
QoS-based Task Replication for Alleviating
Uncertainty in Edge Computing

Ibrahim M. Amer∗, Sharief M. A. Oteafy∗†, Sara A. Elsayed∗, and Hossam S. Hassanein∗
∗School of Computing, Queen’s University, Kingston, ON, Canada
†School of Computing, DePaul University, Chicago, Illinois, USA

ibrahim.amer@queensu.ca, soteafy@depaul.edu, {selsayed, hossam}@cs.queensu.ca

Abstract—Edge Computing (EC) has been evolving towards
harvesting latent yet underutilized computational resources of
the Extreme Edge Devices (EEDs), such as autonomous vehicles,
smartphones, and tablets. However, EEDs tend to be user-
owned devices. This triggers a high level of uncertainty, the
impact of which is mostly overlooked. Such uncertainty can
stem from the potential loss of network connectivity, battery
depletion, as well as the dynamic user access behavior that can
affect the computational capability of EEDs and compromise the
convenience of users. This uncertainty can profoundly impact
the devices’ reliability of executing the offloaded tasks. In this
context, we propose the Replica Maximization at the Extreme
Edge (RMEE) scheme. RMEE employs task replication to achieve
maximum reliability and improve successful task execution while
abiding by certain QoS requirements. Towards that end, RMEE
aims to maximize the number of offloaded replicas for each task,
while ensuring that the task execution delay is kept within a
certain threshold. We formulate the task replication optimization
problem as a Mixed-Integer Linear Program (MILP) and devise
an analytical solution using the Karush–Kuhn–Tucker (KKT)
conditions and Lagrangian analysis. Extensive simulations have
shown that RMEE outperforms other baseline schemes that
involve single and fixed number of replicas, in terms of drop
rate, satisfaction ratio, and the number of replicas by up to
100%, 100% and 60%, and 95.1% and 85.4%, respectively.

Index Terms—Edge Computing, Extreme Edge Device, Task
Replication, Replica Maximization, Uncertainty

I. INTRODUCTION

The Internet of Things (IoT) has been witnessing a sig-
nificant surge; it is estimated that 125 billion IoT devices
will be connected to the Internet by 2030 [1]. This excessive
growth can trigger a broad spectrum of latency-sensitive and/or
data-intensive IoT applications, such as Tactile Internet, smart
cities, and healthcare applications [2]. Cloud Computing (CC)
tends to fall short of meeting the stringent QoS requirements
associated with such applications. This is since CC involves
transmitting massive data to geographically remote data cen-
ters, which can cause high delay and impose heavy traffic
influx at backhaul links [3].

Edge Computing (EC) has emanated as a primary enabling
paradigm that can alleviate the aforementioned deficiencies of
CC by fostering data processing closer to the end-users [4].
The performance gain rendered by EC has caused so much
momentum that its global market size is expected to reach
$10.96 billion by 2026 [5]. Recently, leveraging underutilized
computational resources of IoT devices, also referred to as

Extreme Edge Devices (EEDs), has been explored [6]–[8].
Harvesting the computational resources of multiple EEDs for
parallel processing can significantly improve the QoS since it
brings the computing service closer to the end-user, which
drastically curtails the delay [9]. In addition, in contrast
to existing EC platforms that are comprised of dedicated
infrastructure-based edge nodes, which are entirely controlled
by cloud service providers and network operators, EEDs can
break this monopoly and democratize the edge, thus permitting
more players to build their own edge cloud [10].

The advantageous impact of using EEDs for task offloading
can be hindered by the fact that EEDs are user-owned, which
imposes a high level of uncertainty. Such uncertainty ensues
from multiple sources, including battery depletion, possible
loss of network connectivity, hardware failure, as well as
dynamic user access behavior. The latter refers to the notion
that at any time, the user can access their own device to run
an intensive application, such as streaming a video, playing
a video game, etc. Accordingly, the computational capability
of the device tends to change dynamically. To preserve its
own compute power and avoid compromising the user’s con-
venience, an EED might refrain from executing an offloaded
task if it decides to run an intensive application. Note that
the ensued uncertainty can affect the device’s availability, and
in turn impact its reliability of executing the offloaded task.
Such reliability has been often overlooked in EED-enabled
computing environments.

