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Abstract— With the abundant on-board resources in smart
vehicles, they have become major candidates for providing ubiq-
uitous services, including public sensing. One of the challenges
facing such ubiquitous utilization is the recruitment of the
participating vehicles. In this paper, we present the reputation-
aware, trajectory-based recruitment (RTR) framework that han-
dles recruitment of vehicles for public sensing. The framework
considers the spatiotemporal availability of participants along
with their reputation to select vehicles that achieve desired cov-
erage of an area of interest within a budget cap. The framework
consists of a reputation assessment scheme, a pricing model,
and a selection scheme collaborating for a main recruitment
objective; maximizing coverage with minimum cost. We propose
greedy heuristic solutions targeting the selection problem in
real-time. The RTR framework generalizes the basic selection
problem to handle some practical scenarios, including departing
vehicles and varying redundancy requirements. We also propose
a reputation assessment scheme and a pricing model as parts
of the framework. Extensive performance evaluation of the
proposed framework is conducted and the evaluation shows
that the proposed greedy heuristics are able to achieve results
close to previously obtained optimal benchmarks under different
scenarios, and that the framework succeeds in achieving high
levels of coverage even when vehicles do not stick to their
announced trajectories.

Index Terms— Public sensing, recruitment, smart vehicles,
reputation systems.

I. INTRODUCTION

PUBLIC sensing is gaining a high interest nowadays with
the diversified applications it can provide. Currently, sen-

sors in mobile devices are extensively used to support public
sensing services [1], [2]. However, the use of these devices
has challenges, in particular dealing with the relative scarcity
of available resources. Concurrently, there is a plethora of
on-board resources in smart vehicles pushing towards uti-
lizing them as mobile providers for ubiquitous services [3].
According to an analysis of the market growth of automotive
sensors in North America, the average number of sensors per
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Fig. 1. The architecture of public sensing.

vehicle reached 70 in 2013 [4]. The abundant sensors along
with other on-board vehicular resources, such as processing,
storage and communication resources, make smart vehicles
major enablers for many sensing applications and solutions.
Furthermore, the mobility of vehicles can be utilized to widen
coverage scope and, in turn, the range of applications that can
be supported.

We categorize the applications and services that can be
provided by vehicular sensing into two categories: 1) instant
sensing and 2) on-move sensing applications. Mobile devices
typically provide instant sensing. With the high sensing capa-
bilities of vehicles, the scope of such applications can be
widened. An example of an instant sensing application is
reporting weather conditions such as temperature and ambient
barometric pressure. The second category of sensing applica-
tions is made feasible by utilizing the movement of vehicles
and generating sensing data on the go. Examples include
monitoring road conditions, traffic and crowds, and providing
estimates of parking availability.

The general architecture of public sensing consists of three
main elements as shown in Fig. 1. These elements are the
data contributors/participants, the service provider (SP), and
the data consumers/end users. The process involves three main
stages as indicated in Fig. 1: 1) The SP asks data contributors
to perform sensing tasks, 2) after collecting the required data,
the contributors send it to the SP, 3) the SP, after performing
required data analytics, presents meaningful information to the
data consumers as part of a service. Data consumers may also
initiate the process asking for specific information.

Although utilizing vehicles as data contributors in public
sensing brings many advantages, it comes with challenges.
There can be many potential participants in an area of interest,
especially in a congested/well-travelled area. These partici-
pants cannot all be recruited for a sensing task as the recruited
participants should be given incentives as a reward for the
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service they provide, and to encourage them to participate in
the future. Hence, effective recruitment schemes are needed
to ensure the selection of the right number of “trusted”
participants achieving a required level of coverage for an area
of interest in a cost effective manner. Based on the above
perspective directing recruitment of participants, the main
objective of this paper is to introduce a recruitment framework
that handles the aforementioned recruitment requirements.

In our recruitment framework, the pool of potential par-
ticipants is first determined by their spatial and temporal
availability to consider those spatially available in the area
of interest during the task period. In contrast to some models
that consider only instantaneous availability to achieve instan-
taneous coverage, we consider on-move coverage to support
the wide scope of on-move monitoring applications. With
on-move coverage, the number of participants to achieve a
desired coverage can be small compared to those achieving
coverage without considering mobility of participants. For
example, in covering a road to build an estimate of parking
availability, we may find that a few vehicles taking camera
shots on the go can provide complete coverage of the road.
As a main part of the on-board vehicular resources, the navi-
gation system is a vital component that provides information
to many vehicular applications. Our recruitment framework
is designed to utilize input from such systems represented in
vehicle trajectories as indicators of the on-move availability of
those vehicles.

In practice, with the diversity of participants’ behavior and
the various capabilities of the candidate vehicles, depending
solely on availability for recruitment would not be efficient
at selecting the best candidates out of the available selection
pool. The reputation of participants must be considered along
with availability to maximize the benefit out of the chosen par-
ticipants by selecting those who are more likely to contribute
with high quality data. Taking reputation into consideration
also promotes selecting trusted participants and discarding
those with malicious behavior. Furthermore, since in real
scenarios SPs will have a budget cap that the total recruit-
ment cost should not exceed, introducing a budget constraint
while selecting the participants is called for. Consequently,
in this paper, we present a reputation-aware, trajectory-based
recruitment (RTR) framework that accommodates the consid-
eration of participants’ reputation and the budget constraint
while building on the availability of participants.

The proposed RTR framework consists of three main
modules: 1) a reputation assessment scheme, 2) a pricing
model, and 3) a selection scheme. The outputs of the first
two modules are fed as inputs to the third module. Keeping in
mind the recruitment perspective discussed above, the main
objective of our selection problem targets maximizing the
available coverage, while minimizing the total recruitment cost
in a reputation-aware manner with budget consideration. In our
previous work in [5], we formulated the selection problem as
an integer linear programming (ILP) optimization problem.
The purpose of the optimization formulation is to present
performance benchmarks for the recruitment objective giving
some performance bounds. In this paper, greedy heuristic
solutions are presented. Such heuristic solutions are needed to

cope with practical real-time selection requirements. Another
major part of the framework is the proposed reputation
assessment scheme that feeds the selection scheme with the
reputation scores of the candidate participants. We consider
different metrics under the assessment scheme proposing a
mechanism for assessing each of these metrics under two
different data acquisition models. As part of the framework,
a dynamic pricing model is also proposed for computing the
participants’ recruitment cost, to be used by the selection
scheme.

The performance of the framework is extensively evaluated
comparing the optimal and greedy selection solutions. The
results show that the proposed heuristics are able to achieve
results close to the optimal benchmarks. In addition, extensive
evaluation is conducted to show the quality of the collected
sensing data and the performance of the selection scheme
under some practical cases.

