache server in the switch's CacheArrayTable, as shown in Figure 3.1 1, and updates 

that cache server's workload. 

0 Web Server Workload Information: 

The Web server periodically sends its current workload to every switch with an 

1CPJJPDATE-WORKLOA.D message. 
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Network Latency Information: 

The duration fiom the time a switch sends an ICP-QUERY-WORKLOAD to a cache 

server to the t h e  the switch receives an ICP-WDATE-WORKLOAD fiom that 

cache server is rneasured as the network latency between the switch and the cache 

server. Whenever a switch receives an ICPUPDATE-WORKLOAD message fiom a 

cache server, it updates both the cache server workload and the network latency in its 

CacheArrayTable, as shown in Figure 3.1 1, for the corresponding cache server. 

False hit rate information: 

Every tùne a switch rnakes a routing decision, it calculates the false hit rate for each 

cache semer based on the size of the Bloorn Filter and the number of objects on the 

cache server. 

3.3 Summary 

In this chapter, we provide a detaiied description of the operation of the MRT scherne. 

The MFtT scherne is a network latency sensitive, dynaniical load-balancing cache server 

selection protocol that is intended for distributed and transparent Web caching systems. 

The desirable characteristics of MRT are the following: 

The most prominent charactenstic of MRT is that it can avoid redirecting the requests 

to remote cache servers. At the same tirne it tries to balance the workload on all cache 

servers. MRT can adjust its routing decision dynamically based on the cost of 

network latency, the cost of the workload and the cost of false hits to optimize the 

performance of the whole Web caching systems. 
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MRT is completely distn'buted. In such a M y  distributed architecture a single point 

of failure can be avoided and the cache sharing cm be achieved by ailowing more 

clients to share multiple cache servers. 

The MRT server selection algorithm is done by a Layer 5 switch compared to other 

server selection algorithms that are done by the client or cache servers. Layer 5 

switches can perform the routing very efficiently. 

MRT extends ICP protocols and is compatible with existing Web caching systems. 

The extended ICP messages aUow the switch and cache server in the MRT scheme to 

cooperate with switches and cache servers that do not support MRT. 
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Chapter 4 

Performance Evaluation 

In this chapter, the performance of the MRT scheme is studied. The results are analyzed 

and compared with the Content, Workload, R'IT and LB-LS schemes. We chose those 

schemes for comparison because they represent the range of cache sever selection 

algonthms used in distributed switching-based transparent Web caching systems. Section 

4.1 describes the simulation model, which includes the network rnodel, the network 

latency model, the workload model, the invalidation-checking model and the simulation 

parameter settings. Section 4.2 describes how the Content, Workload, RTT and LB-LS 

schemes work in our simulation. Section 4.3 presents the performance metrics that we 

use to represent the performance of the different schemes. The effects of the network 

latency, request intensity, expiration tirne and the nurnber of cooperating cache servers on 

the performance of the MRT are investigated and the results are reported in Section 4.4. 

Finaiiy, a su- of this chapter is provided in section 4.5. 
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4.1 Simulation Model 

To evaluate the MRT scheme and to compare it with other schernes, we constnict a 

simulator that ailows us to observe and masure the performance of the schemes under 

different network latencies, different HTTP request intensities, dBerent values of object 

expiration time and different number of cache servers. The simulator consists of a 

network model, a network latency model, a server workload model and a cache semer 

content validation checking model. 

4.1.1 Network Model 

The network model for each of the five Web caching schemes sirnulates a M y  

distributed switching-based Web caching system, as s h o w  in Figure 4.1. A client cluster 

connects to its own Layer 5 switch. which connects to all the cache servers and the Web 

server. A cache server connects to al1 the switches and the Web server. There are no 

direct connections between cache servers and there is no direct connection between a 

client cluster and a cache server. The cache sharing is achieved through the Layer 5 

switches. 
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Client Clusta Client Clustcr 

Figure 4.1 Network Model 

4.1.2 Network Latency Model 

It is difficult to mesure the network latency in a simulation. M. Rabinovich et a1 1381 use 

a distance metric to  reflect the costs of transfeming data between any two nodes. The cost 

may include monetary costs, tirne, bandwidth of the connection, etc. The cost of 

transfexring data between two nodes is proportional to the distance between that pair of 

nodes. We adopt a similar method in our simulation. Our network latency mode1 is based 

on a symmetric architecture with n client clusters, n switches and n cache servers, as 

shown in Figure 4.2. In our simulation, n varies from 2 to 8. 
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Network Latency (switch 
Network Latency 

Netwrk Latency 
(client i, s~ i t ch  i) 

. Web Server) 

Figure 4.2 Network Latenc y Mode1 

We calculate the network latency between node i and node j, which is the cost of  

transfening data between them as follows: 

Distance (i, j) = li-JI (4- 1) 

NetworRLatency (i ,  j) = Distance (i. j) * LatenryFactor (4-2) 

NetworkLatency (i.j):The time spent on the network when data are transferred from 

node i to node j, which is measured in diiseconds. 

LutencyFactor: The time spent on the network when data are transferred for one unit 

of distance. It is measured in milliseconds. 

In order to investigate the effect of the network latency between the cache servers and the 

switches on the performance of aii the schemes, we vary the LatencyFactor fkom 5 

milliseconcis to 125 miiliseconds in o w  simulation and the results are studied in Section 
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4.1.3 Workload Model 

The researc h coxnmunity has made progress tow ards characterizing workload patterns for 

Web sewers and proxy cache servers using Benchmarks, such as those by Almeida and 

Cao 1391 and Barford and Crovella 1401. Proxy traces can also provide an alternative 

rneans of workioad generation that is able to account for client access patterns and the 

requested content 121. 

We use publicly available proxy traces fiom the NLANR to generate Hï"iT requests [2]. 

In our simulation we use the July 26, 2001 and August 27, 2001 traces fkom the NLANR 

Boulder cache servers. Client IP addresses are randomized daily and are consistent within 

a trace but not between traces. Each trace spans 24 hours and contains from 100,000 to 

400,000 total requests. Each entry in the trace has 9 fields. In our simulation the 

TimeStamp, ClientAddress, Size and URL fields are used. They are defined as follows: 

Timestamp: specifies the time when the client generates the HTTP request. The 

format is 'Unix time" with miIlisecond resolution 

Client Address: The IP address of the client cluster 

Size: The numkr of bytes transferred fiom the proxy to the client 

URL: The uniform resource locator, which is a character string describing the 

location and access method of a resowce on the Internet. 

In raw proxy traces HTTP requests are generated at the time specified by the TirneStarnp 

field. The controlIed proxy traces Vary the request inter arriva1 times to simulate the 

different JXïTP request intensities. For example, if in the raw trace the average number of 

HïTP requests generated by the client clusters is 2000 per 10 minutes, the average inter 
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arriva1 time is: (10*60*1000) 1 2000 niillisecon&. In controiied proxy traces. for a 50% 

request intensity, we can enlarge the average interval by 2 and for a 200% request 

intensity. we can shorten the average interval by 2. 

We masure the average workioad of a server (cache server or the Web server) in our 

simulation as folio ws : 

Average Num of TCP connections Per Second 
Average Workload= 

Maximum Num of TCP connections of the Server Per Second 
(4.3) 

The average nurnber of TCP connections is calculated as foliows: 

AvgTCPNum = (1- Wq) * AvgTCPNum + W,*TCPNum (4-4) 

AvgTCPNum: The average nwnber of TCP connections per second. 

TCPNum: The active number of TCP connections. 

Wq: A weight factor, O < Wq < 1. 