In this paper, we exploit the use of task replication to
maximize reliability and improve successful task execution
of offloaded tasks in EED-enabled computing environments,
while abiding by certain QoS requirements. Towards that end,
we propose the Replica Maximization at the Extreme Edge
(RMEE) scheme. To the best of our knowledge, RMEE is
the first task replication scheme that maximizes reliability in
EED-enabled computing environments.

Existing replication schemes in EC have either focused on
service replication [11], [12] or task replication that reinforces
a fixed number of replicas [13]–[15], thus leading to under-
provisioned resources. In contrast, RMEE maximizes the num-
ber of replicas allocated to EEDs for each task to minimize the
drop rate resulting from uncertainty, thus maximizing reliabil-
ity. In order to ensure that the demanded QoS requirements are
met, RMEE performs task replication while ensuring that the
response delay of each task does not exceed a certain deadline978-1-6654-3540-6/22/$31.00 © 2022 IEEE

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

5147

GL
O

BE
CO

M
 2

02
2

- 2
02

2
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
58

0

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:37:08 UTC from IEEE Xplore. Restrictions apply.

and the energy consumed by each EED is kept within a certain
limit. We formulate the task replication problem as a Mixed
Integer Linear Program (MILP) and then derive the analytical
solution using Karush–Kuhn–Tucker (KKT) conditions and
Lagrangian analysis [16].

The remainder of this paper is organized as follows. Section
II overviews some related work. Section III presents the pro-
posed scheme (RMEE). Section IV analyzes the performance
evaluation and simulation results. Section V concludes the
paper and highlights future directions.

II. RELATED WORK AND MOTIVATION

In EC, replication can be classified into Service-oriented
Replication (SoR), Data-oriented Replication (DoR), and Task-
oriented Replication (ToR). SoR is concerned with replicating
the service that consumes storage, CPU, network, and memory,
while DoR is concerned with replicating the underlying data
[17]. In contrast, ToR is concerned with allocating each task
to multiple edge nodes [15].

SoR has been widely explored in EC paradigms [11], [12].
For instance, in [12], the authors introduce task offloading and
service replication methods on local and remote Mobile Edge
Computing (MEC) servers. The scheme strives to minimize
the total task response delay. However, it allocates only one
replica per task, which can compromise the reliability of task
execution, particularly if applied within the context of EED-
enabled computing environments.

ToR has been recently investigated [13]–[15]. Sun et al.
[13] introduces task replication in vehicular edge computing.
The task is replicated to multiple vehicles and is marked
as complete upon the first response received from either
replica. The optimal number of replicas is a predefined number
determined based on network conditions.

Qian et al. [14] proposes an online vehicle selection strat-
egy for task replication in vehicular networks with unknown
parameters. The scheme’s objective is to minimize the task
execution delay. The selection process is modeled as a bud-
geted multi-arm bandit problem. However, the number of task
replicas is fixed using a predefined parameter.

In [15], the authors propose a learning-based task replica-
tion algorithm (LTRA) based on a combinatorial multi-armed
bandit (CMAB) aiming to minimize the average offloading
delay. A predefined fixed number of replicas is also adopted.

The existing body of works either adopt the use of single
task replica or perform task replication using fixed number of
replicas. This can cause resources under-provisioning. While
such schemes can be suitable for edge computing environ-
ments with dedicated infrastructure-based edge nodes, they
fail to account for the high level of uncertainty associated
with EED-enabled computing environments. In contrast, our
proposed scheme maximizes reliability by maximizing the
number of replicas allocated to EEDs for each task while
abiding to certain demanded QoS requirements.

III. REPLICA MAXIMIZATION AT THE EXTREME EDGE
(RMEE)

The RMEE allocates and replicates a set of requested tasks to
a number of available EEDs within a given area. The objective
is to maximize the number of replicas allocated to EEDs per
each task. The task is considered complete upon receiving the
first response among the assigned replicas.

In this section, we provide a detailed discussion of the
system model, problem formulation, and analytical solution
of RMEE.