To the best of our knowledge, the proposed RTR framework
is the first work that considers the reputation of participants
and the budget constraint in recruiting vehicles for public
sensing services.

The remainder of this paper is organized as follows.
In Section II, we discuss some related work in the areas of
utilizing vehicles as a sensing resource, recruitment for public
sensing, and reputation assessment. The proposed RTR frame-
work is introduced in Section III, focusing on its selection part
and the proposed greedy heuristic solutions. In Section IV,
we present the proposed reputation assessment scheme and
pricing model as parts of the RTR framework. In Section V,
we discuss the performance of the proposed greedy heuristics
comparing them to the benchmark performance results of the
ILP formulations. Finally, we conclude the paper and present
our future work in Section VI.

II. RELATED WORK

A. Vehicle as a Mobile Sensor

Many platforms are proposed for utilizing the sensory
resources of smart vehicles under the public sensing domain,
which is also referred to as Mobile Crowd Sensing (MCS).
An example is the MobEyes platform [6] that focuses on utiliz-
ing vehicular sensors to monitor a vehicle’s surroundings and
recognize objects, and utilizing the on-board resources to store
the sensed data and share it with other vehicles upon request.
Another example is the data-gathering solution proposed in [7]
that supports location-aware services utilizing vehicular sen-
sors. In this solution, data requests can be sent to vehicles
asking for specific data at specific locations. Vehicles in the
area of interest can resolve the request and send the reply back
to the requester. Other platforms are enhanced by use of the
Internet which they use for sending the sensed data to remote
servers. Examples of such platforms are discussed in [8]. Many
systems are also proposed to utilize in-vehicle sensors for
specifically enhancing intelligent transportation systems (ITS).
Wang et al. [9], investigate a plethora of ITS services enabled
by mobile sensing. Other examples under this category include
the work in [10]–[12]. Tang et al. [10], propose the Collecting
Lane-based Road Information via Crowdsourcing (CLRIC)
method. CLRIC automatically extracts detailed lane structure
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of roads by using data collected by vehicles. With the same tar-
get of building accurate lane-level information, the work pre-
sented in [11] enhances coarse, inaccurate maps through local
sensor information from a 3D lidar and a positioning system.
For a different ITS target, Ruhhammer et al. [12] present
an approach for extracting multiple intersection parameters
through analyzing logged data from a test fleet. Currently,
there is a focus on utilizing vehicular sensors for road condi-
tion monitoring services. The CS-Monitoring system in [13]
and the work presented in [14] are examples of this category
of applications. Further insights into the use of vehicles as
mobile sensors are presented in [15].

Although the above mentioned platforms are good examples
of using vehicles as mobile sensors in public sensing/MCS ser-
vices, they neglect the consideration of a recruitment scheme
to choose which vehicles will participate in the sensing task.
Most of them depend on specific pilot vehicles for evaluation
purposes. For use in practical situations, these platforms are
in need of some sort of a recruitment mechanism for selecting
participants.

B. Recruitment for Public Sensing
In the area of participant recruitment for public sens-

ing/MCS, a few models are available in the literature. These
models focus mainly on recruiting smartphones to utilize their
on-board sensors. Reddy et al. [16], propose a recruitment
framework that considers a participant’s availability and par-
ticipation habits for selection. To maximize the coverage of the
area of interest within a limited budget, Khullera et al. [17]
use the greedy solution of the budgeted maximum cover-
age problem. Their recruitment framework differs from the
proposed framework in that it does not consider on-move
availability as it is limited to smartphone use. In addition,
it does not consider availability and reputation simultaneously;
it supports selection by any of the metrics independently based
on user choice. Similar to [16], the recruitment framework
proposed in [18] does not consider on-move availability of
participants. The main objective of this recruitment framework
is to maximize the total tempo-spatial behavior similarity for
participants subject to reputation and budget constraints. Some
other models are proposed for recruitment purposes that do not
pay attention to the reputation of participants. A mechanism
that considers the location and budget constraints is proposed
in [19]. This mechanism depends on the Reverse Auction
pricing model [20] in which the participants bid for their
data, in contrast to the pricing model used in [16] where the
participants’ costs are identical, and to the dynamic approach
considered in our proposed pricing model. Although these
schemes can be effective at selecting smartphones, they are
not efficient for the recruitment of vehicles because they only
consider instantaneous sensing and coverage which is not
suitable for the wide scope of on-move sensing applications
supported by vehicular mobility.

A few schemes have been proposed in the literature for the
purpose of recruiting vehicles for crowdsourcing applications,
including public sensing. The solutions proposed in [21]
depend on mobility prediction for acquiring vehicle trajecto-
ries as indicators of the availability of participants. Their main

recruitment target is selecting participants to maximize cov-
erage with limited budget. Two solutions are proposed to
target different crowdsourcing application requirements. One
solution depends on a greedy heuristic algorithm, while the
other one is based on a genetic algorithm. Han et al. [22],
propose two algorithms for trajectory-based node selection in
vehicular crowdsensing. The algorithms differ in when they
acquire the vehicle trajectories and run the selection process.
An offline algorithm is proposed that assumes knowing a priori
which vehicles will be at the sensing area in addition to know-
ing the vehicle arrival times. The second algorithm handles
the selection process in an online manner to handle vehicle
dynamics. In this algorithm, the selection decision is made
on the fly once a vehicle arrives to the sensing area. These
two algorithms do not consider paying rewards/incentives back
to participants, therefore, they do not take the recruitment
budget into account. In our previous work in [23], we propose
the trajectory-based recruitment (TBR) scheme for recruiting
vehicles for urban sensing. The TBR scheme shares with the
proposed RTR framework consideration of the on-move avail-
ability of vehicles, but it only considers vehicle availability in
the selection process, whereas here we consider the reputation
and budget constraints. Although these vehicular recruitment
schemes improve on the smartphone-based schemes for use in
vehicular environments, they suffer from limitations and the
lack of trust in the quality of the reported data since they only
depend on participant availability for selecting participants and
ignore the important factor of participant reputation/behavior.

With these limitations of the available sensing platforms and
recruitment models, we are in need of efficient recruitment
frameworks that ensure the required coverage of the area of
interest with both reputation and budget considerations, and
in a way that utilizes vehicular mobility efficiently to support
the on-move sensing applications. These are the main features
of our recruitment framework presented in this paper.

