
IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 11, NOVEMBER 2020 10955

Quality Estimation for Scarce Scenarios Within
Mobile Crowdsensing Systems

Sherif B. Azmy, Student Member, IEEE, Nizar Zorba , Senior Member, IEEE,
and Hossam S. Hassanein, Fellow, IEEE

Abstract—Mobile crowdsensing (MCS) is a paradigm that
exploits the presence of a crowd of moving human participants
to acquire, or generate, data from their environment. As a part
of the Internet-of-Things (IoT) paradigm, MCS serves the quest
for a more efficient operation of a smart city. Big data techniques
employed on this data produce inferences about the participants’
environment, the smart city. However, sufficient amounts of data
are not always available. Sometimes, the available data are scarce
as it is obtained at different times, locations, and from different
MCS participants who may not be present. As a consequence, the
scale of data acquired may be small and susceptible to errors. In
such scenarios, the MCS system requires techniques that acquire
reliable inferences from such limited data sets. To that end, we
resort to small data (SD) techniques that are relevant for scarce
and erroneous scenarios. In this article, we discuss SD and pro-
pose schemes to tackle the problems associated with such limited
data sets, in the context of the smart city. We propose two novel
quality metrics: 1) MAD quality metric (MAD-Q) and 2) MAD
bootstrap quality metric (MADBS-Q), to deal with SD, focus-
ing on evaluating the quality of a data set within MCS. We
also propose an MCS-specific coverage metric that combines the
spatial dimension with MAD-Q and MADBS-Q. We show the
performance of all the presented techniques through closed-form
mathematical expressions, with which simulation results were
found to be consistent.

Index Terms—Data quality, Internet of Things (IoT), IoT archi-
tectures, IoT-based services, mobile crowdsensing (MCS), small
data (SD).

I. INTRODUCTION

RECENT breakthroughs within the Internet-of-Things
(IoT) paradigm have led to an unprecedented integration

of sensors across various fields that relate to human life. As a
result, infrastructures incorporating sensors are becoming more
complex as the quantity and variety of sensors increase, mak-
ing infrastructures more demanding for schemes that improve
the efficiency of a smart city’s operation. Such infrastructural
demands are a concern for smart city administrators, as more
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data could enhance the city’s operational efficiency, such as
crisis response and transportation. One notable paradigm is
mobile crowdsensing (MCS), which exploits the availability
of smartphones within a crowd, to benefit from their smart
devices’ embedded sensors. MCS is capable of transforming a
crowd of smartphone users into an extended instrument, MCS
participants, for the benefit of the smart city [1].

MCS has a wide range of applications that permit observing
the social and physical dynamics of a smart city, which makes
MCS a useful tool for smart city management [4]. In MCS,
administrators assign tasks to participants in an autonomous
manner [4]. This autonomy of sensing can be classified into
participatory sensing or opportunistic sensing [4]. In partic-
ipatory sensing, the MCS system requests the participant to
voluntarily engage in the execution of a task, for example,
using the phone’s microphone to acquire noise levels [5] or
the phone’s camera to take a photograph [6]. Opportunistic
sensing, on the other hand, waits until the participant satis-
fies the conditions necessary for the task (such as time, place,
sensor capabilities, etc.), executing the task with no active
intervention from the participant [7]. So far, MCS manage-
ment frameworks, such as 4W1H [8] and platforms, such as
ParticipAct [6] were developed to address the real-time imple-
mentation of MCS. Others have developed MCS models with
the objective of reduced mathematical complexity, such as
modeling the MCS sensing problem over both space and time,
i.e., spatiotemporal cells [9].

The previous research efforts [6], [10] focus on large data
sets, proposing techniques that assume abundant data is always
available, often in the big data (BD) scale. While BD tech-
niques are generally superior when sufficient data are avail-
able, small data (SD) techniques are provided insight when
the data are scarce, insufficient, and erroneous, in spite of the
challenge posed by these three characteristics. Nevertheless,
SD can build upon the output of BD which is an inference
resulting from the analysis of a large amount of data, for exam-
ple, a categorical classification. SD can also complement BD
by ensuring the resilience of the data sources at the beginning
of the data collection pipeline. In other words, SD techniques
aim to maintain the quality of the data collected at a local
scale, whereas BD techniques analyze at a global scale. The
combination of both SD and BD allows the exploitation of the
global versus local contrast [11].

In MCS, if the participants’ sensor quality in a spatiotem-
poral cell is low, then only a subset of the measured values
can be considered, in such a case, SD is to be used. SD

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen's University. Downloaded on March 31,2021 at 17:36:23 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0527-6087


10956 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 11, NOVEMBER 2020

also serves MCS from an economic point of view, as the
administrator may be asked to reduce costs by reducing the
number of sensors, in that case, a deliberate choice of a small
number of sensors in combination with SD techniques would
reduce the MCS sensing cost, by trading-off quality. In order
to optimize such tradeoff, the MCS administrator needs a met-
ric that relates sensing quality to the number of participants for
each spatiotemporal cell in order to minimize the cost, further
motivating the need for SD.

MCS system costs can have a few general forms, such as
the provision of a service [4], incentive payments [7], or data
consumed [12], to name a few. An example of an MCS system
is one that asks users to perform a certain task, e.g., measure
the noise pollution [5]. An incentive payment type of MCS
cost within such a system could be a discount coupon to a
specific shop or a restaurant, redeemable points in a loyalty
program, credit for an online store (such as Google Play cred-
its). Another type of MCS costs is the provision of services,
such as tailored recommendations, entertainment, or even a
rank in a gamified MCS scoring system. From an MCS admin-
istrator’s point of view, costs could be data traffic, or the
collaboration with entities that provide services to the par-
ticipants. Ultimately, the costs scale up with the number of
participants from the point of view of the system.

The definition of quality [2], [3], [13] depends on sev-
eral parameters, and on the stakeholders’ needs, where for
a small number of MCS participants, the accuracy of reports
is affected by the presence of heterogeneity among the sens-
ing devices in an MCS system [4]. Such heterogeneity is
a source of discrepancy in the readings reported for a spe-
cific area of interest, as the accuracy and the precision of the
embedded sensors vary from one smart device to another. A
sensor estimates the true value of the sensed quantity, how-
ever, its reading belongs to a sample distribution whose mean
is an estimate of the true value (e.g., the normal distribution
that is often observed in physical quantities) [14]. The result-
ing heterogeneity renders the system vulnerable to inference
errors. With assumptions of a large enough data scale, these
errors have a minuscule impact. However, in a spatiotempo-
ral space or a cell, which may contain a small number of
participants, the impact of a single error could be detrimental.
Therefore, specific techniques for SD scenarios are needed for
the MCS implementation in IoT systems with heterogeneous
devices.

In a practical MCS scenario, the MCS system is blind to
the true value and thus relies on MCS participants as a proxy
to the true value. Furthermore, the system is also blind to how
accurate the participants’ sensors are. In combination with the
scale of the data in SD for a spatiotemporal cell, the truth
estimate’s susceptibility to errors is greatly increased as a sin-
gle incorrect measurement, an abnormality or an outlier could
impair the inference, and thus the MCS system [2]. In such SD
scenarios, the MCS administrator needs a metric that permits
proper classification of readings under the stringent conditions
of SD, and characterizes the reliability, and thus the quality,
of an MCS cell’s readings as a whole. It is imperative that
any MCS system is capable of automatic detection and iso-
lation of a potential error before any analysis. In this regard,

we propose novel quality metrics for MCS systems under the
SD scenarios, as well as their extension to an MCS-specific
coverage metric for the whole MCS area of interest. Such an
MCS-specific coverage metric allows better characterization
of MCS participants’ presence and quality over the area of
interest.