If Wq is too large, then the averaging procedure may not filter out transient congestion or 

busty traffic. If Wq is too low, then the average number of TCP connections responds too 

slowly to changes in the actual number of TCP connections. Many researchers use 0.002 

as the value for W, (411. We ran in our simulation with W, as 0.001, 0.002 and 0.25 and 

found that Wq = 0.002 is a reasonable choice. The average number of TCP connections in 

ow  simulation is therefore calculated as: 

AvgTCPNum = 0.998 * AvgTCPNum + O.OOS*TCPNum 

4.1.4 Validation Checking Model 

Cache servers sometimes provide users with stale pages, which are out of date with 

respect to the copies on the Web servers. If a page is stale then the HTTP request is 
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redirected to the original Web semer for the refieshed object. In order to reduce the time 

wasted on stale pages, a cache server must validate the pages in its cache so that it cm 

give refresh pages to users. Al1 known Web caching systems use validation check 

mechanisms to maintain cache consistency [2 11431 1441. Some widely used proxy servers, 

such as the World Wide Web Consortium's httpd (formerly CERN httpd) [43] and 

Netscape's Roxy Semer 1441 - use an expiration mechanism to keep their pages up to 

date. 

The expiration mechanism works as foilows. Each cached page is assigned an expiration 

the .  Any GET requests made before the expiration tirne elapses are answered with the 

cached page. M e r  the expiration time elapses, the cache server directs the GET request 

to the Web server. After receiving the Web semer's response, the cache server resets the 

page's expiration time to its default value. The detailed pseudo code for W3C httpd 3.0 

cache consistency c m  be found in Appendix C. 

Expiration-based caches use a variety of mechanisms to assign expiration t h e s  for 

cached pages. The field "Expires: date" in the H T ï P  request header, rneans that the 

document definitely will not change before the given date and probably will change soon 

after the given date. The Web server may retum such a header with a document. It can be 

used directly as an expiration t h  for cached copies of the document. However, as 

Glassman [45] points out, the header Expires: date is rarely used. This is not surprisîng, 

since the author of a WWW page usualiy can't estimate a document's lifetime at the time 

it is created. 
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For documents with no Expires: date header. the simplest expiration time algorithm used 

by the cache server is to assign each object an expiration time equal to be '/4 to !4 of the 

average lifetinie of that object [Ml. The average Metirne of an object is an average 

intervat between two successive modifications of the same URL. The average Metune of 

an object is affected by the type of the object, such as HTML, GIF or AUDIO. It is also 

affected by the class to which the object belongs, such as the COM class, the EDU class 

or the NEWS class (The average Metirne in NEWS classes usually is 1 -2 days). We 

assume that all objects studied in our simulation belong to the NEWS classes. We varied 

the expiration time fiom 3 hows to 24 hours to investigate the effect of difFerent 

expiration times on the performance of the investigated Web caching schemes. 

The irnplementation of the simulation software is based on the simulator used by 2. 

Liang [20]. We add the validation checking mechanism io the proxy cache server. The 

Web server supports ICP messages. We implement the layer 5 switches used in the 

Content, Workload, RTT and MRT schemes. The detailed software structure of the 

simulator is described in Appendix D. 

4.1.6 Simulation Parameter Setting 

The parameter settings used in the simulations are simiiar to the values used by Z. Liang 

1201. The parameters are summarized in the foiiowing tables: 
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Meaning 
The round trip t imz between a Web client and a LS switch 

The round uip time between a Web client and a Cache semer 

The round m p  time between a LS switch and a Cache server 

The round trip time betwcen a LS switch and Web sesver 
The round trip time between a Cache server and Web semer 

Value (rnilliseconds) 
130 
130 
0-400 
300 
300 

TABLE 4.1 PARWEEFtS FOR LINK 

Name Value 
(milliseconds) 
1OOO 
1OOO 
O 

Meaning 

Query\KOrkload-~nterval 
ECHOJnterval 
TCES plicing 

Routing 
C heckCac heable 

TABLE 4.2 P-S FOR S ~ H E S  

The intervai between the QueryWakioad mgs 
The interval between the ~ c h o  msgs 
The cime it taices a L5 switch port controUer to translate TCP 
sequence nurnber 
The tirne it takes a L Sswitch to make a routing decision 

The time it takes a LS switch to check the requested object is 
cacheable or not 

Meaning 

The time at a Web server between receivinp; a request and 
reniniinp; the first byte of the requested obi- 

- 
The time it takes a Web server to send an object in 
memory to the requesting party 
The interval to send the updared workload 

TABLE 4.3 PARAI~~IEIERS FOR WEB SERVER 

Value 
(milliseconds) 

150 

150 

60* 1000 

I 1 

TABLE 4.4 P-S FOR CACHE SERVERS 

Name 
PC-cac heS ize 
PC-Seiuch 

PC-SearchDigest 

PC-D~S~ACC~SS 

Pc-Reply 

PC-Relay 

Pc-C~C heDigest-s ize 
PC-CacheDigest-Interval 

Obimts expkAonTime 

Meaning 
The physical size of a Cache semer 

The time it takes a Cache semer CO search for 
an object in its cache 
The time it cakes a Cache to search for an 
object in its cache dip;ests 
The time it takes a Cache semer to retrieve a 
cached object from disk to memory 
The time it takes a Cache server to send an 
object in rnemory to the requestinn party 
The time it takes Cache semer to relay a 
response to the requesting party 
The si= of a Bloorn Filter for a Cache server 

me internai bewen  -cutive 
content-update msgs 
The time far an object to expire 

Value 
1024* 1024*64(bytes) 
250(mfiseconds) 

l()O(milliseçonds) 

100(mifiseconds) 

150(msecon&) 

50(mifise~ond~) 

32* 1024 (bytes) 
1 *60* lOûû(miUiseconds) 

(3-24)*60*60* Io00 
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4.2 Content, Workload, RTT and LB-L5 Schemes 

The Content scheme, Workioad scheme, RTT Scheme and LB-LS Scheme in our 

simulation represent certain classes of cache server selection algorithm that are 

introduced in chapter 2. The schemes are simulated as follows. 

4.2.1 The Content Scheme 

The Content scheme represents a class of cache server selection algont h m  that redirect 

HITP requests oniy based on content. When a Layer 5 switch in the Content schenu: 

receives a HTTP request, it makes the routing decision as follows: 

(1) If the request is non cacheable, the switch imrnediately redirects it to the Web server. 

(2) If the request is cacheable then the switch checks the content of each cache server. 

(2.1) If a set of the cache servers is predicted to store the object, the switch randomly 

picks one cache server fiom these cache servers. 

(2.2) If none of the cache servers is predicted to store the object, the switch picks the 

cache server in a round robin rnanner. 

4.2.2 The Workload Scheme 

The Workload scheme represents a class of cache server selection algorithms that 

redirects HTTP requests based on both content and workload of the cache server. When 

a Layer 5 switch in the Workload scheme receives a HTTP request. it makes the routing 

decision as foliows: 

(1) If the request is non-cacheable, the switch innnediately redirects it to the Web server. 

(2) If the request is cacheable then the switch checks the content of each cache server. 
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(2.1) If a set of the cache servers is predicted to store the object, the switch picks the 

cache server with the minimum workload arnong these cache servers. 

(2.2) If none of the cache servers is predicted to store the object, the switch picks the 

cache server with the minimum workload among ail the cache servers. 

4.2.3 The R I T  Scheme 

The RTT scheme represents a class of cache server selection algorithms that redirects 

H T ï P  requests based on both content and network latency. When a Layer 5 switch in the 

RTT scheme receives a HTTP request, it makes the routing decision as follows: 

(1) If the request is non-cacheable, the switch immediately redirects it to the Web server. 

(2) If the request is cacheable then the switch checks the content of each cache server. 

(2.1) If a set of the cache servers is predicted to store the object, the switch picks the 

cache server with the smaliest response time among these cache servers. 

(2.2) If none of the cache servers store the object. the switch picks the cache server 

with the minimum response time to  the switch among al1 cache servers. 