A. System Model

Consider a set of M tasks denoted Γ = {γ1, · · · , γM} and
a set of N workers (i.e., EEDs) denoted W = {w1, · · · , wN}.
Note that the terms EEDs and workers are used interchange-
ably throughout this paper. Each task γj ∈ Γ is defined by, data
size γdata

j in bits, processing density γdensity
j in CPU cycles/bit,

i.e., the number of CPU cycles required to process a single
bit of task’s data, and a certain computation delay deadline
γdeadline
j which is the maximum acceptable computation delay

specified by the task requester. Each task γj needs to be
executed and replicated on at least a single worker wi. Each
worker wi ∈ W has a certain CPU clock speed wCPU

i in CPU
cycles/sec. The availability of each worker is known a priori.
Each task γj ∈ Γ has a computation delay τ comp

ij , which is
the time it takes to execute it on worker wi. The computation
delay τ comp

ij is given by equation (1). Each worker can take on
multiple tasks. The maximum number of tasks that a worker
wi can accept is defined by wtasks

i . Each worker wi has an
on-board CPU capacitance denoted κ. The energy consumed
by each worker wi due to computing task γj , denoted Eij ,
is given by equation (2). Note that each worker is associated
with a certain battery consumption threshold, denoted Emax

i ,
that should not be exceeded.

τ
comp
ij =

γdensity
j γdata

j

wCPU
i

(1)

E
comp
ij = κ γ

data
j γ

density
j

(
w

CPU
i

)2
(2)

All task requests are sent to a centralized controller c that is
continuously probes the area for workers. The task allocation
and replication decision is made by the controller c according
to the problem formulation in (3).

B. Problem Formulation

The objective is to maximize reliability (i.e., minimize drop
rate) by maximizing the number of replicas assigned to EEDs
for each task. We formulate the problem as a Mixed Integer
Linear Program (MILP), where the number of replicas/workers
reserved for a task γj is determined by the decision variable
xj , and the binary resource allocation decision is reflected via
the decision variable λij , where λij is set to 1 if task γj is
assigned to worker wi, and 0 otherwise. The objective function
in (3a) aims to maximize the total number of replicas for each
task subject to the constraints below.

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

5148

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:37:08 UTC from IEEE Xplore. Restrictions apply.

max
λij , xj

M∑
j=1

xj (3a)

s.t. τ
comp
ij λij ≤ γ

deadline
j ∀wi ∈ W,

∀γj ∈ Γ
(3b)

M∑
j=1

λijE
comp
ij ≤ E

max
i ∀wi ∈ W (3c)

M∑
j=1

λij ≤ w
tasks
i ∀wi ∈ W (3d)

N∑
i=1

λij = xj ∀γj ∈ Γ (3e)

M∑
j=1

xj ≤
N∑

i=0

w
tasks
i (3f)

λij ∈ {0, 1} ∀wi ∈ W,
∀γj ∈ Γ

(3g)

1 ≤ xj ≤ N ∀γj ∈ Γ (3h)

Constraint (3b) ensures that the computation delay τ comp
ij of

executing task γj on worker wi does not exceed the specified
task’s deadline γdeadline

j . Constraint (3c) ensures that the total
energy consumed by each worker wi due to executing all the
tasks assigned to it should not exceed a certain threshold Emax

i .
Constraint (3d) ensures that no worker is assigned more than
the maximum value wtasks

i of allowed tasks. Constraint (3e)
ensures that the total number of workers reserved for each
task equals xj . Constraint (3f) ensures that the total number of
replicas assigned to all tasks does not exceed the total number
of allowed tasks that the workers can execute collectively.
Constraint (3g) is the integrality constraint associated with the
binary decision variable λij . Constraint (3h) sets the bounds
for the decision variable xj .