Qu et al. [15] tackled the same problem as this arti-
cle however from the perspective of the task, rather than
the perspective of the workers and their reported data, and
with the assumption that quality can only be ensured by
increasing the number of participants. The approach proposed
in [15] aims to solve the problem of selecting prices in a
posted price model using chance-constrained optimization,
to minimize the total cost while maintaining robustness.
However, their approach requires an abundance of data as
it necessitates the presence of multiple participants per-
forming a task, which limits its applicability to scarce
scenarios.

Another related work attempted to ensure the quality by
means of recruiting a cross-validating crowd, to validate the
crowd sensed data’s validity and rate the participants [16].
The work in [16] addresses the data credibility problem by
means of recruiting a cross-validating crowd, based on their
social profiles and technical expertise, for a crowdsourcing
campaign on top of a crowdsensing campaign. The framework
and mechanism proposed in [16], while mildly susceptible to
the well-known mainstream bias, are capable of increasing
data quality by means of using the cross-validating crowd,
to update the crowd sensed data distribution and evaluating
the participants’ contributions, and thus affecting the received
incentives. The contribution of [16] is interesting and prac-
tically applicable, however, it does not cater to situations
where the SD problem in question, in addition to it relying
on experts’ subjective opinions in the evaluation of the crowd
sensed data.

The contributions of this article address the event when
the amount of data is too small for proper inference, or
some readings come from poor or erroneous sensors. The first
metric, the MAD quality metric (MAD-Q), allows the dis-
cernment of quality for a small number of participants as low
as 11. The second metric, the MAD bootstrap quality metric
(MADBS-Q), is more complex, but it can discern the quality
for an even smaller number of participants as small as eight.
Finally, we address the coverage problem, in which the quality
of each cell is extended to define an overall regional quality,
allowing the MCS administrator to target the recruitment pro-
cess toward specific cells to achieve coverage uniformity over
the whole region.

The proposed quality metrics are developed mathematically
in order to show the impact of the involved parameters. Such
quality metrics give the administrator a degree of control
over the outlier sensitivity and outlier tolerance of the MCS
system. This ultimately controls the MCS system’s outlier
sensitivity. The control on both parameters, outlier sensitiv-
ity and tolerance, is important for commercial systems, as
their tuning impacts the relation between the desired qual-
ity, the allowed cost, and the number of participants needed
within an MCS system. Moreover, this method is applicable
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for MCS applications whose readings come from a symmetric
distribution.

This article is structured as follows. Section II introduces
the mathematical essentials required throughout this article, in
particular, the median absolute deviation-based mean (MAD-
mean), the statistical bootstrap, the bootlier method, and
the MCS spatiotemporal cell model. Section III addresses
the cell-specific quality metrics, MAD-Q, and MADBS-Q.
Section IV develops an MCS-specific coverage metric while
Section V describes the usage of the three proposed tech-
niques: 1) MAD-Q; 2) MADBS-Q; and 3) the coverage
metric in a simulated scenario. Section VI concludes with an
overview of SD and developed techniques.

II. MATHEMATICAL ESSENTIALS AND THE

SPATIOTEMPORAL MCS MODEL

A. MAD-Trimmed Mean

For a sample, X = {x1, x2, . . . , xN}, the dispersion of the
population can be estimated via the standard error. However,
it is recommended for a large sample set and cannot be used
for smaller samples, as the sample standard error is a nonro-
bust measure of dispersion which is vulnerable to outliers. The
vulnerability of a statistic θ to outliers is expressed in terms of
the breakdown point bθ . The breakdown point is the propor-
tion of outliers within a sample at which the statistic becomes
blind to outliers and not robust anymore. The standard error σ̄x̄

is based on the mean x̄ which has a breakdown point bx̄ = 0,
at which both measures, σ̄x̄ and x̄, are vulnerable to outliers
unless the sample is large enough [17]. Therefore, when the
sample is small, we resort to the usage of robust statistics,
such as the sample median and the median absolute devia-
tion (MAD), which both have a breakdown point of bx̃ = 0.5;
a point beyond which the outliers are populating the sam-
ple itself. In practical systems, it is nonrealistic to have more
than 50% outliers. This implies that the MAD is a reliable
practical measure of dispersion. The MAD is defined as the
median of the absolute deviations from the sample median [2],
expressed as

MAD = median

⎧
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⎪⎩

∣
∣
∣
∣
∣
∣
∣

xi −
x̃
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∣
∣
∣
∣
∣
∣
∣

⎫
⎪⎬

⎪⎭
(1)

where xi is the ith sample in X, and the median is denoted
by x̃.

The MAD observes the deviations from the median, unlike
the standard error which considers the square of the devia-
tions from the mean. However, they are related as the MAD
is a robust consistent estimator of the standard deviation [17],
whereas the standard error is a nonrobust consistent estimator
of the standard deviation. The MAD can be used to estimate
the standard deviation as

σ̂MAD = 1

�−1(3/4)
MAD = 1

1.4826
MAD

∣
∣
∣
∣
f (x)=N(μ,σ )

(2)

where σ̂MAD is the MAD-based standard deviation estimator,
f (x) is the probability distribution followed by the population,
N(μ, σ ) is a normal distribution centered at μ with a spread of

Fig. 1. Population with abnormal outliers (lower and upper).

σ , and �−1(3/4) is the quantile function (which is the inverse
cumulative distribution function) at 75%.

The MAD covers the median distance from the sample
median x̃, which is located at the center having it spans the
portion between 25% and 75%, and thus the reason why the
quantile function is evaluated at that point. For any sym-
metric distribution, the MAD covers 50% spanning from the
left to the right of x̃. For any normal distribution N(μ, σ ),
�−1(3/4) = 1.4826. As a result, the relation of the MAD and
the standard deviation was derived, nevertheless, this relation
is valid for any well-defined distribution f (x) [17].

The MAD inherits the robustness of the median, which
makes it useful for the detection and removal of outliers.
However, the definition of outliers is vague and depends on
the application in hand. For MCS systems, physical sensor
measurements tend to follow an even symmetric distribution
(i.e., defined by an even function), such as the normal dis-
tribution. The normal distribution includes normal1 outliers
that rise from the extremities of the distribution. However,
there are abnormal outliers which lie far outside the three-
sigma range, defined by the three-sigma rule (±3σ) which is
valid for all symmetric unimodal distributions [18]. In case
the distribution is an even multimodal distribution, other cri-
teria would be required for the definition of expected outliers,
such as those based on the interquantile range. These abnor-
mal outliers come from an unexpected phenomenon that is not
modeled by the normal distribution such as the tail modalities
in Fig. 1. The distribution in Fig. 1 is a multimodal distribution
which is a superposition of abnormal distributions represent-
ing an unexpected phenomenon and an expected distribution
of a sensed physical measurement.

