Transparent Web Caching with
Minimum Response Time

By Qing Zou

A thesis submitted to the
Department of the Computing and Information Science
in conformity with the requirements

for the degree of the Master of Science
Queen’s University
Kingston, Ontario, Canada
January 2002

Copyright © Qing Zou, 2002

il

National Library

Bibliothéque nationale

of Canada du Canada
Ng!r Acquisitionset
mglaphnc Semces services bibliographiques
395 Wellington Street 395, rue Welfington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canade Canada
Your e Votre réidrence
Our fis Notre rééérance
The author has granted a non- L’auteur a accordé une licence non
. exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. Ia forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-65661-6

Abstract

Distributed Web caching systems allow better load sharing and more fault tolerance in
Web caching systems. Layer 5 switching-based transparent Web caching schemes
intercept HTTP requests and redirect them according to their content. Employment of
these schemes in distributed Web caching systems provides balanced server workload,
reduced response time and improved cache sharing. However, none of the existing

schemes attempt to minimize the HT TP request response time.

In this thesis, we propose a Minimum Response Time (MRT) Layer 5 switching-based
Web caching scheme for distributed Web caching systems. MRT distinguishes non-
cacheable requests from cacheable requests based on HTTP request header. It
intelligently redirects cacheable requests to the cache server with the minimum HTTP
request response time based on the information about cache server content, cache server
workload, Web server workload and network latency. MRT extends ICP to support the
communication between cache servers and Layer 5 switches. The MRT heuristic is a

solution to optimize the performance of the distributed Web caching.

A number of simulation experiments are conducted under different HTTP request
intensities, network latency factors, object expiration time values and number of
cooperating cache servers. Simulation results show that MRT outperforms existing
switching-based Web caching schemes, namely Content, Workload, RTT and LB_LS5 in

terms of HT TP request response time.

Acknowledgements

I would like to express my gratitude to my supervisors Professor Patrick Martin and

Professor Hossam Hassanein, for their excellent guidance, great advice and support.

I would like to thank Wendy Powley and all the other members in the Database System
Laboratory and the Telecommunications Research Laboratory at Queen’s University for

their suggestions, assistance, comments and friendship.

Special thanks to my husband Gang, for his selfless support and great advice. Thanks to
Jasmi John and Hongzhi Li at the Computer Science Department, Queen’s University for

their generous help. Thanks to Zhenggang Liang for help with the simulation code.

Finally, I would also like to thank the Department of Computing and Information Science
at Queen’s University for offering me such an invaluable opportunity to pursue my
Master’s Degree. The financial support provided by Communications and Information

Technology Ontario (CITO) and Kingston Software Factory is appreciated.

Table of Contents

Chapter 1 Introduction 1
Chapter 2 Related Work 6
2.1 Hierarchical and Distributed Web Caching.........cooveoieememeinniemiiiiiieeienniennne. 7
2.2 Client-Initiated Selection AIZOMIthIMScccvvmmmemmmieeiimeeeeeeeeeeeeeeeeeeeenneee 10
2.2.1 Minimum Number of HOPS ...c.cooeouemmiieemeee et 10
2.2.2 Minimum Round Trip Timecooovoiimmiereeeeee e 11
2.2.3 Minimum HTTP Request Latencycccccoommieeniminemmmeeniieccceceenveeeeneeeeee 13
2.2.4 Hybrid Approach of Bandwidth and RTTceueeeeiiiiiiiireecnnennne 13

2.3 Switch Selection AIGOTIthIS.........cooiiiiiiiiiiiieeree e 14
2.3.1 Content-Based SeleCtion..........uveeeeeereeimimimmiinteeiieeieeentttieeineeeeeeeeeeenecesnnsnee 16
2.3.2 Workload-Based SeleCtionc.ccceeevveiveirmrmmnnrrermmmmeniieireeeeeneeresesenensesesees 16
2.3.3 RTT-Based SeleCtiOnccccoovuveemmmueernrecimmrennseeeeeseeneeeeteeeneeeessaeesanasessas 17
2.3.4 LB_LS SEIECUOMN ...ceeeeeeiirrereeenrneenisicrerennnrremreetereeeestetesensennsernrnsraasaesssessasne 18

2.4 SUMMATY ...coooeeeeeiiieine e cceesecetetessrbr e s s ses s e s nre e rmn ettt e s e e s s e s s mnanmeeneeee s 19
Chapter 3 Minimum Response Time Scheme 21
3.1 0verview of the MRToiiiierriiceeieee et eeeeseme et e e e s e esnn e e 22
3.1.1 Content CheCKInNg.......ccoceriiiierirerrerireecriiretiireeeerenemsseeeees et e e e e rasannsnesenesenes 23
3.1.2 Cache Server Selection..........cocococevierreeeccmiiiiicreeee et e neese e 25
3.1.3 MRT Routing SChemE..........cecaiiiiiiiie e ettt saae e e 32

3.2 Detailed Description of MRT SCheme.........ceummmieenicininiiiieietrcec i 34
3.2.1 Extended ICP MESSABESccoervvvrrrrririiienmnneieciememeee e cctt bttt et ee e e s eveantnes 34
3.2.2 Extended Information Tablecoooviiiiiinnniienrreeenc e 37
3.2.3 Routing Mechanism of MRTcoouiioiiiiiiierineiiitiiiicinecnesenescenseesenaees 38

3.3 SUIMMATYcovvvrreeennmririreriienritiiitteriiissrretisesasssreesssssassssssesssssenserasssssrsssocassenssessee 40
Chapter 4 Performance Evaluation 42
4.1 Simulation Modelcceuuirmieiiiiciiiiirrienreineer ettt aen e aaane 43
4.1.1 Network Modelcooeemieeiiieeeeriieecicrireeccim et eee sttt e s s eesnnsns 43
4.1.2 Network Latency Model........ ..ot trteennrre s seese s e 44
4.1.3 Workload Model ... eer et sesse s se e s s s manananes 46
4.1.4 Validation Checking Model........ccoooviiiiimmmmmmmeieecen e 47
4.1.6 Simulation Parameter SENEeveevvmmeiimiriecriiiimiiiiiiiienee e stecaeesnees 49

4.2 Content, Workload, RTT and LB_LS5 SChemescceueeeeceriiimmranccscercosscrenvennnnns 51

4.2.1 The Content SChEMEccocouiiiriricreeiereeencmmcccrirrerieere e e resse s saneesssesssnenes 51
4.2.2 The Workload SChEMEc...eernnnmeeeeeeeceeecrcceccetece et rresesneanssaenes 51
4.2.3 The RTT SChEIME «....oneceiereeecerrereeccneoscnrcneessasetasasssnsesssssserssssannsnanass 52
424 The LB_L5 SCREMEouuveereeeeeieeeeeeeceeeemnenrsorsesteseetessseesessssssenassnsssssnns 52

4.3 PerfOrmance MELTICS - ..coeueueeeeceeeucerierarnrrnnecacmarencsmessemrssmmsenssstsssseessessssnresssansnsssences 53
4.4 SIMUlation RESUILSovemmeeeerieriereerieeereertreeesenececeoscaneeesmnrnnsseeneessnennresssssesssnens 54
4.4.1 Raw-trace Driven Simulations............cccocveececeeemmemmiiemmmeiiiieeecreceeenseesnees 55
4.4.2 Controlled-Trace With Balanced Requestscccceeeiieriiiiiinnnnnincciininenaes 60
4.4.3 Controlled-Trace With Unbalanced ReqQUesLtSccccccceviiminenninnninieciiiennneenns 69
4.4 .4 Effect of Number of Cache Server.........couumimmmeieiiiciceceinneee 73

4.5 SUMINACYccceireirrernnrecneettiieteesiseesseesenaessseesesesasssssssssraranstetassssssassssnessssnasessnsseses 77
Chapter 5 Conclusion 79
5.1 CONIDULIONSueeeeeeeiiieiiiiiietittieieeecceeecccceeaeessesensssenssssemraesssmrrmmenresssnrssssssssoses 79
S.2FULUTE WOTK........eneeeiiciiiiiiieiecttttiecrtteacccane e essscennnsrsssrssssssssnnmnnnsssrsnssnssescssnans 80
Bibliography 82
Appendix A Bloom Filter 87
Appendix B Implementation Pseudo Codes 91
Appendix C Validation Checking Pseudo Code 99
Appendix D The Simulator Structure 101
Appendix E Confidence Intervals 104
Vita 106

iv

List of Figures

FIGURE 2.1 HIFRARCHICAL ARCHITECTURE FOR WEB CACHING.......coumueeieeererrirnrecnenennean 8
FIGURE 2.2 DISTRIBUTED ARCHITECTURE FOR WEB CACHING.......ccveiiiirievnireenreannceeensrens 9
FIGURE 2.3 TRANSPARENT PROXY WEB CACHING WITH REDIRECTIONccccoovvreenennnnee. 14
FIGURE 3.1 DISTRIBUTED SWITCHING-BASED TRANSPARENT WEB CACHING SYSTEM...... 22
FIGURE 3.2 FALSEHITRATEScou e eeeceeeeeieeecereeeeeeneecnsaecscsssesesssssnnnssnsesnnsnsnsssnsansnnnensans 27
FIGURE 3.3 A CACHE-HITREQUESTINMRTooeeeeeeeecreesrennseennsesesssenrsssensennnnsees 29
FIGURE 3.4 A CACHE-MISS REQUESTINMRToonniireeiecnirrmncrnnteiceeeereseeneeenennsnes 31
FIGURE 3.5 CACHE SERVER PROCESSING TIME AND NUMBER OF CONCURRENT REQUESTS
.. 32
FIGURE 3.6 ICP MESSAGE FORMATc..oeivttieieeeeeunereesenesneemmecsmsessssmmmmicnssesicssossssssnsnsnses 34
FIGURE 3.7 THE FORMAT OF ICP_UPDATE_CONTENTcouimiiereneeceneeeenes 35
FIGURE 3.8 THE FORMAT OF ICP_UPDATE_CONTENT_ACKcuceiicennenens 36
FIGURE 3.9 THE FORMAT OF ICP_QUERY_WORKLOAD......cccceiiimiiiiiiiiiirieneeeeneeeeeee 36
FIGURE 3.10 THE FORMAT OF ICP_UPDATE_WORKLOADcoutiiiiitniciiencennnnens 36
FIGURE 3.11 CACHESERVERARRAY INFORMATION TABLEccocemmtimmmiiiiinnninerenncreneennnns 37
FIGURE 4.1 NETWORK MODELcootteeeeeeereieeereeseereersssssssssssesessssssersssmemsmsssosssmssesnsssnnnses 44
FIGURE 4.2 NETWORK LATENCY MODELciieieeeteciicecenrerretreesresmmrtiieessiesssssserenssssses 45
FIGURE 4.3 HTTP REQUEST INTENSITY ...coenuiiiiieieeiecreeceescncesmmeserssennisiesssssssnsersassesessss 55
FIGURE 4.4 RESPONSE TIME AT LATENCY FACTOR = SMScctniiitiimiicricntinecneeeeeenee 57
FIGURE 4.5 RESPONSE TIME AT LATENCY FACTOR = 7T5MS ...cutiiimirmmniieninieeeeinnnnnneenes 58
FIGURE 4.6 RESPONSE TIME AT LATENCY FACTOR = 125 MS....u e eeeeeee 59
FIGURE 4.7 AVERAGE RESPONSE TIME VERSUS HTTP REQUEST INTENSITYcccceoveveeneens 63
FIGURE 4.8 AVERAGE RESPONSE TIME VERSUS NETWORK LATENCY FACTOR 67
FIGURE 4.9 AVERAGE RESPONSE TIME VERSUS EXPIRATION TIMEcccoovuiiiriinirenenannns 69
FIGURE 4.10 WORKLOAD AND AVERAGE RESPONSE TIMEcccorvermmmirninncenrennerenseneees 73
FIGURE 4.11 AVERAGE RESPONSE TIME VERSUS THE NUMBER OF CACHE SERVERS 76
FIGURE B.1 PSEUDO CODEFOR LAYER 5 SWITCHINMRTcociviiimiirrrceieenrecieeenes 95
FIGURE B.2 PSEUDO CODE FOR PROXY CACHE SERVERINMRTcccooiiviiiiininnnnnnnnnn. 97
FIGURE B.3 PSEUDO CODE FOR WEB SERVERIN MRTcurmiiieeereeeiceeeenee 98
FIGURE C.1 EXPIRATION PSEUDO CODE..........ceeuueeuiieereecesertesiessesseniorieiesssmmmsssrssesasess 100

List of Tables

TABLE 3.1 SYMBOLSoeeueuererteeneeererissereesessessrsssssssssossmesasemsmsesssssmnnssssssesnmanssnsnnnnssssanes 23
TABLE 3.2 ICP OPCODEc..uoeeereeeeeeeeeeiieeeeeeeeeessssssesassssssesssssmmmessssisssssnsrssnsnnsssessnnnssesnnne 35
TABLE 4.1 PARAMETERS FOR LINKou.uoouuuiiirenteseeernscessmmessmnesssommsssnnsesnssssnssesnssnsnnssssessns 50
TABLE 4.2 PARAMETERS FOR SWITCHEScceuvietuiirecrrerescensonmseonssammmenssernsssmsnsomnssnsssnnsees 50
TABLE 4.3 PARAMETERS FOR WEB SERVER..........covvveecetesecemnammacnstieeesrmeresnsmsnsessnssessessees 50
TABLE 4.4 PARAMETERS FOR CACHE SERVERS.......ccovcctttemesamemrmsetimerrereennesnnssesssnnesnsennnns 50

List of Acronyms

CGI Common Gateway Interface

CSS Content Smart Switch

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

ICP Internet Cache Protocol

LB_LS Load Balancing Layer S switching-based transparent
NLANR National Laboratory for Applied Network Research
MRT Minimum Response Time

RTT Round Trip Time

SSH Secure Shell Remote Login Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

WwW3C World Wide Web Consortium

Chapter 1: Introduction 1

Chapter 1

Introduction

The rapidly increasing number of Web applications, coupled with the rapidly increasing
number of documents accessible by Web clients, has resulted in an explosive increase in
Web traffic expressed both in terms of HTTP requests and HTTP replies. HIT TP Web
traffic has grown to account to 75-80% of all Internet traffic [1]. There is no indication
that this increase will abate in the near future. In fact, the number of Web users keeps
increasing and the Web is used in ever more different ways to access a wide variety of
text, still images, audio and video documents. This popularity is raising an urgent need

for solutions aimed at improving the quality of the service provided by the Web.

Web caching [1] [2] is one of the most popular solutions to the problem mentioned
above. It is a technique that uses caches over the Internet for replication of the most
frequently accessed data. Various approaches have been examined in order to increase
the performance of Web caching. These include the use of large caches and of more
efficient cache management techniques. However, the effectiveness of a single cache

remains poor as it is, in general, no higher than 40% [3]. Furthermore, the use of large

Chapter 1: Introduction 2

caches raises financial and technical problems. Other efforts have focused on pre-
fetching of data to caches but the resulting traffic overhead is too costly [4]. Another way
to increase Web caching performance is to expand solutions from the level of a single
cache to the level of a set of cooperating caches. Cache cooperation provides a
mechanism to share documents among caches and to share one cache among a number of

clients [5] [6] [7] [8].

The most popular types of cooperative cache systems are the hierarchical and the
distributed systems, which are both implemented by the Squid software [1] [9] as part of
the Harvest project [10]. Several Web caching schemes are deployed by Squid to support
cache cooperation. Internet Cache Protocol (ICP) {11] is employed to exchange the
messages between cache servers. A Bloom Filter [12] is used in Squid to represent the
cache content compactly. In this type of cooperation, approaches for inter-proxy
cooperation try to maximize the global hit ratios. A Web client’s local proxy redirects
requests to one of its cooperative cache servers when it is a cache-miss on the local cache
server. The redirection is based on the query results of the contents of the cooperative

cache servers.

Traditional hierarchical Web caching systems [1][9] have several drawbacks. Shared
higher-level cache servers may be too far away from the client. Cache misses are
significantly delayed by having to traverse the hierarchy. As well, redundant data are
stored on higher-level cache servers and the higher-level cache servers may become a

bottleneck. Distributed Web caching systems [1][9][13] [14] [15] [16] rely on replicated

Chapter 1: Introduction 3

objects and services to improve performance and reliability. There are no hierarchies
among cache servers. All cache servers are employed at the same level. So distributed
Web caching systems overcome the drawbacks of hierarchical Web caching systems.
Moreover, they have better fault tolerance, distribution of server loads and improvement

of client performance by bringing cache servers closer to Web clients.