C. Reputation Assessment
In the area of reputation/trust assessment, we classify the

assessment schemes into two main categories; redundancy-
dependent and redundancy-independent. In the former cate-
gory, the SP/truster responsible for computing a reputation
score for each participant depends on correlated readings
reported from other participants who are asked to do the
same task. The outlier detection technique [24] is commonly
used under this category. To compute a reputation score/trust
level of a reporter, outlier detection can be used to measure
the distance of the reported data value to a common value
(e.g., average of the correlated data) such that the shorter
the distance is, the higher the reputation/trust of the reporter.
The system presented in [25] is an example that uses outlier
detection for building a reputation system for smartphone-
based sensing applications.

In the second category, redundancy-independent, the truster
does not require redundant data to assess the reputation of a
specific participant. The truster depends on assessment metrics
that take the performance history of the trustee into consid-
eration, and/or depend on some current features associated
with the trustee’s device/data. The aforementioned recruitment
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Fig. 2. An example showing trajectory segments of vehicles in an event
area.

framework presented in [16] is an example of a system within
this category. Since in our framework we target recruiting
participants in a cost-effective manner, we do not consider
redundant coverage, unless required, as discussed later. There-
fore, we adopt the redundancy-independent category in our
reputation assessment scheme.

III. THE REPUTATION-AWARE, TRAJECTORY-BASED

RECRUITMENT FRAMEWORK

As a main component of a smart vehicle, the navigation sys-
tem plays a pivotal role in most of the vehicular applications
and services. In addition to providing navigational information
to the driver, the output of the navigation system is utilized by
a multiplicity of applications including safety, infotainment,
and diagnostics. We remark that with the assistance of this
system, the trajectories of vehicles can be easily acquired
and utilized as a precise indicator of vehicles’ availability.
As mentioned earlier, we consider the participants’ spatiotem-
poral availability as a main criterion for recruiting participants
and achieving a required coverage. By noting that vehicles’
trajectories overlap with sensing parameters (the sensing area
and duration) defined in the sensing request, we can tighten
our solution space to those that are spatiotemporally available
in the area of interest. In addition, as trajectories represent
on-move availability, they are suited for handling recruitment
for the wide scope of on-move sensing applications.

Members of the data collection process (drivers registered
with the service) will need to enter their destination before
starting their trip. This way, the service application can calcu-
late the trajectory and have it stored and ready to be accessed
by the SP when needed. To request a sensing task, an SP
sends sensing requests to the participants. The sensing request
defines the sensing task, the area of interest, and the time
span of the task. The on-vehicle service application then sends
relevant trajectory information (i.e., overlapping parts with
the sensing task) to the SP to start the selection process.
Fig. 2 shows an example of a trajectory segment solution space
existing in the targeted area of an event.

With the diversity of drivers’ behavior and vehicles’ capabil-
ities, considering reputation of participants and their reported
data is an important criterion that aids in distinguishing among
participants and picking those that ensure an adequate level of
quality. As in practice an SP responsible for the recruitment
process will have a budget cap that cannot be exceeded,
it is necessary to include a budget constraint in the selection
process. Bearing in mind this perspective, we present the
reputation-aware, trajectory-based recruitment (RTR) frame-
work that considers both the spatiotemporal availability and

reputation of participants while accommodating budget con-
straints in recruiting vehicles for public sensing services.
The RTR framework consists of three main modules:
1) a reputation assessment scheme used for computing a
reputation score for each candidate participant, 2) a dynamic
pricing model for computing a recruitment cost for each
participant based on his/her reputation score and the distance
traversed, and 3) a selection scheme for choosing the partic-
ipants to be recruited to achieve a required level of coverage
for the area of interest in a reputation-aware manner with cost
consideration. The outputs of the first two modules; the partici-
pants’ reputation scores and recruitment costs, are fed as inputs
to the selection scheme along with the vehicles’ trajectories
to start the selection process. In this section, we focus on the
selection part of the framework. The reputation assessment
scheme and the pricing model are detailed in the next section.

For the selection part, our earlier work [5] presented an
ILP formulation for the selection problem as a benchmark
for the sake of providing the upper bounds of the recruit-
ment solutions. In the following, we present greedy heuris-
tic solutions that follow the objective of the optimization
formulation. Such heuristic solutions are needed to handle real-
time services. In addition, we generalize the basic solution for
the selection problem to handle practical situations. Later in
this section, we elaborate on data acquisition models that are
supported by the proposed RTR framework.

A. System Model and Problem Formulation
We consider an area of interest A with a trajectory segment

set S of S segments spatiotemporally available in this area.
An arbitrary segment is denoted by i ∈ S. Each segment
i ∈ S is associated with a reputation score ri and a recruitment
cost ci computed using the reputation scheme and the pricing
model, respectively, as discussed in the next section. A budget
cap B and a reputation threshold RT h will be determined by
the SP interested in the recruitment process.

Based on the information available and the main recruitment
target, we can define our recruitment problem as follows.

Inputs:

A : Area of interest

S : Set of trajectory segments

B : Budget cap

RT h : Reputation threshold

Output:

S ′ ⊆ S : Covering Set of Segments

Problem Definition: Find a segment set S ′ ⊆ S that achieves
maximum coverage to the area A, satisfying a recruitment
objective while considering the reputation and budget con-
straints, ri ≥ RT h ∀ i ∈ S ′ and

∑
i∈S ′ ci ≤ B , respectively.

Since SPs would usually favor getting the covering solution
with the minimum cost, our recruitment objective targets
minimizing the total recruitment cost while achieving the
maximum available coverage.

It is worth mentioning that although Fig. 2 shows a straight
road, our model is not restricted to this road topology.
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The proposed model is generic and can support a multiplicity
of roads based on the fact that curved/non-straight roads can
be treated as a series of straight roads.

B. The Proposed Greedy Heuristic Solutions
By representing the area of interest and the overlapping

parts of participants’ trajectories with the area of interest
as intervals, we argue that our problem can be solved with
variations to the set cover problem (SCP) [26] altering it to
an interval cover one.

One of the variations of the SCP that considers a budget cap
in the selection process is known as the budgeted maximum
coverage problem (BMCP) [17]. The BMCP does not consider
the reputation-awareness part and its objective does not match
with our recruitment objective. Therefore, the solution for
the BMCP cannot be applied to our work. In the following,
we discuss our basic reputation-aware budgeted maximum
coverage (RBMC) solution in addition to an extended version,
RBMC-MC, that handles our recruitment objective.

1) The Reputation-Aware Budgeted Maximum Coverage
(RBMC) Greedy Solution: In the basic SCP, the input is a set
of elements E = {E1, E2, ..., Em} and a collection of subsets
H = {H1, H2, ..., Hn} s.t.