In an MCS system, these abnormal outliers need to be iso-
lated as they pose a hindrance that impairs the MCS system.
The MAD allows the removal of outlier samples present in X,
producing a MAD-trimmed sample, denoted XMAD, where
only values from within the range of the normal distribution
are considered [19], expressed as

XMAD =
⎧
⎨

⎩
X : xj ∈

⎡

⎣x̃ ± λMAD︸ ︷︷ ︸
δσ̂MAD

⎤

⎦

⎫
⎬

⎭
(3)

1Normal here refers to expected outliers coming from a distribution itself,
not necessarily a normal distribution.
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Algorithm 1 Computing the MAD-Mean
Input: A sample: X = {x1, x2, . . . , xn}
Output: MAD-mean: x̄MAD

Initialize : λ

1: MAD(X) = median(median(X) − X)

2: for all xixixi do
3: if xi /∈ [median(X) ± λMAD] then
4: XMAD,o = append(xi, XMAD,o)

5: else
6: XMAD = append(xi, XMAD)

7: end if
8: end for
9: return x̄MAD = mean(XMAD)

where λ is how many multiples of MAD far from the median
are the nonoutlier samples. The product λMAD can be related
to the consistent estimation of the standard deviation δσ̂MAD,
to define it as multiples of σ deviations from the mean, where
δ = λ�−1(3/4). λ is an important parameter as it controls the
range for which values, even if outliers, are indeed in XMAD.

Nevertheless, normal outliers are expected, unlike abnormal
outliers which are beyond the three-sigma range. Thus, for the
administrator to ensure proper estimation of the true value μ

that considers normal outliers, λ, such as λ = 4 corresponding
to the three-sigma range, for example, could be selected. As
a result, only values that belong to the interval x̃ ± λMAD
will be considered in XMAD. Therefore, the MAD-mean can
be defined as

x̄MAD = 1

N − NMAD,o

N−NMAD,o∑

i=1

xMAD,i

= 1

NMAD

NMAD∑

i=1

xMAD,i (4)

where N is the sample size, NMAD,o is the number of out-
liers outside the x̃ ± λMAD range, xMAD,i is the ith element
in the MAD-trimmed sample XMAD, and NMAD = |XMAD|.
Algorithm 1 shows the steps in which the MAD-mean is
computed.

Notice that the value of λ provides a degree of freedom
for system administrators to decide the range of the measure-
ments and the consideration of outliers. λ is a parameter that
controls the degree of outlier tolerance. For absolute outlier
intolerance, λ = 2 is sufficient as the resulting δ < 3 is
within the 3-σ range. On the other hand, for outlier tolerance,
a choice of λ ≥ 4 is recommended as δ > 3 is beyond the 3-σ
range. Since λ has no upper bound, it needs to be carefully
selected by the administrator to avoid including abnormal out-
liers. However, the breakdown point of the MAD-mean bx̄MAD ,
is impacted by the choice of λ; in particular, bx̄MAD < 0.5
for λ > 4, as the MAD-mean is based on the median. The
MAD-based outlier detection is a technique that is especially
useful for small-sample sizes, which makes it useful for the
small-sample scenarios present in MCS systems’ spatiotempo-
ral cells [20]. The MAD estimator is a very good option that
is further characterized by low complexity. Its parameter λ

provides an interesting tradeoff between accuracy and robust-
ness, which is very important for commercial systems. Later,
simulations show deeper considerations of this tradeoff.

B. Nonparametric Bootstrap

The nonparametric bootstrap [21] is a population-agnostic
method, which allows the construction of sample distributions
without prior assumptions about the population’s distribu-
tion. Its numerical nature allows it to achieve its target
by means of sampling with replacement a large number of
times B. The nonparametric bootstrap resamples the origi-
nal sample X = {x1, x2, . . . , xN}, generating B resamples,
Xb = {xb1, xb2, . . . , xbN}, where xbi can appear more than once
in Xb, and xbi is a random variable that samples uniformly
from X. From each bootstrapped sample set Xb, a bootstrap
statistic θb can be acquired. To construct the sample distribu-
tion of a statistic θ , each Xb is employed to compute B θb

bootstrap statistics, collected in a vector of bootstrap statistics
θ∗ = {θ1, θ2, . . . , θB}, whose histogram represents the sample
distribution.

Despite its numerical complexity for a large B, the bootstrap
is useful for crowdsensing applications where the scenario is
sparse [1]. It is of particular usefulness for small-sample cases
due to the fact that its fair resampling has a low probability
P of selecting a homogeneous sample (i.e., all samples in Xb

being exactly the same); which is obtained as

P(Xb = {xi, xi, . . . , xi}) = [1 − (1 − 1/N)N]N (5)

which is the probability of a binomial case. Inspecting (1),
out of B resamples, only 3.45% will be extremely biased for
a sample of size N = 8.

The usefulness of the bootstrap in obtaining the quality of
small-sample scenarios comes from the presence of outliers.
Since resampling is uniform, the outliers presence is promoted
to have a probability of 1/N, like any other sample xi in X.
Further analysis of the binomial probability shows that the
probability of an element’s inclusion is

P(xi ∈ Xb) = 1 − (1 − 1/N)N (6)

which converges for a large N to 67%, i.e., each sample is
present in 67% of the B Xb sample sets.

Furthermore, since B is a sufficiently large number, the
properties of the central limit theorem (CLT) are also appli-
cable to B θb statistics obtained. This property is of particular
usefulness in the discussion of central measures of tendency
(mean, median, mode, etc.), as it causes the bootstrap for
the mean to follow the normal distribution. However, due to
the robustness of the MAD-mean, the resulting distribution is
inherently multimodal, even if it is seemingly normal, as the
employment of the median in the MAD-mean’s trimming pro-
cess generates multimodalities. It limits the set of medians to
be selected to a discrete number of medians (for an odd N,
there are N possible medians, and for an even N, there are
N2 −∑N−1

i=0 i possible medians).
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C. Bootlier

The bootlier, a graphical tool developed in [22], exploits the
outlier promotion flaw in the bootstrap to detect outliers by
computing the difference statistic between the mean x̄ and the
trimmed mean x̄k. The trimmed mean is a robust estimate of
centrality with a breakdown point bx̄k = k%. In the bootlier,
the difference between the mean and the trimmed mean, x̄− x̄k

is bootstrapped to construct a sample distribution. The his-
togram of the resulting sample distribution is called a bootlier
plot, which shows the impact of outliers present in a sample.
Singh and Xie [22] investigated the bootlier’s multimodality
and smoothness, and developed “the bootlier index” as a mea-
sure to quantify its smoothness. However, their work heavily
depends on human intuition for assessing the quality of a sam-
ple, and for the detection of outliers, in addition to the lack of
a straight metric for the evaluation of a sample set’s quality.

We analyzed the bootlier plot, by considering an infinite
sample size (N → ∞), and found that its ideal reference is
in fact the distribution N(0, 0), which is best described as the
Dirac delta impulse distribution [23]. We also found that the
bootlier, from a signal processing perspective, is a superpo-
sition of leaking impulses, which are very distinct when an
outlier is present as it introduces another impulse at xo − x̄k,
where xo is an outlier sample and x̄k is the trimmed mean of the
sample. The source of the leakage is the variation within the
original sample, which causes the resulting sample distribu-
tion, i.e., the bootlier, to be smooth. The bootlier statistic hides
the resulting multimodalities which combine to form a seem-
ingly normal distribution around 0, that should ideally—for an
absolutely perfect sample—be an impulse. Section III intro-
duces the mean-MAD mean-trimmed mean (MMTM) statistic
and discusses the modalities in its distribution based on the
trimmed mean and the MAD-mean.