In both traditional hierarchical or distributed Web caching systems, the redirection of
HTTP requests is done by cache servers. There are cases in which copies of objects in
some distant cache servers may not be worth fetching. Instead the original Web server
itself may be a better choice. Sometimes copies in a heavily loaded cache may be costly
to fetch and instead a lightly loaded cache may be a better choice. It is difficult for a
cache server to collect and process the load information of all the cooperative cache
servers and network load information. The packet processing functions and packet

forwarding functions may not be efficient if performed at cache servers.

Recently, a new type of Web caching technique has emerged. It is called switching-based
transparent Web caching [17] [18]. A switch sits in the data path between the Web
clients and the server cluster. It intercepts the Web traffic and transparently redirects the
HTTP requests to different cache servers or to the Web server. Transparent Web caching
makes the configuration of the caching system easier. Switches can rapidly process and
forward the packets. This switching-based transparent Web caching technique can use
content-aware Layer 5 switches in a distributed Web caching system with enhanced

cache cooperation [19] [20] [21] [22]. The switches perform content checking based on

Chapter 1: Introduction 4

Layer 5 header information of the HTTP request packets. A HTTP request is redirected

by switches to the cache server that can best service the request.

From the perspective of the Web clients, the request response time is an essential
component of quality of service. However, fluctuations in network congestion and server
load make it difficult to collect the information and to predict response times. In the
existing switching-based transparent Web caching system, the switch uses several
performance estimators to approximate the HI'TP request response time. For example, a
ping probe [23] measures current network latency but does not measure server workload.
Another example is Cisco CSS 11000 [22], which requires the cooperative cache servers
be within the same LAN. Z. Liang proposes a Load Balancing Layer 5 switching-based
transparent Web caching scheme (LB_LS5) [20]. LB_L5 considers both workload and
network latency, but LB-LS has one main drawback in that it cannot guarantee minimum

response time for Web requests.

In this thesis, we propose the Minimum Response Time (MRT) switching-based Web

caching scheme. The main goals of our research are:

e To propose a solution to optimize the performance of distributed switching-based
transparent Web caching systems. The proposed scheme should minimize the HTTP
request response time and balance the workload among the caches based on a
combination of request content, cache server content, network latency and server

workload.

Chapter 1: Introduction 5

e To develop a trace driven simulation to evaluate the performance of the proposed

scheme.

The rest of the thesis is organized as follows. Chapter 2 surveys existing work on
distributed Web caching systems. In Chapter 3, we describe the proposed MRT scheme.
Simulation results and analysis are reported in Chapter 4. Finally, in Chapter 5 we
conclude the thesis, list the contributions of our work and discuss future research

directions.

Chapter 2: Related Work 6

Chapter 2

Related Work

Web caching improves the quality of the service provided by the Internet. A single cache,
however, has a finite size and there is a limit to the number of objects that can be cached.
A group of cache servers can be used to realize cache cooperation. The two most popular
types of cooperative cache systems are the hierarchical and the distributed systems. In
hierarchical Web caching architecture, cache servers are placed at multiple levels of the
network. On the other hand, in distributed caching architecture, caches are placed at the
bottom levels of the network and there are no intermediate caches. Such distributed
systems rely on replicated objects at different locations and services to improve
performance and reliability. The design of efficient server selection algorithms is critical

for distributed Web caching schemes.

This chapter presents a literature review of server selection algorithms in distributed Web
caching systems. Section 2.1 gives a brief introduction to the hierarchical and the

distributed Web caching models. The server selection methods fall into three categories:

Chapter 2: Related Work 7

client-initiated [23] [24] [25] [26] [27], switch-based [17] [18] [19] [20] [21] [22] and
server-initiated [28] [29] methods (depending on who makes the selection). Both client-
initiated and switch-based approaches are aimed at a group of servers that are
heterogeneous. Section 2.2 discusses current client-side selection algorithms. Section 2.3
presents selection methods that rely on network switches, which are the focus of our
work. Switches choose among the interfaces by deciding which is “best”, where best is
defined by request contents and the switch metrics. In server-initiated methods, the
servers decide where to send the requests. The server side algorithms are used for Web
server clusters, which typically contain members with similar resources and a shared
local network. As they do not directly pertain to the work in this thesis, they are not

discussed further. Finally a summary is given in section 2.4.

2.1 Hierarchical and Distributed Web Caching

Hierarchical Web caching is one form of cooperation among cache servers. Traditional
hierarchical cache server architectures such as Squid [1][9] define parent-sibling
relationships among cache servers. A parent cache server is essentially one level up in a
cache hierarchy. A sibling cache server is on the same level. Each cache server in the
hierarchy is shared by a group of clients or by a group of children cache servers, as

shown in Figure 2.1.

Chapter 2: Related Work 8

~

Figure 2.1 Hierarchical Architecture for Web Caching

Data access proceeds as follows: if the lowest-level cache server contains the data
requested by a client, it sends the data to the client, otherwise, the cache server asks each
of its siblings for the data. If none of the siblings possess the data, then the cache server
sends a request to its parent. This process recursively continues up the hierarchy until the
data is located or the root cache server fetches the data from the Web server. The cache

servers then send the data down the hierarchy and each cache along the path stores the

data.

Traditional cache hierarchies have several problems. First, a request may have to travel
many hops in a cache hierarchy directory to get to the data, and the data may traverse
several hops back to get to the clients. Second, cache misses are significantly delayed by
having to traverse the hierarchy. Third, there is little sharing of data among caches.
Fourth, shared higher-level cache servers may be too far away from the client and the

time for the object to reach the client is simply unacceptable.

Chapter 2: Related Work 9

Distributed Web caching allows the distribution of caching proxies geographically over
large distances and attempts to overcome some of the drawbacks of traditional
hierarchical Web caching. Cache servers are organized into cache clusters with no
definite hierarchy among them, as shown in Figure 2.2. A device, such as a switch or a
local cache of the client cluster, sits between the client cluster and the cache server

cluster.

5
Web [Web |3
Server | Internet Server |1
Cache 2
Server
Cache Cache
Server Server
Cache
Server

Device Device Device Device

Guomd) Guom) Gmom) @uon

Figure 2.2 Distributed Architecture for Web Caching

Data access proceeds as follows: if a local cache server contains the data requested by a
client, it sends the data to the client. Otherwise, the local cache server or a switch device
redirects the client request to one of the cache servers. If that cache server has a copy of
the requested object, it sends the data back to the client. Otherwise the request is

redirected to the Web server. Distributed Web caching systems have several benefits

Chapter 2: Related Work 10

including fault tolerance, distribution of server loads and improvement of client

performance by bringing cache servers closer to the client.

2.2 Client-Initiated Selection Algorithms

Client-initiated methods are a class of cache server selection algorithms in which the
clients or their local proxies select the server. The algorithms are designed for a set of
heterogeneous, topologically dispersed servers, whose response times depend upon both
server and network effects. The HITP request response time is the most appropriate
performance metric from the users’ point of view. The request response time is the sum
of connection establishment time, latency and transmission time:

T = Teonnecr + Tiatency + Tremaining 2.D
where, Teomex is the time to establish a TCP/IP connection, Tiaeacy is from the time of
sending the request to the time of receiving the first packet of the reply, and Tremaining is
the time to receive the remaining reply packets. It is not easy to measure the request
response time. Tiency is related to the network load, network propagation delays, cache
server load and cache server speed. Tremining iS determined by the size of objects.
Measurement of these times may lead to substantial overhead. Different selection
methods that have been used to approximate the HTTP request response time, and upon

which the clients or their local caches make their selections.

2.2.1 Minimum Number of Hops
The number of hops between a client and a cache server is one common approximation of

the request response time [23] [24] [25]. It can be used by clients to determine the

Chapter 2: Related Work 11

proximity of distributed servers. The fewer the number of hops then the smaller the
distance between the cache server and the client. The number of hops can be obtained
directly from the routing tables without incurring any additional network load. The

approach is very simple and easy to implement.

For example, J.Guyton [24] and R.Cater et al [23] [25] investigate this approach under
the assumption that each cache contains contents that are also held in other caches. A
client sends all requests to the closest server in terms of the number of hops [24]. The
problem with this approach is that the number of hops cannot reflect the varying network
load. Even for homogeneous server sets with well-balanced load, response times can
differ significantly because network routes between the client and the servers have
different bandwidths and congestion patterns. The correlation between the number of

hops and the HT TP request response time has been shown to be relatively low [26].

2.2.2 Minimum Round Trip Time

The round trip time (RTT) of the packets sent by the ping utility is another common
metric for determining the proximity of distributed servers. The standard ping utility uses
the Internet Control Message Protocol (ICMP) [30] to send ECHO_REQUEST datagrams
to the cache server’s echo port and listens for the ECHO_RESPONSE. Unlike the
number of hops, the ping round trip time reflects the actual network load on the route

between the client and the server.

Chapter 2: Related Work 12

Internet Cache Protocol (ICP) [5] and National Laboratory for Applied Network
Research (NLANR) [6] use RTT. The Squid cache severs of NLANR are configured into
a tree-structured hierarchy. In such a hierarchy, every participating cache server is
organized with a connection of neighboring peers and a parent. ICP is used for
communication. When a client’s local proxy cannot service the request from its cache, it
uses a set of configuration rules to determine if the Web server is local. If not, the proxy
issues a set of simultaneous ICP_OP_Query messages to all its peers. When a peer
receives the query message and finds that it has the requested object, it sends back
ICP_OP_HIT. The client’s local proxy forwards the request to the peer that responds
first. If all peers reply with ICP_OP_MISS, the following three situations apply:

1) If the peers are using the ICP_FLLAG_SRC_RTT feature, the request is forwarded to

the peer with the lowest RTT to the origin Web server.

2) If there is a parent available, the request will be forwarded to the local cache’s parent.
3) If the ICP query/reply exchange does not produce any appropriate parents, the request

is sent directly to the origin Web server.

The drawback of this approach is that the ping round trip time does not provide any
indication of the cache server load and the speed of the cache server. The correlation
between the round trip time and the HT TP request response time is found to be slightly
higher than for the Minimum Number of Hops, which is still not indicative of the request

response time [26].

Chapter 2: Related Work 13

2.2.3 Minimum HTTP Request Latency

Under the assumption that the HTTP request response times are stable within a short
period of time, the response time of a new HTTP request can be estimated from the
response times of HTTP requests previously sent to the same server. However, the
response time also depends on the size of the requested object, which is not known at the
time the object is requested. Instead, HTTP request latency, which is the time from
sending the request until the first byte of a response is received, can be used as a
substitute for estimating the HTTP request response time. Unlike RTT, the HTTP
request latency reflects not only the actual network load on the route between the client
and the server but also the server workload and speed. Although it is independent of the
size of objects it is still a reasonable predictor of the HTTP request response time because

most web objects tend to be small [26].

For example, S.Dykes et al [27] use HTTP request latency to approximate the HTTP
request response time, under the assumption that each cache contains contents that are
also held in other caches. With the HTTP request latency algorithm, a client sends
requests to the server with the lowest median HTTP request latency in prior transfers.
The problem with this approach is that prior latency does not successfully estimate the

current response time because network load and server load change all the time.

2.2.4 Hybrid Approach of Bandwidth and RTT
S.Dykes et al propose a hybrid approach [27] for client-side selection. They combine the

RTT approach with bandwidth. First, the client selects n servers with the fastest median

Chapter 2: Related Work 14

bandwidth from prior transfers. Then it sends a dynamic ping to each of these servers and
selects the first to reply. It immediately forwards the request to that server without
waiting for replies from other servers. The bandwidth measured only reflects past cache

server workload and provides no information about current cache server load.

2.3 Switch Selection Algorithms

Cache server selection can be done by a networking device such as a switch. This kind of

selection algorithm is used in a distributed switching-based transparent Web caching

system, which is shown in Figure 2.3.

3 v

Client ‘L SN Fost C
W

Figure 2.3 Transparent Proxy Web Caching with Redirection

A switch, running special software acting as a redirector, sits in the data path and
examines all packets bound for the Internet. It sends the HTTP traffic to cache servers for

processing and passes on the remaining traffic. In particular, cache servers are not

Chapter 2: Related Work 15

involved in the network functions, such as network address translation and routing

(usually performed by cache servers in the other Web caching schemes).

The Layer at which the switch operates is determined by how much header detail the
switch reads as data passes through. The switch-based redirectors may operate at Layer 4
(network level) or Layer 5 and above (application level). The redirectors that provide
Layer 4 services use TCP or UDP transport layer information, e.g., port numbers found in
TCP/UDP headers, in making packet-forwarding decisions. A Layer 4 switch can be
configured to direct all traffic with particular destination TCP ports to a particular
network port. For example, it may switch all traffic going to port 80 (used for HTTP
traffic) to a particular port on the switch where a cache server is attached. More
sophisticated Layer 4 switches may provide additional functionalities, such as load

balancing among a cluster of caches.

Layer 5 switches [31] add the ability to use information found in the payload of HITTP
request header packets. In order to obtain the HTTP request header, a Layer 5 switch
sends a TCP SYN ACK message to the client and tricks it into believing that there is a
TCP connection established between the client and the server. The client then sends the
HTTP request to the Layer 5 switch. The information in the HTTP request can be used to
provide more sophisticated capabilities. For example, the URL found in HTTP GET
requests can be examined to determine whether an image is being requested. If so, all
packets belonging to the TCP connection corresponding to this request can be switched to

a server that is optimized to deliver images. Another common use for parsing the content

Chapter 2: Related Work 16

of HTTP requests at the switch is directing requests for non-cacheable content, e.g.,
results of a CGI script, to the original web server instead of a cache server, thus
eliminating unnecessary load on the cache server. Besides content checking, Layer 5
switches can use other information metrics such as server workload and network latency

to pick the best cache server to service the client HT TP request.

2.3.1 Content-Based Selection

A Layer 5 switch can make the routing decisions based on the content of the request. One
example is the Arrowpoint Content SmartSwitch (CSS) [18]. On the client side CSS can
be configured to redirect static HTTP requests to one cache server cluster since it can
distinguish among different “higher-level” protocols, like HTTP [32] and The Secure
SHell (SSH) remote login protocol [33], and divert them to the approprate server or
group of servers that service the type of requested content. The CSS also bypasses
dynamic HTTP requests and redirects them to the Web server. Arrowpoint CSS makes
the routing decision based on the availability and type of the content. Each cache server
cluster stores one specific type of content. Inside one cache cluster, other approaches
such as round robin or random or workload are needed to assist in selecting the

appropriate server.

2.3.2 Workload-Based Selection
Some switches can intelligently redirect HTTP requests to lightly loaded cache servers.
For example, the Extreme Networks switches [21] and Cisco CSS 11000 [22], use the

following load—balancing algorithms to redirect the HT TP requests:

Chapter 2: Related Work 17

e Round robin - A simple algorithm that distributes each new connection/session to
the next available server.

e Weighted round robin with response time as weight — An enhancement of the round
robin method where response times for each server within the virtual service are
constantly measured to determine which server will take the next connection/session.

o Fewest connections - determines which server gets the next connection by keeping a
record of how many connections each server is currently providing. The server with

fewest connections gets the next request.

Extreme Networks switches and the cache servers are usually deployed within a LAN, so
they do not need to consider the network delay or congestion. If some servers have huge
network latency to the switches, then it will lead to serious performance problems, since
the network delay greatly affects the performance. Extreme Networks switches route at
the Layer 2 and Layer 3 levels. They are blind to the content of the objects. Cisco CSS
11000 series switches learn where specific content resides. The server selection done by
the CSS 11000 switches is based on server load and number of connections or round-

robin algorithms. CSS11000 is, therefore, only suitable for a local cache cluster.