C. Analytical Solution

The aforementioned problem formulation in (3) has a linear
objective function and involves integer and binary decision
variables, which are xj and λij , respectively. The inequality
constraints in (3b), (3c), (3d), and (3f) are all linear constraints.
Accordingly, the problem we have at hand is a Mixed-Integer
Linear Program (MILP). MILPs are generally NP-hard [18]
and thus difficult to solve. Thus, we simplify the problem
by relaxing the integrality constraints in order to solve it
analytically. To do that, we first check the convexity of the
problem in (3) by examining the inequality and equality
constraints. All inequality constraints are convex except for the
discrete constraint (3g). By omitting the constraint (3g) and
replacing it with the continuous constraint 0 ≤ λij ≤ 1, all
inequality constraints become convex. The equality constraints
in (3e) are affine constraints, therefore the feasible region
(i.e., the set of points that satisfy these constraints) is convex.
Consequently, the relaxed continuous problem is convex and
the analytical solution can thus be attainable. Note that closed
form solutions for ILPs are generally not possible. As a result,
we strive to attain a lower bound on the optimal objective value
using Lagrangian analysis and KKT conditions.

To obtain the solution analytically, we can use KKT
conditions to attain lower bounds on the optimal val-
ues of λij and xj using Lagrangian multipliers. The La-
grangian function of the relaxed program in (3) is given
by equation (6) in Appendix A. The Lagrangian multi-
pliers associated with the objective function in (3a), and
the constraints in (3b) to (3h) are given by the vectors:
λ,x,α,β,µ,ω(1),ω(2),ϑ,θ(1),θ(2), ξ(1), and ξ(2), respec-
tively.

To formalize the optimal values of the decision variables,
we introduce Theorem 1 where the asterisk (·)∗ indicates the
optimal value of the super-scripted term and u denotes the
replacement of the square bracketed term in equation (20) for
simplification.

Theorem 1. The optimal value of λ∗, which is responsible
for assigning task γj to worker wi, is given by:

λ
∗
ij =



0 θ
∗(1)
ij = 0 and u > 0

1 θ
∗(1)
ij > 0, u > 0,

and θ
∗(1)
ij ≈ u

γdeadline
j

τ
comp
ij

α∗
ij > 0

Emax
i −

∑
1≤l≤M
kl ̸=ij

λklE
comp
kl

E
comp
ij

β∗
i > 0

wtasks
i −

∑
1≤l≤M
kl ̸=ij

λkl µ∗
i > 0

xj −
∑

1≤l≤M
kl ̸=ij

λkl ω
∗(1)
j > 0

(4)

The optimal value of x which is responsible for determining
the exact number of replicas allocated for task γj is given by:

x
∗
j = −ω

∗(1)
j

n∑
i=1

λij + ω
∗(2)
j

n∑
i=1

λij − ϑ
∗

 n∑
i=0

w
tasks
i −

m∑
k ̸=j

xk


− ξ

∗(1)
j + Nξ

∗(2)
j ∀i, ∀j

(5)

Proof. According to the bounds obtained in equations (4),
and (5), the closed form solution is not attainable because
each decision variable’s bound is expressed in terms of other
unknown variables. Hence, we use Gurobi optimizer [19] to
find the near-optimal solution. The proof of Theorem 1 and
the full analytical solution can be found in Appendix A. ■

IV. PERFORMANCE EVALUATION

We evaluate the proposed RMEE scheme using the MILP
formulation and compare it to two baseline approaches that
represent resource allocation schemes with single task replicas
(i.e., no task replication) [12] or fixed number of replicas [13],
[14]. For simplicity, we refer to the former as Replication-
Single Worker (Rep-SW) [12], and the latter as Replication-
K Workers (Rep-KW) where K is a predetermined number
of replicas. We assume that each worker has a probability
of failure. The cause of failure can be of any type; a con-
nection loss, battery drainage of the worker, dynamic user
access behavior, etc. The failure probabilities of workers are
exponentially distributed with time t. We use the following
performance metrics: 1) the total number of task replicas that
are allocated to workers, 2) the drop rate, which is the ratio of

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

5149

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:37:08 UTC from IEEE Xplore. Restrictions apply.

