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A B S T R A C T

The upsurge of smart devices has enabled the realization of safe, efficient smart cities that improve the quality
of life of their citizens. A prevalent class of smart city services that are attracting increasing attention are
Smart Emergency Response and Management (SERM) systems, where sensing paradigms such as crowd sensing
and IoT-centric sensing are employed to facilitate the detection of, and response to a crisis situation. In this
paper, we study the detection of an abnormal change in a monitored variable through crowd sensed and
heterogeneous data, where the change is suggestive of an emergency situation. We formulate our problem as
a sequential change-point detection problem, where the underlying distribution of the variable changes at an
unknown time. We aim to detect the change-point with minimal delay, subject to a false alarm constraint. We
utilize Shiryaev’s test to construct two variants of the solution depending on the structure of the received data
contributions and mobility of participating sensing elements. We conduct simulations experiments to show the
performance of these variants in terms of the delay-false alarm trade-off in different scenarios.

1. Introduction

Today, 54% of the world’s population lives in urban settings, and
this number is estimated to rise to 68% by 2050, as projected by the
United Nations [1]. The complications resulting from this trend are
mitigated in smart cities, where state-of-the-art data collection, pro-
cessing, and disseminating technologies in conjunction with networking
and computing technologies, aim to enhance the well-being of citizens
through an array of services [2].

Among different services provisioned in smart cities, Smart Emer-
gency Response and Management (SERM) systems are attracting in-
creasing attention. The services provided by SERM systems include
prompt detection of irregularities associated with an imminent emer-
gency, continuous situation monitoring and rapid recovery planning
and implementation. The delivery of these services is dependent on
real-time data sensed from available heterogeneous sources [3].

Crowd sensing is a key building block of the smart city, capitalizing
on mobile smart devices (e.g., smartphones, tablets, wearables), static
smart sensors (e.g., smart home sensors), and emerging sources such as
connected vehicles. These devices offer unprecedented coverage due to
the inherent mobility of their users, as well as a diverse range of sensing
resources and extensive connectivity capabilities. Particularly, these
smart devices are able to survey the surrounding environment using
embedded sensing elements, such as GPS, gyroscopes, microphones and
temperature sensors, as well as specialized sensors connected to the
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smart device via cables or wireless communication interfaces (e.g., air
quality sensors) [4].

Additionally, crowd sensing exploits data available on Mobile So-
cial Networks (MSNs), including posts and check-ins [5]. These cross-
space crowd sensed data are further enriched with data collected from
infrastructure-based sensing elements deployed on the small and large
scales through IoT-centric sensing. For example, CCTV cameras, drones,
weather stations, radars and road side units, in addition to dedicated
sensors such as gas leak and chemical spill detection sensors [6].

As authors in [7] pointed out, harvesting this combination of crowd
sensed and heterogeneous data provides an improved information in-
frastructure, which is essential in building situational awareness and
cognisance of the disruptive event as it occurs. This crowd powered
sensing paradigm facilitates the creation of real-time feedback loops on
the emergency, which in turn are used to plan, implement and update
the appropriate response measures.

In this work, we are concerned with the detection of a change
in a monitored variable, indicating a forthcoming emergency. As an
example, consider the entrance of a shopping mall where the central
server, henceforth referred to as the coordinator, continuously monitors
the noise levels by utilizing the microphones in crowd members’ smart
devices. Here, an abnormally high noise measurement may be indica-
tive of high crowd density, which may be a sign of a large gathering
that warrants attention from authorities. Another example involves
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detecting a fire in an open space via a set of infrastructure-based sensors
(e.g., CCTV cameras and temperature sensors).

In both examples, it is desirable that the coordinator detects the
change in the monitored variable as soon as it occurs and alerts the au-
thorities to take courses of action. In the first example, the coordinator
must take into account the integrity of crowd sensed data and mitigate
the effect of incorrect data contributions. In the second example, the
coordinator must consider the suitability of different sensing elements
to detect the change in the monitored variable.

Hence, each data contribution accessible by the coordinator car-
ries a different level of quality, with significant implications on the
outcome of the decision-making process. If the coordinator incorrectly
announces that a change has happened due to cursory evaluation of the
data contributions, it is said that a false alarm has occurred. The false
alarms rate is a key performance metric in SERM systems, since a false
alarm causes waste of resources. On the other hand, if the coordinator
successfully recognizes a change in the monitored variable, then there
exists a delay, which is equal to the difference between the time of the
detection and the time the change happened.

In this paper, we propose an SERM framework that minimizes
the delay while satisfying a false alarm constraint. Our framework
has two modules, a data processing module that produces a fitness
score, describing the quality of data contributions and their respective
sources. In the second module, the detection module, the fitness score is
used to determine the worth of each data contribution in the detection
process. We implement a sequential detection technique [8], where
data contributions are observed sequentially until enough have been
collected to stop further data acquisition and declare a detection,
subject to a false alarm threshold.

The remainder of the paper is organized as follows. In Section 2, we
discuss the related work. In Section 3, we introduce the preliminaries
of the SERM framework, followed by the detailed description of the
data processing module and detection module in Sections 4 and 5,
respectively. Section 6 introduces our simulation environment and
results. Finally, Section 7 presents our conclusions.

2. Related work

Quality of Data (QoD), Quality of Information (QoI), reputation
and trustworthiness quantification have been addressed in the context
of crowd sensing and heterogeneous sensing architectures. The work
in [9] provides a framework for defining and enforcing the QoI in
crowd sensing systems underlining the implications of human partic-
ipation in the sensing campaign. An overview of the need for verifying
the correctness and truthfulness of crowd sensed data is demonstrated
in [10] through trust and reputation management schemes. The authors
illustrate the relationship among platform utility, user utility, user
reputation, and data trustworthiness. In [11], the authors propose an
event-trust and reputation model called 𝑄𝑛𝑄, in order to distinguish
among different user classes (honest, selfish, malicious). The reputation
scores are based on the quality and quantity of participation for each
crowd member. The model transforms the expected truthfulness into a
QoI metric that aids the mitigation of selfishness and maliciousness.