2.3.3 RTT-Based Selection

Global server selection algorithms allow mirrored servers or server farms to be
distributed around the world, which enables requests to be directed to the best cache
server. Switches determine the best cache server based on the cache server content, the

proximity to the client and the round trip time to the cache server. An example is the

Chapter 2: Related Work 18

Alteon WebSystems’ ACEdirector [23]. This kind of Layer 5 switch automatically
exchanges the above information with all other ACEdirector Layer 5 switches. With a
global view of every cache server’s performance, each switch develops a list of candidate
cache servers. The switches then direct traffic to cache servers in proportion to the
servers’ performance measurements. As a result, the best performing cache server receive

more connections than others, due to their ability to handle more connections.

This approach has the same problem as client-initiated algorithms. It is difficult to
measure or estimate the actual HTTP request response time. ACEdirector uses the RTT
or proximity to the client as the performance measurement to approximate the HT TP
request response time. However, this works only when the workload of cache servers is

fairly distributed.

2.3.4 LB_LS5 Selection

Z.Liang [20] proposes a fully distributed Web caching scheme that extends the
capabilities of Layer 5 switching to improve the response time and balance cache server
workload. In LB_LS, a Layer 5 switch selects the best server based on cache content,
cache server workload, network load and the HTTP header information. If the network
latency between a cache server that stores the object and the Layer 5 switch is smaller
than some threshold, then that cache server is considered as a candidate for access and the
Layer 5 switch uses load balancing algorithms to choose the best server from which to
retrieve the object. The drawback of this approach is that it is difficult to set the threshold

value. If the value is too large, then the network delay affects the performance. If the

Chapter 2: Related Work 19

value is too small, then the advantage of cache cooperation is lost. LB_LS5, therefore,

cannot guarantee the minimum request response time.

2.4 Summary

A distributed Web caching system uses a cluster of servers to provide load balancing,
fault tolerance and reduced redundant copies of content. One important problem of a Web
caching scheme for distributed systems is to find the best server to service the request. In
this chapter we provide descriptions of several cache server selection algorithms for
distributed Web caching systems. We classify the algorithms according to where the

cache server selection is made.

Some researchers, like C. Yoshikawa et al [34], argue that the client, rather than the
server or a switch, is the right place to implement transparent access to distributed
network services. They believe this approach offers increased flexibility. For example,
clients are aware of the relative load on a number of servers and can easily reduce the
load on heavily loaded servers compared to server-initiated algorithms. Clients also do
not require special network topology to do the selection. Finally, unlike a single switch,

different clients do not represent a bottleneck.

We believe, however, that offloading the selection function from clients to a switch is
much better. Client-side selection has several drawbacks. First, if the client browser does
the selection, it requires a program such as an applet running on the client side [34]. This

kind of application program has to process packets and may result in an inefficient

Chapter 2: Related Work 20

selection decision. Moreover, if a client local proxy does the selection, it adds load to the

local cache and the local proxy becomes the single point of failure.

Compared to client selection algorithms, switching-based selection algorithms have the
following advantages. First, a switch is optimized for examining and processing packets,
so there is minimal impact on non-Web traffic. Second, removing the packet
examination, server selection, network address translation and routing functions from the
cache server frees up CPU cycles for serving Web pages. Third, using a switch redirector
that is separate from the cache servers allows the client load to be dynamically spread
over multiple cache servers, which, in turn, can reduce response time. Further, redundant

redirectors can be deployed, eliminating any single point of failure in the system.

Our research focus is distributed Layer 5 switching-based transparent Web caching. Our
research objective is to design an efficient switching-based transparent Web scheme to
optimize the performance of distributed Web caching systems (minimize response time
and balance the workload). Among all existing switching-based Web schemes there are
no effective methods to estimate the actual HTTP request response time, while at the
same time, to balance the workload among the cache server cluster for a global
distributed web caching system. Some switches, such as Cisco CSS 11000 series, are
only suitable for a local cache cluster and do not consider the network load. Other
switches, like Alteon WebSystems’ ACEdirector, use RTT to approximate the request
response time and not concern the server workload. The Layer 5 switch used in the

proposed LB_LS scheme has difficulty in setting its threshold.

Chapter 3: Minimum Response Time Scheme 21

Chapter 3

Minimum Response Time Scheme

Layer 5 Switching-based schemes support distributed Web caching systems and can
intelligently redirect a client request to the proper server (cache server or the Web server)
usiné the content information in the HTTP header. However, these existing schemes
cannot guarantee optimized performance in terms of request response time. This may

result in huge request response times when the caching system is heavily loaded or the

network is highly congested.

In this chapter, we present the Minimum Response Time (MRT) scheme, which is a
distributed transparent load-balanced Web Caching scheme that uses the client request
header, cache server content, cache server workload, Web server workload and network
latency to intelligently redirect requests. The goal of our work is to optimize the
performance of distributed Web caching systems to achieve the minimum response time
and balanced load. Section 3.1 is an overview of the MRT scheme. Section 3.2 contains a
detailed description of the MRT scheme. Finally, section 3.3 provides a summary of the

chapter.

Chapter 3: Minimum Response Time Scheme 22

3.1 Overview of the MRT

The proposed MRT scheme is intended for response-time-sensitive Web caching
systems. It is based on the switching-based transparent distributed Web caching systems,
as shown is Figure 3.1. There is no communication among cache servers in the cache
cluster. The cache sharing is achieved through Layer 5 switches [30]. Layer 5 switches

directly connect to the Web server.

Web Server

Client Cluster Client Cluster

Figure 3.1 Distributed Switching-Based Transparent Web Caching System

MRT uses Layer 5 switches to check the HTTP request content. It sends the non-
cacheable requests directly to the Web server. It redirects the cacheable requests to the
most appropriate cache server. MRT predicts the request response time for each cache

server using some information (to be described later) and chooses the cache server with

Chapter 3: Minimum Response Time Scheme 23

the minimum predicted response time. The MRT scheme has two components: content

checking and server selection.

The following Table 3.1 summarizes all symbols used in the reminder of this chapter.

Symbol Name Symbol Meaning

F The size of a Bloom Filter

D The number of objects stored in a cache sever

w Number of hash functions. It is the number of bits to represent an object in a
cache server

F, False hit rate

E(RT)., The expected value of the http request response time if the switch sends the
request to the cache server CS

Py miss The probability that a request is a cache-miss on the cache server CS. It is
approximate to the false hit rate of CS in our discussion.

T s _miss The request response time when the request to cache server CS is a cache-miss.

T cs_nic The request response time when the request to cache server CS is a cache-hit.

RTT,., Network latency between switch SW and cache server CS.

RTT,, .. Network latency between cache server CS and Web server WS.

Max,, Maximum Number of TCP connections cache server CS can service.

Max,, Maximum Number of TCP connections of Web server WS.

WL, Workload of cache server CS.

WL..s Workload of the Web server.

PT. Average processing time at Web sever WS

PT,, Average processing time at cache server CS

TABLE 3.1 SYMBOLS

3.1.1 Content Checking

MRT uses a Bloom Filter to represent cache server contents. The use of Bloom Filter to
compactly represent cache server contents is proposed in Cache Digest [12] and
Summary Cache [35]. Objects in a cache server can be represented by a Bloom Filter,
which is an array of bits. To represent an object in a Bloom Filter, a fixed number of
independent hash functions are computed for the object’s key, which is the URL. The
number of hash functions specifies how many bits are used to represent one object. Their

hash values specify the bit positions that should be set tol in the Bloom Filter.

Chapter 3: Minimum Response Time Scheme 24

A cache server in MRT can inform the switches about its content by sending them its
content information in the form of a Bloom Filter. A switch stores the content
information for each cache server. When a switch needs to check whether a cacheable
requested object is in a cache server, it uses the same set of hash functions for the
request’s URL and examines the corresponding bits in the server’s Bloom Filter. If all of
the matching bits are 1’s then the requested object is assumed to be in that cache server.

Otherwise the object is not in the cache server.

If we know the size of the Bloom Filter of a cache server as F and the number of the
objects stored in that cache server as D, then we can calculate the optimum number of

hash functions, W, for a Bloom Filter as follows:

Fin2

D @3.1)

W=

The detailed proof of equation (3.1) can be found in Appendix A.

A switch in MRT determines the cacheability of a requested object using the URL
information in the request’s HTTP header. In this way, only the requests for cacheable
objects are presented to the cache servers. Since an object may be placed at different
cache servers, a Layer 5 switch may find a number of cache servers that contain the
requested object. How to choose the best server to service the request is very important in
a distributed Web caching system. The major part of our work is to find the best cache

server and optimize the performance of a distributed Web caching system.

Chapter 3: Minimum Response Time Scheme 25

3.1.2 Cache Server Selection

A Layer 5 switch can use information like cache server contents, server workload and
network latency to estimate the request response time for each cache server and choose
the cache server with the minimum response time. A potential problem with such an
approach is that the content prediction cannot always be correct, since a Bloom Filter size
is not infinitely large. A request predicted to be a cache-hit might be a cache-miss. It
results in the incorrect predicted request response time and the wrong cache server

selection.

In our proposed MRT scheme, cache server selection is based on the expected value of
response time in case of HTTP request cache-hit and in case of HTTP request cache-
miss. MRT selects the cache server with the minimum expected value of a HTTP request
response time. The cache server selection algorithm used in MRT has to determine three
factors:

1) Pcs_miss, the probability that a predicted cache-hit HTTP request is a cache-miss on

cache server CS.

2) The delay components for a cache-miss HTTP request, Tcs_miss.,

3) The delay components for a cache-hit HT TP request, T cs_nir-
MRT then estimates the expected value of the request response time for CS as follows:

E(RT).s = P, cs_miss * T cs_miss +(1-P, cs_mis:)* T cs_hie (32)

Chapter 3: Minimum Response Time Scheme 26

False Hit Rate
The probability that a predicted cache-hit request is a cache-miss can be approximated to
be the false hit rate of a cache server. This is the probability that an object is not actually
stored in the cache server, when the cache server’s Bloom Filter indicates it is there. We
use the terms hit and miss to indicate whether the bits of the Bloom Filter predict that a
given object is in the cache server or not, respectively. There are two types of hits and
misses:

True hit: The Bloom Filter correctly predicts an entry is in the cache server.

False hit: The Bloom Filter incorrectly predicts the entry is in the cache server.

True miss: The Bloom Filter correctly predicts the entry is not in the cache server.

False miss: The Bloom Filter incorrectly predicts the entry is not in the cache server.

A Bloom Filter size is not infinitely large so URLs cannot be hashed to unique bits. A
Bloom Filter, therefore, always has a non-zero number of false hits. The size of a Bloom
Filter and the number of objects in a Bloom Filter determine the probability that lookup is
correct. A smaller filter size results in higher false rate than a large one for the same
number of objects. As A. Rousskov pointed out the number of false misses is negligible,

while the number of false hits is relatively high [12] when a Bloom Filter is small.

In a Bloom Filter representing D objects, if each object is represented by W bits, the false

hit rate is derived as [36]:

Fp= (1- e"PF)¥ (3.3)

Chapter 3: Minimum Response Time Scheme 27

Fp is a function of F/D and W. In Figure 3.2, we plot the relationship between Fp and

F/D for different values of W according to the equation (3.3).

L w=1 w=2 —e—w=3 w=4 —-—w=5J

-
& O OO N

false hit prediction

0.1

Figure 3.2 False Hit Rates

From Figure 3.2 we can see that false hit rate decreases when F/D increases. The amount
of decrease is more apparent for larger values of W. When W is greater than 2 and F/D is
greater than 10, the false hit rate is close to 0. If a Bloom Filters is not very large and if
the F/D is smaller than 10, the false hit rate highly varies with changes in F/D. It is
possible that one cache server has a low false hit rate while another has a high false hit
rate. This information is very useful when a Layer 5 switch in MRT makes the routing
decision. In our scheme, if an object can be cached at more than one cache server and
these cache servers have similar values for workload and network link delay, the requests

for an object should be directed to a server where the false hit rate is low.

Chapter 3: Minimum Response Time Scheme 28

HTTP Request Response Time Components

From the previous section we know that a Bloom Filter may result in false hits. When a
false hit occurs the response time to retrieve the requested object will increase because
the cache server has to retrieve the object from the original Web server. Since the request
response time is predicted from the Layer 5 switch’s point of view, we do not consider

the time spent between the Web client and the Layer 5 switch in our discussion.

The basic processing procedure for a cache-hit HTTP request in MRT is illustrated in

Figure 3.3. After a switch receives a HTTP request from the Web client,

(1) The switch sends a TCP-SYN signal to a Proxy Cache Server for a connection
request. The Cache Server sends back a TCP_ACK to accept the connection. The

time spent is the round trip time between the switch and the cache server.

(2) The switch then relays the HTTP request to the cache server. The time required is half

of the round trip time between the switch and the cache server.

(3) The cache server processes the request. The time for the processing is proportional to

the cache server’s workload.

(4) Since the request is a cache hit, the cache server immediately relays the requested

objects to the switch. The time spent is half of the round trip time between the cache

server and the switch.

A cache-hit request response time is equal to the sum of the above components.

Chapter 3: Minimum Response Time Scheme 29

- —
= —
- - .

Web Client Layer 5 Switch Cache Server
TCP_SYN
TCP_ACK
HTTP_REQ

> |Routing
Decision TCP_SYN

@ TCP_ACK)

HTTP_REQ

N
@ Server
Process
4

<€ HTTP_RES

time

v - v v

Figure 3.3 A Cache-Hit Request in MRT

The basic processing procedure for a cache-miss HTTP request in MRT is illustrated in

Figure 3.4. After a switch receives a HI TP request from the Web client,

(1) The switch sends a TCP-SYN signal to a Proxy Cache Server for connection request.
The Cache Server sends back TCP_ACK to accept the connection. The time spent is

the round trip time between the LS Switch and the cache server.

(2) The switch relays the HTTP request to the cache server. The time required is half of

the round trip time between the L5 Switch and the cache server.

(3) The cache server processes the request. The time spent is proportional to the cache

server's workload.

Chapter 3: Minimum Response Time Scheme 30

(4) Since the request is a cache-miss, the cache server makes a TCP connection request to
the original Web server. The Web server sends back TCP_ACK to accept the
connection. The time spent is the round trip time between the cache server and the

Web server.

(5) The cache server then relays the HI TP request to the Web server. The time spent is

half of the round trip time between the cache server and the Web server.

(6) The Web server processes the request. The time spent is proportional to the Web

server workload.

(7) The Web server sends back the requested object to the cache server. The cache server
receives the object and stores a copy. The time spent is half of the round trip time

between cache server and the Web server.

(8) The cache server immediately relays the object to the switch. The time spent is half

of the round trip time between the cache server and the switch.

A cache-miss request response time is equal to the sum of the above components.

Chapter 3: Minimum Response Time Scheme 31

g =
- .

Web Client Layer 5 Switch Cache Server Web Server
TCP_SYN
h N
é'fff;ﬁﬁx’———”
[HTIPREg >
Routing
Decision
TCP_SYN
time ! TCP_ACK
 HTTP_REQ
TCP_SYN
HTTP_REQ
8 7 &
e, HTTP_RES
HTTP_RES
Fﬁrfnss”’
v v v

Figure 3.4 A Cache-Miss Request in MRT

We need to represent the relationship between the server (both cache server and Web
server) processing time and the workload of the server. We define the workload as the
number of active concurrent requests at a given time divided by the maximum number of
concurrent requests that can be serviced. The server processing time, which includes the
request queuing time, the time to search for the requested object and the disk access time
to move the requested object from the disk to the memory, measures the foral delay from
the time a request arrives the server until the server responds. The brocessing time on the

server is proportional to the number of concurrent requests at the proxy cache server.

Chapter 3: Minimum Response Time Scheme 32

This assumption is supported by the data collected by A. Rousskov {37] and also used by
Z. Liang [20]. As shown in Figure 3.5, if the average time to process one request at the
cache server is PT and the cache server’s current workload is N/Max, then the time T

needed to process the Ny, request on the proxy cache server is:

T=(N)*Max* PT (G4)
Max
HTTP Requests Queue
< —>
———————— Cache Server
N Request

Figure 3.5 Cache Server Processing Time and Number of Concurrent Requests

A server can send its workload to a switch in the MRT periodically and the switch
records the maximum number of concurrent requests for each server. The switch can then

use the server workload to calculate the server processing time.

3.1.3 MRT Routing Scheme

The MRT scheme is intended for distributed architectures. Each cache server sends a
representation of its content and number of objects to the switches. The switches
periodically query the workload of each cache server. Web servers periodically send their
workload to switches. A switch in MRT uses the HTTP request header, cache server
content, cache server workload, Web server workload and network latency to route HI TP
requests, and hence minimizes the average HTTP request response time and balances

cache server workload.