⋃

i
Hi = E . The goal is to find a

solution that covers the set E with the minimum number of
subsets from H. The greedy approximation solution proposed
for solving the SCP works through iterations to find the subset
that covers the maximum number of uncovered elements in
each iteration until all the elements in the set E are covered.

In our proposed RBMC solution, we alter the SCP to
consider covering an interval instead of a set of elements
and generalize it to accommodate the reputation and budget
constraints. The solution maps the collection of subsets to the
collection of trajectory segments and the domain of elements
to the area of interest to be covered. The basic RBMC solution
targets maximizing the coverage, which corresponds to the first
stage of the optimization formulation.

Algorithm 1 shows our basic RBMC solution. Let S be the
set of trajectory segments, G ⊆ S be the collection of segments
forming the selected covering set, and Wi be the length of the
interval (area) covered by segment i but not covered by any
segment in G. The algorithm consists of two main procedures.
The procedure REPUTATION_FILTER(S) is a pre-processing
step to filter out the segments with a reputation score ri below
the threshold RT h , and store those segments satisfying the
reputation constraint in U to apply the selection process on.
The procedure GREEDY_BUDGETED_COVERAGE(U) aims
at selecting the collection of segments G that maximizes Wi

without exceeding the given budget cap B . The output set
G holds the minimum number of segments achieving the
maximum available coverage with satisfying both the budget
and reputation constraints.

2) The Reputation-Aware Budgeted Maximum
Coverage With Minimum Cost (RBMC-MC) Greedy Solution:
An extended version of RBMC is the RBMC-MC solution
that handles the main recruitment objective of maximizing
the coverage while minimizing the total cost.

Algorithm 2 shows the common approach followed
in our RBMC-MC solution. After the pre-processing

Algorithm 1 The Reputation-Aware Budgeted Maximum
Coverage (RBMC) Solution

REPUTATION_FILTER(S)
begin
U ← φ
for all Si ∈ S do

if ri ≥ RT h then
U ← U ∪ Si

return U
end

GREEDY_BUDGETED_COVERAGE(U)
begin
G ← φ and C ← 0
while U 
= φ do

select Si ∈ U that maximizes Wi

if C + ci ≤ B then
G ← G ∪ Si

C ← C + ci

U ← U \ Si

update W j for each Sj ∈ U
for all Sj ∈ U do

if W j = 0 then
U ← U \ Sj

return G
end

REPUTATION_FILTER(S) procedure, the procedure
GREEDY_BUDGETED_COVCOST(U) is used to handle
the selection process. It works similarly to the GREEDY_
BUDGETED_COVERAGE(U) procedure in Algorithm 1,
aiming at selecting the collection of segments G that
maximizes Wi without exceeding B , with an added
condition that handles the case when there is more than
one trajectory having the same coverage weight Wi . In this
case, the procedure selects the one with the minimum
recruitment cost ci . The output is the covering set G. A final
post-processing step is included in the algorithm to improve
the output towards the recruitment objective. In this step,
handled through the POST_PROCESSING(G,U ′) procedure,
the algorithm works on reducing the redundant coverage in
the covering set through replacing each selected trajectory
in G with another trajectory from the reputation-filtered set
U ′ that has the same unique coverage and shorter length than
the replaced one, if there is any.

C. Practical Considerations

Our main recruitment problem assumes complete confi-
dence in vehicle trajectory information and equal importance
of road parts. In practical scenarios, such an ideal case is not
guaranteed. In the following, we discuss two generalized cases
of the basic problem. These generalized cases reflect practical
situations the SP would face during the recruitment process.
These are: i) having a probability that a vehicle will not stick to
the trajectory it announced, and ii) having events that require
redundancy at some parts of an area of interest.
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Algorithm 2 The Reputation-Aware Budgeted Maximum
Coverage With Minimum Cost (RBMC-MC) Solution
U ← RE PU T AT I O N_F I LT E R(S) //as in Algorithm 1

GREEDY_BUDGETED_COVCOST(U)
begin
G ← φ, C ← 0, and U ′ ← U
while U 
= φ do

select Si ∈ U that maximizes Wi

if there are many candidates with the same maximum
Wi then
select Si ∈ U that maximizes Wi and minimizes ci

if C + ci ≤ B then
G ← G ∪ Si

C ← C + ci

U ← U \ Si

update W j for each Sj ∈ U
for all Sj ∈ U do

if W j = 0 then
U ← U \ Sj

G ← P OST _P ROC E SSI NG(G,U ′ )
return G
end

POST_PROCESSING(G,U ′)
begin
for all Sk ∈ G do

if there is a segment Si ∈ U ′ with the same unique
coverage of Sk and length(Si ) < length(Sk) then
replace Sk with Si

update the unique coverage of all Sk ∈ G
return G
end

1) Case I: RTR With Probability of Leaving: In realistic
scenarios, it is not guaranteed that a vehicle will stick to its
announced trajectory. We consider a generalized case of the
basic selection problem that assigns different probabilities of
sticking to the announced trajectory.

For each vehicle, we calculate a degree of confidence Di

(such that 0 ≤ Di ≤ 1) based on the participation history of
this vehicle assuming that it was involved in earlier tasks. Di is
computed as the average of traversed portions of the segments
in the past interactions. For first-time participants, Di is set
to 0.5 as an average of the potential Di values. Based on the
calculated degree of confidence, a probability of sticking to the
announced segment of trajectory i , p(i, y), ∀y ∈ i , is defined
as follows

p(i, y) =
{

1 if y ≤ Di

0 if y > Di
(1)

where y is a location point on trajectory i and is normalized
to be in [0, 1] to ease mapping to Di values.

Having p(i, y) equal to 1 means that the vehicle will cover
this segment and having it equal to 0 means that this part is not
covered by this vehicle. To compensate for having a part of a
vehicle’s trajectory with a probability of being not traversed

Fig. 3. An example of RTR with probability of leaving. In part (a), each
segment is mapped to a probability distribution based on its corresponding Di .
Part (b) shows the projected segments.

by the vehicle (not covered), this part should be covered by
another vehicle with probability 1. To handle this case, the use
of the proposed greedy algorithms can be adjusted as follows

(i) For each trajectory i , calculate p(i, y) based on the
computed Di .

(ii) Map the announced segment of trajectory i to a projected
one based on p(i, y).

(iii) Apply the greedy algorithms on the projected segments
to achieve coverage.

The example in Fig. 3 shows the first two steps of the
procedure above. We highlight that with probability of leaving,
more segments are needed to ensure coverage compared to the
case with full confidence of sticking to the trajectory.