Additionally, the work in [12] presents a cross-validation approach
to address the QoD contributed by the crowd. Specifically, the ap-
proach introduces another layer of crowdsourced data on top of the
original crowd-sensed contributed data to achieve cross-validation. The
resulting validation is used to reshape the data into a higher quality
representation of the reality. The work in [13] proposes a novel quality
of source metric that permits anomaly detection for small-scale crowd
sensing schemes. Along the same lines, [14] presents a robust metric
that allows estimation of quality under the stringent conditions of
small sample sizes through non-parametric bootstrap. The work in [15]
provides a thematic taxonomy for trust and reputation, addressing the
IoT requirements for the understanding of trust and reputation parame-
ters, properties, entity relationships, computation schemes and attacks.

In [16], the authors argue that efficient management of IoT systems in
smart cities lies in both sensing systems, and in the expedited funnelling
and processing of data generated over diversified sensing architectures.
Crowd sensed data poses challenges related to the fidelity, trust, and
accuracy of each data item, while data heterogeneity requires adaptive
measures for QoD calibration.

Several works discuss the specific realization of SERM systems
through combinations of heterogeneous sensing architectures, big data
analytics and information exchange infrastructures and technologies.
In [7] the authors present a view of an information infrastructure that
leverages crowd sensed and heterogeneous data to improve emergency
response services. Their proposed three-component infrastructure de-
tails the integration of large-scale crowd sensing with heterogeneous
data analytics, along with a strategic decision-making process that
improves the overall efficacy of the system. Similarly, [17] introduces a
resilient smart city disaster management system that benefits from big
data in the prevention, detection, monitoring, mitigation and recovery
of disruptive events. In addition, [18] introduces a comprehensive dis-
cussion on state-of-the-art IoT-supported protocols and approaches to
encounter disruptive events, including early warning, notification, data
analytics, knowledge aggregation, remote monitoring, and real-time
analytics.

The work presented by the authors in [19] addresses connectivity
issues with a solely IoT-based SERM system, due to breakages in
communication infrastructures or network congestions. The authors
propose a novel end-to-end infrastructure relying on crowd sensing
and the internet of everything for event detection, prediction and
response. Similarly, [6] focuses on the communication infrastructure
requirement to enable crowd management applications in emergency
scenarios. The proposed infrastructure is composed of a power segment
that provides power supplies for the core network and edge devices,
a communication segment with heterogeneous communication inter-
faces and technologies, and a data collection and notification segment
that supports collection from crowd owned and IoT-connected devices
for heterogeneous data collection, analysis and visualization. More
recently, the authors in [20] propose a distributed multi-tier system for
adaptive emergency alerting in heterogeneous smart cities. The system
is centred around a number of sensor-based event detection units to
provide real-time geo-referenced information on critical events.

Several other papers discuss application-specific frameworks. The
work in [21] presents a GoogleNet inspired architecture for cost-
effective flame detection using CCTV surveillance videos based on
convolutional neural networks. The model balances accuracy and com-
putational complexity to reduce the rate of false warnings. Other
applications include flood detection [22], toxic gas detection [23],
and earthquake detection [24]. The closest work to ours is in [25],
where a reputation-based contribution assessment scheme is developed
to provide rescue personnel with accurate data. This is achieved by
splitting the affected area into zones followed by fine-grained filtering
rounds to evaluate the data.

Our work by comparison is different because it takes into account
not only the quality of contributions from crowd members (i.e., their
reputation values), but also the quality of infrastructure-based sensing
elements (e.g., toxic gas detectors, CCTV cameras); and their suitability
to survey the variable in interest. Furthermore, our work also imple-
ments a direct mechanism to detect a change in the monitored variable
and determine the exact change-point at which it happened, within
shortest time possible.

3. Preliminaries

We are concerned with the detection of a change in a given variable
which we monitor through heterogeneous sensing elements, where the
change signifies a possible emergency. We establish a mathematical
framework that leverages heterogeneous variable-quality data contri-
butions to minimize the time required to detect the change, constrained
by a false alarm condition.
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Specifically, data is collected via crowd sensing and IoT-centric
sensing paradigms. Adopting of this diversified sensing model brings
forth several challenges. In order to measure a specific variable, the
coordinator must implement a data processing module that allows the
SERM service provider to unify and align multimodal sensor and MSN
generated data. This is achieved through feature identification and
alignment mechanisms enabling seamless interoperability for robust
analytics and resilient sense-making [7,16]. We assume that the coor-
dinator implements these data fusion and integration techniques and
methodologies, and restrict the scope of our mathematical discussion
to the treatment of anomalies in the data contributions.

These anomalies can be a result of the impact of stress or panic,
inadequate sensor-calibration, and communication-related issues. In
worse cases, misleading data contributions can be intentionally pro-
vided by malicious crowd members to hinder end-service delivery [7].
In addition, the quality of each data contribution is closely related to
the sensing operation mechanism, describing the sensor’s suitability to
directly measure or infer a change in the monitored variable.

Our framework introduces a data processing module that mitigates
the effect of these anomalies through an outlier detection component
and a reputation assessment component for each data contribution.
The outlier detection component produces an instantaneous consistency
score that reflects the degree of deviance of each crowd generated data
contribution. The reputation assessment component uses the accumu-
lative consistency scores to statistically evaluate the sensing element
behaviour. Furthermore, we introduce a suitability score that describes
each element’s adequacy in monitoring the variable of interest through
direct measurement or inference, in addition to other calibration and
error margin factors. We unify these descriptors through a fitness score,
as shall be explained in Section 4.

The fitness score will be used by the detection module to determine
the weight of each data contribution in the decision-making process.
Specifically, the coordinator monitors a variable through a set of het-
erogeneous sensing elements, each denoted by 𝑠 ∈ {1, 2,…}. At each
time slot 𝑖 ∈ {1, 2,…}, element 𝑠 submits data contribution 𝑥(𝑠, 𝑖), where
the set of all contributions at 𝑖 is denoted by the set 𝐱𝑖.

There are two approaches in which the coordinator can conduct the
sensing campaign. In the first approach, the coordinator aggregates the
data contributions in 𝐱𝑖 into one observation denoted by 𝑋𝑖 = 𝐴(𝐱𝑖),
where 𝐴(.) is an aggregation function, and perform the test procedure
on this observation. Then, there exists a single sequence of observations
throughout the campaign. This renders this approach appropriate in
scenarios where the number of sensing elements cannot be guaranteed
to stay fixed, hence the need to aggregate the multiple contributions
into a single observation. The coordinator can recruit a new set of
sensing elements at the beginning of each time slot, referred to as
𝑖, without interrupting the campaign. Additionally, this approach
is also useful in scenarios where we start the campaign with a set
of sensing elements whose contributions are characterized with high
levels of uncertainty, mandating that the coordinator recruits other
sensing elements capable of providing data contributions with higher
quality.