Chapter 3: Minimum Response Time Scheme 33

A Layer 5 switch in MRT makes a routing decision as follows:
(1) If a request is non-cacheable, then redirect it to the Web server.
(2) If a request is cacheable then for each cache server
(2.1) If cache server CS is predicted to store the requested object, the probability
that the request is a cache-miss is calculated as:
Pcs_miss =~ Fp - (1_ e-WDcs/ch)W
(2.2) Otherwise: Pcs_miss = 1
(2.3) The expected response time for CS is calculated as:
E(RT) = Pes_miss * (2*RTTsw_cs + WLes*Maxes*PTes + 2*¥RTT s us + WLis*
Maxs*PTus) +(1- Pes_miss) (2*RTTsw_cs+ Wes*Mcs*PTcs) 3.5)

(3) Select the cache server with the minimum estimated response time.

In equation (3.5), the time calculated within the first bracket represents Te_miss.
2*RTT;. s is the sum of time components (1), (2) and (8) shown in Figure 3.4.
WL . *Max.s*PT s and WL,s* Max,;*PT.; respectively represent time components (3) and
(5) shown in Figure 3.4. 2*RTT,,_.s is the sum of time components (4), (5) and (7) shown
in Figure 3.4. The time calculated within the latter bracket represents Tes_nit. 2¥RT Ty _csiS
the sum of time components (1), (2) and (4) shown in Figure 3.3. WL *Max.*PT.s

represent time component (3) shown in Figure 3.3.

Chapter 3: Minimum Response Time Scheme 34

3.2 Detailed Description of MRT Scheme

This section provides a detailed description of the MRT scheme. It includes the extended
ICP messages used between the switch and the cache server and the extended table used

by the switch for routing decision, as well as the routing mechanism of the MRT scheme.

3.2.1 Extended ICP Messages

As in LB_L5 [20], we use four extended ICP (Internet Cache Protocol) messages for
exchanging content and workload information between the switch and the proxy cache in
MRT scheme. A single extended ICP message is sent periodically by the Web server to

the Layer S switch with its workload.

The ICP {11] message format consists of a 20-byte fixed header plus a variable sized

payload, as shown in Figure 3.6.

Opcode Version Message Length

Request Number

Options

Option Data
Sender Host Address

Payload

Figure 3.6 ICP Message Format

Opcode specifies the type of an ICP message. Table 3.2 shows currently defined ICP

opcodes in ICP version2 [11]:

Chapter 3: Minimum Response Time Scheme

35

Value Name
0 ICP_OP_INVALID
1 ICP_OP_QUERY
2 ICP_OP_HIT
3 ICP_OP_MISS
4 ICP_OP_ERR
5-9 UNUSED
10 ICP_OP_SECHO
11 ICP_OP_DECHO
12-20 UNUSED
21 ICP_OP_MISS_NOFETCH
22 ICP_OP_DENIED
23 ICP_OP_HIT_OBJ

TABLE 3.2 ICP OPCODE

From table 3.2 we see that there are some unused Opcodes, so our four new ICP

messages use these Opcodes. The four messages are following:

ICP_UPDATE_CONTENT message is used by a cache server to periodically inform a

switch about the changes in its cache contents and the changes in the number of stored

objects in that cache server. The format of the message is shown in Figure 3.7. The

Sender Address is the IP address of the cache server sending the message. The content of

the Payload field has three parts: 1) a Bloom Filter, which represents the cache server

contents. 2) a count to record the number of objects that are stored in the sender cache

server. 3) A timestamp, which is used for error control.

Opcode

Sender Address

Payload

[ICP_UPDATE_CONTENT | ...

| TP Address | Bloom Filter |

Count | TimeStamp |

Figure 3.7 The Format of ICP_UPDATE_CONTENT

ICP_UPDATE_CONTENT_ACK message is used by a switch in MRT to acknowledge

the ICP_UPDATE_CONTENT message. The format of the message is shown in Figure

3.8. The sender Address is the IP address of the switch that sends this message. The

Chapter 3: Minimum Response Time Scheme 36

content of the Payload field includes a timestamp, which is used with the timestamp in
the [ICP_UPDATE _CONTENT to deal with the situation when the
ICP_UPDATE_CONTENT message is lost in the network.

Opcode Sender Address Payload

| ICP_UPDATE_CONTENT_ACK | ... | IP Address [TimeStamp

Figure 3.8 The Format of ICP_UPDATE_CONTENT_ACK

ICP_QUERY_WORKLOAD is used by a switch to periodically query the workload of
cache servers. The format of the message is shown in Figure 3.9. The sender Address is
the IP address of a switch. The content of the Payload field contains a timestamp, which
is used to deal with lost messages.

Opcode Sender Address Payload

ICP_QUERY_WORKLOAD | ... | IP Address [Time Stamp]

—

Figure 3.9 The Format of ICP_QUERY_WORKLOAD

ICP_UPDATE_WORKLOAD is used by a cache server to send its workload
information to the switch after it receives the ICP_Query_Workload message. It can also
be used by a Web server to periodically send its workload information to the switches.
The format of the message is shown in Figure 3.10. The Sender Address is the [P address
of a cache server sending the message. The content of the Payload consists of two parts:
1) workload of the cache server and 2) a timestamp, which is used, along with the
timestamp in the ICP_QUERY_WORKLOAD to deal with lost messages.

Opcode Sender Address Payload

| ICP_UPDATE_WORKLOAD | ... | IP Address [Workload | TimeStamp |

Figure 3.10 The Format of ICP_UPDATE_WORKILOAD

Chapter 3: Minimum Response Time Scheme 37

3.2.2 Extended information Table

In MRT, we use an extended information table in a Layer 5 switch to assist the switch in

making the routing decision. Figure 3.11 below illustrates the format of the table. Each

entry in the table consists ten fields:

IP_
Add

Bloom Count | Workload | Network_ | Max_Co | Workload_ | Workload_ | Last_Content | Workload_
Filter Latency nnection | QueryTime | QueryRes_ | _UpdateMsg | Query TS
Time _TS

Figure 3.11 CacheServerArray Information Table

IP_Add: IP address of a cache server. It is also an identification of the cache server.

BloomFilter: The representation of contents of the cache server. It is updated
periodically.
Count: The number of objects stored in that cache server. It is updated periodically.

Workload: The workload of the cache server. It is updated periodically.

NetworkLatency: Half of the round trip time between the switch and the cache
server. It is updated periodically.
Max_Connection: The max number of concurrent TCP connections of the cache

server.

Workload_QueryTime: The time measured in milliseconds when the switch sends the

query workload message.

Workload_QueryRes_Time: The time measured in milliseconds when the switch

receives the updated workload.

Chapter 3: Minimum Response Time Scheme 38

e Last_Content_UpdateMsg_TS: The Timestamp of the most recent content update. It

is used for message loss control.

e Workload_Query_TS: The timestamp when the switch sends the query workload

message. It is used for message loss control.

3.2.3 Routing Mechanism of MRT

In the MRT scheme, every time a Layer 5 switch receives a HTTP request from the Web
client, it uses the HTTP header, cache server contents, cache server workload, Web
server load and network latency to route the request. For cacheable requests, the switch
calculates the expected value of the request response time for each cache server based on
the above information stored in the switch’s CacheArrayTable. It sends the request to the
cache server with the minimum estimated request response time. A detailed pseudo code
and explanation of the operation of the switch and cache server can be found in Appendix
B. Following we explain how a switch in MRT obtains and updates all the information

needed for routing:
e HTTP header information:

When a switch receives a TCP connection request from a Web client, it accepts the
connection by sending back a TCP_ACK prior to establishing the TCP connection
with the server. Thus it tricks the Web client into believing there is a connection
between the client and the server. When the switch receives a HI TP request from the
client, it unpacks the request message to get the HTTP header information. Using the

URL, the switch knows whether the request is cacheable or non-cacheable.

Chapter 3: Minimum Response Time Scheme : 39

® Cache Server Content information:

Each cache server computes a representation of its cache content information. It
periodically multicasts the Bloom Filter and the number of objects to every switch
with the extended ICP message ICP_UPDATE_CONTENT. When a switch receives
an ICP_UPDATE_CONTENT message, it finds the sending cache server in the
switch’s CacheArrayTable, as shown in Figure 3.11, and updates that cache server’s
content and the number of objects. After the update, it sends an
ICP_UPﬁATE_CONTENT_ACK back to the cache server to acknowledge the

update.
e Cache Server Workload Information:

A switch obtains the workload information from a cache server by periodically
sending each cache server an ICP_QUERY_WORKLOAD message. When a cache
server receives an ICP_QUERY_WORKLOAD message, it measures its current
workload and replies to the switch with an ICP_UPDATE_WORKILOAD message,
whose payload field carries that cache server’s most recent workload information.
When the switch receives an ICP_UPDATE_WORKLOAD, it finds the sending
cache server in the switch’s CacheArrayTable, as shown in Figure 3.11, and updates

that cache server’s workload.
e Web Server Workload Information:

The Web server periodically sends its current workload to every switch with an

ICP_UPDATE_WORKLOAD message.

Chapter 3: Minimum Response Time Scheme 40

e Network Latency Information:

The duration from the time a switch sends an ICP_QUERY_WORKILOAD to a cache
server to the time the switch receives an ICP_UPDATE_WORKLOAD from that
cache server is measured as the network latency between the switch and the cache
server. Whenever a switch receives an ICP_UPDATE_WORKLOAD message from a
cache server, it updates both the cache server workload and the network latency in its

CacheArrayTable, as shown in Figure 3.11, for the corresponding cache server.

False hit rate information:

Every time a switch makes a routing decision, it calculates the false hit rate for each
cache server based on the size of the Bloom Filter and the number of objects on the

cache server.

3.3 Summary

In this chapter, we provide a detailed description of the operation of the MRT scheme.

The MRT scheme is a network latency sensitive, dynamical load-balancing cache server

selection protocol that is intended for distributed and transparent Web caching systems.

The desirable characteristics of MRT are the following:

The most prominent characteristic of MRT is that it can avoid redirecting the requests
to remote cache servers. At the same time it tries to balance the workload on all cache
servers. MRT can adjust its routing decision dynamically based on the cost of
network latency, the cost of the workload and the cost of false hits to optimize the

performance of the whole Web caching systems.

Chapter 3: Minimum Response Time Scheme 41

MRT is completely distributed. In such a fully distributed architecture a single point
of failure can be avoided and the cache sharing can be achieved by allowing more

clients to share multiple cache servers.

The MRT server selection algorithm is done by a Layer S switch compared to other
server selection algorithms that are done by the client or cache servers. Layer 5

switches can perform the routing very efficiently.

MRT extends ICP protocols and is compatible with existing Web caching systems.
The extended ICP messages allow the switch and cache server in the MRT scheme to

cooperate with switches and cache servers that do not support MRT.

Chapter 4: Performance Evaluation 42

Chapter 4

Performance Evaluation

In this chapter, the performance of the MRT scheme is studied. The results are analyzed
and compared with the Content, Workload, RTT and LB_LS schemes. We chose those
schemes for comparison because they represent the range of cache sever selection
algorithms used in distributed switching-based transparent Web caching systems. Section
4.1 describes the simulation model, which includes the network model, the network
latency model, the workload model, the invalidation-checking model and the simulation
parameter settings. Section 4.2 describes how the Content, Workload, RTT and LB_LS5
schemes work in our simulation. Section 4.3 presents the performance metrics that we
use to represent the performance of the different schemes. The effects of the network
latency, request intensity, expiration time and the number of cooperating cache servers on
the performance of the MRT are investigated and the results are reported in Section 4.4.

Finally, a summary of this chapter is provided in section 4.5.

Chapter 4: Performance Evaluation 43

4.1 Simulation Model

To evaluate the MRT scheme and to compare it with other schemes, we construct a
simulator that allows us to observe and measure the performance of the schemes under
different network latencies, different HTTP request intensities, different values of object
expiration time and different number of cache servers. The simulator consists of a
network model, a network latency model, a server workload model and a cache server

content validation checking model.

4.1.1 Network Model

The network model for each of the five Web caching schemes simulates a fuily
distributed switching-based Web caching system, as shown in Figure 4.1. A client cluster
connects to its own Layer 5 switch, which connects to all the cache servers and the Web
server. A cache server connects to all the switches and the Web server. There are no
direct connections between cache servers and there is no direct connection between a
client cluster and a cache server. The cache sharing is achieved through the Layer 5

switches.

Chapter 4: Performance Evaluation 44

Client Cluster

Figure 4.1 Network Model

4.1.2 Network Latency Model

It is difficult to measure the network latency in a simulation. M. Rabinovich er al [38] use
a distance metric to reflect the costs of transferring data between any two nodes. The cost
may include monetary costs, time, bandwidth of the connection, etc. The cost of
transferring data between two nodes is proportional to the distance between that pair of
nodes. We adopt a similar method in our simulation. Our network latency model is based
on a symmetric architecture with n client clusters, n switches and n cache servers, as

shown in Figure 4.2. In our simulation, n varies from 2 to 8.

Chapter 4: Performance Evaluation 45

Web Server Network Latency (switch ; Web Server)

Network Latency
(cache ;, Web server)

Cache i Cache j

Network Latency
(switch ;, cache ;)

Switch j

Switch i Z
Network Latency

(switch ; cache ;)

Network Latency
(client ;, switch ;)

Figure 4.2 Network Latency Model

We calculate the network latency between node i and node j, which is the cost of

transferring data between them as follows:
Distance (i, j) = |i-j| 4.1)
NetworkLatency (i, j) = Distance (i, j) * LatencyFactor 4.2

NetworkLatency (i,j):The time spent on the network when data are transferred from

node i to node j, which is measured in milliseconds.

LatencyFactor: The time spent on the network when data are transferred for one unit
of distance. It is measured in milliseconds.
In order to investigate the effect of the network latency between the cache servers and the
switches on the performance of all the schemes, we vary the LatencyFactor from 5
milliseconds to 125 milliseconds in our simulation and the results are studied in Section

44.

Chapter 4: Performance Evaluation 46

4.1.3 Workload Model

The research community has made progress towards characterizing workload patterns for
Web servers and proxy cache servers using Benchmarks, such as those by Almeida and
Cao [39] and Barford and Crovella [40]. Proxy traces can also provide an aiternative
means of workload generation that is able to account for client access patterns and the

requested content [2].

We use publicly available proxy traces from the NLANR to generate HT TP requests [2].
In our simulation we use the July 26, 2001 and August 27, 2001 traces from the NLANR
Boulder cache servers. Client IP addresses are randomized daily and are consistent within
a trace but not between traces. Each trace spans 24 hours and contains from 100,000 to
400,000 total requests. Each entry in the trace has 9 fields. In our simulation the
TimeStamp, ClientAddress, Size and URL fields are used. They are defined as follows:
Timestamp: specifies the time when the client generates the HTTP request. The
format is “Unix time” with millisecond resolution
Client Address: The IP address of the client cluster
Size: The number of bytes transferred from the proxy to the client
URL: The uniform resource locator, which is a character string describing the
location and access method of a resource on the Internet.
In raw proxy traces HT TP requests are generated at the time specified by the TimeStamp
field. The controlled proxy traces vary the request inter arrival times to simulate the
different HTTP request intensities. For example, if in the raw trace the average number of

HTTP requests generated by the client clusters is 2000 per 10 minutes, the average inter

Chapter 4: Performance Evaluation 47

arrival time is: (10*60*1000) / 2000 milliseconds. In controlled proxy traces, for a 50%
request intensity, we can enlarge the average interval by 2 and for a 200% request

intensity, we can shorten the average interval by 2.

We measure the average workload of a server (cache server or the Web server) in our

simulation as follows:

Average Num of TCP connections Per Second 4.3)
Maximum Num of TCP connections of the Server Per Second)

AverageWorkload=
The average number of TCP connections is calculated as follows:
AvgTCPNum = (1-W,) * AvgTCPNum + W, *TCPNum “4.4)

AvgTCPNum: The average number of TCP connections per second.

TCPNum: The active number of TCP connections.