Table I: Simulation Parameters

Symbol Parameter Value
N Number of workers 110
M Number of tasks 65
γdensity
j Processing density per task [1 – 5]×102 cycle/bit

γdata
j Data size per task [1 – 20] MB

γdeadline
j The deadline per task [3 – 5] ms

Emax
i Maximum energy consumption limit for each worker 3 mW

wCPU
i CPU Frequency per worker [1 – 4] GHz

wtasks
i Maximum number of tasks per worker [1 – 3] tasks

κ On-chip capacitance factor of the worker’s CPU 1×10−29

50 60 70 80 90 100 110

30
50
70
90

110
130
150
170
190
210

Number of Workers

To
ta

l
R

ep
lic

as

RMEE
Rep-SW
Rep-KW

Figure 1: Performance results of RMEE, Rep-SW, and
Rep-KW in terms of the total number of task replicas while
varying the number of workers.

the number of tasks that could not be successfully executed,
due to worker failure, to the total number of tasks, and 3) the
satisfaction ratio, which is the ratio of the number of tasks
that could be executed before the corresponding deadline to
the total number of tasks.

A. Simulation Setup

RMEE, Rep-SW, and Rep-KW are implemented in MAT-
LAB using the Gurobi solver [19] to find the near-optimal
solution. Workers are assumed to be any resource-limited
device, which can be positioned indoors or outdoors, as long
as it is within the probing range of the controller c. Unless
otherwise specified, the simulation parameters used are listed
in Table I. The value of K is set to 3 in Rep-KW (i.e., 3
replicas per task).

B. Simulation Results and Analysis

We conducted four experiments to assess the performance
of RMEE compared to Rep-SW and Rep-KW using different
metrics previously mentioned in Section IV.
Experiment 1. Fig. 1 depicts the total number of task replicas
rendered by RMEE over varying the number of workers. Note
that the total replicas remain constant over the varying number
of workers in both Rep-SW and Rep-KW since they adopt a
single and fixed number of replicas, respectively. In contrast,

5 20 35 50 65

0

0.2

0.4

0.6

0.8

1

Number of Tasks

D
ro

p
R

at
e

(%
)

RMEE
Rep-SW
Rep-KW

Figure 2: Task requests drop rate for RMEE, Rep-SW, and
Rep-KW schemes while varying the number of tasks (lower
values are better).

as the number of workers increases in RMEE, the total number
of task replicas increases. The percentage of change is 95.1%
and 85.4% compared to Rep-SW, and Rep-KW, respectively.
Experiment 2. Fig. 2 illustrates the performance of RMEE,
Rep-SW, and Rep-KW in terms of the drop rate over the
number of tasks. As shown in Fig. 2, RMEE yields the lowest
drop rate compared to the other schemes, with an improvement
of up to 100% compared to Rep-SW, and Rep-KW. This is
because RMEE maximizes the number of replicas assigned to
each task, which maximizes the reliability by maximizing the
chance of executing the task in the case of worker failure.
In contrast, Rep-SW uses only one replica per task, while
Rep-KW enables the use of K replicas per task. This indicates
that if the worker to which a task is assigned fails, the task
has no chance of being executed in Rep-SW, and a slightly
higher but limited chance in Rep-KW. As depicted in Fig.
2, the drop rate rendered by RMEE increases as the number
of tasks increases. This can be attributed to the fact that as
the number of tasks increases, a lower number of replicas is
allowed per each task, reducing the chance of successfully
executing the task in case of multiple workers failure.
Experiment 3. Fig. 3 shows the satisfaction ratio of RMEE,
Rep-SW, and Rep-KW over the number of tasks. As shown
in Fig. 3, RMEE has the highest satisfaction ratio compared to
the other schemes, with an improvement of up to 100% and

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

5150

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:37:08 UTC from IEEE Xplore. Restrictions apply.

5 20 35 50 65

0

0.2

0.4

0.6

0.8

1

Number of Tasks

Sa
tis

fa
ct

io
n

R
at

io
(%

)
RMEE

Rep-SW
Rep-KW

Figure 3: Performance results of RMEE, Rep-SW, and
Rep-KW in terms of the satisfaction ratio over varying number
of tasks (higher values are better).