4.2.4 The LB-L5 Scheme 

The LB-5  scheme represents a class of cache server selection algonthms that redirects 

HTT'P requests based on the content, the cache server workload and the network latency. 

When a Layer 5 switch in the LB-LS scheme receives a H'ITP request, it makes the 

routing decision as fol10 ws: 

(1) If the request is non cacheable, the switch immediately redirects it to the Web server. 

(2) If the request is cacheable then the switch checks the content of each cache server. 
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(2.1) If a cache server potentially stores the object and the network latency from the 

cache server to the switch is not greater than some threshold, then the switch 

picks the cache server with minimum workload from these cache servers that 

satisfy the above conditions. 

(2.2) If al1 the cache servers potentiaiiy store the object have the network latency to 

the switch greater than the threshold, then the switch picks its local cache server 

regardless whether that cache server has the requested object o r  not. 

(2.3) If none of the cache servers store the object, the switch picks the cache server 

with the minimum workload fiorn those cache severs whose network latency to 

the switch is not greater than the threshold. 

4.3 Performance Metrics 

The following two key performance mtrics are evaluated: 

1. Client Request Response Time 

The duration from the time a client sen& a TCP connection request to the tirne the 

client receives the TCP connection finished signal. It is affected by the workload of 

the cache servers and the Web server, the network latency and false prediction. The 

client's perception of Web performance is based on the response time. The smaller 

the average response time, the be tter the penormance. 

2. Average Cache Server Workload 

A cache server may be shared by hundreds or thousands of users. At any given 

tirne, there are a number of concurrent H l T P  requests to the cache server. Object 

retrievai times on the cache server Vary with load, and consequently the request 
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response thne varies as well. We define the Ioad on the cache server as the average 

number of TCP co~ections per second divided by the maximum number of TCP 

connections per second that each cache server can service. The average workload 

can be used to indicate the relative balance among the cluster of cache servers. 

The average response time indicates the quality of the schews. The efficiency of any 

Web caching scherne can be measured in terms of how the workload is balanced across 

the cache servers. A balanced workload usudy means lower response times, but 

sometimes the two performance rnetrics confiict. For example, to achieve workload 

balance a request has to be redirected to a remote cache server at the expense of higher 

response times. The ultimate goal of a Web caching system remains to Mnunize response 

times. 

4.4 Simulation Results 

In this section we describe bo th raw-trace driven and controued- trace simulation 

experiments. For the raw-trace driven simulatiow, the IFTTP requests are generated at the 

time specified by the tirnestamp field in the trace nle. In the controlled-trace simulations, 

the HTTP requests are generated periodically and the request inter arrival time is 

controiied in order to vary the H'ITP request intensity. AU experiments are done with a 

30-minute wann-up period to fill cache servers with objects until all cache servers are full 

and the simulated Web caching system is stable. A statistical analysis of the experiments 

results reveals that the performance is quite stable. The experiments were run with a 90% 

confidence level with 5% confidence intervals. 
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4.4.1 Raw-trace Driven Simulations 

We ran e x p e h n t s  with two raw traces kom proxy servers using NLANR traces [2]. In 

order to simulate the cache cooperation arnong different network domains we Mt four 

different network domains for four different ciient cfusters based on client IP addresses. 

Each trace is for a 24 hours period. We compare the response times of MRT to the other 

schernes under different network latencies and HTTP request intensities during one day. 

When the network latency is low the workload of cache servers is the main factor 

affecting the response tirne. When the workload of the cache server is light, the network 

Iatency becomes the main factor affecting the response tirne. The workload of a cache 

server is d e t e n - e d  by the number of HTïP requests generated by client clusters. Figure 

4.3 plots the IFLTP request intensity over one day versus the nurnber of HTTP requests 

inl0-minute periods. The request intensity is relatively high kom 8 am to 4 prn The peak 

intensity is 2950 requests per 10 minutes around 11 am, and signiticantly decreases after 

5 pm. The minimum intensity is 950 requests per 10 minutes around 8 pm. 

- - 

Figure 4.3 H'iTP Request Intensity 



Chapter 4: Performance Evaluation 56 
- -  --- - - 

The response times over one day under different network latencies are shown in Figures 

4.4-4.6 below. The simulation results show that MRT outperfonns the other f o u .  schemes 

and has a better adaptability to high IirrrP request intensities and large network latencies. 

When the network latency is very s d ,  the response times of five schemes foilow the 

H ï T P  request intensity, as shown in Figure 4.4. The Workload scheme, LB-LS scheme 

and MRT scheme consider the workload at the cache servers so they have better 

performance than the Content and the R ï T  schemes when the request intensity is high. 

In Figure 4.4, under a peak request intensity (1050 am), MRT outperforms Content by 

22% and RTï by 25%. MRT has siniilar performance to the Workload and LB-LS 

schemes. 

Under a higher network latency (Latency Factor = 75 ms) as shown in Figure 4.5, the 

average response time of MRT is much better than that of Content, Workload R n  and 

LB-LS. It outperforms Content by 27%, Workload by 17%, R ï T  by 20% and LB-LS by 

13%. As the network latency increases, the corresponding increase in the average 

response times of Content, Workload and LB-L5 schemes is higher than that of RTT and 

MRT since the latter schemes respond better to  high network latency factor. 

When the network latency is very large (Latency Factor = 125ms) as shown in Figure 4.6, 

both LB-L5 and MRT avoid redirecting requests to  remote cache servers. LB-L5 does 

not redirect the requests to cache servers whose network latency to the switch is larger 

than the predefined t hreshold (100 milliseconds in our simulation). MRT alwa ys d i r e c t s  

the requests to the cache server with the minimum estimated request response thm. MRT 
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outperforms LB-L5 by ll%, while it outperforms Content by 44% and Workload by 

34% since neither of them considers network latency when they make the routing 

decision. The average response tirne of RIT does not increase as much as that of Content 

or Workload. However, when aii the cache servers that may store the requested object 

have large network latency, RTT has to redirect the request to one of them. The average 

response time of RTT increases as the network latency increases. MRT outperfom RTI' 

ResponseTime (Latency Factoemr) 

Figure 4.4 Response Time At Latency Factor = S m  
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Response T i m  (Lstmcy Factor = 75ms) 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Time 

-Content - - - WoMoad - - - - RTT - L B - L S  -MRT 

Figure 4.5 Response Time At Latency Factor = 75113s 
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Figure 4.6 Response Time At Latency Factor = 125 ms 
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4.4.2 Controlled-Trace With Balanced Requests 

In this section, we present experiments using controlled traces. We investigate the effect 

of the H 3 V  request intensity, the network latency and object expiration tim on the 

response tirne of MRT. The results are compared with the performance of the Content. 

Workload, RTT and LB-L5 schernes. AU experiments are done under the condition that 

each client cluster sends the same amount of http requests per 10-minute period. We run 

the simulator 8 to 24 hours and sample the request response time every 10 minutes and 

present the average of the values with a 90% confidence level. 

4.4.2.1 E f k t  of Http Request Intensity 

Figure 4.7 plots the response tirne versus H T ï P  request intensity under Merent  network 

latency factors. As shown in Figure 4.7, we can see that MRT always outperfom the 

ot her SC hernes under different request intensities and network latency factors. The 

average HTTP request response time of al1 investigated schemes increases as the HITP 

request intensity increases for al network latency factors. This is because the workload of 

each cache server increases as the H T P  intensity increases. The processing t h e  of 

cache servers increases too. The extent of the increase on response time for each scheme 

is different. 

The Content and RTT schems are greatly affected by the IFITP request intensity since 

neither of them uses the workload information about cache servers when they make the 

routing decision. Content selects the cache server that is picked randomly or in a round 

robin fashion. RTï selects the cache server that stores the object and has the minimum 
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network latency to the switch. They may cause unbalanced load distriiution on those 

cache servers, although originaliy client-clusters have balanced requests. The imbalance 

is more obvious when the H ï T P  request intensity increases. 