W,: A weight factor, 0 < W, < 1.
If W, is too large, then the averaging procedure may not filter out transient congestion or
busty traffic. If W, is too low, then the average number of TCP connections responds too
slowly to changes in the actual number of TCP connections. Many researchers use 0.002
as the value for W, [41]. We ran in our simulation with Wy as 0.001, 0.002 and 0.25 and
found that W= 0.002 is a reasonable choice. The average number of TCP connections in

our simulation is therefore calculated as:

AvgTCPNum = 0.998 * AvgTCPNum + 0.002*TCPNum “.5)

4.1.4 Validation Checking Model

Cache servers sometimes provide users with stale pages, which are out of date with

respect to the copies on the Web servers. If a page is stale then the HTTP request is

Chapter 4: Performance Evaluation 48

redirected to the original Web server for the refreshed object. In order to reduce the time
wasted on stale pages, a cache server must validate the pages in its cache so that it can
give refresh pages to users. All known Web caching systems use validation check
mechanisms to maintain cache consistency [2][43]{44]. Some widely used proxy servers,
such as the World Wide Web Consortium’s httpd (formerly CERN httpd) [43] and
Netscape’s Proxy Server [44] - use an expiration mechanism to keep their pages up to

date.

The expiration mechanism works as follows. Each cached page is assigned an expiration
time. Any GET requests made before the expiration time elapses are answered with the
cached page. After the expiration time elapses, the cache server directs the GET request
to the Web server. After receiving the Web server’s response, the cache server resets the
page's expiration time to its default value. The detailed pseudo code for W3C httpd 3.0

cache consistency can be found in Appendix C.

Expiration-based caches use a variety of mechanisms to assign expiration times for
cached pages. The field "Expires: date” in the HITTP request header, means that the
document definitely will not change before the given date and probably will change soon
after the given date. The Web server may return such a header with a document. It can be
used directly as an expiration time for cached copies of the document. However, as
Glassman [45] points out, the header Expires: date is rarely used. This is not surprising,
since the author of a WWW page usually can't estimate a document's lifetime at the time

it is created.

Chapter 4: Performance Evaluation 49

For documents with no Expires: date header, the simplest expiration time algorithm used
by the cache server is to assign each object an expiration time equal to be ¥4 to 2 of the
average lifetime of that object [46]. The average lifetime of an object is an average
interval between two successive modifications of the same URL. The average lifetime of
an object is affected by the type of the object, such as HTML, GIF or AUDIO. It is also
affected by the class to which the object belongs, such as the COM class, the EDU class
or the NEWS class (The average lifetime in NEWS classes usually is 1 ~2 days). We
assume that all objects studied in our simulation belong to the NEWS classes. We varied
the expiration time from 3 hours to 24 hours to investigate the effect of different

expiration times on the performance of the investigated Web caching schemes.

The implementation of the simulation software is based on the simulator used by Z.
Liang [20]. We add the validation checking mechanism to the proxy cache server. The
Web server supports ICP messages. We implement the layer 5 switches used in the

Content, Workload, RTT and MRT schemes. The detailed software structure of the

simulator is described in Appendix D.

4.1.6 Simulation Parameter Setting
The parameter settings used in the simulations are similar to the values used by Z. Liang

[20]. The parameters are summarized in the following tables:

Chapter 4: Performance Evaluation

50

Name Meaning Value (milliseconds)
RTTwe.sw The round trip time between a Web client and a LS switch 130
RTTwepc The round trip time between a Web client and a Cache server | 130
RT Tsw-pc The round trip time between a LS switch and a Cache server 0~400
RTTsw-ws The round trip time between a LS switch and Web server 300
RTTpcws The round trip time between a Cache server and Web server 300

TABLE 4.1 PARAMETERS FOR LINK
Name Meaning Value

(milliseconds)

QueryWorkload_Interval | The interval between the QueryWorkload msgs 1000
ECHO_Interval The interval between the Echo msgs 1000

TCP_Splicing The time it takes a LS switch port controller to translate TCP | (
- sequence number
Routing The time it takes a L. S5switch to make a routing decision 10
CheckCacheable The time it takes a LS switch to check the requested objectis | §
cacheable or not
TABLE 4.2 PARAMETERS FOR SWITCHES
Name Meaning Value
(milliseconds)

WS_Processing The time at a Web server between receiving arequestand { 150

~ returning the first byte of the requested object
WS_Reply The time it takes a Web server to send an object in | 150

- memory to the requesting party
UpdateWorkload_Interval | The interval to send the updated workload 60*1000

TABLE 4.3 PARAMETERS FOR WEB SERVER

Name Meaning Value
PC_CacheSize The physical size of a Cache server 1024*1024*64(bytes)
PC Search The time it takes a Cache server to search for 250(milliseconds)

- an object in its cache
PC_SearchDigest The time it takes a Cache to search for an 100(milliseconds)

- object in its cache digests
PC DiskAccess The time it takes a Cache server toretrieve a |] 0Q(milliseconds)

- cached object from disk to memory
PC_Reply The time it takes a Cache server to send an 150(milliseconds)

- object in memory to the requesting party
PC_Relay The time it takes Cache server to relay a 50(milliseconds)

- response to the requesting party
PC_CacheDigest_Size The size of a Bloom Filter for a Cache server | 32*1(024 (bytes)
PC_CacheDigest_Interval | The interval between consecutive 1*60*1000(milliseconds)

content_update msgs

Obijects expirationTime The time for an object to expire (3~24)*60*60*1000
PC_Latency_Threshold The network latency threshold for LB_LS5 100 milliseconds

TABLE 4.4 PARAMETERS FOR CACHE SERVERS

Chapter 4: Performance Evaluation 51

4.2 Content, Workload, RTT and LB_L5 Schemes

The Content scheme, Workload scheme, RTT Scheme and LB_LS Scheme in our
simulation represent certain classes of cache server selection algorithms that are

introduced in chapter 2. The schemes are simulated as follows.

4.2.1 The Content Scheme
The Content scheme represents a class of cache server selection algorithms that redirect
HTTP requests only based on content. When a Layer 5 switch in the Content scheme
receives a HTTP request, it makes the routing decision as follows:
(1) If the request is non cacheable, the switch immediately redirects it to the Web server.
(2) If the request is cacheable then the switch checks the content of each cache server.
(2.1) If a set of the cache servers is predicted to store the object, the switch randomly
picks one cache server from these cache servers.
(2.2) If none of the cache servers is predicted to store the object, the switch picks the

cache server in a round robin manner.

4.2.2 The Workload Scheme

The Workload scheme represents a class of cache server selection algorithms that
redirects HTTP requests based on both content and workload of the cache server. When
a Layer 5 switch in the Workload scheme receives a HTTP request, it makes the routing
decision as follows:

(1) If the request is non-cacheable, the switch immediately redirects it to the Web server.

(2) If the request is cacheable then the switch checks the content of each cache server.

Chapter 4: Performance Evaluation 52

(2.1) If a set of the cache servers is predicted to store the object, the switch picks the
cache server with the minimum workload among these cache servers.
(2.2) If none of the cache servers is predicted to store the object, the switch picks the
cache server with the minimum workload among all the cache servers.
4.2.3 The RTT Scheme
The RTT scheme represents a class of cache server selection algorithms that redirects
HTTP requests based on both content and network latency. When a Layer S switch in the
RTT scheme receives a HTTP request, it makes the routing decision as follows:
(1) If the request is non-cacheable, the switch immediately redirects it to the Web server.
(2) If the request is cacheable then the switch checks the content of each cache server.
(2.1) If a set of the cache servers is predicted to store the object, the switch picks the
cache server with the smallest response tine among these cache servers.
(2.2) If none of the cache servers store the object, the switch picks the cache server

with the minimum response time to the switch among all cache servers.

4.2.4 The LB_L5 Scheme

The LB_LS scheme represents a class of cache server selection algorithms that redirects
HTTP requests based on the content, the cache server workload and the network latency.
When a Layer 5 switch in the LB_LS scheme receives a HTTP request, it makes the
routing decision as follows:

(1) If the request is non cacheable, the switch immediately redirects it to the Web server.

(2) If the request is cacheable then the switch checks the content of each cache server.

Chapter 4: Performance Evaluation 53

(2.1) If a cache server potentially stores the object and the network latency from the
cache server to the switch is not greater than some threshold, then the switch
picks the cache server with minimum workload from these cache servers that
satisfy the above conditions.

(2.2) If all the cache servers potentially store the object have the network latency to
the switch greater than the threshold, then the switch picks its local cache server
regardless whether that cache server has the requested object or not.

(2.3) If none of the cache servers store the object, the switch picks the cache server
with the minimum workload from those cache severs whose network latency to

the switch is not greater than the threshold.

4.3 Performance Metrics
The following two key performance metrics are evaluated:

1. Client Request Response Time
The duration from the time a client sends a TCP connection request to the time the
client receives the TCP connection finished signal. It is affected by the workload of
the cache servers and the Web server, the network latency and false prediction. The
client’s perception of Web performance is based on the response time. The smaller
the average response time, the better the performance.

2. Average Cache Server Workload
A cache server may be shared by hundreds or thousands of users. At any given
time, there are a number of concurrent HTTP requests to the cache server. Object

retrieval times on the cache server vary with load, and consequently the request

Chapter 4: Performance Evaluation 54

response time varies as well. We define the load on the cache server as the average
number of TCP connections per second divided by the maximum number of TCP
connections per second that each cache server can service. The average workload
can be used to indicate the relative balance among the cluster of cache servers.
The average response time indicates the quality of the schemes. The efficiency of any
Web caching scheme can be measured in terms of how the workload is balanced across
the cache servers. A balanced workload usually means lower response times, but
sometimes the two performance metrics conflict. For example, to achieve workload
balance a request has to be redirected to a remote cache server at the expense of higher
response times. The ultimate goal of a Web caching system remains to minimize response

times.

4.4 Simulation Results

In this section we describe both raw-trace driven and controlled-trace simulation
experiments. For the raw-trace driven simulations, the HT TP requests are generated at the
time specified by the timestamp field in the trace file. In the controlled-trace simulations,
the HTTP requests are generated periodically and the request inter arrival time is
controlled in order to vary the HTTP request intensity. All experiments are done with a
30-minute warm-up period to fill cache servers with objects until all cache servers are full
and the simulated Web caching system is stable. A statistical analysis of the experiments
results reveals that the performance is quite stable. The experiments were run with a 90%

confidence level with 5% confidence intervals.

Chapter 4: Performance Evaluation 55

4.4.1 Raw-trace Driven Simulations

We ran experiments with two raw traces from proxy servers using NLANR traces [2]. In
order to simulate the cache cooperation among different network domains we built four
different network domains for four different client clusters based on client IP addresses.
Each trace is for a 24 hours period. We compare the response times of MRT to the other
schemes under different network latencies and HT TP request intensities during one day.
When the network latency is low the workload of cache servers is the main factor
affecting the response time. When the workload of the cache server is light, the network
latency becomes the main factor affecting the response time. The workload of a cache
server is determined by the number of HTTP requests generated by client clusters. Figure
4.3 plots the HTTP request intensity over one day versus the number of HTTP requests
in10-minute periods. The request intensity is relatively high from 8 am to 4 pm. The peak
intensity is 2950 requests per 10 minutes around 11 am, and significantly decreases after

S pm. The minimum intensity is 950 requests per 10 minutes around 8 pm.

Number of Request per 10Min

1150

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 23 24

Time

Figure 4.3 HTTP Request Intensity

Chapter 4: Performance Evaluation 56

The response times over one day under different network latencies are shown in Figures
4.4-4.6 below. The simulation results show that MRT outperforms the other four schemes
and has a better adaptability to high HT TP request intensities and large network latencies.

When the network latency is very small, the response times of five schemes follow the
HTTP request intensity, as shown in Figure 4.4. The Workload scheme, LB_LS scheme
and MRT scheme consider the workload at the cache servers so they have better
performance than the Content and the RTT schemes when the request intensity is high.
In Figure 4.4, under a peak request intensity (10:50 am), MRT outperforms Content by
22% and RTT by 25%. MRT has similar performance to the Workload and LB_L5

schemes.

Under a higher network latency (Latency Factor = 75 ms) as shown in Figure 4.5, the
average response time of MRT is much better than that of Content, Workload, RTT and
LB_LS. It outperforms Content by 27%, Workload by 17%, RTT by 20% and LB_LS5 by
13%. As the network latency increases, the corresponding increase in the average
response times of Content, Workload and LB_LS schemes is higher than that of RTT and

MRT since the latter schemes respond better to high network latency factor.

When the network latency is very large (Latency Factor = 125ms) as shown in Figure 4.6,
both LB_LS5 and MRT avoid redirecting requests to remote cache servers. LB_L5 does
not redirect the requests to cache servers whose network latency to the switch is larger
than the predefined threshold (100 milliseconds in our simulation). MRT always redirects

the requests to the cache server with the minimum estimated request response time. MRT

Chapter 4: Performance Evaluation 57

outperforms LB_L5 by 11%, while it outperforms Content by 44% and Workload by
34% since neither of them considers network latency when they make the routing
decision. The average response time of RTT does not increase as much as that of Content
or Workload. However, when all the cache servers that may store the requested object
have large network latency, RTT has to redirect the request to one of them. The average
response time of RTT increases as the network latency increases. MRT outperforms RTT

by 30%.

ResponseTime (Latency Factor=5ms)

1950

1850

1750

1650

1550

1450

ResponseTime

1350

1250

1150

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time

— Content = = = Workioad —-=—<-RTT — e=lB_LS MRT

Figure 4.4 Response Time At Latency Factor = 5ms

Chapter 4: Performance Evaluation

58

Response Time

Response Time (Latency Factor = 75ms)

1950
1850
1750
1650
1550
1450
1350
1250

1150

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time
[— Content = = = Workload — - — -RTT === ==(B_L5 MRT |

Figure 4.5 Response Time At Latency Factor = 75ms

Chapter 4: Performance Evaluation

59

ResponseTime

ResponseTime(Latency Factor=125ms)

1950

1850

1750

1650

1550

1450

1350

1250

1150

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time

| —=—~——Content = = = Workicad — - — -RTT === e={B L5 MRT |

Figure 4.6 Response Time At Latency Factor = 125 ms

Chapter 4: Performance Evaluation 60

4.4.2 Controlled-Trace With Balanced Requests

In this section, we present experiments using controlled traces. We investigate the effect
of the HTTP request intensity, the network latency and object expiration time on the
response time of MRT. The results are compared with the performance of the Content,
Workload, RTT and LB_LS5 schemes. All experiments are done under the condition that
each client cluster sends the same amocunt of http requests per 10-minute period. We run
the simulator 8 to 24 hours and sample the request response time every 10 minutes and

present the average of the values with a 90% confidence level.

4.4.2.1 Effect of Http Request Intensity

Figure 4.7 plots the response time versus HTTP request intensity under different network
latency factors. As shown in Figure 4.7, we can see that MRT always outperforms the
other schemes under different request intensities and network latency factors. The
average HTTP request response time of all investigated schemes increases as the HT TP
request intensity increases for all network latency factors. This is because the workload of
each cache server increases as the HTTP intensity increases. The processing time of
cache servers increases too. The extent of the increase on response time for each scheme

is different.

The Content and RTT schemes are greatly affected by the HTTP request intensity since
neither of them uses the workload information about cache servers when they make the
routing decision. Content selects the cache server that is picked randomly or in a round

robin fashion. RTT selects the cache server that stores the object and has the minimum

Chapter 4: Performance Evaluation 61

network latency to the switch. They may cause unbalanced load distribution on those
cache servers, although originally client-clusters have balanced requests. The imbalance

is more obvious when the HTTP request intensity increases.

The Workload, LB_L5 and MRT schemes adapt better to high request intensities because
they are aware of the workload of all cache servers. These schemes always try to direct
requests to lightly loaded cache servers. The request response times of Workload, LB_LS
and MRT are less than that of Content and RTT, since the processing time on a lightly
loaded cache server is less than that on a heavily loaded cache server. The improvement
on response time is more apparent when the request intensity increases, as shown in
Figure 4.7. The average increase of response time is around 1400 millisecond for both
Content and RTT when the HTTP request intensity increases from 50% to 250%, while
the average increase of response time is only around 700 milliseconds for Workload,

LB_LS and MRT.