D. MCS Spatiotemporal Model

In order to achieve efficient characterization of an area of
interest under an MCS system, it needs to be appropriately
divided into geofences or cells to which MCS participants are
assigned. In addition to such a spatial division, a temporal
division is also required for proper real-time sensing. These
divisions in space and time can be represented as a spatiotem-
poral diagram as shown in Fig. 2, based on that conceived
in [9]. An MCS administrator could divide the spatiotemporal
space in a manner that satisfies the objective of the system
while being consistent with the spatial and temporal versions
of the sampling theorem [24]. MCS participants are assigned
tasks according to their availability, for example, if the MCS
administrator requires temperature values to be sensed by MCS
participants, the mth cell will have a set of readings, Xm

Xm = {xm,1, xm,2, . . . , xm,Nm

}
(7)

where the reading obtained by the ith participant is modeled as
a random variable xm,i, and Nm is the number of participants
who executed the task in the mth spatiotemporal cell. Each
cell corresponds to a 3-tuple (a, b, c), where a maps to the
x-location, b maps to the y-location, and c maps to the cth
sensing cycle (temporal location).

Fig. 2. Spatiotemporal diagram.

The true value of the sensed quantity in the mth cell μm is
estimated from the sample obtained in (7) by computing the
mean, x̄m

μ̂m = x̄m = mean(X) = 1

Nm

Nm∑

i=1

xm,i. (8)

The standard deviation for the mth cell can be estimated by
means of the sample error

σ̂m =
√
∑Nm

i=1

(
xm,i − μ̂m

)

Nm − 1
. (9)

However, this is only valid when the sample is large enough
that Nm ≥ 30 samples are suitable to represent the population.
At such a size, the CLT is viable as the combination of all
xm,i random variables would ultimately conjure a normal dis-
tribution [25]. While this assumption is very useful, it is not
the case when N � 30, when there are barely enough mea-
surements within a spatiotemporal cell. The problem, then, is
of the SD scale. An MCS system should be capable of infer-
ring as much as possible under the stringent conditions of SD.
Equations (8) and (9) become less accurate as the presence of
Nm,o outliers xm,o would throw off the estimation.

Outlier values xm,o can be viewed as an estimation that is
offset from μm

xm,o = μm + �m,oσm (10)

where �m,o ∈ R is the outlier deviation factor (ODF), which
we define as the multiple of standard deviations σm, the oth
outlier value xm,o is far from the mean μm. This allows the
expression of (10) as

μ̂m = μm + �̄mσm (11)

where �̄m =∑No
o=1 �m,o/No is the average ODF (AODF).

The mean x̄m can then be rewritten as

x̄m = 1

Nm

Nm∑

i=1

xm,i

= 1

Nm

⎡

⎣

Nm−Nm,o∑

i=1

xm,i +
Nm∑

j=Nm,o

xm,j

⎤

⎦
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= Nm − Nm,o

Nm
μ̂x̄m + Nm,o

Nm

(
μm + �̄x̄mσm

)

= μ̂x̄m + Nm,o

Nm

(
μm − μ̂x̄m

)

︸ ︷︷ ︸
sample size error

due to outliers

+ Nm,o

Nm
�̄x̄mσm

︸ ︷︷ ︸
deviation error
due to outliers

(12)

where μ̂x̄ corresponds to the mean’s estimate of the true value
μ, and �̄x̄ corresponds to the average ODF of the mean.

The second and third terms of (12) correspond to the errors
induced by the presence of the outliers. The second is a sam-
ple size error due to the presence of outliers that inflates the
denominator Nm, while the third is a deviation error due to dis-
tance between the outliers and μ. The third term contributes
the majority of the error in the nonrobust mean.

Thus, the error of the mean, denoted ξx̄m , can be defined
as the distance between the mean x̄m and the true value μm,
where

ξx̄m = x̄m − μm

= (μ̂x̄m − μm
)

︸ ︷︷ ︸
estimation error

+Nm,o

Nm

⎡

⎢
⎢
⎢
⎣

(
μm − μ̂x̄m

)

︸ ︷︷ ︸
sample size error

due to outliers

+ �̄x̄mσ
︸ ︷︷ ︸

deviation error
due to outliers

⎤

⎥
⎥
⎥
⎦

.

(13)

The errors of the trimmed mean x̄k and the MAD-mean
x̄MAD can be derived in a manner similar to that employed
in (12) and (13).

Equation (13) can be rewritten as

ξx̄m − (μ̂x̄m − μm
) = Nm,o

Nm

[(
μm − μ̂x̄m

)+ �̄x̄mσ
]

(14)

indicating that for a more accurate estimation, the errors
on the right-hand side need to be minimized. This can be
achieved by two options: 1) reducing the proportion of out-
liers, Nm,o/Nm → 0, which translates to outlier removal or
2) increasing the sample size by taking Nm → ∞. The latter
case is when the data are large scale and CLT is applica-
ble, while the former case is the problem faced under SD. In
SD, the proportion of outliers cannot easily become zero since
Nm,o ≥ 1 would render the proportion Nm,o/Nm significant.
Due to the nature that the MCS data comes from participants
whose sensors are different, prone to error, or even malicious-
ness, its susceptibility to outlier errors is more significant when
SD is involved.

III. CELL-SPECIFIC QUALITY METRICS

In the previous section, we saw how the MAD-mean is
a robust centrality estimate for the true value μ. We have
also covered the basics of the statistical bootstrap. Now, we
employ both tools to develop a cell-specific quality metric that
accounts for both range and accuracy. For range, a suitable
solution is the difference between the mean and the MAD-
mean x̄ − x̄MAD, as the administrator’s choice of λ allows the
extension of the MAD’s trimming range, either to include or
exclude normal outliers. For accuracy, the difference between
the mean and the trimmed mean x̄ − x̄k, provides a degree
of outlier intolerance, as the trimmed mean suppresses all

outliers, including normal outliers, because it trims at least
a single outlier as long as k �= 0. However, in case the case
that kN < No, some outliers might be present in the trimmed
mean term. However, for the scale of SD, this is unlikely to
happen as the proportion of k is larger for SD (k = 10% trims
at most 1–3 samples for the range 8:30, this implies that out-
liers will be filtered for k > No/N). Therefore, in this section,
we introduce the hybrid MMTM statistic and use it as the
basis upon which we formulate two quality metrics for SD
in MCS. One is computationally simple for samples as small
as 11 by measuring the closeness of the MMTM statistic’s
magnitude to zero, while the other is slightly computation-
ally demanding yet it extends the characterization of MMTM
quality for sample sets as small as N = 8, by measuring the
similarity between the bootstrap distribution of the MMTM
statistic and the Dirac delta distribution [23]. The developed
quality metrics allow the MCS system administrators to con-
trol the tradeoff between accuracy, range, and the number of
MCS participants per cell, by tweaking an outlier sensitivity
variable. This flexibility is significant in the design of com-
mercial systems as it establishes a relation between cost, i.e.,
the number of participants, and quality.

A. MMTM Statistic and the MAD-Q Quality Metric

The selection of a suitable point in the range-accuracy
tradeoff depends on the scenario, the application, as well as
economic concerns. In this section, we describe the MAD-Q
that allows the MCS administrator to include or exclude nor-
mal/abnormal outliers by means of a sensitivity parameter,
denoted β. The MMTM statistic θMMTM is defined as

θMMTM = β(x̄ − x̄k) + (1 − β)(x̄ − x̄MAD)

= x̄ − β x̄k − (1 − β)x̄MAD (15)

where β ∈ [0, 1], where x̄k is the k-trimmed mean. The
k-trimmed mean, discussed in Section III-C, removes
the rounded k% highest and/or lowest samples of X prior the
computation of the mean.