It may happen, when considering the probability of leaving,
that coverage of a specific area may be intermittent if there
are no vehicles satisfying the constraints to compensate the
part of the segment with a probability of coverage less than 1.
To handle this case, two different approaches can be deployed
based on the criticality of the service as follows.

If the service is delay-critical, coverage should be achieved
in the exact duration of the event, otherwise, data generated
and reported will be obsolete. In this case, the greedy algo-
rithms can be used to provide the maximum coverage possible
at that time. If the service is delay-tolerant, the greedy algo-
rithms can be adjusted such that if a solution with the required
coverage cannot be achieved, the algorithms will report a
failure and they can be re-run at a later time. Re-running the
algorithm should be accompanied with a maximum threshold
of re-runs based on the delay-tolerance of the service.

Intermittent coverage may also happen in sparse environ-
ments, or when the penetration rate of the service and its
application are not high enough in some areas. These two
cases can be handled in the same way discussed above.

2) Case II: RTR With Redundancy Requirements: The basic
problem assumes that only one vehicle is needed to monitor
a point of interest. In practical situations, the SP may require
readings from multiple vehicles monitoring the same area to
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Fig. 4. An example of RTR with redundancy requirements. The area of
interest is divided into 5 main parts each with a degree of importance based
on its proximity to the event.

achieve a certain level of reliability. We adapt the basic case
to give an SP the ability to determine the level of redundancy
needed by determining the degree of importance for different
parts of the area of interest. For example, as shown in Fig. 4,
in the case of a severe accident, an SP may ask for different
degrees of importance relative to the location of the accident
with the highest degree at the exact location of the accident,
and lower degrees farther from the accident.

In order to handle this case, we define the degree of
importance stated by the SP for each part of the area of interest

to be Irp , where
m⋃

1
r p = A, and m is the number of parts

the area of interest A is divided into. Irp is translated to the
number of vehicles needed to monitor part r p in the area.
The RBMC and RBMC-MC algorithms can be adjusted to
handle this case. Each part can be divided into sectors and the
algorithms can be adjusted to ensure that each sector in a part
with Irp = g has g vehicles covering it through selecting more
segments using the same selection procedures until satisfying
each sector’s redundancy requirement, as long as the budget
constraint allows for it.

We remark that the case with redundancy and probability
of vehicles leaving is a straightforward extension.

D. Data Acquisition Models

When collecting data, smart vehicles can follow different
models for data acquisition. We consider two models: solicited
and unsolicited. These models differ in when data is generated.

1) The Solicited Model: In this model, data acquisition
is done on-demand upon a request from an SP. While on
the go, vehicles receive requests for sensing tasks. Based on
the availability of resources at that moment, the application
installed on the on-board unit of the vehicle can decide if the
vehicle is ready to participate or not (i.e., accepting the sensing
request or declining it). This type of handling sensing tasks
without intervention from the driver or any of the vehicle’s
occupants falls under the “opportunistic” category of public
sensing [27].

In addition to handling service requests initiated by an
SP, this model can also handle requests initiated by a data
consumer through an SP.

2) The Unsolicited Model: In this model, vehicles sense
their surroundings, collect data, and store it without being
tasked. When an SP needs some information about an area

of interest, the provider can check which vehicles having
data stored about that area. After selecting the data holders,
the SP informs them to send the stored data. This model can
involve some sort of advertisements by vehicles about the data
they carry. Such advertisements can be handled by metadata
that describes the actual data and lists some of its features
(e.g., when and where they are generated).

The unsolicited model is only suitable for the delay-tolerant
services that allow storing data and reporting it at a later time.
An example of such services is using vehicles for monitoring
road conditions.

The proposed RTR framework supports these two data
acquisition models. In the solicited model, the trajectories
considered for recruitment are those that vehicles are supposed
to follow and can be retrieved from the navigation software.
For the unsolicited model, the trajectories are those that
vehicles have already traversed and stored sensed data.

IV. REPUTATION ASSESSMENT AND

RECRUITMENT PRICING

In this section, we present our reputation assessment scheme
and pricing model that are responsible for computing a repu-
tation score and a recruitment cost for each participating vehi-
cle, respectively. These parameters are used by the selection
module as discussed in the previous section.

A. Reputation Assessment

In assessing the reputation of a participant, the data acqui-
sition model controls the metrics used for assessment and
computing a reputation score. In the following, we delineate
how the reputation score can be computed for each participant
according to the data acquisition model to be used.

1) Reputation Assessment in the Solicited Model: Since in
the solicited model data will be collected after the participant
gets tasked, the computed reputation score will help in antic-
ipating the behavior of the participant and the quality of the
reported data. The score will be used in the selection process
as the expected reputation of the participant.

a) Computing the reputation score: We adopt the Beta
reputation system [28] for computing a reputation score, r , for
each candidate participant. The Beta system is used in
reputation and trust management systems for computing
reputation/trust scores for a set of trustees by a centralized
truster interacting with them. In our reputation assessment
scheme, we consider the truster to be the SP responsible for
the recruitment process and the trustees to be the candidate
participants.

The use of the Beta system for computing a participant’s
reputation score involves computing two variables x and y
based on the past interactions with the participant. The system
parameters α and β are computed based on the x and y values
according to Eq. 2. The reputation score is computed as the
expectation of the Beta distribution of the computed α and β,
as in Eq. 3.

α = x + 1 and β = y + 1, where x & y ≥ 0 (2)

E(p) = α

α + β
(3)
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One of the approaches used in the Beta system for com-
puting its x and y variables involves the assessment of
the participant after an interaction with the SP and pro-
viding the assessment as a single value v in the [0,1]
range. Then, the x and y values can be computed according
to Eq. 4.

x = w
(1 + v)

2
and y = w

(1− v)

2
(4)

We adopt the approach above in computing the reputation
score in the solicited model. After an interaction with a
participant i , the SP computes a per-interaction assessment,
as discussed later, and plugs the assessment value vi into Eq. 4
for computing the xi and yi parameters with considering the
weight w to be 1. These parameters are used for computing αi

and βi according to Eq. 2. The expectation of the score, E(p)i ,
can be computed according to Eq. 3. Then, the expected score
is used as the participant’s reputation score after normalizing
it to be in the [0,1] range as shown in Eq. 5.

r ′i = [E(p)i ]norm = E(p)i − min(E(p))

max(E(p))− min(E(p))
(5)

In the aforementioned procedure, only the last interaction
with a participant is used for computing the reputation score.
Ignoring the historical information (i.e., the past contributions)
may be misleading if the participant has an uncommon per-
formance in the latest interaction. In our scheme, we con-
sider the last n interactions with a participant for computing
his/her reputation score. If the SP has encountered more
than n interactions with that participant, a sliding window
of length n will be considered when the score has to be
updated after an interaction with that participant. For each
interaction, the assessment value v is computed followed by
the computation of the corresponding x and y parameters.
Aggregated x and y values of the n interactions are computed
as in Eq. 6.