We also see that the performance advantage of MRT is more obvious as the network
latency factor increases. For example, in Figure 4.7 (a) with 50% HTTP request intensity
and 5 milliseconds network latency factor, MRT performs similarly to the Content,
Workload and RTT schemes. On the other hand, when the network latency factor is 125
milliseconds, as shown in Figure 4.7 (f), MRT outperforms Content, Workload and RTT
by 52%, 51% and 28%, respectively. For LB_LS5 the situation is a little diffe‘rent. When
the network latency factor is greater than 100 milliseconds, a switch redirects the HTTP

requests to its local cache server. The average response time of LB_LS5 does not increase

Chapter 4: Performance Evaluation 62

when the network latency factor is greater than 100 milliseconds. The average response
time of MRT increases slowly as the network latency factor increases. As shown in
Figure 4.7 (a) to (f), under 50% HTTP request intensity, when the network latency factor
is 30, 50, 75, 100, 125 milliseconds, MRT outperforms LB_LS5 by 7%, 15.5%, 20%,

21.2% and 19.2%, respectively.

Chapter 4: Performance Evaluation

Network Latency Factor = 5ms

2850
g = :
g 20]

2100 i
gwso e
E- !

1350
< 1100 <

850

50%

HHIT

AverageResponseTime

1100},
850
50% 100% 150% 200% 250%
Requestintensity
(c)
Network Latency Factor=100ms

g8

0
8

g 82

AverageResponseTime
BEEZERE

8

AverageResponseTime

1100
S0% 100% 150% 200% 250% 50% 100% 150% 200% 250%;
Requestintensity Requestintensity
(e) ® -

Figure 4.7 Average Response Time Versus HTTP Request Intensity

Chapter 4: Performance Evaluation 64

4.4.2.2 Effect of Network Latency

Figure 4.8 illustrates the average response time versus network latency factor. The
experiments are conducted under different HTTP request intensities. MRT outperforms
the other schemes for all values of network latency and for each HTTP request intensity.
Basically, the average request response time for all investigated schemes increases as the
network latency factor increases under different HI TP request intensities. However, the

extent of the response time increase for each scheme is different.

The Content and Workload schemes are highly affected by the network latency since
both of them do not consider the network latency when they make the selection decision.
As we know, in the Content scheme, the cache server for a request is picked randomly or
in a round robin fashion. In the Workload scheme, the selected cache server is the one
that has the minimum workload. In both cases, if the network latency from the selected
cache server to the switch is large, then there can be a noticeable increase in the average
response time. As shown Figure 4.8, the average response time of Content and Workload
respectively increases by 20% and 30% as the network latency factor increases from S to
125 milliseconds with 250% HTTP request intensity. The increase is more apparent when
the HTTP request intensity is small. The average response time of Content and Workload
respectively increases by 62% and 64% as the network latency factor increases from 5 to

125 milliseconds with 50% HTTP request intensity.

The RTT scheme knows the up-to-date network latency. It tries to redirect the requests to
the cache server with minimum network latency, so the amount of increase in the average

response time is smaller than in the Workload and the Content schemes. We found,

Chapter 4: Performance Evaluation 65

however, the average response time of RTT is highly affected by the network latency
factor. If the cache servers that potentially store the requested object have huge network
latency to the switch, the average response time increases as the network latency
increases. As shown in Figure 4.8 the average response time of RTT increases by 40%
and 14% as the network latency factor increases from S to 125 milliseconds for 50% and

250% HTTP request intensities, respectively.

For LB_LS, when the network latency factor is small, the selected cache server is the one
that has the minimum workload among the servers storing the requested object. It is
similar to the Workload scheme under small network latency, and the average response
time highly depends on the network latency. In Figure 4.8 (a) we can see that the average
response time increases around 30% when the network latency factor increases from 5 to
100 milliseconds. However, if the network latency factor is very large, the switch does
not redirect requests to remote cache servers. Instead, it redirects the requests to the local
cache servers no matter if it stores the requested object or not and no matter if it has the
minimum workload or not. The average response time remains the same when the

network latency factor increases further.

MRT knows the most recent information about the network latency and server workload.
Using this information, MRT can predict the request response time and automatically
adjusts the cost incurred by the workload and network latency. It chooses the server that
can service the request fastest. As shown in Figure 4.8, we can see that the response time

increases modest with the increase of network latency. The increase in the response time

Chapter 4: Performance Evaluation 66

is only about 11% and 7% as the network latency factor increases from S5 to 125

milliseconds for 50% and 250% HTTP request intensity, respectively.

MRT has a better performance when the Web caching system has high request intensity
or large network latency. When the request intensity is 50% and the network latency
factor is 5 milliseconds the average response time of MRT is similar to the Content,
Workload, RTT and LB_LS schemes. However, when the request intensity is 250% and
the network latency factor is 125 milliseconds, the average response time of MRT is
lower than that of Content, Workload, RTT and LB_LS by 70%, 34%, 49% and 9%,

respectively.

Chapter 4: Performance Evaluation

67

HTTP Request intensity=50%

J=—O==Content —@—Workicad —O—RTT

2850
2600 §—O—1LB_L5 =hr—MRT
2350

AverageResponseTime

AverageResponseTime

HTTP Reqguest intensity=100%

HTTP Request Intensity=150%

—&— Workicad
—O—L8_L5

Q== Content
—e—RTT
—lr— MAT

AverageResponseTime

1

s 25 45 65 85 105 125 25 pe s os 105 125
Network Latency Factor Network Latancy Factor
(©) (d)

AverageResponseTime

Figure 4.8 Average Response Time Versus Network Latency Factor

Chapter 4: Performance Evaluation 68

4.4.2.3 Effect of Object Expiration Time

The expiration time is the period during which the object is assumed valid in a cache
server. If an object is out of date, it has to be retrieved from the original Web server. This
can result in a huge increase in the request response time. Proxy cache servers in our
simulation use the expiration time mechanism to do validation checking. In this way, the
object need only be retrieved once from the original Web server within its expiration

time.

Figure 4.9 illustrates the response time versus object expiration time. The experiments are
done under 100% HTTP request intensity. The shorter the expiration time, the more often
validation checking is performed. As shown in Figure 4.9, the average request response
times of all investigated schemes increase as the object expiration time decreases. In
Figure 4.9 (a), for a small latency factor (S5ms), when the object expiration time decreases
from 24 hours to 3 hours, the average response times of Content, Workload, RTT, LB_L5
and MRT increase by 13.5%, 14%, 11.5%, 14% and 12%, respectively. In Figure 4.9 (b),
for a larger latency factor (75ms), when the object expiration time decreases from 24
hours to 3 hours, the average response time of Content, Workload, RTT, LB_LS and
MRT increases by 12%, 19%, 8%, 16% and 10%, respectively. It should be noted that the
relative increase in average response time for al schemes is not significantly affected by

the latency factor.

Chapter 4: Performance Evaluation 69

Network Latency Factor =5ms

Average Response Time

Average Response Time

24 21 18 15 12 9 6 3
Expiration Time

(€:)))

Figure 4.9 Average Response Time versus Expiration Time

4.4.3 Controlled-Trace With Unbalanced Requests

In this section, we present experiments using controlled traces with unbalanced client
request intensities. We investigate the effect of unbalanced workload and the network
latency on the average response time of MRT. The results are compared with the
performance of the Content, Workload, RTT and LB_L5 schemes. The experiments are
conducted for 4 client clusters where client clusters 1 and 3 have 50% HTTP request
intensity, while client clusters 2 and 4 havel50% HTTP request intensity. We run the

simulator 8 to 24 hours and sample the request response time every 10 minutes.

Figure 4.10 (a.1) to (e.1) plot the average workload of the four tested cache servers under
different network latency factors for each scheme. Figure 4.10 (a.2) to (e.2) plot the
average request response time versus the network latency factor for each scheme. The

Content scheme selects the cache server in a round robin fashion. It may balance the

Chapter 4: Performance Evaluation 70

workload on all cache servers, as shown in Figure 4.10 (a.1). The Workload scheme
balances the workload of the four cache servers for all network latency factors. Workload
moves some load from the heavily loaded cache servers to the lightly loaded cache
servers so that the workload on all cache servers is balanced, as shown in Figure 4.10
(b.1). This reduces the processing time on the heavily loaded cache servers. When the
network latency is low, the communication cost to other cache servers is low and the
balanced workload on the cache servers can reduce the average response time. For
example, in Figure 4.10 (b.2) the average response time is only 1146 milliseconds when
the network latency factor is 5 milliseconds. When the network latency factor increases,
the communication cost to the remote cache servers increases, so the benefit from the
balanced workload on each cache server cannot compensate for the communication cost.
The average response time increases rapidly as the network latency increases. The
average response time increases up to 1724 milliseconds when the network latency factor

is 125 milliseconds.

The RTT scheme cannot balance the workload of the four cache servers since it does not
use the cache servers’ workload information and always redirects the request to the cache
server that may store the object and has the minimum network latency. In Figure 4.10
(c.1) we observe that cache servers 2 and 4 are heavily loaded for all network latency
factors. The queuing time on these two cache servers is very large, which means that the
average response time is large. Figure 10 (c.2) shows the average response time is 1373
milliseconds when the network latency factor is 5 milliseconds, which is 17% more than

that of Workload scheme. The average response time of RTT increases slower than that

Chapter 4: Performance Evaluation 71

of Workload as the network latency factor increases, since it mainly depends on the
network latency. The average response time is 1700 milliseconds when the network

latency factor is 125 milliseconds, which is almost the same as the Workload scheme.

The LB_LS5 scheme balances the workload of cache servers under small network latency
factors. Figure 4.10 (d.2) shows the average response time is only 1146 milliseconds
when the network latency factor is 5 milliseconds. When the network latency is greater
than 100 milliseconds (the LB_LS threshold), LB_LS redirects the request only to its own
cache server, so the cache server sharing capability and load balancing capability are lost.
The average response time is 1339 milliseconds when the network latency factor is 125

milliseconds, which is 17% higher than that at a network latency factor of 5 milliseconds.

The MRT scheme balances the workload of cache servers for small network latency. The
balancing capability decreases, as the network latency increases. MRT calculates the
queuing cost and the communication cost. In Figure 4.10 (e.1) we see that MRT's
workload balancing capability is better than that of LB_LS5 under large network latency.
The rate of the unbalanced workload of LB_LS on cache server 3 and 4 reaches 300%,
while that of MRT on cache server 3 and 4 is only about 100%. In Figure 4.10 (e.2) we
can see the MRT’s rate of increase of average response time is slower than that of LB_LS
and RTT. Although the workload balancing capability of MRT is not better than
Workload or Content, the average response time of MRT is much better than that of the

Workload and Content schemes.

Chapter 4: Performance Evaluation

Content Scheme
|@Proxy Cachet B Praxy Cache2 BProxy Cache3 @ Proxy Cached |

Average Cache Workioad

Network Latency Factor

Average Response Time

(a.1)

Workioad Scheme
| @Proxy Cache1 BProxy Cache2 DIProxy Cache3 DIProxy Cached |
"R s 1900
g . S é 1700 TR
E o) SRRLI 1600
= B e - 8 1500 §
. | =]
'3 i o o i [3
s “t N | N S | BB § 100
& oaf L B) § 1100
LI o | N | | 2 1000 5
ok i = & :
s 20 s0 7 100 125
Network Latency Factor

(b.1)

RTT Scheme
(@ Proxy Cachet @ Proxy Cache2 BProxy Cache3 @ Proxy Cached |

Average Response Time

1700

1100 258

128

Chapter 4: Performance Evaluation

73

LB_LS Scheme

[@Proxy Cachet BProxy Cache2 DProxy Cached 8 Proxy Cached |

Average Cache Workioad
o 0 o o
o N & o & =

Average Response Time

1900
1800 §
1700 1N
1600 -ZRNNENEEE.
1500 IR
1400 RS
1300 1

1200 §

1100 HESNs

5 25 45 65 85 1056 125

Network Latency Factor

(d.2)

MRT Scheme
[@Proxy Cache1 B Proxy Cache2 B Proxy Cache3 BProxy Cached |

1.8
1.6
1.4
12

Average Cache Workload
9 9 0 o
o N >0 @ =

Average Response Time

MRT Scheme

1900
1800
1700
1600
1500
1400
1300
1200
1100
1000

5 25 45 65 85

105
Network Latency Factor

(e.2)

Figure 4.10 Workload and Average Response Time

4.4.4 Effect of Number of Cache Server

This section presents experiments under different number of cooperating cache servers
for different HTTP request intensities and network latency factors. To provide a fair
comparison when we change the number of coopering cache servers, we fix the total
number of HTTP requests generated by client clusters and the total capacity of the Web

caching system. We expect that, if the number of cooperating cache servers is small, then

Chapter 4: Performance Evaluation 74

the number of HTTP requests that each cache server services will be large and the
communication cost between cache servers will be small. Similarly, if the number of
coopering cache servers is larger, then the number of HTTP requests that each cache
server services will be small and the communication cost between cache servers will be

large.

Figure 4.11 plots the response time versus the number of cooperating cache servers.
Figure 4.11 (a) and (b) show the impact of the number of cache severs for 100% HTTP
request intensity. As the number of cooperating cache servers increases, the number of
HTTP requests on each cache server decreases and the processing time on each cache
server decreases. When the network latency factor is very small (5 milliseconds), the
communication cost between cache servers can be ignored. The average response time is
mainly determined by cache servers processing time. The average responses time of all

schemes decrease as the number of cache servers increases.

When the network latency factor is large (50 milliseconds), the communication cost
between cache servers cannot be ignored. As the number of cooperating cache servers
increases, the communication cost also increases. The average response time is
determined by both the communication cost and the cache server processing time. RTT
tries to minimize the communication cost when it routes requests. MRT tries to minimize
the sum of the communication time and the processing time. When the network latency
factor is 50 milliseconds, the expense of the communication cost negates the benefit from
reducing the processing time on each cache server. Content, Workload and LB_L5 can

distribute the client requests to more cache servers as the number of cache servers

Chapter 4: Performance Evaluation 75

increases. Therefore, the workload on each cache server decreases. However,
communication cost increases as the number of cache servers increases. The average
response time of Content, Workload and LB_LS5 increases when the number of cache
servers is greater than 4, as shown in Figure 4.11 (b). For RTT and MRT, the average

response time always decreases as the number of cache servers increases.

Figure 4.11 (c) and (d) show the results of experiments with 200% HTTP request
intensity. The performance improvement by splitting the workload of cache server is
more significant. In this situation regardless of the network latency (5 or 50
milliseconds), the average response time of all schemes decreases as the number of cache
servers increases. As expected earlier, the rate of the decrease of the average response
time under a smail network latency factor is higher than that under a larger network
latency factor. When the network latency factor is small (5 milliseconds), see Figure 4.11
(c), the average response time of Content, Workload, RTT, LB_LS and MRT decreases
by 45%, 48.6%, 40.4%, 48.6% and 49.5%, respectively as the number of cache servers
increases from 2 to 8. When the network latency factor is large (50 milliseconds), see
Figure 4.11 (d), the average response time of Content, Workload, RTT, LB_LS and MRT
decreases by 31.5%, 35%, 32%, 41.4% and 43.5%, respectively as the number of cache

servers increases from 2 to 8.

Chapter 4: Performance Evaluation

76

Request Intensity = 100%
Network Latency Factor = Sms

—-—O==Content —@—Workicad —QO——RTT
—O—1LB_LS =—fy— MRT

Request Intensity = 100%
Network Latency Factor = 50ms

—O—Content —#~Worldoad —O—RTT
——LB8_L5 i MAT

£ £
g H
: %
g g
Number of Caches ’ Nt:mbor of Clchis
(@) (b)

Request Intensity= 200%
Network Latency Factor = Sms

=—O—Content ~~—Workicad —O—RTT
=0—LB_LS ——MRT

Average Response Time

Average Response Time

Request intensity=200%
Network Latency Factor = 50ms

—O—Contert ——Workicad —O—FTT
—O0—LB iS5 _—&—MAT

Figure 4.11 Average Response Time Versus The Number of Cache Servers

Chapter 4: Performance Evaluation 77

4.5 Summary

This chapter presents an evaluation of the performance of the proposed MRT Web
caching scheme, through a comprehensive simulation. The performance of MRT is
compared with that of the Content, Workload, RTT and LB_LS5 schemes. The network
model, the network latency model, the server workload model, the validation checking
model and the simulation experimental settings are described. Two types of simulation
experiments, namely raw trace and controlled trace were conducted to investigate the
effects of the network latency, HTTP request intensity, expiration time and the number of
cooperating proxy servers on the performance of the MRT. The resuits are compared with

the other transparent distributed Web caching schemes.