Furthermore, this approach is suitable for scenarios where the co-
ordinator can take advantage of sensing elements transiting the place
of interest for a short period of time (e.g., portable smart devices,
connected vehicles, drones, etc.). For example, crowd members walking
into the main entrance of a shopping mall will usually be available
there for a few seconds, allowing the coordinator to exploit their
presence for a finite number of time slots. Therefore, the contributed
data is from a time-varying set of sensing elements, which can be
renewed at every time slot.

In the second approach, the coordinator conducts the test procedure
on data contributions generated by each sensing element separately.
The number of sensing elements, and the number of sequences of
observations, must stay constant from the start of the campaign till its
end, i.e., 𝑖 =  ,∀𝑖. Hence, this approach considers a fixed number

of sensing elements committed to periodically generating data contri-
butions until a change is declared. This is suitable in scenarios where
sensing elements are situated at the place of interest for longer dura-
tions sufficient to span a large number of sensing slots. This includes
fixed infrastructure-based sensing elements (e.g., CCTV cameras and
road side units), as well as crowd members with limited mobility
(e.g., security personnel at a mall or students in a classroom).

We observe that the fundamental difference between the two ap-
proaches is whether the source of sensory data might change at the
beginning of each sensing slot, i.e., whether the same sensing element
is involved in recurrent sensing. Moreover, whether the test procedure
is performed in a centralized or a distributed manner. Thus, we refer
to the first approach as the Centralized Sensing (CS) approach, and
the second as the Distributed Recurring Sensing (DRS) approach. In the
sequel, we discuss the design of the data processing module. For clarity,
common notation are supplied in Table 1 at the end of the text.

4. The data processing module

The inherent openness and heterogeneity of our adopted sensing
model renders the system prone to anomalous data contributions,
necessitating a data processing module that alleviates the effect of these
contributions on the output of the detection process. The objective
of the data processing module is to determine quality level of each
data contribution (and its source), prior to using them in the detection
module.

Consider the case where we are interested in monitoring the struc-
tural health of a bridge. If the coordinator is alerted to a post on a
MSN indicating a potential collapse in the bridge, it must verify the
truthfulness of this data contribution. The coordinator confirms this by
investigating the degree of strain in the bridge via in-situ strain gauges,
or accelerometers that measure vibrations in its cables.

Corrupted data contributions can be a result of deliberate actions
by malicious crowd members (e.g., fabricated videos of the bridge
falling). In other cases, crowd members may contribute corrupted data
inadvertently (e.g., placing the mobile phone inside a pocket in a
noise monitoring application). For all sensing elements in general, the
device’s hardware plays a strong role in the quality of the data contri-
bution. Specifically, each device performs differently due to different
sensing capabilities, sampling frequency, sensor calibration and error
margins.

Our data processing module must instrument the mitigation of the
effect of these anomalies. In the CS approach, the coordinator calculates
an instantaneous consistency score for each data contribution. In the
DRS approach, the coordinator leverages the accumulative consistency
scores for the elements to build a long-term view of their behaviour,
since they are involved in the sensing campaign recurrently. For both
schemes, we define 𝛥𝑠,𝑖 as an integrity score for element 𝑠 at 𝑖 de-
scribing the consistency of each sensing element in an instantaneous
or long-term manner, depending on the approach.

Another aspect that must be taken into consideration is each sensing
element’s suitability in assessing the monitored variable. For example,
consider the case where we would like to detect the presence of a
harmful gas leak. Visual identification of the leak can be accomplished
using a thermographic camera that forms a heat zone image using
infrared radiation, whereas an actual detection of the gas leak can be
achieved using an electrochemical gas sensor that directly measures the
concentration of the leaked gas through a current resulting from an
electrochemical reaction at an electrode.

We recognize that there is a difference in the operation mechanism
of these two sensing elements, which amounts to whether the device
infers the change in the monitored variable or directly measures it.
Towards this end, we define the suitability score 𝜃𝑠 ∈ [0, 1] for each
sensing element 𝑠. Here, 𝜃𝑠 serves to control the weight that different
sensing techniques have on the detection procedure, by allocating a
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high 𝜃𝑠 to sensing elements that directly assess the monitored variable.
Note that 𝜃𝑠 is not indexed with 𝑖 as it does not change with time.

Thus, we define the fitness score as a measure of each sensing
element’s capability to generate valuable data contributions for the
detection process. For any sensing element 𝑠, we define the fitness 𝜙𝑠,𝑖
as:

𝜙𝑠,𝑖 = 𝛽𝑠,1 ∗ 𝛥𝑠,𝑖 + 𝛽𝑠,2 ∗ 𝜃𝑠 (1)

where 𝛽𝑠,1 and 𝛽𝑠,2 are elements’ specific weights in [0, 1] for fitness
control such that 𝛽𝑠,1+𝛽𝑠,2 = 1. We assume that the coordinator can as-
sign an appropriate suitability score for 𝑠 using the device information
provided once it registers in the system. In the subsequent section, we
show in detail how the integrity score is calculated in the CS and DRS
approaches.

4.1. Outlier detection and reputation assessment

As mentioned earlier, we aim at addressing the varying quality
levels for data contributions by generating a consistency score. Ac-
cordingly, we introduce the Local Outlier Factor (LOF) algorithm [26],
which is a consensus-based outlier detection method whose output
is a measure of the similarity of the data contribution to other con-
tributions in the same set. The LOF is an attractive choice because
it is computationally efficient, and it does not require the knowl-
edge of ground-truth. Alternatively, the LOF gauges the distance-based
deviation of each data contributions by comparing it to its neighbours.