xag =
n∑

j=1

λ(n− j )x j and yag =
n∑

j=1

λ(n− j )y j (6)

where xag and yag are the aggregated x and y values,
respectively. The parameter λ is an aging factor used to give
lower weight to the old contributions than the recent ones
such that 0 ≤ λ ≤ 1 [28]. Then, the xag and yag are used for
computing αag and βag according to Eq. 2, which are used for
computing E(p)ag as in Eq. 3. The final reputation score to be
considered in the recruitment process is computed as follows
for participant i

reputation score(ri ) = [E(p)agi ]norm (7)

where [E(p)agi ]norm is E(p)ag of participant i normalized to
the [0,1] range using Eq. 5.

b) Per-interaction assessment: A participant’s reputation
score in the solicited model is computed based on per-
interaction assessments as discussed above. In this part,
we discuss how the per-interaction assessment is handled and
define the different metrics that are used for computing the
assessment value (v).

Fig. 5. The reputation metrics used in the solicited model.

The per-interaction assessment value is computed based on
three main metrics: 1) Participation Commitment, 2) Quality
of Information (QoI), and 3) Trust Level. The first two main
metrics involve underlying sub-metrics as delineated below
and shown in Fig. 5.

(i) Participation commitment: For assessing the com-
mitment of a participant, two metrics can be considered as
follows.

1) The confidence of sticking to the announced
trajectory (CoT): It may happen that a participant
does not stick to the trajectory announced to the
SP either intentionally or for a sudden detour. For
a contribution j by participant i , this metric can be
assessed as a binary variable as shown below:

CoT j
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i traversed the whole announced

trajectory

0 if i did not stick to the whole

announcedtrajectory

(8)

2) The willingness to participate (WP): We represent a
participant’s willingness as the number of times that par-
ticipant has participated in an evaluation period, e_prd ,
ending with that last interaction (e.g., e_prd can be
a 1 month period). This number is then normalized to
be in the [0,1] range taking into consideration the values
achieved by the other candidate participants. Let the date
of an interaction j to be Dt j , the value of the willingness
metric of participant i performing j can be computed as

W P j
i = [no. of partici pationsi |Dt j

Dt j−e_prd]norm

(9)

The values of these two metrics are combined using a
weighted additive utility function to compute the participation
commitment, P , of a participant i after a contribution j ,
as follows

P j
i = wP

1 × CoT j
i + wP

2 ×W P j
i (10)

where wP
l is the weight of each metric such that

2∑

l=1
wP

l = 1.
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Fig. 6. An example of inverse Gompertz function with a = c = 1 and
b = 2 × 10−4 for t_dr = 10.

(ii) Quality of information (QoI): We consider three
main metrics that can give a valuation of the quality of the
reported information.

Timeliness (TM): Timeliness represents how promptly a par-
ticipant sends the required information after getting assigned
a sensing task. The timeliness value is the highest when the
reply is promptly sent after the task assignment. Let the reply
time be (Tr ), the task assignment time be (Ta), and the task
duration be (t_dr ). The timeliness value is at its maximum
when the difference between Tr and Ta (di ft ) is almost 0 and
it decreases exponentially as that time difference increases.
We use the inverse Gompertz function, shown in Fig. 6,
to evaluate timeliness as its shape is compatible with the
timeliness evolution discussed above. The lower asymptote of
the general inverse Gompertz function is 0 and the function
approaches it in infinity. In our case, we need the function to
reach 0 when di ft exceeds t_dr as that means the reported
information is useless. In short, we can measure the timeliness
value of the information reported by participant i in interac-
tion j using the inverse Gompertz function if di ft does not
exceed t_dr , and assign it 0 otherwise. This is summarized
in Eq. 11.

T M j
i (di ft ) =

{
ae−bec(di ft ) if di ft ≤ t_dr

0 otherwise
(11)

The parameter a of the inverse Gompertz function rep-
resents the higher asymptote which is equal to 1 in our
case since the maximum of the Timeliness value is 1. The
parameters b and c represent the displacement on the x-axis
and the decay rate, respectively. We need the function to be
as close to 0 as possible at di ft = t_dr . This fact directs
the assignment of the parameters b and c. By assigning c the
value 1, the value of b that lets T M j

i (di ft ) close to 0 (let it
be 0.01) at di ft = t_dr can be computed as follows

b = −ln(0.01)

et_dr
(12)

Relevance (RL): Relevance of the reported information
to the sensing task can be spatial, temporal, or both. The
spatial relevance (S_RL) measures the portion of the reported
information that spatially fits in the area of interest declared
in the sensing task. Per a participation report, it can be

computed as the length of the covered area overlapping with
the area of interest (l_overlap) to the total length of the
covered area (l_total). This computation is shown in Eq. 13
for information reported by participant i in interaction j .
The temporal relevance (T _RL) measures the portion of
the reported information that timely fits in the task interval
(t_inter ). Considering the start and end times of the reported
information, it can be computed as the length of the reporting
duration overlapping with t_inter (d_overlap) to the total
length of the reporting duration (d_total). We show this
computation in Eq. 14 for information reported by participant i
in interaction j . For computing the spatiotemporal relevance,
which is the value that represents our RL metric, we multiply
the S_RL and T _RL values, as shown in Eq. 15.

S_RL j
i =

l_overlap j
i

l_total j
i

(13)

T _RL j
i =

d_overlap j
i

d_total j
i

(14)

RL j
i = S_RL j

i × T _RL j
i (15)

Quality of Resources (QR): For assessing this metric,
a hashtable can be created with a record for each brand
model and a corresponding weight based on its features and
manufacturing year.