The simulation experiments show that MRT outperforms Content, Workload, RTT and
LB_LS in the term of the HTTP request response time. MRT always achieves
significantly lower request response time than that of other schemes, under different

network latencies, HT TP request intensities and object expiration time values.

In the raw-trace experiments, MRT outperforms Content, RTT by an average of 13% and
12%, respectively and has a similar performance as Workload and LB_LS under small
network latency. The performance advantage is more prominent when the network
latency is large. MRT outperforms Content, Workload, Response and LB_LS by 44%,

34%, 30% and 11%, respectively.

Chapter 4: Performance Evaluation 78

In the controlled-trace experiments, it is shown that MRT, like Workload and LB_LS,
adapts better to higher request intensities than the Content and RTT. For examples, at a
latency factor of 30 milliseconds, MRT outperforms Content, Workload, RTT and
LB_L5 by an average of 19%, 7%, 14% and 7%, respectively when the HTTP request
intensity is 100%, as opposed to 47%, 7%, 38% and 7%, respectively when the HTTP
request intensity is 250%. MRT also adapts better to large network latency. For example
at HTTP request intensity of 100%, MRT outperforms Content and RTT by 14% and
15.5%, respectively and has similar performance as Workload and LB_LS5S when the
network latency factor is 5 milliseconds, as opposed to 35%, 44%, 36% and 12%,
respectively when the network latency factor is 125 milliseconds. It is also shown that the
average response time increase of MRT is more controlled than that of Content,
Workload and LB_L5 when the expiration time decreases. The experiments conducted
for investigating MRT cache server workload balancing show that the workload of
cooperating cache server are well balanced when the network latency is small. For large

network latencies, MRT balances server workload better than RTT and LB_LS.

Chapter S Conclusion 79

Chapter 5

Conclusion

The objective of this research is to optimize the performance of transparent distributed
Web caching systems in terms of request response time. The proposed Minimum
Response Time (MRT) scheme distinguishes non-cacheable requests from cacheable
requests based on HTTP request header. It intelligently redirects cacheable requests to the
cache server with the minimum HTTP request response time. MRT estimates the HTTP
request response time based on cache server content, cache server workload, Web server
workload and network latency. MRT uses four extended ICP messages and one extended

switch routing table to track the most recent update of the above information.

5.1 Contributions

In general, our work has accomplished the following goals:

e We studied different switching-based transparent Web caching schemes. We
investigated how they combine to support cache cooperation in distributed Web
caching systems. We also analyzed the advantages and disadvantages of different

server selection algorithms.

Chapter 5 Conclusion 80

We proposed a heuristic solution to optimize the performance of the distributed LS
switching-based transparent Web caching system, namely the Minimum Response

Time (MRT) scheme. MRT improves upon the performance of other schemes.

A detailed simulation model was developed to study the performance of the proposed
MRT Web caching scheme. We compared the performance of MRT with Content,
Workload, RTT and LB_L5 Web caching schemes. Performance results show that
MRT outperforms all other schemes in terms of HT TP request response time. MRT
outperforms Content, RTT and LB_LS in terms of workload of cache servers. MRT is
also shown to adapt better not only to high HTTP request intensity and unbalance

request intensity but also to large network latency.

5.2 Future Work

There are a number of aspects of our work that need further investigation:

Object size: In our research, when we estimate the request response time, we do not
consider the object size. The object size affects the time spent on server delay, which
is incurred retrieving the object from the disk, and the time spent on the transmission
latency. These times may have a significant effect on the request response time if
most of the requested objects are large objects, such as Video or Audio documents.
Request response times cannot be compared directly if objects are of different size.
How tc map the object size to time components remains open for future research.

Huge network latency: The balancing between network latency and server

workloads has an inherent problem. In MRT, when the network latency factor is

Chapter S Conclusion 81

huge, all client requests are directed to the Web client’s local cache server. The
cooperation among cache servers is lost and the workload of cache servers cannot be
effectively balanced. MRT is suitable to use among a cluster of cache servers within
reasonably large network latency. The cooperation among cache server clusters with

huge network latency need to be investigated further.

¢ Request Priority: The Layer S switches used in MRT can distinguish different types
of the requested objects, such as multimedia objects or image objects. Layer 5
switches can assign priorities to requests for different types of objects so that switches
can service high priority requests before low priority requests. This kind of prioritized

transparent Web caching should be investigated further.

Bibliography 82

Bibliography

(1] K. Claffy and D.Wessels, “ICP and the Squid Web Cache”. 1997

[2] National Laboratory for Applied Network Research (NLANR). Ircache project.
Available at http://ircache.nlanr.net/.

[3] M.Abrams, C.R. Standridge, G. Abdulla, S.Williams, and E.A.Fox. Caching Proxies:
Limitations and Potentials. In Proceedings of the 4™ International World-Wide Web
Conference. 1995

[4] A.Bestavros. Speculative Data Dissemination and Service to Reduce Server Load,
Network Traffic, and Service Time for Distributed Information Systems. In
Proceedings of the 1996 International Conference on Data Dissemination. 1996

[5] A. Wolman, G.Voelker, N.Sharma, N. Cardwell, A.Karlin, and H. Levy, “On the
scale and performance of cooperative web proxy caching”. In Proceedings of the 17"
Symposium on Operating Systems Principles, December 1999.

[6] P. Rodriguez, C. Spanner, and E. biersack, “Web caching architectures: Hierarchical
and distributed caching”. In Proceedings of the 4" International Web Caching

Workshop, April 1999.

Bibliography 83

[7] C. Jefferey, S.Das, and G. Bernal, “Proxy Sharing Proxy Servers”. In Proceedings of
the IEEE ETA-COM Conference, Portland, OR, May 1996.

[8] Cieslak, M., and Foster, D. “Web Cache Coordination Protocol V 1.0”. Internet Draft
of IETF, draft-ietf-wrec-web-pro-00.txt, Jun 1999.

[9] D.Wessels. “Configuring Hierarchical Squid Caches”, 1997

[10] A. Chantkuthod, P. B. Danzig, C.Neerdaels, M.F. Schwartz and K.J. Worrell. “A
Hierarchical Internet Object Cache”. Technical Report 95-611-University of
Southern California, Boulder, California, U.S.A. 1996

[11] D. Wessels and K. Claffy, “Internet Cache Protocol (ICP), version2”. RFC 2186,
Sep 1997

[12] A. Rousskov and D. Wessels, “Cache digests”. In Proceedings of the Third
International WWW Caching Workshop, Manchester, England, June 1998.

[13] S. G. Dykes, C.L.Jeffery, and S.Das, “Taxonomy and design analysis for distributed
web caching”. In Proceedings of the IEEE Hawaii Int’l. Conference Con System
Sciences (HICSS'99), Jan. 1999

- [14] D.Povey and J. Harrison. “A distributed internet cache”. In 20" Australian
Computer Science Conference, Feb 1997

[15] R. Tewari, M.Dahlin, HM.Vin, and J.S. Kay, “Design considerations for distributed
caching on the Internet”. In Proceedings of the International Conference on
Distributed Computing Systems (ICDS’99), 1999.

[16] R. Malpani, J.Lorch, and D. Berger, “Making World Wide Web caching servers
cooperate”. In Proceedings of the Fourth International World Wide Web

Conference, Dec 1995.

Bibliography 84

[17] B. Williams, “Transparent web Caching Solutions”, Director of Strategic Business
Planning, Alteon Networks. White Paper. In The third International WWW Caching
Workshop, 1998.

[18] ArrowPoint Communications, “Content Smart Cache Switching”. White paper.

[(19] ACEdirector “Load Balancing - Technical Specifications”. Product Overview, 2000

[20] Z. Liang, H.Hassanein and P.Martin “Transparent Distributed Web Caching”. In
Proceedings of the IEEE Local Computer Network Conference, Nov 2001, pp.225-
233.

[21] Extreme Networks Server Load Balancing. TechBrief, 2000
[22] Cisco CSS-11150 - Content Services Switch. Cisco Product Catalog, Jan 2002

[23] M.E.Crovella and R.L.Carter, “Dynamic server selection in the internet”. In
Proceedings Of the Third IEEE Workshop on the Architecture and Implementation
of High Pref.Comm. Subsystems (HPCS’95), Aug.1995, pp.158-162

[24] J.D.Guyton, M.F.Schwartz. “Locating Nearby Copies of Replicated Internet
Services”. In SIGCOMM’95, Cambridge, MA, USA, pp.288-298, 1995

[25] R.L. Cater and M.E.Crovella, “Server selection using dynamic path characterization

in wide-area networks”. In Proceedings Of IEEE Infocom’97, Apr.1997

[26] M.Sayal, Y.Breitbart, P.Scheuermann, and R. Vingralek, “Selection algorithms for
replicated web servers”. In Performance Evaluation Review, vol.26, no.3, pp.44-50,
Dec.1998.

[27] S.G.Dykes, K.a. Robbins and C.L.Jeffery, “An Empirical Evaluation of Client-side
Server Selection Algorithms”. In Proceedings Of IEEE Infocom’00, Vol 3,

pp.1361-1370, Mar, 2000

Bibliography 85

[28] D. Andresen, T.Yang, V.Holmedahl, and O,H.Ibarra, “SWEB: Towards a scalable
World Wide Web server on multicomputers”. In Proceedings Of the 10* Int’l,
Parallel Processing Symp. (IPPS’96), Apr 1996.

[29] D. M.Dias, W .Kish, R.Mukherjee, and R.Tewari, “A scalable and highly available
web server”. In Proceedings Of the 41st IEEE Computer Society Int’l, Conference,
Feb. 1996.

[30] Internet Control Message Protocol. RFC 792, Sep 1981

[31] G. Apostolopoulos, V. Peris, P.Pradhan, and D.Saha, “LS: A self learning Layer 5
switch”. Technical Report RC21461, IBM, T.J.Watson Research Center, 1999

[32] Hypertext Transfer Protocol -- HITP/1.1. RFC 2068, Jan 1997
[33] SSH Protocol. Internet Draft of IETF, draft-ietf-secsh-connect-14.txt, Nov 2001

[34] C.Yoshikawa, B.Chun, P.Eastham, A.Vahdat, T. Anderson, and D.Culler, “Using
smart clients to build scalable services”. In Proceedings Of the 1997 USENIX
Annual Technical Conference (USENIX'97),1997, pp.105-117

[35] L.Fan, P.Cao, J.Almeida, and A.Z.Broder,” Summary cache: A scalable wide-area
web cache sharing protocol”. Technique Report, pp.1461, Department of Computer
Science, University of Wisconsin-Madison, Feb 1998.

[36] C. Faloutsos and S. Christodoulakis, ‘Design of a Signature File Method that
Accounts for Non-Uniform Occurrence and Query Frequencies”. In Proceedings of
11" International Conference on VLDB, pp. 165-170, Stockholm, Sweden, August
1985.

[37] A. Rousskov and V.Soloviev, “On performance of caching Proxies”. In Proceedings

of the Joint International Conference on Measurement and Modeling of Computer

Bibliography 86

Systems (SIGMETRICS '98/PERFORMANCE °98), pp. 272-273, Madison, W1, June
1998

[38] M. Rabinovich, J. Chase, S. Gadde, “Not All Hits Are Created Equal: Cooperative
Proxy Caching Over # Wide-Area Network”. In Computer Networks And ISDN
Systems, 30, 22-23, pp.2253-2259, Nov 1998

[39] J. Almeida and P.Cao, “Measuring Proxy Performance with the Wisconsin Prxoy
Benchmark”. In Proceedings of the Third International Caching Workshop, June
1998

[40] P. Barford and M. Crovella, “Generating Representative Wb Workloads for Network
and Server Performance Evaluation”, In Proceedings of the 1998 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, July 1998

[41] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion
Avoidance”. ITTT/ACM Transactions on Networking, August 1993

[42] Y.P., Recursive Estimation and Time-Series Analysis, Springer-Verlag, 1984, pp.
60-65

[43] CERN Hittpd. Available at: http://www.w3.org/pub/WWW/Daemon

[44] Netscape Proxy Cache Server. Available at: http://www.netscape.com

[45] Glassman, S. “A Caching Relay for the World Wide Web”. In Proceedings of the
First International World Wide Web Conference, 1994
[46] Xp. Chen and P. Mohapatra, “Lifetime Behavior and its Impact on Web Caching”,

Department of Electrical and Computer Engineering, 1998

Appendix A Bloom Filter 87

Appendix A

Bloom Filter

To analyze the relationship between the optimum number of hash functions W for a
Bloom Filter with the Bloom Filter size F and number of objects D in the cache server,
we formalize the problem using an approach similar to that in [36] and derive the result
for the Bloom Filter from the weighted Bloom Filter. The difference between a weighted
Bloom Filter and a Bloom Filter is that in a weighted Bloom Filter the objects with high
frequency are represented by more bits while the objects with low frequency are
represented by fewer bits. In a regular Bloom Filter, all objects in a cache server are

represented by the same number of bits.

In a weighted Bloom Filter, we assume that, according to some conditions such as
frequency the set S of all objects in a cache can be partitioned into n subsets S, S;...Sy,

which are disjoint and whose union is S, that is
S=5U08,...US§,

And

Appendix A Bloom Filter 88

Si[) Sj=0,wherel<i<n, 1<j<n,andi#j

We define the following variables:

D;: The number of objects in subset S;, D = D;, + D; +...+ Dn is the total number of

objects in the cache.

P;: The access probability for objects in S;. It is the possibility that any object in subset S;

will be accessed.

Wi: The weight for subset S; It is the number of hash functions for subset S;

F: The Bloom Filter size

In a weighted Bloom Filter representing D objects, the probability that a particular bit is 0

is:

Ro = (F}:l W1°Dl +W2°D2 +..+WaDu _ (l-i) WI*DI + W2*D2+...+ Wn *Dn (A.1)
We know that (1 - l) i P when x -> o<

Equation (1) can be approximated as:

Ro=e ~WI*DI +W2*D2+.. . WIDIF = henF -> o< (A2)

Hence the probability that a particular bit is 1 is:
Ry=1-Rp=1- e (WI'Dl +W2°D2+... Wa*Da)F (A.3)
The false prediction probability is:

Fp = Pi*R, "' * P,*R,"™? +...+Pn*RI™ (A.9)

Appendix A Bloom Filter ' 89

To find the optimum W; for each subset S; such that the false prediction F; is minimized,

we differentiate F, with respect to W;:

oF
—~£ =0, wherel<i <n
oW,
oF z
=R F pr%mnR+Y PW,R" =0, 1<i<n (A.5)
oW, 1-R D, o
Equation above is equivalent to:
w W, w, F
AR = hR =___=£l—Ri—=—p= K (A.6)
D, D, D, D

K is a constant independent of i.

Substituting equation (A.6) into (A.5), then

R n
K|F—"_InR+YW,D, |=0

or

R - J=
1-R FInR
(A7)
From equations (A.6) and (A.7),
R - In(1-R) or R= 1 (A.8)
1-R InR 2

Appendix A Bloom Filter 90

Substituting equation (A.8) into (A.7), (A.8)

S'W,D, =Fin2 (A9)

J=

Substituting equation (A.8) to (A.6),

W= —[ln%-m K] (A.10)

Substituting equation (A.10) to (A.9),

-F(@n2)*+Y D, ln%

n K= i=l i A.ll
D (A.11)

Substituting equation (A.11) to (A.10), the optimum values for Wi is:

Fln2 p ZDjlng

wo=En2 1 & =5 52 <i<n (A12)
D 2| D, D

For aBloomFiltern=1, W= W = ... W= W, Di4D2 + ... 4Dy =D, P; =...=Py= 1,

substituting all values to equation (A.12), we can get the optimum value for W:

FlIn2
D

W= (A.13)

Appendix B Implementation Pseudo Code 91

Appendix B

Implementation Pseudo Codes

The Pseudo Code for Layer S switches in MRT

A pseudo code description of the functions of a LS Switch is shown in Figure B.1. Lines
1 to 9 show how a L5 Switch deals with different TCP messages. When a LS Switch
receives a TCP connection request from a Client, it accepts the connection by sending
back a TCP_ACK (lines 3 - 4). When a L5 Switch receives a TCP ACK from a proxy
cache server, it means a TCP connection has been established between the LS switch and
the cache. Then the L5 Switch will relay a HTTP request from the client to that cache
(lines 5 - 6). When it receives a TCP_FIN (TCP connection finished signal) from a proxy
cache or the web server it relays the signal to the client to tear down the TCP connection

between them (lines 7 - 8)

Lines 10 to 20 indicate how a L5 Switch deals with the HTTP requests and HTTP
responses. When a LS Switch receives a HITP request from a client, it will make the
routing decision and find out which server it should go to and make a TCP connection

request to that server (lines 12 - 16). The details of how the L5 Switch makes the routing

Appendix B Implementation Pseudo Code 92

decision are presented from Lines 63 to 78 on page 96. When a L5 Switch receives the

requested object from the cache server or the Web server it will relay it to the client who

makes the request (lines17 - 20).