To clarify, let 𝐱𝑖 denote an arbitrary set of data contributions
received at 𝑖 that we wish to evaluate for outlierness, and let 𝑠1 and
𝑠2 two data points (contributions) from 𝐱𝑖. Additionally, let 𝑑(𝑠1, 𝑠2)
represent the euclidean distance between these two points, and 𝑑𝑘𝑠1 the
euclidean distance between point 𝑠1 and its 𝑘th neighbour. Then, we
define 𝐸𝑘

𝑠1
as the set of all data points whose distance to 𝑠1 is less than

or equal to 𝑑𝑘𝑠1 . Based upon which, we define the 𝑘-reachability distance
of 𝑠1 as:

𝜌𝑘𝑠1→𝑠2
= 𝑚𝑎𝑥{𝑑(𝑠1, 𝑠2), 𝑑𝑘𝑠1} (2)

Additionally, let the 𝑘-Local Reachability Density (LRD) of 𝑠1 be
the inverse of the average reachability distances in 𝑠1’s neighbourhood,
found as:

𝐿𝑅𝐷𝑘
𝑠1

=
|𝐸𝑘

𝑠1
|

∑

∀𝑠2∈𝐸𝑘
𝑠1
𝜌𝑘𝑠1→𝑠2

(3)

Then, we can find the LOF of 𝑠1 as the average of the ratio of 𝑘-local
reachability densities of 𝑠1 and its 𝑘 neighbourhood. Mathematically:

𝐿𝑂𝐹 𝑘
𝑠1

=

∑

∀𝑠2∈𝐸𝑘
𝑠1
𝐿𝑅𝐷𝑘

𝑠2

𝐿𝑅𝐷𝑘
𝑠1
⋅ |𝐸𝑘

𝑠1
|

(4)

where 𝐿𝑂𝐹 𝑘
𝑠1

is an outlierness measure of 𝑠1 in [0,∞). Particularly, an
LOF measure of 1 indicates an inlier that is perfectly consistent with
the rest of the data contributions in 𝐱𝑖. On the other hand, 𝐿𝑂𝐹 𝑘

𝑠1
≫ 1

indicates that 𝑠1 is an outlier. To ensure reliable performance, we repeat
this procedure for multiple values of the 𝑘 parameter in 𝐤 and take
the maximum, as shown in Algorithm 1, line 1–line 9. Assuming that
𝑁 = |𝐱𝑖|, and 𝑀 = |𝐤|, then it is clear that the time complexity of
Algorithm 1 is (𝑀 ∗ 𝑁).

In order to use the LOF score in gauging data points’ consistency, we
desire to convert the LOF measure into the range [0, 1]. We achieve this
via the normalization and regularization procedure presented in [27].
Specifically, this procedure normalizes the LOF value while improving
the contrast between inliers and outliers. This is achieved by projecting
each LOF value onto a Gaussian distribution 𝐹𝐺(�̂�, �̂�2). Here, �̂� and �̂�2

are the mean and variance of all the LOF scores, respectively. Through
Algorithm 1, line 10–line 12, we obtain a consistency score 𝑤𝑠1 ,𝑖 for
each data contribution in 𝐱𝑖, whose value is around 0 for outliers and
1 for inliers.

Algorithm 1 The LOF algorithm

Input: 𝐱𝑖, 𝐤
Output: 𝑤𝑠,𝑖∀𝑠 ∈ 𝐱𝑖

1: for all 𝑠1 ∈ 𝐱𝑖 do
2: for all 𝑘 ∈ 𝐤 do
3: for all 𝑠2 ∈ 𝐱𝑖, 𝑠2 ≠ 𝑠1 do
4: 𝜌𝑘𝑠1→𝑠2

= 𝑚𝑎𝑥{𝑑(𝑠1, 𝑠2), 𝑑𝑘𝑠1}

5: 𝐿𝑅𝐷𝑘
𝑠1

=
|𝐸𝑘

𝑠1
|

∑

∀𝑠2∈𝐸
𝑘
𝑠1

𝜌𝑘𝑠1→𝑠2

6: end for

7: 𝐿𝑂𝐹 𝑘
𝑠1

=

∑

∀𝑠2∈𝐸
𝑘
𝑠1

𝐿𝑅𝐷𝑘
𝑠2

𝐿𝑅𝐷𝑘
𝑠1
⋅|𝐸𝑘

𝑠1
|

8: end for
9: 𝐿𝑂𝐹𝑠1 = 𝑚𝑎𝑥{𝐿𝑂𝐹 𝑘

𝑠1
,∀𝑘 ∈ 𝐤}

10: 𝐿𝑂𝐹𝑠1 = 𝑚𝑎𝑥{0, 𝐿𝑂𝐹𝑠1 − 1}

11: �̂�𝑠1 ,𝑖 = 𝑚𝑎𝑥{0, 0.5𝐹𝐺(𝐿𝑂𝐹𝑠1 ) − 1}

12: 𝑤𝑠1 ,𝑖 = 1 − �̂�𝑠1 ,𝑖
13: end for

As illustrated previously, in the CS approach, the coordinator ex-
pects the sensing elements to report data contributions only for a
limited duration of time during the sensing campaign. Algorithm 1
provides a solid instantaneous measure of consistency which suffices
to describe the quality of the contributions generated by these transi-
tory elements. On the other hand, the DRS approach recruits sensing
elements for the entirety of the sensing campaign. In such a case, we
desire to extend this instantaneous score into a long term overview of
the behaviour of each sensing element. This is achieved by infusing
the LOF score into a reputation assessment scheme using the Dirichlet
model [9].

In the Dirichlet model, the reputation of each sensing element 𝑅𝑠,𝑖
is assumed to have a prior Dirichlet distribution with parameter 𝛽𝑠,3.
Each time the sensing element reports a data contribution, Algorithm 1
is used to produce a consistency score for 𝑠 by comparing it to all other
contributions reported at the same time. Afterwards, the reputation
assessment is a simple parameter update based on the most recent
evidence. Specifically, the Dirichlet reputation value of 𝑠 at time slot
𝑖 is given as:

𝑅𝑠,𝑖 =
𝛽𝑠,3 + 2

∑

𝑖 𝑤𝑠,𝑖

2(𝛽𝑠,3 + 𝑖)
(5)

where 𝑤𝑠,𝑖 is the consistency score for 𝑠 resulting from applying Al-
gorithm 1 at the set of data contributions received at time slot 𝑖.
This procedure converts the instantaneous consistency scores into an
accumulative score of the performance of 𝑠 on the long run. Notably,
when there is no evidence on the performance of 𝑠 (i.e., 𝑖 = 0 ), the
value of 𝑅𝑠,𝑖 reduces to 0.5, indicating a neutral view of 𝑠. As more
evidence is acquired through Algorithm 1, 𝑅𝑠,𝑖 will converge to its real
value. For a low-quality element whose consistency scores are always
0, 𝑅𝑠,𝑖 → 0, and vice versa.