The Workload, LB-L5 and MRT schemes adapt better to high request intensities because 

they are aware of the workload of al1 cache m e r s .  These schemes always try to direct 

requests to lightly loaded cache servers. The request response times of Workload, LB-L5 

and MRT are less than that of Content and RTT, since the processing time on a lightly 

loaded cache server is less than that on a heavily loaded cache server. The irnprovement 

on response tirne is more apparent when the request intensity increases, as shown in 

Figure 4.7. The average increase of response time is amund 1400 millisecond for both 

Content and RTï when the H T P  request intensity increases fiom M I  to 2502, while 

the average increase of response time is only around 700 milliseconcis for Workload, 

LB-L5 and MRT. 

We also see that the performance advantage of MRT is more obvious as the network 

latency factor increases. For example, in Figure 4.7 (a) with 50% H T T P  request intensity 

and 5 dseconds  network latency factor, MRT perEorms similady to the Content, 

Workioad and R n  schemes. On the other hand, when the network latency factor is 125 

milliseconds, as shown in Figure 4.7 (f), MRT outperforms Content, Workload and RIT 

by 52%, 51% and 2 8 4 ,  respectively. For LE3-LS the situation is a Little different. When 

the network latency factor is greater than 100 milliseconcis, a switch redirects the H T W  

requests to its local cache server. The average response time of LB-L.5 does not increase 
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when the network latency factor is greater than 100 milliseconcis. The average response 

thne of MRT increases slowly as the network latency factor increases. As show in 

Figure 4.7 (a) to (0, under 50% H ï T P  request intensity, when the network latency factor 

is 30, 50, 75, 100. 125 milliseconds, MRT outperforms LB-L5 by 7%. 15.51, 20%, 

21.2% and 19.2%, respectively. 
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Figure 4.7 Average Response Time Versus H ï T P  Request Intensity 
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4.4.2.2 Effect of Network Latency 

Figure 4.8 illustrates the average response time versus network Iatenc y factor. The 

experiments are conducted under different H l T P  request intensities. MRT outperforms 

the other schemes for all values of network latency and for each H T ï P  request intensity. 

Basicaily, the average request response time for ail investigated schemes increases as the 

network latency factor increases under different request intensities. However, the 

extent of the response tirne increase for each scheme is different. 

The Content and Workload schernes are highly afEected by the network latency shce 

both of them do not consider the network latency when they make the selection decision. 

As we know, in the Content scheme, the cache server for a request is picked randomly or 

in a round robin fashion. In the Workload scheme, the selected cache server is the one 

that has the minimum workload. In both cases, if the network latency ftom the selected 

cache server to the switch is large, then there can be a noticeable increase in the average 

response time. As shown Figure 4.8, the average response time of Content and Workload 

respectively increases by 20% and 30% as the network latency factor increases h m  5 to 

125 rnilliseconds with 250% H I T P  request intensity. The increase is more apparent when 

the H ï î T  request intensity is small. The average response time of Content and Workioad 

respectively increases by 62% and 64% as the network latency factor increases from 5 to 

125 milliseconcis with 50% HïTP request intensity. 

The R I T  scheme knows the up-to-date network latency. It tries to redirect the requests to 

the cache server with minimum network latency, so the arnount of increase in the average 

response time is smaller than in the Workload and the Content schemes. We found, 
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however, the average response time of RTT is highly affected by the network latency 

factor. If the cache servers that potentially store the requested object have huge network 

latency to the switch, the average response time increases as the network latency 

increases. As shown in Figure 4.8 the average response time of RTT increases by 40% 

and 14% as the network latency factor increases fiom 5 to 125 milliseconcis for 50% and 

250% H T ï P  request intensities, respectively. 

For LB-L5, when the network Iatency factor is smaü, the selected cache server is the one 

that has the minimum workload among the servers storing the requested object. It is 

similar to the Workioad scheme under small network latency, and the average response 

time highly depends on the network latency. In Figure 4.8 (a) we can see that the average 

response time increases around 30% when the network latency factor increases firom 5 to 

100 milliseconds. However, if the network latency factor is very large, the switch does 

not redirect requests to rernote cache servers. Instead, it redirects the requests to the local 

cache servers no matter if it stores the requested object or not and no matter if it has the 

minimum workload or not. The average response thne remains the same when the 

network latency factor increases fwther. 

MRT knows the most recent information about the network latency and server workload. 

Using this information, MRT can predict the request response time and automatically 

adjusts the cost incurred by the workload and network latency. It chooses the server that 

can service the request fastest. As shown in Figure 4.8, we can see that the response tirne 

increases modest with the increase of network latency. The increase in the response time 
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is only about 11% and 7% as the network Iatency factor increases tiom 5 to 125 

milliseconcis for 50% and 250% H I ï F  request intensity, respectively. 

MRT has a better performance when the Web caching system has high request intensity 

o r  large network latency. When the request intensity is 50% and the network latency 

factor is 5 milliseconds the average response time of MRT is similar to the Content, 

Workload, R n  and LB-L5 schemes. However, when the request intensity is 250% and 

the network latency factor is 125 milliseconds, the average response tirne of MRT is 

lower than that of Content, Workload, RTT and LB-LS by 70%, 34% 49% and 9%, 

respec tively. 
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Figure 4.8 Average Response Time Versus Network Latency Factor 
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4.4.2.3 Effeet of Object Expiration T i 

The expiration time is the period during which the obNt is assumed valid in a cache 

server. If an object is out of date, it has to be retneved fkom the original Web server. This 

can result in a huge increase in the request response time. Proxy cache semers in our 

simulation use the expiration tirne mechanism to do validation checking. In this way, the 

object need only be retrieved once from the original Web server within its expiration 

Figure 4.9 iilustrates the response t h e  versus object expiration tirrie. The experiments are 

done under 100% HTW request intensity. The shorter the expiration tirne, the more often 

validation checking is perfomd. As shown in Figure 4.9, the average request response 

times of all investigated schemes increase as the object expiration time decreases. In 

Figure 4.9 (a), for a small latency factor (Sm), when the object expiration tirne decreases 

fiom 24 hours to 3 hours, the average response times of Content, Workload, RTT, LBLS 

and MRT increase by 13.5%, 14%, 1 1.596, 14% and 12%, respectively. In Figure 4.9 (b), 

for a larger latency factor (75ms), when the object expiration tirne decreases from 24 

hours to 3 hours, the average response time of Content, Workload, R n ,  LB-L5 and 

MRT increases by 12%, 19%, 8%, 16% and IO%, respectively. It should be noted that the 

relative increase in average response time for al schernes is not significantly affecteci by 

the latency factor. 
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Figure 4.9 Average Response Time versus Expiration Time 

4.4.3 Controlled-Trace With Unbalanced Requests 

In this section, we present experiments using controlled traces with unbalanced client 

request intensities. We investigate the effect of unbalanced workload and the network 

latency on the average response tirne of MRT. The results are compared with the 

performance of the Content, Workload, RTï and LBLS schernes. The experiments are 

conducted for 4 client clusters where client clusters 1 and 3 have 50% HTTP request 

intensity, while client clusters 2 and 4 havel50% HTTP request intensity. We run the 

simulator 8 to 24 hours and sample the request response t h  every 10 minutes. 