The θMMTM statistic is the difference between the mean and
a weighted average of the more robust centrality estimates: the
trimmed mean x̄k and the MAD-Mean x̄MAD. θMMTM can be
rewritten in terms of the errors of the mean ξx̄, the trimmed
mean ξx̄k , and the MAD-mean ξx̄MAD; all errors can be derived
in a manner similar to that for (13). θMMTM becomes

θMMTM = μ + ξx̄ − β
(
μ + ξx̄k

)− (1 − β)
(
μ + ξx̄MAD

)

= ξx̄ − βξx̄k − (1 − β)ξx̄MAD

=
⎛

⎜
⎝

estimation errors
︷ ︸︸ ︷
μ̂x̄ − βμ̂x̄k − (1 − β)μ̂x̄MAD

⎞

⎟
⎠

+
(

No
N (μ−μ̂x̄)−β

Nk,o
Nk

(
μ−μ̂x̄k

)

−(1−β)
NMAD,o
NMAD

(
μ−μ̂x̄MAD

)

)

︸ ︷︷ ︸
sample size errors due to the outliers’ presence

+ σ

(
No
N �̄x̄−β

Nk,o
Nk

�̄x̄k

−(1−β)
NMAD,o
NMAD

�̄x̄MAD

)

︸ ︷︷ ︸
deviation errors due the outliers’ distance

(16)
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Algorithm 2 Algorithm for MAD-Q Quality Assessment
Input: Readings from N sensors: X = {x1, x2, . . . , xn}
Output: Quality of Source: QMAD

Initialize : β, λ, k, γMAD
1: x̄MAD = mean(XMAD)

2: x̄ = mean(X)

3: x̄k = trim_mean(X)

4: QMAD = logγMAD

[
(x̄ − β x̄k − (1 − β)x̄MAD)−1

]

5: if QMAD → ∞ then
6: QMAD = 6
7: end if
8: return QMAD

where μ̂k and μ̂MAD correspond to the estimation of the
trimmed mean and the MAD-mean; Nk,o and NMAD,o corre-
spond to the outliers present in the trimmed mean set Xk and
the MAD-mean XMAD; Nk and NMAD correspond to |Xk| and
|XMAD|; and �̄k and �̄MAD correspond to the average devia-
tion due to the presence of post-trimming outliers in Xk and
XMAD.

Equation (16) comprises the sum of three errors. The first
being between the outlier-free estimation errors of the mean,
the trimmed mean, and the MAD-mean; the second being the
sample size error due to the outlier samples present in X; and
the third is the error due to the presence of outliers in the
mean x̄ and the trimmed mean x̄k, and the x̄ and the MAD-
mean x̄MAD. Furthermore, if λ, the parameter that defines the
MAD-mean’s outlier removal range, is less than 2, the MAD-
mean becomes very aggressive in selecting which samples are
nonoutliers, permitting it to be very robust with bx̄MAD → 0.
Ideally, for a perfect sample, θMMTM should be zero. However,
this is impossible to happen empirically. Thus, we define qual-
ity as the closeness of this value to zero, and we formulate
the MAD-Q quality QMAD based on the θMMTM statistic as

QMAD = logγMAD

(
1

θMMTM

)

= logγMAD

(
1

x̄ − β x̄k − (1 − β)x̄MAD

)

(17)

where γMAD is a scaling factor. Algorithm 2 shows the steps to
compute the quality of an MCS sample. γMAD can be changed
as needed to control the scale, however, the saturation value
in line 6 in Algorithm 2 needs to be adjusted accordingly.

B. MADBS-Q Bootstrap-Based Quality Metric

In the previous section, we described how the nonparamet-
ric bootstrap is useful for acquiring the sample distribution of
a statistic from small-sample sizes. We combine the bootstrap
with the θMMTM statistic to develop the MADBS-Q, QBS that
performs in a manner similar to QMAD, but capable of assess-
ing to even smaller sample sizes [26]. Rather than formulating
MADBS-Q based on the θMMTM statistic, it is formulated
based on the sample distribution of θMMTM. The bootlier, dis-
cussed in Section II, is a tool that employs human intuition
in its assessment on top of being too sensitive to disregard
normal outliers as abnormal. This “oversensitivity” to outliers

Algorithm 3 Algorithm for MADBS-Q Quality Assessment
Input: Readings from N sensors: X = {x1, x2, . . . , xn}
Output: Quality of Source: QBS

Initialize : B, β, k, λ, γBS
1: θ∗

MMTM = bootstrap(X, B, θMMTM)

2: μMMTM = mean(θ∗
MMTM)

3: σMMTM = variance(θ∗
MMTM)

4: return QBS = 1
2

[
logγBS

(
μ−1

MMTM

)+ logγBS

(
σ−2

MMTM

)]

impacts the perception of quality, which is an important factor
in reducing the MCS system’s costs. To benefit from the boot-
strap, we define the quality metric to relate to the closeness
of the θMMTM sample distribution to the ideal impulse (Dirac
delta) best captured in terms of location and spread. We define
the bootstrap-based quality QBS as

QBS = 1

2

[
logγBS

(
μ−1

MMTM

)
+ logγBS

(
σ−2

MMTM

)]
(18)

where μMMTM and σ 2
MMTM are the mean and variance of the

θMMTM sample distribution, respectively. γBS is a scaling fac-
tor. The mean of the resulting θMMTM distribution indicates its
location, and the variance indicates its spread. However, it is
best compared with the Dirac delta impulse.

The bootstrap-based quality QBS is thus defined as the aver-
age of the logs of the θMMTM’s mean and variance. The closer
they are to zero, the higher the quality. This renders QBS as an
absolute quality metric as it is free from any reference distribu-
tions (other than the Dirac delta) or thresholds. Algorithm 3
shows the steps required to obtain the bootstrapped sample
quality QBS. In Algorithm 3, θ∗

MMTM refers to the vector
containing the bootstrapped resamples of θMMTM.

While both metrics, MAD-Q and MADBS-Q, are inter-
changeable, MADBS-Q is more reliable when data sets are
very small, but it comes with a computational cost, mainly
from the computation of the θMMTM statistic B times. For
the sample mean, the complexity of the bootstrap is #P-hard,
which can be solved in polynomial time [26]. MAD-Q, on
the other hand, is cheaper to compute and serves data sets
which are not as small as those encountered by MADBS-Q.
Ultimately, MADBS-Q is derived from, and extends, MAD-Q.

C. Impact of Control Parameters

The MMTM quality metrics, QMAD and QBS, are based on
θMMTM, which is in turn based on the parameters β and λ.
β, referred to as sensitivity from (15), allows the control of
whether the trimmed mean x̄k or the MAD-mean x̄MAD is more
significant in θMMTM. λ, on the other hand, is only specific
to the MAD-mean, as it controls its filtering of outliers. In
θMMTM, the presence of the term x̄k causes θMMTM to main-
tain a narrow distribution, as outliers are always filtered for
k > No/N, while the presence of x̄MAD allows the control of
the range based on the choice of λ. λ, as a parameter, allows
the administrator to completely remove outliers by selecting
λ = 3, or tolerate outliers where λ = 4 tolerates normal out-
liers and λ > 4 would tolerate abnormal outliers depending
on their ODF, �.
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As a result, θMMTM can be viewed as a sum of two
distributions

θMMTM =
θA
︷︸︸︷

x̄ −
θB

︷ ︸︸ ︷
β x̄k + (1 − β)x̄MAD (19)

where θA is the sample distribution of the mean, and θB rep-
resents a mixture of the sample distributions of the trimmed
mean and the MAD-mean, with β as a mixing parameter.