Based on the above discussion, it is clear that the coordinator uses
the momentary consistency score as an integrity score for elements
participating in the CS campaign, i.e., 𝛥𝑠,𝑖 = 𝑤𝑠,𝑖. On the other hand,
For the DRS campaign, we would like to take advantage of the accu-
mulative history of the participating sensing elements, hence, defining
the integrity score in the DRS campaign as 𝛥𝑠,𝑖 = 𝑅𝑠,𝑖.

5. The detection module

The detection module is the core of our framework, where the
data contributions received from heterogeneous sensing elements are
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leveraged to detect an abrupt change in the monitored variable. We
begin by introducing the general detection problem and the test pro-
cedure. For clarity, we assume that we have data contributions from
one sensing element, and extend the discussion of the test procedure to
accommodate multiple sensing elements in the CS and DRS approaches
accordingly.

5.1. The general detection procedure

Broadly speaking, detection problems involve the observation of a
variable of interest in order to make a decision about it. In classical
detection problems, one has access to the full batch of observations
needed for the decision-making at once. On the contrary, in sequential
detection we do not know beforehand the number of observations.
Rather, observations are received one by one, and the coordinator must
announce the detection of an event based only on past observations.
Here, the decision when to stop the data acquisition process is a key
part of the detection procedure.

Sequential detection is appropriate for scenarios when both the
delay and the reliability of the decision are key to the performance. The
Quickest Change-point Detection (QCD) problem (also known as the
disorder problem), is a special case of sequential detection problems.
In such a problem, the distribution of the monitored variable changes
at an unknown time, and we aim to raise an alarm as soon as the change
occurs, hence minimizing the delay.

Let 𝑿𝑗 = {𝑋𝑖 ∶ 𝑖 = 1, 2,… , 𝑗} be a stochastic process of 𝑗 real
random variables observed sequentially in time slots 𝑖 = 1, 2,… , 𝑗. Here,
𝑋𝑖 resembles the value of the monitored variable obtained via sensing
at time slot 𝑖. Initially, the sequence follows a distribution 𝑓0, until a
change occurs at an unknown time 𝜏 ∈ Z+. Following the change, the
random variables 𝑋𝜏 , 𝑋𝜏+1,… follow a different distribution, denoted
by 𝑓1. Precisely, at time slot 𝑗, the coordinator must choose between
the two hypotheses:

𝐻0 ∶ 𝑿𝑗 = {𝑋𝑖 ∼ 𝑓0, 𝑖 = 1, 2,… , 𝑗}
𝐻1 ∶ ∃𝜏 ∈ Z+, s.t.:

𝑿𝑗 =
{

𝑋𝑖 ∼ 𝑓0, 𝑖 = 1, 2,… , 𝜏 − 1
𝑋𝑖 ∼ 𝑓1, 𝑖 = 𝜏, 𝜏 + 1,… , 𝑗

(6)

where 𝐻0 indicates no change has occurred, and 𝐻1 indicates that a
change occurred at 𝜏. Let 𝑡𝑑 denote the time that a change is detected.
If 𝑡𝑑 ≥ 𝜏, then there exists a detection delay 𝛤 = 𝑡𝑑 − 𝜏, where 𝛤 is a
discrete random variable. We define the average detection delay as the
conditional expectation of 𝛤 , written as:

𝐴𝐷𝐷(𝑡𝑑 ) = E
[

𝛤 ∣ 𝑡𝑑 > 𝜏
]

=
∞
∑

𝑖=1
𝑃 (𝜏 = 𝑖)E𝑖

[

𝑡𝑑 − 𝑖 ∣ 𝑡𝑑 > 𝑖
]

(7)

where E𝑖 is the expectation when the change occurs at 𝑖. On the other
hand, if a detection is incorrectly declared before a change to the
variable actually happens, then a false alarm has occurred. In such a
case, 𝑡𝑑 < 𝜏, and the probability of a false alarm (𝑃𝐹𝐴) is expressed as:

𝑃𝐹𝐴 = 𝑃 (𝑡𝑑 < 𝜏) =
∞
∑

𝑖=1
𝑃 (𝜏 = 𝑖)𝑃𝑖(𝑡𝑑 < 𝑖) (8)

where 𝑃𝑖 is the probability measure when the change occurs at 𝑖. Our
objective is to devise a detection policy that identifies the change
as soon as it occurs, while restricting the probability of making an
erroneous decision. Therefore, we present our optimization problem as:

min 𝐴𝐷𝐷(𝑡𝑑 )
s.t. 𝑃𝐹𝐴 ≤ 𝛼 (9)

where 0 < 𝛼 < 1 is a threshold limiting 𝑃𝐹𝐴. The above formulation is
formally known as the QCD problem [8].

While no general solution has been found for the problem, there
exists an explicit solution in the Bayesian formulation, where the change-
point 𝜏 is assumed to be random with a known prior distribution.

Specifically, 𝜏 is modelled as a geometric random variable with param-
eter 0 < 𝜆 < 1. Thus, the probability that a change occurs at 𝑖 is:

𝑃 (𝜏 = 𝑖) = 𝜆(1 − 𝜆)(𝑖−1), 𝑖 = 1, 2,… (10)

Given the above, the problem is solved as follows. Let 𝑝𝑗 denote
the a posteriori probability that a change has occurred before time 𝑗,
given the sequence 𝑿𝑗 . Equivalently, 𝑝𝑗 = 𝑃 (𝜏 ≤ 𝑗 ∣ 𝑿𝑗 ) is recursively
calculated through Bayes’ rule as:

𝑝𝑗 =

[

𝑝𝑗−1 + (1 − 𝑝𝑗−1)𝜆
]

𝐿𝑗
[

𝑝𝑗−1 + (1 − 𝑝𝑗−1)𝜆
]

𝐿𝑗 + (1 − 𝑝𝑗−1)(1 − 𝜆)
(11)

where 𝐿𝑗 is the likelihood ratio between the post-change and pre-
change distributions, found as 𝐿𝑗 = 𝑓1(𝑿𝑗 )

𝑓0(𝑿𝑗 )
. Consequently, we can

solve a Lagrangian relaxation of (9) through dynamic programming to
yield [8]:

𝑡𝑠 = inf{𝑗 ≥ 1 ∶ 𝑝𝑗 ≥ 𝐴𝛼} (12)

where inf is the infimum of a set, 𝑡𝑠 denotes the optimal stopping
time at which the coordinator ends campaign, and 0 < 𝐴𝛼 < 1 is an
appropriately chosen threshold that satisfies 𝑃𝐹𝐴(𝑡𝑠) = 𝛼. This result
is known as the optimal Shiryaev’s test for the QCD problem [8]. In
general, it is not trivial to find 𝐴𝛼 that satisfies the condition on 𝑃𝐹𝐴.
However, it has been shown in [28] that setting 𝐴𝛼 = 1 − 𝛼 provides a
guarantee that 𝑃𝐹𝐴(𝑡𝑠 ∣ 𝐴𝛼) ≤ 𝛼, which satisfies the constraint in Eq. (9).