60% compared to Rep-SW, and Rep-KW, respectively. RMEE
scheme has the highest ratio because it maximizes the number
of replicas assigned to each task, decreasing the chance of
worker failure. We can also conclude from Fig. 3 that the
satisfaction ratio of RMEE decreases as the number of tasks
increases. This is because increasing the number of tasks while
fixing the number of workers, lowers the number of replicas
that are assigned to each task, which reduces the chance of
task completion in case of multiple workers’ failure. Note that
in Fig. 3, the satisfaction ratio of Rep-SW increases as the
number of tasks increases because as the number of tasks
increase, the ratio of completed tasks of Rep-SW increase.
Experiment 4. Fig. 4 evaluates the satisfaction ratio of RMEE,
Rep-SW, and Rep-KW over varying the number of workers.
RMEE has the highest satisfaction ratio compared to the
other schemes with an improvement of up to 60%, and 20%
compared to Rep-SW, and Rep-KW, respectively. As depicted
in Fig. 4, the satisfaction ratio of RMEE increases as the
number of workers increases. This is attributed to the fact
that as the number of workers increases, a higher number of
replicas is assigned to each task, which increases the reliability
of the workers recruited and minimizes the chance of multiple
workers’ failure. We can also notice from Fig. 4 that the
satisfaction ratio for Rep-SW decreases as the number of
workers increases. The reason for this is, that as the number
of workers increases, workers with chances of failure increase
and that causes the satisfaction ratio of Rep-SW to drop
because it utilizes a single worker for each task.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a task replication scheme
called RMEE to foster the notion of democratizing the edge
and leveraging the use of underutilized resources at the ex-
treme edge. RMEE accounts for the high level of uncertainty
in EED-based computing environments. In particular, RMEE
maximizes reliability, and thus increases the chance of suc-
cessful task execution in such environments by maximizing
the number of replicas assigned to workers per task. We
formulated the task replication problem as a Mixed Integer-

50 70 90 110

0.2

0.3

0.4

Number of Workers

Sa
tis

fa
ct

io
n

R
at

io
(%

)

RMEE
Rep-SW
Rep-KW

Figure 4: Performance results of RMEE, Rep-SW, and
Rep-KW in terms of the satisfaction ratio over varying number
of workers (higher values are better).

Linear Program (MILP) and then relaxed the problem to a
convex Linear Program (LP). Upper bounds on the optimal
solution have been attained, accompanied by the analytical
solution using KKT optimality conditions and Lagrangian
analysis. Extensive simulations have been conducted to assess
the performance of RMEE compared to two other baseline
approaches; one is based on using a single replica per task,
while the other adopts the use of a predetermined fixed number
of replicas. Simulations show that RMEE outperforms the
former and latter schemes in terms of drop rate, satisfaction
ratio, and the number of replicas by up to 100%, 100% and
60%, and 95.1% and 85.4%, respectively.

In the future, we will quantify the level of uncertainty
associated with each worker using prediction and stochastic
techniques.

ACKNOWLEDGMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number ALLRP 549919-20.

REFERENCES

[1] K. Gyarmathy, “Comprehensive guide to iot statistics you need to know
in 2020,” VXchnge [online]. Tampa, Florida: vXchnge, 2020 (1), 3 [cit.
2020-07-10]. Dostupné z: https://www. vxchnge. com/blog/iot-statistics,
2020.

[2] J. B. Awotunde, A. K. Bhoi, and P. Barsocchi, “Hybrid cloud/fog
environment for healthcare: An exploratory study, opportunities, chal-
lenges, and future prospects,” in Hybrid Artificial Intelligence and IoT
in Healthcare. Springer, 2021, pp. 1–20.

[3] Y. Zhao, W. Wang, Y. Li, C. Colman Meixner, M. Tornatore, and
J. Zhang, “Edge Computing and Networking: A Survey on Infrastruc-
tures and Applications,” IEEE Access, vol. 7, pp. 101 213–101 230, 2019.

[4] B. Varghese, E. De Lara, A. Y. Ding, C. H. Hong, F. Bonomi, S. Dustdar,
P. Harvey, P. Hewkin, W. Shi, M. Thiele, and P. Willis, “Revisiting the
Arguments for Edge Computing Research,” IEEE Internet Computing,
vol. 25, no. 5, pp. 36–42, 2021.