The values of these three metrics are also combined using
a utility function as shown in Eq. 16 to compute the QoI, Q,
reported from a participant i after a contribution j , per

Q j
i = w

QS
1 × T M j

i +w
QS
2 × RL j

i + w
QS
3 × Q R j

i

where
3∑

l=1

w
QS
l = 1 (16)

(iii) Trust level: The trust level (TL) metric measures
how much a candidate participant is reliable and can be trusted
to perform a task. Some participants may behave deceit-
fully seeking to maximize their own gains. Other malicious
participants may provide incorrect data with the purpose of
degrading/misleading the service to be provided. This metric
is used to detect and disqualify such malicious/untrusted
participants. Many techniques can be used to measure the
TL value of a participant after an interaction. These techniques
vary based on the nature of the task that participant has
performed and is being assessed after, and the type of sensors
used. For example, if the task involved using the on-board
camera for capturing on-road images or videos, the viability
and correctness of the reported images/videos can be evaluated
using image processing algorithms to measure the degree
of feature matching between past images of the road/object
defined in the sensing task and the images/videos of this
road/object reported by the participant. This degree of match-
ing is an indicator of the participant’s reliability and can be
used as his/her TL. Other sensing tasks may involve reporting
raw sensing data such as traffic volumes and pollution levels.
In such cases, the reported value can be compared to the
range of expected values computed based on the average of
past values. The degree of closeness to the expected range
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Fig. 7. The reputation metrics used in the unsolicited model.

can represent the TL of the reporter. The computed TL value
should be normalized to the [0,1] range before plugging it into
Eq. 17 of our assessment scheme.

Finally, the per-interaction assessment, v, of a participant i
after a contribution j is computed by combining the partic-
ipation commitment (P j

i ), the QoI (Q j
i ), and the trust level

(T L j
i ) using the following additive utility function

v
j
i = wv

1 × P j
i +wv

2 × Q j
i +wv

3 × T L j
i where

3∑

l=1

wv
l = 1

(17)

2) Reputation Assessment in the Unsolicited Model: Com-
puting reputation scores in the unsolicited model primarily
depends on the advertised metadata that gives an insight into
the quality of the to-be-retrieved data.

a) Computing the reputation score: Two main met-
rics can be used for assessing the reputation in the unso-
licited model: 1) Quality of Information (QoI) and 2) Trust
Level (TL). The QoI metric involves underlying sub-metrics
as shown in Fig. 7. Since the being-assessed data has been
already captured, the participation commitment metric is not
needed in this model.

The assessment needed for computing a reputation score
for a participant involves two parts; pre-interaction and post-
interaction. Since the data to be collected has been already
measured, the evaluation of the QoI metric and its sub-metrics
is handled using a pre-interaction assessment before selecting
the participants based on the features of the data they hold
and the features of the data-holding vehicles themselves.

The post-interaction assessment is done by the SP after
each interaction with a participant to compute his/her TL. The
results of the post interaction assessments are stored for future
use to be utilized for computing an expected TL value for a
participant. This expected TL is combined with the computed
value of the QoI metric corresponding to the data advertised by
that participant, resulting in a reputation score to be considered
in the selection of that participant. The aggregation of the past
TL post-interaction assessments for computing the expected
TL value is handled using the Beta system following the same
steps detailed in the system use in the solicited model.

After computing the expected TL value of partici-
pant i (T Li ) and the QoI of the data advertised by that
participant (Qi ), these two values are combined using an

additive utility function to compute the reputation score (ri )
to be considered in the selection process. This computation is
shown below.

ri = wr
1 × Qi +wr

2 × T Li where
2∑

l=1

wr
l = 1 (18)

In the following, we detail how the pre-interaction and post-
interaction assessments are handled.

b) Pre-interaction assessment: This assessment is used
for computing the QoI value of the data advertised by a
participant right before considering the participant in the
selection process. The two metrics we use for computing
the QoI value are the freshness of the advertised data and
the holding vehicle’s quality of resources.

Freshness (FR): Let the information acquisition time be
Tq and the time of information collection by the SP be Tc.
Freshness evaluates how recent this measured information
is such that the minimal the difference between Tc and Tq

(di f f ) is, the higher the freshness value is. The freshness value
decreases as di f f increases. We also use the inverse Gompertz
function to represent the freshness evolution and evaluate its
value. The information to be considered is bounded by a time
window with length (w_len) such that if di f f exceeds w_len,
the information is useless and its freshness value is assigned 0.
Eq. 19 summarizes how the freshness value of the information
hold by participant i is computed.

F Ri (di f f ) =
{

ae−bec(di f f )

if di f f ≤ w_len

0 otherwise
(19)

with having a = c = 1 and b computed as in Eq. 12 replacing
t_dr with w_len.

The Quality of Resources (QR) can be computed as dis-
cussed under the solicited model.

The values of these two metrics are combined using a utility
function as shown in Eq. 20 to compute the QoI (Q) of the
data advertised by participant i .

Qi = w
QU
1 × F Ri +w

QU
2 × Q Ri where

2∑

l=1

w
QU
l = 1

(20)

c) Post-interaction assessment: This assessment is used
for computing a TL value of a participant after an interaction.
The TL metric is used for the same purposes aforemen-
tioned under its use in the solicited model; yet, different
techniques of measuring the TL value can be used. Since
the unsolicited model involves advertisements of the carried
data through metadata, a matching evaluation can be used that
involves comparing the advertisement metadata (adv_meta)
received by the SP and corresponding metadata extracted
from the received data (rec_meta). A similarity function
fsm(adv_meta, rec_meta) → s can be used for such a
comparison resulting in a similarity score s, in the [0,1] range,
representing the matching degree between adv_meta and
rec_meta. The similarity score s is an indicator of the reporter
reliability and can be used as his/her TL as summarized in
Eq. 21 for participant i after an interaction j . Many similarity
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functions are proposed for data matching in semantic web and
data management applications, with the simple string matching
being the basic form [29].

T L j
i = s = fsm(adv_meta, rec_meta) (21)

The T L j
i is mapped to the v

j
i value to be plugged into Eq. 4

of the Beta system to initiate its operation targeting computing
the expected T Li value.

B. Pricing Model

Taking reputation into consideration along with participant
availability, a dynamic pricing model that computes partici-
pants’ rewards based on their reputation score can be adopted.
Reward/price assigned to each participant is proportional to
distance traversed (a measure of availability) as well. We com-
pute a participant price pri which, in turn, is the cost ci

incurred by the SP for recruiting participant i , as follows

ci = Cinit + (Cm ∗ di ∗ ri ) (22)

where Cinit is a constant initial reward paid to incentivize
participants; Cm is a constant cost per meter determined by
the SP; di and ri are the covering distance (in meters) and
reputation score of participant i , respectively, ∀ i ∈ S.

For flexibility of implementation, the rewards and costs are
represented as a number of tokens that can be mapped to any
form of incentives by the SP.

It is worth mentioning that the operation of the recruitment
framework is generic and is not restricted to the use of the
assessment scheme and pricing model presented above.