Figure 4.1 O (a. 1) to (e. 1) plot the average workload of the four tested cache servers under 

different network latency factors for each scheme. Figure 4.10 (a.2) to (e.2) plot the 

average request response tirne versus the network latency factor for each scheme. The 

Content scheme selects the cache server in a round robin fashion. It may balance the 
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workload on all cache servers, as shown in Figure 4.10 (al). The Workload schemz 

balances the workload of the four cache semers for ail network latency factors. Workload 

moves some load fkom the heavily loaded cache servers to the lightly loaded cache 

servers so that the workload on all cache servers is balanced, as shown in Figure 4.10 

(b.1). This reduces the processing time on the heavily loaded cache servers. When the 

network latency is low, the communication cost to other cache servers is low and the 

balanced workload on the cache serven can reduce the average response tirne. For 

example, in Figure 4.10 (b.2) the average response time is only 1146 milliseconcis when 

the network latency factor is 5 milliseconds. When the network latency factor increases, 

the communication cost to the rernote cache servers increases, so the benefit from the 

balanced workload on each cache server cannot compensate for the communication cost. 

The average response tirne increases rapidly as the network latency increases. The 

average response thne increases up to 1724 milliseconds when the network latency factor 

is 1 25 milliseconcis. 

The RTT scherne cannot balance the workload of the four cache servers since it does not 

use the cache servers' workload information and always redirects the request to the cache 

server that may store the object and has the minimum network latency. In Figure 4.10 

(c. 1) we observe that cache servers 2 and 4 are heavily loaded for ail network latency 

factors. The queuing tirne on these two cache servers is very large, which means that the 

average response time is large. Figure 10 (c.2) shows the average response time is 1373 

milliseconds when the network latency factor is 5 rnili.iseconds, which is 17% more than 

that of Workload scheme. The average response tirne of R n  increases slower than that 
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of Workload as the network latency factor increases, since it mainly depends on the 

network latency. The average response time is 1700 milliseconcis when the network 

latency factor is 125 milliseconcis, which is almost the same as the Workioad scheme. 

The LFl-LS scherne balances the workload of cache serves under small network latency 

factors. Figure 4.10 (d.2) shows the average response time is only 1146 IIiilliseconds 

when the network latency factor is 5 milliseconcis. When the network latency is p a t e r  

than 100 mïUiseconds (the LB-I.5 threshold), LB-L5 redirects the request only to its own 

cache server, so the cache server sharing capability and load balancing capabüity are lost. 

The average response time is 1339 rniiliseconds when the network latency factor is 125 

milliseconds, which is 17% higher than that at a network latency factor of 5 milliseconcis. 

The MRT scherne balances the workload of cache servers for srnall network Iatency. The 

balancing capabilit y decreases, as the network latenc y increases. MRT calculates the 

queuing cost and the communication cost. In Figure 4.10 (e.1) we see that MRT's 

workload balancing capability is better than that of LB-L5 under large network latency. 

The rate of the unbalanced workioad of LBLS on cache server 3 and 4 reaches 300%, 

while that of MRT on cache server 3 and 4 is only about 100%. In Figure 4.10 (e.2) we 

can see the MRT's rate of increase of average response t h e  is slower than that of LB-L5 

and RTT. Although the workload balancing capability of MRT is not better than 

Workload or Content, the average response time of MRT is much better than that of the 

Workload and Content schemes. 
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MRT Schame 

- - 

(e* 1) (e-2) 

Figure 4.10 Workload and Average Response Time 

4.4.4 Effect of Number of Cache Server 

This section presents experiments under different number of cooperating cache servers 

for different IFITP request intensities and network latency factors. To provide a fair 

cornparison when we change the number of coopering cache servers, we fix the total 

number of H'ITP requests generated by client clusters and the total capacity of the W e b  

caching system. We expect that, if the number of cooperating cache servers is small, then 
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the number of HTTP requests that each cache server services wili be large and the 

communication cost between cache servers will be smail. SimilarIy, if the number of 

c o o p e ~ g  cache servers is larger, then the number of HTTP requests that each cache 

server services will be small and the communication cost between cache semers wili be 

large. 

Figure 4.11 plots the response time versus the nurnber of cooperating cache servers. 

Figure 4.1 1 (a) and (b) show the impact of the number of cache severs for 100% H T ï P  

request intensity. As the number of cooperating cache servers increases, the number of 

HTTP requests on each cache server decreases and the processing tirne on each cache 

server decreases. When the network latency factor is very smaii (5 milliseconds), the 

communication cost between cache servers can be ignored. The average response time is 

mainly determined by cache servers processing tirne. The average responses time of ail 

schemes decrease as the number of cache servers increases. 

When the network latency factor is large (50 milliseconcis), the communication cost 

between cache servers cannot be ignored. As the number of cooperating cache servers 

increases, the communication cost also increases. The average response time is 

determined by both the communication cost and the cache semer processing time. RïT 

tries to mhimize the communication cost when it routes requests. MRT tries to minimize 

the sum of the communication tirne and the processing tirne. When the network latency 

factor is 50 mïliiseconds, the expense of the communication cost negates the benefit fkom 

reducing the processing thne on each cache server. Content, Workload and LB-L5 can 

distribute the client requests to more cache servers as the number of cache servers 
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increases. Therefore, the workioad on each cache server decreases. However, 

communication cost increases as the number of cache servers increases. The average 

response time of Content, Workload and LBJ5 increases when the number of cache 

servers is greater than 4, as shown in Figure 4.1 1 (b). For RTI' and MRT, the average 

response time always decreases as the number of cache semers increases. 

Figure 4.1 1 (c) and (d) show the results of experiments with 200% HTTP request 

intensity. The performance improvement by splitting the workload of cache server is 

more significant. In this situation regardless of the network latency (5 or 50 

miliiseconds), the average response tirne of ali schemes decreases as the number of cache 

servers increases. As expected earlier, the rate of the decrease of the average response 

time under a srnail network latency factor is higher than that under a larger network 

latency factor. When the network latency factor is s d  (5 milliseconds), see Figure 4.11 

(c), the average response time of Content, Workload, R'IT, LB-L.5 and MRT decreases 

by 45%. 48.6%. 40.4%, 48.6% and 49.5%, respectively as the nurnber of cache servers 

increases from 2 to 8. When the network latency factor is large (50 milliseconds), see 

Figure 4.11 (d), the average response time of Content, Workload, R n ,  LB-LS and MRT 

decreases by 31.5%, 35%. 32%, 41.4% and 43.5%. respectively as the number of cache 

servers increases kom 2 to 8. 
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Number of C.cW 

Figure 4.11 Average Response Time Versus The Number of Cache Servers 
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4.5 Summary 

This chapter presents an evaluation of the performance of the proposed MRT Web 

caching scheme, through a comprehensive simulation. The pedormance of MRT is 

compared with that of the Content, Workload, R'IT and LB-LS schemes. The network 

model, the network latency model, the server workioad model, the validation checking 

model and the simulation experimental settings are descriid.  Two types of simulation 

experiments, namely raw trace and controiled trace were conducted to uivestigate the 

effects of the network latency, HTTP request intensity, expiration time and the n u m k  of 

cooperating proxy servers on the performance of the MRT. The results are compared with 

the other transparent distributed Web caching schemes. 

The simulation experiments show that MRT outperforms Content, Workload, RTT and 

LB-L5 in the term of the kFITP request response tirne. MRT always achieves 

significantly lower request response time than that of other schemes, under different 

network latencies, H T P  request intensities and object expiration time values. 

In the raw-trace experiments, MRT oritperforms Content, RTT by an average of 13% and 

1296, respectively and has a similar performance as Workload and LB-LS under srnall 

network latency. The performance advantage is more prominent when the network 

latency is large. MRT outperfom Content, Workload, Response and LB-L5 by 44%. 