Lines 21 to lines 48 describe how a L5 Switch deals with different extended ICP
messages. If an in coming ICP message is ICP_UPDATE_CONTENT, the L5 Switch
will find out which cache server’s contents need be updated according to the ICP
message’s SenderAddress field. If the ICP message’s time stamp is greater than that
cache server’s time stamp for the last content update, which means the ICP message is
valid, the L5 Switch will update that cache server’s content and number of objects in its
CacheArrayTable and send back the ICP_UPDATE_ACK message to that cache server.
If a coming ICP message is ICP_UPDATE_WORKLOAD and the sender is a cache
server, the LS Switch will update the workload, the time stamp and the query response
time for the sender cache server in its CacheArrayTable. The elapse time, that is the time
between the LS Switch sending the ICP_QUERY_WORKLOAD and the L5 Switch
receiving the ICP_UPDATE_WORKILOAD, will be recorded in its CacheArrayTable as
the current network latency between the LS Switch and the sender cache server. A LS
Switch also updates the Web server’s workload when it receives the updated workload

sent by the Web server.

As described in lines 51 to 56, a LS Switch queries the workload of cache servers by
periodically sending ICP_QUERY_WORKLOAD to each of the cache servers and tracks
the query time in its CacheArrayTable. If there is a timeout before next query message

and the L5 switch finds out that the workload of some caches is not updated, then the L5

Appendix B Implementation Pseudo Code 93

switch will set the workload of those caches as infinity (lines 57 - 61). In this way, a LS

Switch can avoid redirecting requests to a non-responsive cache server.

// On receipt of TCP Messages
1. Procedure onReceiveTCPMessages(msg:TCP)

2. |
3. if (msg.type ==TCP_SYN)
4. sendTCP_ACK(clientAddress);

// relays http request to a cache when receives a TCP_ACK from that cache
5. if (msg.type ==TCP_ACK)
6. sendHT TP_Request(cache Address);

// relays tcp_fin to client when receives a tcp_fin from proxy or web server to

/lterminate the TCP connection

if (msg.type == TCP_FIN)
sendTCP_FIN(clientAddress).;

0 00 N

-}

// On receipt of HT TP Messages
10 Procedure onReceiveHT TPMessage (msg: HTTP)
11 {
// Redirects http_request to different cache server or web server based on thq
routing decision, first send a tcp connection request to that destination
12 if (msg.type == HTTP_REQUEST)

13 {

14 destinationAddress=makeRoutingDecision();
15 sendTCP_S YN(destinationAddress)

16. }

// http_response from proxy/web server relay http_response to the client
17. if (msg.type == HTTP_RESPONSE)
18 {
19. sendHTTP_Response(requestedObject, clientAddress)

}
20.}

Appendix B Implementation Pseudo Code

22. {

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.
35.
36.
37.

38.
39.
40.

41.
42.
43.

44.
45.

46.
47.
48.)

// receives different ICP messages

21. Procedure onReceivelCPMessage(msg:ICPMsg)

/fif the ICP message is update content
if (msg.OPCode = =ICP_UPDATE_CONTENT)
for i:=1 to NumOfCacheServers
if (CacheArrayTable[i].SenderAddress = = msg.SenderAddress) &&
if (msg.TS > CacheArrayTable{i].Last_Content_UpdateMsg_TS)

{

CacheArrayTable[i].Content:= msg.Content
CacheArrayTable[i].Count = msg.Num
CacheArrayTable{i].Last_Content_UpdateMsg_TS= msg.TS;
sendMsg(ICP_UPDATE_CONTENT_ACK, mySwitch.IPAddress,
msg. TS, CacheArrayTable [i]. SenderAddress)

/fif the ICP message is update workload
if (msg.OPCode = =ICP_UPDATE_WORKLOAD)
if (msg.SenderAddress = = WebServer.IPAddress)

else

{

Webserver.Workload = msg. Workload

for i:=1 to NumOfCacheServers

}

if CacheArrayTable[i].SenderAddress = = msg.SenderAddress) &&

(msg.TS > CacheArrayTable[i].Last_Workload_UpdateMsg_TS)

{
CacheArrayTable [i]. Workload:= msg. Workload
CacheArrayTable[i].Last_Workload_UpdateMsg_TS= msg.TS;
CacheArrayTable[I]. Workload_QueryRes_Time = getCurrentTime();

/froundtrip time is calculated as the latency
if(msg.TS == CacheArrayTable[i]. Workload_Query_TS)
CacheArrayTable[i].networklatency =
CacheArrayTable[i]. Workload_QueryRes_Time -
CacheArrayTable[i]. Workload_Query_Time;

Appendix B Implementation Pseudo Code

/! a Layer 5 switch query workload of caches periodicaily

49. Procedure Query_Workload (query_Workload_Interval)
50. {

/Moroadcast workload query message to all cache servers
51. fori:=1 to NumOfCacheServers
52. { CacheArrayTable[i]. Workload_Query_TS+=1;
53. CacheArrayTable[i]. Workload_QueryTime = getCurrentTime();
54. sendMsg (ICP_QUERY_WORKLOAD, mySwitch.IPAddress,
55. CacheArrayTable[i]. Workload_Query_TS, CacheArrayTable[i].IPAddress)
56. }

//checkif the query workload message lost or no response
57. wait until (getCurrentTime()>sendTime+Timeout)
58. for i:=1 to NumOfCacheServers

if (CacheArrayTable[i]. Workload_QueryResponseTime<
CacheArrayTable[i]. Workload_QueryTime)

59. {
60. CacheArrayTable [i]. Workload= INFINITY;
61. }
62. }

/! Layer 5 switch makes routing decision
63 Procedure makeRoutingDecision(req:HT TPRequest)

64 {
65 if (req.isCacheable == false) //if request is non-cacheable
66 destinationAddress = WebServer.IPAddress
67 else { //if request is cacheable
68 for i:=1 to NumOfCacheServers
{
69 if (CacheArrayTable[i].Content == req.Content) Fp = calFp();
70 else Fp=1,
71 ResponseTimeArray [i].ResTime =
Fp* (CacheArrayTable[i].networklatency
+processTime(CacheArrayTable[i]. Workload)
+ 2*RTTcs_ws +processTime(WebServer. Workload)) +
(1-Fp) * (CacheArrayTable[i].networklatency +
processTime(CacheArrayTable[i]. Workload))
72 }
//pick the cache server with the minimum response time
73 for i:=1 to NumOfCacheServers
74 if (ResponseTimeArray[i].ResTime<MinResTime)
75 { MinResTime = ResponseTimeArray(i].ResTime;
76 destinationAddress = ResponseTimeArray[i].IPAddress;
77. }
78. }

Figure B.1 Pseudo Code For Layer 5 Switch in MRT

Appendix B Implementation Pseudo Code 96

The Pseudo Code for Proxy Cache Server in MRT

A pseudo code description of the added functions (distribute content and deal with
extended ICP messages) of a Proxy Cache Server in MRT is shown in Figure B.2. To
cooperate with LS Switches, the cache servers must support the extended ICP messages.
Lines 1 to 17 describe how a cache server sends its updated content to each L5 switch
with ICP_UPDATE_CONTENT. A proxy cache periodically publishes its content
information and the number of objects in it to all the LS Switches. If there is a timeout
before the next ICP_UPDATE_CONTENT and the cache server find out that some LS
Switches do not acknowledge the ICP_UPDATE_CONTENT, then the cache server will

send the same ICP_UPDATE_CONTENT again.

Lines 18 to 31 present how a cache server deals with different ICP messages. If the
coming ICP message is ICP_UPDATE_CONTENT_ACK, the cache will update the
timestamp for it in its SwitchArray table. If the coming ICP message is
ICP_QUERY_WORKLOAD, the cache server will send its workload to any LS switch

that queries the workload.

Appendix B Implementation Pseudo Code 97

//send the content information to switch periodically

1 Procedure distributeContent (content:BLOOM_FILTER, num:Int)
2 {
3 for i :=1 to NumOfSwitches
4
5 SwitchArray[i].Content_Update_TS +:=1;
6 SendMsg (ICP_UPDATE_CONTENT, myCache. IPAddress,
content, num, SwitchArray [i]. Content_Update_TS,
switchArray[i].IP Address);
7 1
8. sendTime = getCurrentTime();
9. wait until (getCurrentTime()>sendTime+Timeout)
10 for i :=1 to NumOfSwitches do
11 {
12 if(SwitchArray[i].Content_Update_TS!=
13 SwitchArray(i).Content_Update_ACK_TS)
14 SendMsg (ICP_UPDATE_CONTENT, myCache. IPAddress, content, num,
15 SwitchArray [i].Content_Update_TS, switchArray[i].IPAddress);
16 }
17}

18 Procedure onReceiveMessage(msg:ICPMEssage)

19 {

20 switch (msg.OPCode)

21 {

22 case ICP_UPDATE_CONTENT_ACK:

23 for i :=1 to NumOfSwitches

24 if (SwitchArray[i].IPAddress == msg.SenderAddress)

25 SwitchArray[i].Content_Update_Ack_TS := msg.TS;

26 case ICP_QUERY_WORKLOAD)

27 for i :=1 to NumOfSwitches)

28 if (SwitchArray[i].IPAddress == msg.SenderAddress)

29 sendMsg(ICP_UPDATE_WORKLOAD,myCache.IPAddress,
myWorkload, msg.TS, SwitchArmray[i].IPAddress

30 }

31}

Figure B.2 Pseudo Code For Proxy Cache Server In MRT

Appendix B Implementation Pseudo Code 98

The Pseudo Code for Web Server in MRT

A pseudo code description of the added update workload function of a Web Server in
MRT is shown in Figure B.3. To cooperate with LS Switches, the Web server supports
the extended ICP_UPDATE_WORKLOAD message. Lines 1 to 7 describe how a Web

server periodically sends its updated workload to LS switches.

1. Procedure OnUpdateWorkloadTimeout ()

2. {

3. myWorkload = getWorkload();

4. for i :=1 to NumOfSwitches

5. if (SwitchArray{i].IPAddress == msg.SenderAddress)

6. sendMsg(ICP_UPDATE_WORKILOAD, my[PAddress, myWorkload,
SwitchArray[i].IPAddress)

7.}

Figure B.3 Pseudo Code For Web Server In MRT

Appendix C Validation Check Pseudo Code 99

Appendix C

Validation Checking Pseudo Code

The following pseudo code C.1 shows how W3C httpd 3.0 maintains cache consistency

(it is derived from study of httpd’s source code).

Procedure GET (P:page, S: date)
J/ Answer a HTTP GET request. S is the date in the request’s If-Modified-Since: header.
J/ If there was no If-Modified-Since: header, S = -infinity.
// Note that the Date: and Last-Modified: headers are stored with every cached page, and
//are transmitted unchanged whenever a cached page is returned.
{
if (P in Cache & current_time < cached_P.expiration_time)
// in cache, not expired
{
if (cached_P.last_modified <= S)
{
return “Not Modified”;
Date = cached_P.date;
}
else
return cached_P

Appendix C Validation Check Pseudo Code

100

if (P in cache & current_time >= cached_P.expiration_time) // in cache, expired
{
send If-Modified-Since(cached_P.last_modified) to higher level cache
if (response="Not Modified")
{
cached_P.expiration_time= new_expire_time(P);
return "Not Modified";
/! with headers, including Date:, as we just received them from higher-
/Nevel cache

}

else
{
cached_p = received_P;
cached_P.expiration_time = new_expire_time(P);
return cached_P;
}
}

if (P not in cache)

{
send If-Modified-Since(S) to Higher level cache
if (whole document was returned)

{

cached_P = response
cached_P.expiration_time = new_expire_time(P)
}

return response to client, including headers

Figure C.1 Expiration Pseudo Code

Appendix D The Simulator Structure 101

Appendix D

The Simulator Structure

The simulator used in our study is a discrete event-driven simulation. It simulates the
Content, Workload, RTT, LB_LS5 and MRT Web caching schemes. The major classes in
the simulation are as follows:

Class Sim

It is the main class of the simulator. It initializes the Web clients, cache servers and the
layer S switches. It varies the request intensity factors to generate various controlled
traces. It runs the four simulated Web caching schemes.

Class ClientCluster

It simulates a client cluster by reading proxy traces to generate HT TP requests. It handles
the TCP messages and HT TP request and response messages.

Class LSSwitch_ContentSwitch

It simulates a layer 5 switch used in a Content-based transparent Web caching scheme. It
redirects the requests in a round robin fashion or randomly.

Class L5Switch_Workload

Appendix D The Simulator Structure 102

It simulates a layer 5 switch used in a Workload-based transparent Web caching scheme.
It redirects the requests based on request content and each cache server’s workload.

Class LSSwitch_RTT

It simulates a layer 5 switch used in 2 Round trip time-based transparent Web caching
scheme. It redirects the requests based on the request content and round trip time between
the switch and each cache server.

Class L5Switch_LB_LS

It simulates a layer 5 switch used in the LB_LS Web caching scheme.

Class L5Switch_MRT

It simulates a layer 5 switch used in our MRT Web caching scheme. It redirects the
requests based on the MRT selection algorithm.

Class ProxyCacheL5Content

It simulates a proxy cache server used in a Content-based transparent Web caching
scheme. It supports LRU replacement algorithm and expiration time validation checking
mechanism.

Class ProxyCacheL5Workload

It simulates a proxy cache server used in a Workload-based transparent Web caching
scheme. It supports the LRU replacement algorithm and the expiration time validation
checking mechanism.

Class ProxyCacheLSRTT

It simulates a proxy cache server used in a Round trip time-based transparent Web
caching scheme. It supports the LRU replacement algorithm and the expiration time

validation checking mechanism.

Appendix D The Simulator Structure 103

Class ProxyCacheLSLB_LS

It simulates a proxy cache server used in the LB_L.5 Web caching scheme. It supports the
LRU replacement algorithm and the expiration time validation checking mechanism.

Class ProxyCacheLSMRT

It simulates a proxy cache server used in our MRT Web caching scheme. It supports the
LRU replacement algorithm and the expiration time validation checking mechanism.

Class WebServer

It simulates a Web server. It accepts HI TP requests and sends back HTTP responses. In
our simulation, the Web server also supports the ICP messages. It periodically calculates

its current workload and sends its workload to switches with the

ICP_UPDATE_WORKLOAD message.

Appendix E Confidence Intervals 104

Appendix E

Confidence Intervals

Normally, confidence intervals placed on the mean values of simulation resuits can be
used to describe the accuracy of the simulation results. Consider the results of N

statistically independent simulation runs for the same experiment: X;, X, ..., Xn. The

sample mean, X is given as:

N
5 x

=5

N

The variance of the distribution of the sample values, S ?is:

Y (x, -X)?

Sl___i
* N-1

X

The standard derivation of the sample mean is given by: jﬁ

Under the assumption of independence and normality, the sample mean is distributed in

accordance to the T-Distribution, which means the sample mean of the simulation runs

Appendix E Confidence Intervals 105

fall in the interval + & within the actual mean with a certain probability drawn from the
T-Distribution.

- Sxtalz.N—l

cTTUN

where ,,,5., is the value of the T-distribution with N-1 degrees of freedom with

probability a /2.

The upper and lower limits of the confidence interval regarding the simulation results are:

S.ttaIZ.N-l

VN

Lower Limit = 3(‘-

Sxta' /2,N-1

JN

Upper Limit = X +