5.2. The CS approach

With regards to the shopping mall entrance example, we have
established that the coordinator expects to receive data contributions
at each time slot from a different set of sensing elements 𝑖 that may
not commit for the length of the campaign. Hence, we amend the set
of data contributions 𝐱𝑖 using the aggregation function 𝐴(.), such that
the output is a single data sample 𝑋𝑖, constituting a single sequence
𝐗𝑗 = {𝑋𝑖 ∶ 𝑖 = 1, 2,… , 𝑗}. Particularly, we employ the fitness score in
Eq. (1) in a weighted average aggregation function, as follows:

𝑋𝑖 =

∑

𝐱𝑖 𝜙𝑠,𝑖𝑥(𝑠, 𝑖)

𝜙𝑎𝑣𝑔
(13)

with 𝜙𝑎𝑣𝑔 as the average fitness for all elements in . Indeed, Eq. (13)
enables the coordinator to cope with varying number of data contribu-
tions at each 𝑖 by projecting them onto a single dimension. Secondly,
the use of the fitness score alleviates the negative effect of corrupted
data contributions by allocating a smaller weight through the integrity
score derived from the instantaneous consistency score, and the effect
of the sensing mechanism of each sensing element is attributed via the
suitability score in Eq. (1).

Let us assume that the variable monitored by each sensing ele-
ment follows a pre-change and post-change Gaussian distributions with
𝑓0 ∼  (𝜇0, 𝜎20 ) and 𝑓1 ∼  (𝜇1, 𝜎21 ), respectively. Clearly, the linear
transformation performed via Eq. (13) constitutes a weighted sum of
normally distributed random variables according to 𝑓0 and 𝑓1. Thus,
the distribution of 𝑋𝑖 before and after the change can be derived as:

𝑓 ∗
0 ∼  (𝜇0

∑

𝑖 𝜙𝑠,𝑖

𝜙𝑎𝑣𝑔
,𝜎20

∑

𝑖 𝜙
2
𝑠,𝑖

𝜙2
𝑎𝑣𝑔

)

𝑓 ∗
1 ∼  (𝜇1

∑

𝑖 𝜙𝑠,𝑖

𝜙𝑎𝑣𝑔
,𝜎21

∑

𝑖 𝜙
2
𝑠,𝑖

𝜙2
𝑎𝑣𝑔

)

(14)

Note that our assumption of a Gaussian distribution for the envi-
ronment carries an algebraic convenience updating 𝑓 ∗

0 and 𝑓 ∗
1 in (14).

However, the same discussion can be extended for any distribution
assumption where the weighted sum of its random variables is fully
characterized. Consequently, the coordinator conducts the sensing cam-
paign in the CS approach as follows. At each time slot, the coordinator
collects as many data contributions from heterogeneous sensing ele-
ments as possible. Then, Algorithm 1 is applied on the received set
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𝐱𝑖, generating an instantaneous consistency score (integrity score) for
each contribution, to update the fitness value in Eq. (1). Afterwards,
the aggregation function in Eq. (13) is applied to generate a single data
sample, upon which the Shiryaev’s test procedure in Eq. (12) is carried
out, with 𝐿𝑗 =

𝑓∗
1 (𝑿𝑗 )

𝑓∗
0 (𝑿𝑗 )

. This process is implemented recursively until
the value in Eq. (11) satisfies the threshold on 𝐴𝛼 , at which point the
change is declared.

5.3. The DRS approach

In the DRS approach, the coordinator recruits a fixed number of
sensing elements who are committed to the entire length of the cam-
paign, each of which generating an independent stream of data con-
tributions. The DRS approach performs the detection procedure in a
distributed manner across a number of sequences, where the behaviour
of participating elements can be characterized on the long run by accu-
mulating their instantaneous consistency scores. Therefore, in the DRS
approach, the integrity score is set to be the Dirichlet based reputation
value in Eq. (5). In general, it is shown that the sequential change-point
detection problem in (9) in a distributed system is computationally
intractable even in its simplest form [8].

Let us assume that, in the beginning of the campaign, the coordina-
tor recruits || sensing elements. If an element abandons the campaign
(e.g., a crowd member changing his/her location), the coordinator may
recruit a replacement (e.g., another crowd member available at the
sensing location) to continue the sequence generation, while taking
care of appropriately updating the reputation and fitness scores. Fur-
thermore, the coordinator may recruit more than one sensing element
and combine their data contributions using the aggregate function in
Eq. (13), to ensure the sensing process is not interrupted by elements
leaving the campaign. For the following discussion, we assume that all
elements in || are devoted to generating their respective observation
sequences until the end of the campaign (i.e., until a detection is
declared).

Following with the notation in the previous section, at time slot
𝑗, sensing element 𝑠 has the sequence 𝐗𝑠

𝑗 = {𝑋𝑠
𝑖 ∶ 𝑖 = 1, 2,… , 𝑗} of

real random variables, where each entry in the sequence corresponds
to a single data contribution. For each sensing element, the optimal
detection procedure in Eq. (12) is performed on its own sequence 𝐗𝑠

𝑗 .
Thus, our interest now shifts to construct a fusion rule for the stopping
criterion which combines the local decisions from each participating
sensing element. We define our fusion rule as follows:

• 𝑡𝜋 : the coordinator ends the campaign at an individual element as
soon as it achieves the threshold on 𝑃𝐹𝐴, and declares a change
is detected, provided that the average fitness score of  exceeds
a certain threshold.

To benchmark the performance of the above rule, we also define
the following two rules:

• 𝑡𝑚𝑖𝑛: the coordinator ends the campaign for all elements and de-
clares that a change is detected as soon as one of the participating
elements in  achieves the threshold on 𝑃𝐹𝐴 [8].