34%, 30% and 1 1 %, respectively. 
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In the controlied-trace experiments, it is shown that MRT, like Workload and LB-LS, 

adapts better to higher request intensities than the Content and R ï T .  For examples. at a 

latency factor of 30 milliseconcis, MRT outperforms Content. Workload. RTï and 

LB-L5 by an average of 19%. 7%. 14% and 7%, respectively when the HTTP request 

intensity is 10046, as opposed to 47%. 7%. 38% and 7%. respectively when the H T W  

request intensity is 250%. MRT also adapts better to large network latency. For example 

at HTI'P request intensity of 100%. MRT outperforms Content and R'ïT by 1446 and 

15.5%. respectively and has similar performance as Workload and LB-LS when the 

network latency factor is 5 milliseconcis, as opposed to 35%, 44%, 36% and 12%, 

respectively when the network latency factor is 125 milliseconcis. It is ais0 shown that the 

average response time Uicrease of MRT is more controlied than that of Content, 

Workload and r B L 5  when the expiration time decreases. The experiments conducted 

for investigating MRT cache server workload balancing show that the workload of 

cooperating cache server are wel balanced when the network latency is srnail. For large 

network latencies. MRT balances server workioad better than RTï and LB-L5. 
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Chapter 5 

Conclusion 

The objective of this research is to optimize the performance of transparent distributed 

Web caching systems in terms of request response tirne. The proposed Minimum 

Response Time (MRT) scheme distinguishes non-cacheable requests from cacheable 

requests based on HTTP request header. It inteiiigently redirects cacheable requests to the 

cache server with the minimum H ï T P  request response time. MRT estimates the HTTP 

request response time based on cache server content, cache server workload, Web server 

workload and network latency. MRT uses four extended ICP messages and one extended 

switch routing table to track the most recent update of the above information. 

5.1 Contributions 

In general, our work has accomplished the following goals: 

We studied different switching-based transparent Web caching schemes. We 

investigated how they combine to support cache cooperation in distributed Web 

caching systems. We also analyzed the advantages and disadvantages of different 

server selection algorithms. 
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W e  proposed a heuristic solution to optimize the @ormance of the distributeci L5 

switching-based transparent Web caching system, namely the Minimum Response 

Time (MRT) scheme. MRT improves upon the performance of other schernes. 

A detailed simulation mode1 was developed to study the performance of the proposed 

MRT Web caching scheme. We compared the performance of MRT with Content, 

Workload, RTT and LB-L5 Web caching schemes. Performance results show that 

MRT outperforms all other schernes in terms of HïïF' request response tirne. MRT 

outperforms Content, RTT and LES-L5 in terms of workload of cache servers. MRT is 

also shown to adapt better not only to high H'ITP request intensity and unbalance 

request intensity but also to large network latency. 

5.2 Future Work 

There are a number of aspects of Our work that need fwther investigation: 

Object size: In our research, when we estimate the request response time, we do not 

consider the object sue. The object size affects the tirne spent on server delay, which 

is incurred retrieving the object from the disk, and the thne spent on the transmission 

latency. These times may have a significant effect on the request response time if 

most of the requested objects are large objects, such as Video or Audio documents. 

Request response tirnes cannot be compared directly if objects are of different size. 

How te map the object size to time cornponents remains open for future research. 

Huge network latency: The balancing between network latency and server 

workloads has an inherent problem. In MRT, when the network latency factor is 
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huge, al1 client requests are dnected to the Web client's local cache server. The 

cooperation among cache servers is lost and the workload of cache servers cannot be 

effectively balanced. MRT is suitable to use among a cluster of cache servers within 

reasonably large network latency. The cooperation among cache server clusters with 

huge network latency need to be investigated further- 

Request Priority: The Layer 5 switches used in MRT can distinguish dinerent types 

of the requested objects, such as multimedia objects or image objects. Layer 5 

switches can assign priorities to requests for different types of objects so that switches 

can service high priority requests before low pnonty requests. This kind of prioritized 

transparent Web caching should be investigated further. 
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Appendix A 

Bloom Filter 

To anaiyze the relationship between the optimum number of hash functions W for a 

Bloom Filter with the Bloom Filter size F and nurnber of objects D in the cache server, 

we forrnalize the problem using an approach simiiar to that in [36] and derive the result 

for the Bloom Filter fkom the weighted Bloom Fiiter. The difference between a weighted 

Bloom Filter and a Bloom Fiiter is that in a weighted Bloom Filter the objects with high 

frequency are represented by more bits while the objects with low frequency are 

represented by fewer bits. In a regular Bloom Filter, all objects in a cache server are 

represented by the same number of bits. 

In a weighted Bloom Fiiter, we assume that, according to some conditions such as 

frequency the set S of aii objects in a cache c m  be partitioned into n subsets Si, S2 ... Sn, 

whïch are disjoint and whose union is S, that is 

S=S1US2 ... us, 

And 
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s i n  Sj=O, where IS iSn ,  1 S j S n . a n d i t j  

We define the foiiowing variables: 

Di: The nurnber of objects in subset Si, D = Dl + D2 +...+ Dn is the total number of 

objects in the cache. 

Pi: The access probability for objects in Si. It is the possibility that any object in subset Si 

will be accessed. 

Wi: The weight for subset Si. It is the number of hash hctions for subset Si 

F: The Bloom Filter size 

In a weighted Bloom Filter representing D objects, the probability that a particular bit is O 

is: 

Equation (1) can be approximated as: 

when x -> = 

when F -> a 

Hence the probability that a particular bit is 1 is: 

R I = ] - R o - 1 - e  -(WI *Dl +W*D2+.. . Wn*Dnp 

The false prediction probability is: 

Fp = Pl *RI w1 + P~*R," +.. . +&*RI wn 



-- - -- 

To find the optimum Wi for each subset Si such that the false prediction Fp is mhünkd, 

we differentiate Fp with respect to Wi: 

aFP - =O, where 1 S i  I n  
a wi 

Equation a b v e  is equivalent to: 

K is a constant independent of i. 

Substituting equation (A.6) into (AS), then 

1 - R  Fln R 

From equations (A.6) and (A.7), 
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Substituting equation (A.8) into (A.7), (A. 8) 

Substituting equation (AS) to (A.6), 

Substituting equation (A. 10) to (A.9), 

Substituting equation (A. 1 1) to (A. IO), the optimum values for Wi is: 

(A. 10) 

(A. 11) 

For a Bloom Filter n = 1, Wt= W2 = ... Wn= W, DI+D2 + ... +Da = D, Pi =...= Pa= 1, 

substituting al1 values to equation (A. 12), we c m  get the optimum value for W: 

(A. 13) 
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Appendix B 

Implementation Pseudo Codes 

The Pseudo Code for Layer 5 switches in MRT 

A pseudo code description of the functions of a L5 Switch is shown in Figure B.1. Lines 

1 to 9 show how a L5 Switch deals with different TCP messages. When a L5 Switch 

receives a TCP connection request from a Client, it accepts the connection by sending 

back a TCP-ACK (lines 3 - 4). When a L5 Switch receives a TCP ACK from a proxy 

cache server, it means a TCP connection has ken established between the L5 switch and 

the cache. Then the L5 Switch will relay a JTITP request from the client to that cache 

(lines 5 - 6). When it receives a TCP-FIN (TCP connection finished signai) from a proxy 

cache or the web server it relays the signal to the client to tear down the TCP connection 

between them (lines 7 - 8) 

Lines 10 to 20 indicate how a L5 Switch deals with the HMI? requests and HTI'P 

responses. When a L5 Switch receives a H 7 T P  request from a client, it will rnake the 

routing decision and find out which server it should go to and make a TCP connection 

request to that server ( he s  12 - 16). The details of how the L5 Switch makes the routing 
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decision are presented 6rom Lines 63 to 78 on page 96. When a L5 Switch receives the 

requested object from the cache server or the W e b  server it will relay it to the client who 

malces the request (lines17 - 20). 

Lines 21 to lines 48 describe how a Tc Switch deds with different extended ICP 

messages. If an in coming ICP message is ICP_UPDATETECONTENT, the L5 Switch 

will find out which cache sewer's contents need be updated according to the ICP 

message's SenderAddress field. If the ICP message's tirne stamp is greater than that 

cache server's time stamp for the last content update, which means the ICP message is 

valid, the L5 Switch will update that cache server's content and number of objects in its 

CacheArrayTable and send back the ICP-UPDATE-ACK message to that cache server. 