The distribution of θMMTM, as a result, is a multimodal dis-
tribution with θA contributing a mode, and θB contributing
either a mode or two based on the mixing parameter of the
mixture between x̄k and x̄MAD. However, it is hard for θB to
be bimodal as both estimates are robust measures of central-
ity, except for the case in which λ > 4 which is no longer
tolerant. For λ < 4, it is safe to assume that both, the trimmed
mean and the MAD-mean, follow a distribution that represents
the distribution of a sample mean: the normal distribution. For
a mixture of two equally weighted normal distributions with
similar variability to be bimodal, the difference between their
means has to be greater than the sum of both their standard
errors (or deviations, if not sample distributions) [27]. For θB,
the conditions are necessary: 1)

∣
∣μx̄k − μx̄MAD

∣
∣ > σ̄x̄k + σ̄x̄MAD (20)

and 2) β = 0.5 for them to be equally weighted. Since both
are robust measures of centrality, then it is always the case that
|μx̄k − μx̄MAD | is less than σ̄x̄k + σ̄x̄MAD, where σ̄x̄k and σ̄x̄MAD

refer to the sample distribution of the trimmed mean and the
MAD-mean’s standard errors, respectively. Thus, bimodality
is unlikely. However, for unimodality to occur in a mixed dis-
tribution, the ratio of the difference between the centers to the
double of the product of the standard deviation has to be less
than or equal to 1 [28], i.e.,

∣
∣μx̄k − μx̄MAD

∣
∣

2
√

σ̄x̄k σ̄x̄MAD

≤ 1. (21)

However, this implies that there is a region between uni-
modality and bimodality where

σ̄x̄k + σ̄x̄MAD >
∣
∣μx̄k − μx̄MAD

∣
∣ > 2

√
σ̄x̄k σ̄x̄MAD . (22)

In this region, the distribution of θB is neither unimodal
nor bimodal, but trimodal [29]. However, this trimodality is
unlikely to happen due to the fact that both sample distri-
butions, x̄k and x̄MAD are robust estimates of the true mean
μ, where the difference, |μx̄k − μx̄MAD | is not in the interval
(2
√

σ̄x̄k σ̄x̄MAD, σ̄x̄k + σ̄x̄MAD).
Moreover, the standard deviation of the sample distribu-

tion of the trimmed mean σx̄k (not to be confused with the
standard error of the trimmed mean σ̄x̄k ) can be defined as a
distribution [30]

σx̄k =

√
√
√
√E

[
(X − μ)2I(�−1[k/2],�−1[1−k/2])(X)

]

1 − k
(23)

where E is the expectation operator, and I(a,b) is the iden-
tity function over the interval [a, b]. Product with the identity
function effectively trims the tails of the distribution of X.

Similarly, the standard deviation of the sample distribution
of the MAD-mean σx̄MAD (not to be confused with the stan-
dard error of the MAD-mean σ̄x̄MAD) can also be defined as a
distribution

σx̄MAD =

√
√
√
√
√
√

E

[

(X − μ)2I(
�−1

[
2−λ

4

]
,�−1

[
2+λ

4

])(X)

]

(
1 − �−1

[
2−λ

4

])
−
(

1 − �−1
[

2+λ
4

]) . (24)

Since the standard errors σ̄x̄k and σ̄x̄MAD are estimates of σx̄k

and σx̄MAD, respectively, it can be seen that the multimodality
of θB is mainly controlled by the administrator’s choice of λ

rather than the choice of k, as a choice of k �= 0 will always
trim at least a single outlier.

Consequently, θMMTM have either a bimodal or a trimodal
distribution (with three modes) as θA contributes an extra mode
due to the nonrobust mean, while θB could be unimodal or
trimodal, depending on the choice of λ. There are five possible
scenarios for the sample distribution of θMMTM based on the
ratio of outliers present, No/N.

1) No outliers are present (No/N = 0) and all measures
of centrality are close to each other and θMMTM is
unimodal.

2) The outlier ratio is less than the breakdown point of the
MAD-mean term (bx̄MAD > No/N > 0) and λ <= 2,
which will cause θB to be unimodal, thus resulting in a
bimodal θMMTM due to the nonrobustness of θA.

3) The outlier ratio is less than the breakdown point of the
MAD-mean term and 4 > λ > 2, which will cause θB to
be bimodal due to the presence of normal outlier, how-
ever that bimodality will not be apparent (i.e., it will not
cause a local minima between the two modes), and there-
fore θMMTM will be trimodal. However, this trimodality
will be a superposition of leaking impulses as previously
mentioned in Section II-C, where the leakage covers the
mode due to the trimmed mean term.

4) The outlier ratio is less than the breakdown point of the
MAD-mean term and λ > 4, which will cause θB to be
bimodal due to the presence of abnormal outliers, and
thus θMMTM will be trimodal.

5) The outlier ratio is more than the breakdown point. In
this case, the outliers are no longer outliers and the
modality of θMMTM is unknown as the variance would
be large due to the spread of the values.

IV. MCS-SPECIFIC COVERAGE METRIC

While MCS systems can function without full coverage, it
is important for MCS administrators to be able to enhance
coverage by identifying which spatiotemporal cells are below
a desired coverage threshold. In this section, we provide a
simple scheme that builds upon the quality metrics, discussed
in Section III, to evaluate the quality of the area as a whole
during a specific sensing cycle. This quality evaluation comes
after the cell-specific quality has been evaluated. The method
described in this section provides the MCS administrators with
two quantities, MAD-Q and MADBS-Q, that allow the char-
acterization of MCS coverage quality. The first definition is an
indicator of how the average quality is over the whole space,
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Fig. 3. Description of MCS-specific coverage metric over a C × C square
grid.

while the second definition is a detailed map of which cells
have a higher quality relative to their neighboring cells. By
using the second definition, the MCS system can recruit par-
ticipants from cells with oversatisfied quality and ask them to
move to cells with lower quality and perform a required MCS
task there. By having a metric that indicates where partici-
pants need to be moved, the MCS system becomes capable
of achieving uniform MCS coverage as a part of participatory
sensing, unlocking a scheme in which participants could be
asked to (or incentivized to) voluntarily move from a place to
another. Coverage, in that sense, extends the definition of the
MAD-Q and MADBS-Q quality metrics, or any other cell-
specific metric, over the area of interest, while uniformity
refers to having good quality overall. While MCS coverage
is independent of both MAD-Q and MADBS-Q, it is capable
of augmenting both techniques for more control over partici-
patory sensing. Fig. 3 provides a description of the developed
coverage metric.

A. Overall Coverage Quality

For algorithmic convenience, the cells in the area of interest
are assumed to be equally spaced resulting in a C × C square
grid. For each cell throughout the grid, the algorithms covered
in Section III return the quality of each cell. This allows the
definition of an overall quality metric, Qtot

Qtot = mean
(
Qmap

) = mean

⎡

⎢
⎢
⎢
⎣

Q1,1 Q1,2 . . . Q1,C

Q2,1 Q2,2 . . . Q2,C
...

...
. . .

...

QC,1 QC,2 . . . QC,C

⎤

⎥
⎥
⎥
⎦

(25)

where Qmap is the resulting matrix of all quality evaluations
for all cells, and Qi,j corresponds to the cell’s coordinates. Qtot
can be seen in Fig. 3 where it corresponds to a plane elevated
to the average value of all cells’ MMTM quality.