• 𝑡𝑚𝑎𝑥: the coordinator ends the campaign at an individual element
as soon as it achieves the threshold on 𝑃𝐹𝐴, and declares a change
is detected once all participating sensing elements in  have
achieved their respective thresholds [8].

We observe that the three fusion rules are applicable in slightly
different scenarios. Specifically, 𝑡𝑚𝑖𝑛 is appropriate for scenarios where
a detection from a single sensing element is worthy of raising an alarm,
whereas 𝑡𝑚𝑎𝑥 is suitable for scenarios where unanimity of the detection
must be reached. Furthermore, it is noteworthy that 𝑡𝑚𝑎𝑥 is shown to
be globally first order asymptotically optimal, given that an appropriate
threshold on 𝑃𝐹𝐴 is chosen. On the contrary, the fusion rule 𝑡𝑚𝑖𝑛 does

Fig. 1. Evolution of the reputation vs. time.

Fig. 2. Evolution of Shiryaev’s statistic vs. time.

not possess this asymptotic optimality property [8]. Inevitably, 𝑡𝑚𝑎𝑥
entails longer delays than 𝑡𝑚𝑖𝑛.

On the other hand, 𝑡𝜋 represents a trade-off between two, by placing
a threshold on the average fitness score of . Specifically, this rule
is appropriate when we desire that reputation of crowd members has
converged to its true value after a number of update iterations at every
𝑖. For example, in cases where no previous history is obtained about the
participating crowd members, the initial reputation value will be set
to 0.5, and will be recursively updated as evidence accumulates until
convergence. This implies that the average fitness score of  will also
converge to reflect the true fitness of value of the set.

We determine the threshold for the average fitness using the Con-
dorcet Jury Theorem (CJT), which states that a set of heterogeneous
individuals (i.e., sensing elements) are always better at choosing one of
two alternatives than a single individual (sensing element), as long as
individual decisions are independent from each other [29]. Specifically,
for a group of heterogeneous sensing elements with varying fitness
levels, the probability that a proportion of the group, denoted by 𝜋 ≥
0.5 will make the correct decision is higher than an individual decision
as long as the following condition is satisfied:

𝜙𝑎𝑣𝑔 ≥ 𝜋(|| + 1)
||

(15)

Consequently, the coordinator conducts the sensing in the DRS
approach as follows. At the start of the campaign, the coordinator
recruits a set  of sensing elements. At time slot 𝑖, each element 𝑠
surveys the monitored variable for a data contribution in the sequence
𝐗𝑠
𝑗 . Then, Algorithm 1 is applied for the received contributions to

generate evidence for element’s performance, followed by a reputation
and a fitness update in Eq. (5) and Eq. (1), respectively. Afterwards,
the Shiryaev’s test procedure is carried recursively on each individual
sequence, until the fusion rule of choice is satisfied.

6. Performance evaluation

In this section, we first introduce our simulation environment and
parameters, then present performance evaluation results.
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Fig. 3. Average detection delay vs. the false alarm threshold.

6.1. Simulation environment and setup

We conduct Monte Carlo simulations to evaluate the proposed
framework. The CS approach collects data contributions from a set
of sensing elements whose number |𝑖| varies in {6, 7,… , 15}. These
contributions are evaluated for consistency via the LOF algorithm,
where 𝐤 = {2, 3}. In the DRS approach, we set the number of sensing
elements to 10 and evaluate the Dirichlet reputation for each element
with the Dirichlet distribution parameter 𝛽𝑠,3 = 1,∀𝑠. Additionally, we
generate a random number in [0, 1] for the suitability 𝜃𝑠. To highlight
the effect of the consistency score, we set 𝛽𝑠,1 = 0.8 and 𝛽𝑠,2 = 0.2
for all elements. We assume the pre- and post-change distributions are
Gaussian with 𝑓0 ∼  (0, 1) and 𝑓1 ∼  (1, 1), respectively, and set the
geometric distribution parameter 𝜆 to 0.001.

6.2. Simulation results

We begin by illustrating the evolution of the Dirichlet reputation
value by plotting it for a reputable and a corrupted sensing element
in Fig. 1. Here, the corrupted sensing element’s data contributions
were corrupted by adding a normally distributed noise to the data
contributions generated from the pre- and post-change distribution. As
can be seen in the figure, both reputations begin with a neutral 0.5
value, and fluctuate until stabilizing after 150 time slots, reaching 0.9
and 0.4 for a reputable and a corrupted sensing element, respectively.
Indeed, this convergence is reached after enough evidence is acquired
from the LOF algorithm to precisely characterize the behaviour of
each element. Note that the fluctuation in the early time slots directly
affects the performance of our framework in cases where the change
occurs before reputations converge, causing the coordinator to give
an inappropriate weight to the contributions generated from corrupted
sensing elements, which might impede accurate detection. Hence, the
reputation value has a negative effect on the detection procedure if
a change occurs early, because the reputation values are not truly
indicative of the element’s behaviour.

Next, to illustrate the test procedure, we plot the evolution of the
Shiryaev’s test statistic 𝑝𝑗 in Fig. 2 for a sequence observed by a single
sensing element. We set the change-point 𝜏 to an arbitrary value of 150,
and plot the result when 𝜇1 is set to 0.5 and 1. We set the Shiryaev’s
threshold 𝐴𝛼 = 0.9, indicating that 𝑃𝐹𝐴 = 0.1. By examining the figure,
we note that the statistic stays relatively low around zero until the
change-point 𝜏 for both cases of 𝜇1. For subsequent time slots, the
statistic 𝑝𝑗 grows until it exceeds the threshold 𝐴𝛼 at 𝑗 = 162 for 𝜇1 = 1
and 𝑗 = 201 for 𝜇1 = 0.5. Indicating that the coordinator had a decision
delay of 𝛤 = 12 and 𝛤 = 51 time slots to detect the change, respectively.
From this figure, it is obvious that the smaller the distance between 𝑓0
and 𝑓1, the more challenging it becomes to detect the change quickly.

Moreover, choosing a higher value for 𝐴𝛼 achieves a lower false alarm
rate, but at the expense of longer delay until the Shiryaev’s statistic
exceeds 𝐴𝛼 . For the following discussion, we set 𝜇1 to 1, and let 𝑃𝐹𝐴
vary.