If a coming ICP message is ICPUPDATEWORKLOAD and the sender is a cache 

server, the L5 Switch will update the workload, the time stamp and the query response 

tirne for the sender cache server in its CacheArrayTable. The elapse tirne, that is the tirne 

between the L5 Switch sending the ICP-QUERY-WORKLOAD and the L5 Switch 

receiving the ICP-UPDATE-WORKLOAD, wiii be recorded in its CacheArrayTable as 

the current network latency between the L5 Switch and the sender cache server. A L5 

Switch also updates the Web server's workload when it receives the updated workload 

sent by the Web server. 

As described in lines 51 to 56, a L5 Switch queries the workload of cache servers by 

periodically sending ICP-QUERYYWORKLOAD to each of the cache servers and tracks 

the query time in its CacheArrayTable. If there is a thneout before next query message 

and the L5 switch fin& out that the workload of sorne caches is not updated then the L5 
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switch will set the workload of those caches as infinity (lines 57 - 61). In this way, a L5 

Switch can avoid redirecting requests to a non-responsive cache semer. 

// On receipt of TCP Messages 
1. Procedure onReceiveTCPMessages(rnsg:TCP) 
2- { 
3. if (mg-type =TCP-SYN) 
4. sendTCPCPACK(clientAddress); 

// relays http request to a cache when receives a TCP-ACK from that cache 
5. if (mg. type =TCP-ACK) 
6. send.€ïITF-Request (cac heAddress); 

// relays tcp-fin to client when receives a tcp-fin from proxy or web server ti 
//terminate the TCP connection 

7. if (msg-type = TCP-FiN) 
8. sendTCP-FIN(c1ien tAddress). ; 
9- 1 

V On receipt of H T ï P  Messages 
10 Procedure onReceiveHTTPMessage (mg: H T ï P )  

// Redirects http-request to different cache server or web çerver based on th1 
routing decision, fkst send a tcp connection request to that destination 

if (mgtype = HTP-REQUEST) 
{ 

des tinationAddress==eRoutingl)ecision() ; 
sendTCP-SYN( destinationAddress) 

1 

// http-response £kom proxy/web server relay http-response to the client 
if (msg.type = HrITP-RESPONSE) 
{ 

sendHTP-Response(requestedObject, clientAddress) 
1 
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// receives different ICP messages 

2 1. Procedure onReceiveICPMessage(msg:ICPMsg) 
22. { 

//if the ICP message is update content 
if (msg.0PCode = =ICPCPUPDATE_CONTENT) 

for i:= 1 to NumOf%acheServers 
if (CacheArrayTable[i].SenderAddress = = msg.SenderAddress) && 
if (msg.TS > CacheArrayTabIe[i].Last-Content-UpdateMsg-TS) 
{ 

CacheArrayTabIe[i] .Content:= msg .Content 
CacheArrayTable[i] .Count = m g  .Num 
CacheArrayTable[i] .List-Content-UpdateMs&TS= mg-TS ; 
sendMsg@CP-UPDATE-CONTENT-ACK, mySwitch.IPAddress, 
msg.TS , CacheArrayTabIe [il. SenderAddress) 

1 

//if the ICP message is update workioad 
if (msg.0PCode = =ICP-UPDATE-WORKLOAD) 
if ( m g  .SenderAddress = = WebServer.IPAddress) 

Webserver. Workload = m g .  Workload 
else 
{ 
for i:= 1 to NumOfCacheServers 

if Cac heArrayTable[i] .SenderAddress = = rnsg. SenderAddress) && 
(mg .TS > Cac heArrayTable [il .Last-Workload-UpdateMsg,TS) 
{ 

Cac heAmayTable [il. Workioad:= rnsg . Workload 
Cache ArrayTable [il .Last-Workload-UpdateMsg_TS= rnsg .TS ; 
Cache AmayTable [Il. Workload-QueryRes-The = getCurrentTime() ; 

//roundtrip time is cdculated as the iatency 
if(msg.TS = CacheArrayTable[i] . Workioad-Query-TS) 

CacheArrayTable[i] .networklatenc y = 
CacheArrayTable[i] . Workioad-QueryRes-Time - 
CacheArrayTable[i] . Workload-Query-Time; 

1 
1 
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'/ a Layer 5 switch query workload of caches periodicaily 
49. Procedure QueryJorkload (querflorkload-Interval) 
50. { 

l/broadcast workload query message to ali cache servers 
5 1. for i:=l to NurnOfCacheServers 
52. { CacheArrayTable[i]. Workload-Query_TS+=l ; 
53. Cac heArrayTable[i] . Workload-QueryTime = getCurrentTime(); 
54. sendMsg (ICP-QUERY-WORKLOAD, mySwitch.IPAddress, 
5 5. Cac heArrayTable[i] . Workload-QueryJS , Cac heArrayTable [il .IP Address) 
56. } 

Ilcheckif the query workload message lost or no response 
57. wait uniil (getCurrentTim~()xendTime+Timout) 
58. for i:=l to NumOfCacheServers 

if (CacheArrayTable[i]. Workload-QueryRespoweThe< 
Cac heArrayTab1e [il. Workload-QueryTime) 

59. { 
60. CacheArrayTable [il. Workload= INFINITY; 
6 1. 1 
62. ) 

Y Layer 5 switch makes routing decision 
63 Procedure makeRoutingDecision(req:HITPRequest) 

if (req.isCacheable = faise) Ilif request is non-cacheable 
destinationAddress = WebServer.IPAddress 

e k  { //if request is cacheable 
for i:=l to NwnOfCacheServers 

{ 
if (CacheArrayTable[i] .Content = req.Content) Fp = caIFp() ; 
else Fp = 1; 
ResponseTimeArray [il .ResTime = 
Fp* ( CacheArrayTabIe [il .net worklatenc y 

+processTime(CacheArrayTable[i] . Workioad) 
+ 2*RTTcs,ws +processTime(WebServer. Workload)) + 

( 1 -Fp) * (CacheArrayTable[i] .networklatency + 
processTime(CacheArrayTable[i] . Workload)) 

1 
l/pick the cache server with the minimum response time 
for i:= 1 to NumOfCacheServers 

if (ResponseTimeArray[i] .ResTime<MinEtesTime) 
( MinResTime = ResponseTimeArray[i] .ResTime; 

destinationAddress = ResponseTimeArray[i].IPAddress; 
1 

Figure B. 1 Pseudo Code For Layer 5 Switch in MRT 
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The Pseudo Code for h x y  Cache Server ia MRT 

A pseudo code description of the added functions (distriiute content and deal with 

extended ICP messages) of a Proxy Cache Server in MRT is shown in Figure B.2. To 

cooperate with L5 Switches, the cache servers must support the extended ICP messages. 

Lines 1 to 17 describe how a cache server sen& its updated content to each LS switch 

with ICP-UPDATE-CONTENT. A proxy cache periodicaliy pubïishes its content 

information and the number of objects in it to ail the L5 Switches. If there is a timeout 

before the next ICP-UPDATE-CONTENT and the cache server h d  out that some L5 

Switches do not acknowledge the ICP-UPDATE-CONTENT, then the cache server will 

send the same ICPCPUPDATETECONTENT again. 