[5] H. Stipp, “Edge computing: Global market size 2026 —
Statista.” [Online]. Available: https://www.statista.com/statistics/948762/
worldwide-edge-computing-market-size-forecast/

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

5151

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:37:08 UTC from IEEE Xplore. Restrictions apply.

[6] J. Portilla, G. Mujica, J. S. Lee, and T. Riesgo, “The Extreme Edge at
the Bottom of the Internet of Things: A Review,” IEEE Sensors Journal,
vol. 19, no. 9, pp. 3179–3190, 5 2019.

[7] E. M. Dogo, A. F. Salami, C. O. Aigbavboa, and T. Nkonyana, “Taking
cloud computing to the extreme edge: A review of mist computing for
smart cities and industry 4.0 in africa,” EAI/Springer Innovations in
Communication and Computing, pp. 107–132, 2019. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-99061-3 7

[8] N. Bruschi, A. Garofalo, F. Conti, G. Tagliavini, and D. Rossi, “Enabling
mixed-precision quantized neural networks in extreme-edge devices,”
17th ACM International Conference on Computing Frontiers 2020, CF
2020 - Proceedings, pp. 217–220, 5 2020.

[9] R. K. Barik, A. C. Dubey, A. Tripathi, T. Pratik, S. Sasane, R. K.
Lenka, H. Dubey, K. Mankodiya, and V. Kumar, “Mist Data: Leveraging
Mist Computing for Secure and Scalable Architecture for Smart and
Connected Health,” Procedia Computer Science, vol. 125, pp. 647–653,
1 2018.

[10] R. Tourani, S. Srikanteswara, S. Misra, R. Chow, L. Yang,
X. Liu, and Y. Zhang, “Democratizing the Edge: A Pervasive
Edge Computing Framework,” 7 2020. [Online]. Available: https:
//arxiv.org/abs/2007.00641v1

[11] I. Farris, T. Taleb, A. Iera, and H. Flinck, “Lightweight service replica-
tion for ultra-short latency applications in mobile edge networks,” IEEE
International Conference on Communications, 7 2017.

[12] S. A. Mohamed, S. Sorour, and H. S. Hassanein, “Group-Delay Aware
Task Offloading with Service Replication for Scalable Mobile Edge
Computing,” 2020 IEEE Global Communications Conference, GLOBE-
COM 2020 - Proceedings, vol. 2020-January, 12 2020.

[13] Y. Sun, S. Zhou, and Z. Niu, “Distributed Task Replication for Ve-
hicular Edge Computing: Performance Analysis and Learning-Based
Algorithm,” IEEE Transactions on Wireless Communications, vol. 20,
no. 2, pp. 1138–1151, 2 2021.

[14] Y. Qian, Z. Zuo, and Y. Hao, “Online vehicle selection for task
replication via bandit learning,” Proceedings - 2021 IEEE 45th Annual
Computers, Software, and Applications Conference, COMPSAC 2021,
pp. 1627–1632, 7 2021.

[15] Y. Sun, J. Song, S. Zhou, X. Guo, and Z. Niu, “Task Replication
for Vehicular Edge Computing: A Combinatorial Multi-Armed Bandit
Based Approach,” 2018 IEEE Global Communications Conference,
GLOBECOM 2018 - Proceedings, 2018.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[17] S. Slimani, T. Hamrouni, and F. Ben Charrada, “Service-
oriented replication strategies for improving quality-of-service
in cloud computing: a survey,” Cluster Computing, vol. 24,
no. 1, pp. 361–392, 3 2021. [Online]. Available: https:
//link.springer.com/article/10.1007/s10586-020-03108-z

[18] A. Schrijver, Combinatorial optimization: polyhedra and efficiency.
Berlin: Springer, 1 2003, vol. 24. [Online]. Available: https:
//link.springer.com/book/9783540443896

[19] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

APPENDIX A
PROOF OF THEOREM 1

The Lagrangian function associated with the relaxed program
in (3) is given by:

L(λ, x, α,β,µ,ω
(1)