In Fig. 3, we plot the ADD against 𝛼 for all variants of the proposed
approaches, where 𝛼 varies in [0, 0.4]. For clarity, we plot the negative
of the natural logarithm of 𝛼, as − ln(𝛼) becomes larger, the more
stringent the condition on 𝑃𝐹𝐴 becomes. In order to understand the
effect of the reputation convergence on the DRS CJT approach, we plot
the case when the change occurs at 𝜏 = 150 and 𝜏 = 20 for 𝜋 = 0.7, 0.9.
Intuitively, setting 𝜋 to a higher value entails longer delays regardless
of when the change occurred, because the coordinator waits until the
average fitness 𝜙𝑎𝑣𝑔 exceeds the threshold set by the CJT theorem.
Moreover, the coordinator benefits from a change occurring at 𝜏 = 150
because the reputations are close to convergence, implying that it is
easier for 𝜙𝑎𝑣𝑔 to exceed the CJT threshold. In summary, the least
delay is incurred by placing a low constraint on 𝜙𝑎𝑣𝑔 , and is aided by
reputation values that have stabilized before the change occurs.

For the CS and DRS approaches for 𝑡𝑚𝑎𝑥 and 𝑡𝑚𝑖𝑛, we notice that all
these approaches also follow the same behaviour, exhibiting a larger
delay as the false alarm constraint becomes more stringent. In addition,
we note that the DRS approach following the 𝑡𝑚𝑎𝑥 fusion rule has the
worst delay, representing an upper bound on the performance. This
behaviour is anticipated by the 𝑡𝑚𝑎𝑥 rule as it waits for all sensing
elements to achieve the constraint on 𝐴𝛼 . On the other hand, the
DRS approach following the 𝑡𝑚𝑖𝑛 rule and the CS approach achieve
comparable performance, with the 𝑡𝑚𝑖𝑛 rule attaining slightly lower
delays. This can be attributed to the fact that with 10 sensing elements,
it is more probable that one of these participants will detect the change
faster than a single-stream data sequence observation as in the CS
approach. Finally, these approaches perform comparably to those of 𝑡𝜋
as 𝑃𝐹𝐴 changes, except for 𝑡𝜋 for 𝜋 = 0.9 and 𝜏 = 20. The increase in
the delay for the former case with can be attributed to the fluctuation
in the reputation values and the strict constraint on 𝜙𝑎𝑣𝑔 as explained
earlier.

Finally, we plot the ADD against the number of participants for a
constant 𝑃𝐹𝐴 in Fig. 4, with 𝛼 set to 0.1. By examining the figure, it
can be seen that the behaviour of all schemes and their variants aligns
with that shown in Fig. 3. The DRS approach following the 𝑡𝑚𝑎𝑥 fusion
rule represents an upper bound on the other schemes, while showing
a steadily increasing trend as the number of participants increases.
Similar behaviour is shown for the DRS CJT approach for 𝜋 = 0.7 and
𝜋 = 0.9, when 𝜏 = 150 and 𝜏 = 20. For 𝜋 = 0.9, the rate of increase is
higher as the number of participants increases, because the condition is
more stringent on the average fitness. The DRS approach following the
𝑡𝑚𝑖𝑛 fusion rule shows a slight decrease with an increasing number of
participants. This is intuitive, because for a larger ||, there is higher
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Fig. 4. Average detection delay vs. the number of participants.

Table 1
Table of common notations.

Notation Explanation

𝑖 Time slot index
𝑠 Sensing element index
𝑥(𝑠, 𝑖) Data contribution by 𝑠 at 𝑖
𝐱𝑖 Set of all data contributions at 𝑖
𝐴(.) Aggregate function
𝑖 Set of sensing elements at 𝑖
𝛥𝑠,𝑖 Integrity score of 𝑠 at 𝑖
𝜃𝑠 Suitability score of 𝑠
𝜙𝑠,𝑖 Fitness of 𝑠 at 𝑖
𝑤𝑠1 ,𝑖 Consistency score of 𝑠1 at 𝑖
𝑅𝑠,𝑖 Reputation of 𝑠 at 𝑖
𝛽𝑠,1 , 𝛽𝑠,2 , 𝛽𝑠,3 Element specific parameters
𝜏 Change-point
𝑓0 , 𝜇0 , 𝜎2

0 Pre-change distribution, mean and variance
𝑓1 , 𝜇1 , 𝜎2

1 Post-change distribution, mean and variance
𝑡𝑑 Detection time
𝛤 Detection delay
𝐴𝐷𝐷 Average detection delay
𝑃𝐹𝐴 Probability of false alarm
𝛼 False alarm threshold
𝑝𝑗 Shiryaev’s statistic
𝐿𝑗 Post- and pre-change likelihood ratio
𝐗𝑗 CS sequence of 𝑗 contributions
𝐗𝑠

𝑗 DRS sequence of 𝑗 contributions from 𝑠
𝜙𝑎𝑣𝑔 Average fitness
𝑡𝑚𝑖𝑛 Minimum detection time fusion rule
𝑡𝑚𝑎𝑥 Maximum detection time fusion rule
𝑡𝜋 CJT 𝜋 detection time fusion rule

probability that one participant will detect the change faster. Finally,
the CS scheme shows a relatively steady performance as the number
of participant varies. This can be attributed to the fact that it does not
retain any information on participants’ reputation values, as it assumes
that a new set of participants 𝑖 generates the data contribution at each
time slot.

7. Conclusions

In this paper, we studied the detection of a change in a monitored
variable via a combination of crowd sensing and IoT-centric sensing
paradigm, where the change signifies a forthcoming emergency situa-
tion. Our framework presented a data processing module that enables
the coordinator to cope with data contributions of varying quality
levels. Specifically, we defined a fitness score for each sensing element
participating in the sensing campaign, where the score reflects the
element’s integrity and suitability to survey the monitored variable.
Our problem was formulated as a sequential change-point detection

problem, where the distribution of the variable changes abruptly at an
unknown time. Two variants of the problem were introduced based
on the structure of the received data contributions: the Centralized
Sensing (CS) and the Distributed Recurring Sensing (DRS) approaches.
In both variants, we utilized Shiryaev’s test to minimize the average
detection delay under false alarm constraints. We conducted simulation
experiments to show the performance of the CS and DRS approaches
in their variants, and highlighted the scenarios in which they are
applicable.
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