Lines 18 to 3 1 present how a cache server deals with different ICP messages. If the 

coming ICP message is ICPCPUPDATETECONTENTNTACE[, the cache wiU update the 

timestamp for it in its SwitchArray table. If the coming ICP message is 

ICP-QUERY-WORKLOAD, the cache server wili send its workload to any L5 switch 

that queIies the workload. 
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//send the content information to switch periodically 
1 Procedure distri'buteContent (content:BLOOM-FILTER, n w I n t )  
2 

for i :=1 to NumOfSwitches 

SendMsg (ICP-UPDATË-CONTENT, myCache. IPAddress, 
content, num, S witchkray [il. Content-Update-TS, 
switchArray[i] .IPAddress); 

1 
sendTime = getCmntTime(); 
wait until (getCurrentTime()>sendTime+Timeout) 
for i :=1 to NurnOfSwitches do 
{ 

if(S witc hArray[i] .Content-Update-TS != 
S witc hArray [il .Content-Update-ACK-TS) 
SendMsg (ICPCPUPDATE_CONTENT, myCache. IPAddress, content, num 

SwitchArray [i].Content-Update-TS, switchArray[i].IPAddress) 

18 Procedure onReceiveMessage(msg:ICPMEssage) 
19 { 
20 switch (msg.OPCode) 
21 ( 
22 case ICP-UPDATE-CONT'ENT-ACK: 
23 for i :=1 to NumOfSwitches 
24 if (S witchArray[i] .IPAddress = msg.SenderAddress) 
25 S witchArray[i] .Content-Update-Ack-TS := msg.TS ; 

26 case ICP-QUERY-WORKLOAD) 
27 for i :=1 to NurnOfSwitches) 
28 if (S witc hArray[i] .IPAddress -- rnsg .SenderAddress) 
29 sendMsg(ICP_UPDATETEWORKLOAD,myCache.IPAddress, 

myworkload, msg.TS, S witchArray[i] .IPAddress 
30 1 
31 1 

Figure B.2 Pseudo Code For Roxy Cache Server In MRT 
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The Pseudo Code for Web Server in MRT 

A pseudo code description of the added update workload iùnction of a Web Server in 

MRT is shown in Figure B.3. To cooperate with L5 Switches, the Web server supports 

the extended ICP-UPDATE-WORKLOAD message. Lines 1 to 7 describe how a Web 

server periodically sends its updated workload to L5 switches. 

-- - 

1. Procedure OnUpdateWorkloadTimeout () 
2- 
3. myworkload = getWorkload(); 
4. for i :=1 to NumOfSwitches 
5. if (S witc hArray[i ] JPAddress = msg SenderAddress) 
6. sendMsg(ICPCPUPDATETEWORKLOAD, myIPAddress, myworkload, 

S witc hArray[i] JPAddress) 
7- 1 

Figure B.3 Pseudo Code For Web Server In MRT 

-- * a, 
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Appendix C 

Validation Checking Pseudo Code 

The foilowing pseudo code C.1 shows how W3C httpd 3.0 maintains cache consistency 

(it is derived fkom study of httpd's source code). 

%medure GET (P:page, S: date) 
1 Answer a H l ' T P  GET request. S is the date in the request's If-Modified-Since: header. 
1 If there was no If-Modified-Since: header, S = -infinity. 
;/ Note that the Date: and Last-Modined: headers are stored with every cached page, and 
/are trans~nïtted unchanged whenever a cached page is returned. 

if (P in Cache & curent-time < cached-P.expiration-tirne) 
// in cache, no t expired 

{ 
if (cached-P. last-modified <= S ) 

r e t m  'mot Modified"; 
Date = cached-P.date; 

1 
else 

return cached-P 
1 
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if (P in cache & current-time >= cached-P-expiration-time) // in cache, expired 
{ 

send If-Modified-Since(cached-P. lasttmodified) to higher level cache 
if (response="Not Modified) 
I 

cached-P.expirationntime= new-expire-the); 
return "Not Modified"; 
// with headers, including Date:, as we just received them fkom higher- 
//level cache 

1 

else 
{ 

cached-p = received-P; 
cached-P.expiration-tirne = new-expire-time(P); 
re tum cac hed-P; 

1 
1 

if (P not in cache) 
{ 

send If-Modifïed-Since(S) to Higher level cache 
if (whole document was retwned) 

cached-P = response 
cached-P.expirationtitime = new-expire_time(P) 

1 
retum response to client, including headers 

1 

-- 

Figure C. 1 Expiration Pseudo Code 
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Appendix D 

The Simulator Structure 

The simulator used in our study is a discrete event-dnven simulation. It simulates the 

Content, Workload, RTT, LJ3-L5 and MRT Web caching schemes. The major classes in 

the simulation are as follows: 

CIass Sim 

Kt is the main class of the simulator. It initializes the Web clients, cache servers and the 

layer 5 switches. It varies the request intensity factors to generate various controiied 

traces. It runs the four simulated Web caching schernes. 

CIass ClientCluster 

It simulates a client cluster by readhg proxy traces to generate H T ï P  requests. It handles 

the TCP messages and HTTP request and response messages. 

Ciass LSSwitch-ContentSwitch 

It simulates a layer 5 switch used in a Content-based transparent Web caching scheme. It 

redirects the requests in a round robin fashion or randomly. 

C h  LSSwitch-Workload 
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It simulates a layer 5 switch used in a Workload-based transparent Web caching scheme. 

It redirects the requests based on request content and each cache server's workload. 

Ciass LSSwitch-RTT 

It simulates a layer 5 switch used in a Round trip time-based transparent Web caching 

scheme. It redirects the requests based on the request content and round trip time between 

the switch and each cache server. 

Class LSSwitch-LB-LS 

It simulates a layer 5 switch used in the LB-L5 Web caching scheme. 

CIass LSSwitch-MRT 

It simulates a layer 5 switch used in out MRT Web caching scheme. It reditects the 

requests based on the MRT selection algorithm. 

Class ProxyCacheLSContent 

It simulates a proxy cache server used in a Content-based transparent Web caching 

scheme. It supports LRU replacement algorithm and expiration time validation checking 

mechanism. 

Class h x y  CacheW Workload 

It simulates a proxy cache server used in a Workioad-based transparent Web caching 

scheme. It supports the LRU replacement algonttun and the expiration tiw validation 

checking mechanism. 

Ciass ProxyCacheLSRTT 

It similates a proxy cache server used in a Round trip tirne-based transparent Web 

caching scheme. It supports the LRU replacement algorithm and the expiration time 

validation chec king mechanism. 
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Ciass ProxyCa~heLSLB~Ls 

It simulates a proxy cache server used in the LB-L5 Web caching scheme. It supports the 

LRU replacement aigorithm and the expiration time validation checking mechanisrn 

Class ProxyCacheLSMRT 

It simulates a proxy cache server used in our MRT Web caching scheme. It supports the 

LRU replacement algorithm and the expiration time validation checking mechanism. 

Class WebServer 

It simulates a Web server. It accepts HTTP requests and sen& back HTïP responses. In 

our simulation, the Web server &O supports the ICP messages. It periodically calculates 

its current workload and sends its workload to switches with the 

ICP-WDATE-WORKLOAD message. 
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Appendix E 

Confidence Intervals 

Normaliy, codidence intervals placed on the mean values of simulation results can be 

used to describe the accuracy of the 

statisticaily independent simulation a n s  

simulation results. Consider the results of N 

for the same expriment: Xi, X2, . . ., XN. The 

sample mean, X is given as: 

The variance of the distribution of the sample values, S: is: 

s, The standard denvation of the sample rnean is given by: - JN' 
Under the assurnption of independence and normality, the sample mean is distributed in 

accordance to the T-Distribution, which rneans the sample mean of the simulation runs 
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- - 

f d  in the interval f c within the actual mean with a certain probability drawn fiom the 

T-Distribution. 

whem ~ , I Z N - ,  is the value of the T-distribution with N-1 degrees of freedom with 

probability a /2. 

The upper and lower iimits of the confidence interval regarding the simulation results are: 

- Sxta12.N-l Lower Limit = X - 

- 
Upper Limit = X + S&2,N-l 

f i  