It is important that the MCS administrator sets a minimum
threshold for quality Qmin, which can be useful in two ways:
1) to evaluate whether the overall quality is satisfied, i.e., is
Qtot ≥ Qmin or 2) to identify specific cells that are below the
threshold. Combining these together allows the characteriza-
tion of overall quality, however, it does not indicate how the
quality can be adjusted to achieve uniformity.

B. Relative Coverage Quality

In order to characterize how quality can be improved over
a space, we developed a method that measures the angle
between each two adjacent quality points and constructs a
C2 × C2 matrix that maps this relation, denoted Qrel whose
elements are defined as per Pythagoras’s theorem as

Qrel
(
Qi,j, Qa,b

) = sin−1

⎡

⎣
Qi,j − Qa,b

√
[
Qi,j − Qa,b

]2 + 1

⎤

⎦ (26)

where (i, j) are the coordinates of the current cell, and (a, b)

are the coordinates of the adjacent cell, and sin−1 comes from
trigonometric ratios of a right-angled triangle on the midpoints
of quality values Qi,j and Qa,b. Fig. 3 provides an illustration
of (26) with Qi ≡ Qi,j and Qj ≡ Qa,b.

In order to implement this in an automated algorithm, the
2-tuple map of a C ×C square grid, Qmap maps to a singleton
map, ˆQmap such that

⎡

⎢
⎢
⎢
⎣

Q1,1 Q1,2 . . . Q1,C

Q2,1 Q2,2 . . . Q2,C
...

...
. . .

...

QC,1 QC,2 . . . QC,C

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Qmap

�→

⎡

⎢
⎢
⎢
⎣

Q1 Q2 . . . QC

QC+1 QC+2 . . . Q2C
...

...
. . .

...

Q�+1 Q�+2 . . . QC2

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
ˆQmap

(27)

where � = C(C − 1).
Within the singleton map, cells adjacent to the kth cell are

corresponding to the cardinal directions: north (k − C), west
(k −1), east (k +1), and south (k +C), for any cell that is not
an edge or a corner. As a result, Qrel can then be described
by substituting (26) for the corresponding elements.

The relative coverage quality Qrel looks at the quality,
described by Qmap, as a surface and measures the angles
between adjacent points on it. In that sense, the matrix Qrel
is defined as an antisymmetric matrix in which transposing
elements is a pair of alternate interior angles, and thus the
sign change. As a result, Qrel is a sparse matrix, which can be
visualized using color-coded tables or spy plots, as illustrated
in Fig. 11 in Section V. If the corresponding value for (k → l)
is positive, then the uniformity of coverage can be improved
by moving participants from cell k to cell l, while negative
implies that participants need to be moved from l to k and/or
incentive new participants in k.
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Fig. 4. QMAD(N) and QBS(N).

Fig. 5. QMAD(�̄) and QBS(�̄).

V. SIMULATION AND RESULTS

In order to test the proposed algorithms, we consider a tem-
perature evaluation scenario in MATLAB, where temperature
measurements are acquired from N(24, 0.5), and two outliers
are obtained from an abnormal outlier distribution located
N(24 + �̄, 0.3). γ = 3.1 is chosen for the MAD-Q, while
γ = 10 is selected for MADBS-Q to ensure comparable scales.
k = 10% is decided for the trimmed mean. The cell-specific
quality metrics are evaluated over an ensemble of 30 randomly
generated samples for each data point. For the MADBS-Q,
B = 250 is employed for the purpose of this simulation.

A. Cell-Specific Quality

We tackle the case of variables Ntot, �̄, λ, and β, in order
to illustrate the impact of these variables on the quality.

Fig. 4 illustrates QMAD and QBS for different sample sizes.
Both QMAD and QBS show that with larger sample size, the
quality increases. Moreover, this figure illustrates the sample

Fig. 6. QMAD(λ) and QBS(λ).

Fig. 7. QMAD(N, �̄).

size required to achieve a certain quality threshold, which is
useful in selecting a suitable number of participants for recruit-
ment in a specific MCS application. This can be further seen
in Fig. 7, for which the sample size is evaluated for QMAD
at different AODFs, �̄. Fig. 5 represents QMAD and QBS for
different �̄. It is observable that the curves are seemingly sym-
metric as they tend to follow the shape of a bell curve. This is
due to the fact that the closer the outliers are to the center of
the true value’s population, the less of an outlier they are. At
�̄ = 0, the outliers constitute the sample itself, i.e., no outlier
is present. At the extremes, �̄ = ±10, the quality worsens
significantly. Figs. 4 and 5 are slices of Fig. 7 at �̄ = 6 and
Ntot = 20, respectively.

In Fig. 6, QMAD and QBS for different λ are shown. Fig. 8
provides a view of how Q(λ) varies with �̄, raising the general
quality for high λ. For low λ, λ < 2, the quality is consistent as
no outliers are tolerated. However, for larger values of λ > 4,
the metric becomes more tolerant toward outliers, and thus
raises the quality perceived as λ increases.
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Fig. 8. QMAD(�̄, λ).

Fig. 9. QMAD(λ) for different β.

Figs. 9 and 10 provide a view of QMAD for different λ and β.
Since β controls the presence of the MAD-mean term in the
θMMTM statistic, at β = 0, the trimmed mean term is entirely
absent, thus causing a larger variation in quality. For λ < 2,
the quality is not very high nor very low. This is due to the
fact that QMAD,BS measures the closeness of a sample set’s
values. For λ = 4, the quality can be seen to have started
increasing as outliers gradually become tolerable. For λ > 4,
the quality increases as λ increases, as it allows more outliers
to be tolerated. However, for β = 1, when the trimmed mean
is fully present, λ has no effect at all. Similarly for β, the
quality increases from β = 0 to β = 1 except when λ ≥ 4.

The difference between both methods lies in the fact that
the MADBS-Q can quantify, consistently, samples as small as
N = 8 at a computational cost without falling into degenera-
cies, unlike the MAD-Q which often falls in the log function’s
negative domain for N < 11, being sometimes undefined

Fig. 10. QMAD(β) for different λ.

(returning a NaN for a negative θMMTM). However, the behav-
ior for QBS, as a surface, is similar to that illustrated in
Figs. 7–10.

B. Coverage Quality

To test our coverage quality metric, we generate a 3 × 3
map with values obtained from a distribution N(2.2, 0.5), to
simulate diverse values obtained from the metrics discussed in
the previous section, where Qmap is

Qmap =
⎡

⎣
3.09 1.04 2.23
2.81 2.65 2.22
1.56 1.28 3.32

⎤

⎦. (28)

The overall quality metric Qtot is found to be 2.24, and Qrel,
illustrated in Fig. 11, is obtained. We use a color code to iden-
tify quality, where green denotes that the corresponding cells
are near each other, i.e., Qrel is closer to zero at these two cells,
and red denotes that there is a significant contrast between the
values, i.e., Qrel far from zero. The resultant matrix, illustrated
as a sparse adjacency matrix in Fig. 11, is antisymmetric as
the relations between cells are bidirectional. This result is very
important as it shows the status-quo to the administrator and
sheds the light on where more participants are needed in order
to balance the distribution among the cells.

C. Discussion

The proposed algorithm has two main parameters, λ and β,
both which impact the θMMTM parameter, as previously dis-
cussed in Section III-C. Another parameter that is also consid-
ered is k, the amount of trimming done by the trimmed mean
term x̄k. Increasing k increases the intolerance of the trimmed
mean to outliers, however, in most cases, 10% is more than
enough in SD scenarios where N ∈ [8, 30], as increasing it
would be of little benefit as removing 20%, for example, of
20 samples reduces it to 16 samples; which is unlikely for
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Fig. 11. Spy plot of the adjacency matrix, Qrel.