,ω
(2)

,ϑ, θ
(1)

, θ
(2)

, ξ
(1)

, ξ
(2)

) =

M∑
j=1

xj −
(N∑
i=1

M∑
j=1

αij

(
τ

comp
ij

λij − γ
deadline
j

)

+

N∑
i=1

βi

 M∑
j=1

λijE
comp
ij

− E
max
i

 +

N∑
i=1

µi

 M∑
j=1

λij − w
tasks
i


+

M∑
j=1

ω
(1)
j

 N∑
i=1

λij − xj

 +

M∑
j=1

ω
(2)
j

xj −
N∑

i=1

λij


+ϑ

 N∑
i=0

w
tasks
i −

M∑
j=1

xj


+

N∑
i=1

K∑
j=1

θ
(1)
ij

(
λij − 1

)
− θ

(2)
ij

λij

+

M∑
j=1

ξ
(1)
j

(
1 − xj

)
+

M∑
j=1

ξ
(2)
j

(
xj − N

))

(6)

Applying KKT optimality conditions to the constraints in (3):
α
∗
ij

(
τ

comp
ij

λij − γ
deadline
j

)
= 0 ∀i and ∀j (7)

β
∗
i

 M∑
j=1

λijE
comp
ij

− E
max
i

 = 0 ∀i (8)

µ
∗
i

 M∑
j=1

λij − w
tasks
i

 = 0 ∀i (9)

ω
∗(1)
j

 N∑
i=1

λij − xj

 = 0 ∀j (10)

ω
∗(2)
j

xj −
N∑

i=1

λij

 = 0 ∀j (11)

ϑ
∗
 N∑

i=0

w
tasks
i −

M∑
j=1

xj

 = 0 (12)

θ
∗(1)
ij

(
λij − 1

)
= 0 ∀i and ∀j (13)

θ
(2)
ij

λij = 0 ∀i and ∀j (14)

ξ
(1)
j

(
1 − xj

)
= 0 ∀j (15)

ξ
(2)
j

(
xj − N

)
= 0 ∀j (16)

Similarly, the gradient of L at the optimal point is 0:
∂L
∂λij

= ω
∗(2)
j − ω

∗(1)
j − µ

∗
i − β

∗
i E

comp
ij − α

∗
ijτ

comp
ij

− θ
∗(1)
ij + θ

∗(2)
ij = 0 ∀i and ∀j

(17)

∂L
∂xj

= 1 + ω
∗(1)
j − ω

∗(2)
j + ϑ

∗
+ ξ

∗(1)
j

− ξ
∗(2)
j = 0 ∀j

(18)

Solving for λ∗
ij . From equation (17) we have:

ω
∗(2)
j − ω

∗(1)
j − µ

∗
i − β

∗
i E

comp
ij − α

∗
ijτ

comp
ij =

θ
∗(1)
ij − θ

∗(2)
ij

(19)

Multiplying both sides of (19) by λ∗
ij then using equations

(13) and (14), we get:[
ω

∗(2)
j − ω

∗(1)
j − µ

∗
i − β

∗
i E

comp
ij − α

∗
ijτ

comp
ij

]
λ
∗
ij = θ

∗(1)
ij (20)

To simplify the rest of the analysis for λ∗
ij , we replace

the square bracketed term in (20) with the variable u. The
optimal value of λ∗

ij has multiple possible cases can be found
in equation (4).

The lower bound on x∗
j is obtained by multiplying (18) by x∗

j :

x
∗
j + ω

∗(1)
j x

∗
j − ω

∗(2)
j x

∗
j + ϑ

∗
x
∗
j + ξ

∗(1)
j x

∗
j

−ξ
∗(2)
j x

∗
j = 0

(21)

Plugging equations (10) to (12), (15), and (16) into (21) we
get an upper bound on the optimal value of the variable x∗

j

that is given by equation (5).

2022 IEEE Global Communications Conference: Next-Generation Networking and Internet

5152

Authorized licensed use limited to: Queen's University. Downloaded on January 19,2023 at 15:37:08 UTC from IEEE Xplore. Restrictions apply.