Fig. 12. Venn diagram of the bootstrapped sample space and its subsets.

abnormal outliers. The choice of β and λ relies on the appli-
cation on a question. If the application requires being more
tolerant toward outliers, a small value of β would increase
the significance of the x̄MAD term and thus λ would be the
only parameter impacting the filtration of outliers. However,
the application requires intolerance to outliers, then choosing
a high β increases the significance of the trimmed mean term,
x̄k thus filters outliers aggressively. However, changing k, as
previously mentioned, is of little benefit.

VI. CONCLUSION

We have presented a new direction for looking at scenarios
in which MCS participants present are not enough or the data
reported by them is not entirely reliable due to the presence of
abnormalities, and thus errors. Sometimes, the available data
may not be enough to fully characterize the MCS area of
interest. To enhance the MCS system’s robustness, we intro-
duced SD quality techniques to allow MCS systems to evaluate
a group of participants’ reports in a specific spatiotemporal
cell based on the data they reported in scenarios where the

scale of data is insufficient for proper inference. This evalua-
tion was performed without the knowledge of the true value,
ascertaining as much as possible from the least amount of data.

The proposed quality metrics, MAD-Q and MADBS-Q,
allow the characterization of a sample’s quality—typically an
MCS sample being a set of physical readings whose read-
ings come from a symmetric distribution—when the number
of contributors is minimal. The MAD-Q technique allows the
MCS system to evaluate the quality of samples as small as 11,
while MADBS-Q performs the evaluation of samples as small
as eight with a little computational cost by employing the non-
parametric bootstrap. Both metrics are based on the MMTM
statistic, which is designed to allow the formulation of a flex-
ible quality metric, that takes into consideration tolerating
specific outliers, by tweaking the sensitivity parameter β that
controls the weights of the trimmed mean (β = 1) and the
MAD-mean (β = 0), and a range parameter λ that allows the
control of the MAD-mean’s outlier tolerance. This control,
while allowing the tolerance of certain values, allows MCS
administrators to define, subjectively, what a usable MCS data
set is in a domain-agnostic manner. Furthermore, the impor-
tance of the quality metrics lies in their relationship to the
sample size, as illustrated in the MAD-Q technique, allowing
the administrators control in the quality-cost tradeoff.

We also proposed an MCS-specific coverage metric to
employ the notion of a cell-specific quality, no matter how
it is defined, in the definition of an MCS system’s coverage.
The coverage metric aims to achieve uniformity by describ-
ing quality as a whole, and also in a relative manner between
the MCS system’s spatiotemporal cells. This gives the MCS
system a way of measuring which cells are overstaffed or
understaffed by MCS participants as well as a metric that indi-
cates how to manipulate the current participant topology (i.e.,
the participants’ distribution over the grid) to achieve cover-
age uniformity, either by recruiting more participants or by
requesting their movement around the area of interest. The
developed quality metrics, MAD-Q and MADBS-Q, along
with the MCS-specific coverage metric, provide a clear rela-
tionship for the MCS system between sensing quality and
sensing cost.

APPENDIX

BOOTSTRAP PROBABILITY ANALYSIS

The purpose of this appendix is to introduce the reader to the
MMTM statistic defined in (15) under the statistical bootstrap.
The reader will find a derivation of the sampling distribution
of the sample median within the bootstrap. This result would
be helpful for further derivations under the bootstrap.

Within the bootstrapped sample space, the sample distribu-
tions of the centrality estimates (mean, trimmed mean, and
MAD mean) are different, but they all share an overlap.
Equation (15) is a function of three random variables, this can
be illustrated as a sample space denoted U , containing subsets
corresponding to each of the random variables as shown in
Fig. 12.

Inferences can be made, at this point, regarding each of the
random variables. The sample distribution x̄ and the x̄k both
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P(x̃b = xn) =
∑N+1

2
rU=0

∑ N+1
2

rL=0
N!

rL!(N−rU−rL)!rU !

(
n−1

N

)rL
(

1
N

)(N−rU−rL)(N−n
N

)rU

∑N
n=1
∑ N+1

2
rU=0

∑ N+1
2

rL=0
N!

rL!(N−rU−rL)!rU !

(
n−1

N

)rL
(

1
N

)(N−rU−rL)(N−n
N

)rU
(29)

P
(
x̃b = x̃j

) =
∑N/2

rM1=1

∑N/2
rM2=1

N!
rL!rM1!rM2!rU !

(
N−fjl

N

)rL
(

N−fju
N

)rU
(

1
N

)rM1+rM2

∑∑N−1
i=0 (N−i)

jl=1

∑∑N−1
i=0 (N−i)

ju=1

∑N/2
rM1=1

∑N/2
rM2=1

N!
rL!rM1!rM2!rU!

(
N−fjl

N

)rL
(

N−fju
N

)rU
(

1
N

)rM1+rM2
(30)

Algorithm 4 Algorithm for Computing Median Probability for
Even Samples
Input: Sample X = {x1, x2, . . . , xn}
Output: x̃j

1: for a = 1 to N do
2: for b = a to N do
3: store (xa + xb)/2 in x̃j[i, 1]
4: store xa in x̃j[i, 2]
5: store xb in x̃j[i, 3]
6: end for
7: end for
8: [~,idx]= sort(x̃j[:, 1])
9: x̃j=x̃j[idx,:]

10: return x̃j

follow normal distributions, thanks to the CLT. The distribu-
tion of the MAD-mean x̄MAD, however, is different as it is
a result of the distribution of the median. The median, how-
ever, thanks to its discrete nature has various cases. If the
sample size was odd, the probability that a specific bootstrap
sample, xn is selected as the median x̃b, can be expressed by
(29), shown at the top of the page, where rU and rL corre-
spond to the number of values greater than the nth, and values
lower than the nth, respectively, and N is the sample size. The
numerator is the probability of a specific event, whereas the
denominator is the total, which is an extension of the multino-
mial distribution that treats the possibilities of values greater
or smaller than the median coexisting with it, in a bootstrap
resample such that the bootstrap median would reflect the nth
sample.

For an even sample size, the expression becomes more
tedious since the possibilities of the bootstrap median increase,
as the averages among samples become median candidates in
addition to the samples themselves. Equation (30), shown at
the top of the page, is an expression we have derived for that,
where rM1 and rM2 represent the two upper and lower values
which would contribute to the median, while rU and rL rep-
resent the rest of the values within the sample that are remote
to the center.

It is possible to see from both equations that the probability
distribution tends to have a central limit. However, it is not
a smooth distribution since the median is, by nature, discrete.
Thus, the distribution of the medians attempts to approach that
of the normal distribution—due to the central limit–however,
the shape is not always normal. As a result, the MAD-mean’s

distribution is the discrete impulses representing that of the
median convolved with the normal distribution. While it does
have a clear central tendency to be normal, it is not necessar-
ily normal if the medians are distant from each other, which
would result in a bumpy distribution. Ultimately, to obtain the
closed-form approximation of the bootstrap, the compound
probabilities formed from the simple ones described in the
Venn diagram in Fig. 12, and have to be computed, as well as
their expectations.

Finally, fjl and fju are the number of occurrences (frequency)
necessary for the jth median out of the range of all possi-
ble medians, for the even sample size. The expression for the
median probability for an even sample can be obtained using
Algorithm 4.
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