V. PERFORMANCE EVALUATION

In this section, we present numerical results of the proposed
RTR selection scheme comparing the ILP optimization and
greedy heuristic solutions of the main recruitment objective
targeting maximizing the coverage while minimizing the total
recruitment cost (which we refer to as MinCost in the ILP and
RBMC-MC in the heuristics). The results of the ILP optimiza-
tion represent upper bounds of the budgeted reputation-aware
recruitment that can be achieved. In addition, to show the gain
achieved through minimizing the recruitment cost, we compare
the solutions to solutions targeting only the maximum cover-
age (which we refer to as MaxCov in the ILP and RBMC in the
heuristics). The solutions are compared in terms of the ratio of
achieved coverage and the total recruitment cost. In addition,
we consider two more metrics that show the quality of the
sensed data collected by the selected participants. The first
metric is the amortized quality index (AQI) indicating the
overall quality of sensing averaged over the selected group
of participating vehicles. The AQI is computed as the average
QoI, avg(Qi ), of the selected participants. The other metric is
the trustworthiness index (TI) that indicates the level of trust
in the viability and correctness of the collected data over the
selected vehicles. The TI metric is computed as the average
of [Q Ri × T Li ] of the selected participants. We also study
the effect of changing the reputation threshold RT h , while
keeping the density of vehicles fixed through comparing the
two heuristic solutions considering different values of RT h .

Considering the practical challenges, we also assess the
coverage achieved by the selection scheme with probability
of vehicles leaving their announced trajectories. We evaluate
the RBMC solution considering different ranges of the degree
of confidence Di .

All the shown results represent the average results of
running the algorithms for 1000 rounds per comparison.

A. Implementation Setup

We use Gurobi 5.6.3 [30] to solve the ILP optimization
formulation with Matlab as a simulation environment. The
greedy heuristic algorithms are implemented in C++. We sim-
ulate an area of interest of 5K m divided into 100 road sectors,
each is 50 meters long. The vehicular trajectories are randomly
generated within that area of interest. Cinit is set to 1, Cm is
set to 0.01, and RT h is set to 0.5.

We consider the reputation assessment under the solicited
model since the assessment under the unsolicited one is
much simpler. Our reputation assessment scheme is applied to
compute a reputation score ri ∀ i ∈ S. For each participant i ,
the CoTi metric is assigned the value 1 as we do not assume
a probability of leaving in the basic comparisons. The W Pi ,
T Mi , RLi , and T Li values are randomly generated in the [0,1]
range. The QoR hashtable has 10 records each associated with
a value in the [0.5,1] range. The values of the participation
commitment (Pi ) and QoI (Qi ) metrics are then computed
based on Eqs. 10 & 16, respectively. The per-interaction
assessment (vi ) is computed based on Eq. 17. Equal weights
are given to the underlying metrics in each utility function.
The final reputation score (ri ) is computed using the Beta
reputation system as discussed in Section IV-A-1. We consider
only one interaction in computing the reputation score (n = 1)
for simplicity, since considering more past interactions will not
affect the overall performance comparison.

We apply our pricing model to compute ci according to
Eq. 22 ∀ i ∈ S.

B. Numerical Results and Analysis

For the comparison between the ILP and heuristic solutions,
we first compare them in terms of the first two metrics with
a budget cap that allows for achieving full coverage to the
area of interest (B is set to 100). Fig. 8 shows the results of
this comparison for various densities of vehicles (number of
vehicles per area of interest). In terms of the ratio of achieved
coverage, Fig. 8(a) shows that all the solutions achieve the
same coverage as they all work on achieving the maximum
coverage that can be provided by the available trajectories.
No restrictions on the number of chosen trajectories are
encountered since the budget cap allows for that. With increas-
ing the vehicle density, the solutions succeed in achieving
better coverage since the opportunity that more road sectors
have vehicles passing by increases. In Fig. 8(b), the solutions
are compared in terms of the total recruitment cost. The results
show that RBMC-MC achieves better performance compared
to the other heuristic solution, and with a slight increase to
the lower bound achieved by the ILP MinCost.
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Fig. 8. Performance results with B = 100 and full coverage can be achieved.
(a) Ratio of coverage with varying densities. (b) Total recruitment cost with
varying densities.

Fig. 9. Performance results with B = 30 and only partial coverage can be
achieved. (a) Ratio of coverage with varying densities. (b) Total recruitment
cost with varying densities.

Second, we perform the same comparison but with a strict
budget cap that only allows for achieving partial coverage
(B is set to 30). Results are shown in Fig. 9. In terms
of the achieved coverage ratio, Fig. 9(a) shows that the
RBMC-MC solution succeeds in achieving higher coverage

Fig. 10. The tradeoff between the AQI and ratio of coverage. (a) The tradeoff
between the AQI and coverage with varying reputation thresholds. (b) The
tradeoff between the AQI and coverage in RBMC-MC with varying densities.

than the basic RBMC. The reason is that while RBMC-MC
selects a trajectory/vehicle, it tries to minimize the recruitment
cost. Therefore, it manages to recruit more vehicles, hence,
achieving higher coverage using the same budget cap. The
optimal coverage achieved by the ILP solutions is slightly
higher than the best coverage achieved by the heuristics
through RBMC-MC. In terms of the recruitment cost, Fig. 9(b)
shows that all the solutions incur almost the same total
recruitment cost. The reason is that all the solutions try to
achieve their objectives limited by the budget cap, therefore,
their total recruitment cost will always be close to the limited
budget cap.

In terms of evaluating the reputation and quality of sensed
data, Fig. 10 shows the results related to the AQI metric.
In Fig. 10(a), we show the effect of increasing the reputation
threshold on both the ratio of coverage and the AQI consid-
ering the RBMC algorithm with different densities (100, 300,
500 vehicles per the area of interest). The results show that
with increasing the reputation threshold, the ratio of coverage
decreases due to the decrease in the number of candidate par-
ticipants, while the AQI increases due to raising the reputation
bar, resulting in a tradeoff. As expected, in RBMC, changing
the vehicular density for the same reputation threshold has
no effect on the AQI value. The reason is that even with
increasing the number of candidate vehicles, the average
reputation over the selected participants stays the same since
the RBMC solution only focuses on the unique coverage
of the candidate participants, given that they are all having
reputation within the defined range. On the contrary, we can
see in Fig. 10(b) that with using the RBMC-MC algorithm,
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Fig. 11. The tradeoff between the TI and ratio of coverage. (a) The tradeoff
between the TI and coverage with varying reputation thresholds. (b) The
tradeoff between the TI and coverage in RBMC-MC with varying densities.

the AQI value decreases with increasing the vehicular density
while maintaining the same reputation threshold. The reason is
that since the RBMC-MC algorithm works on minimizing the
cost, with increasing the vehicular density the algorithm may
select less expensive options which are linked to participants
having lower reputation resulting in lower AQI. Apparently,
with increasing the density, the ratio of coverage increases
resulting in a tradeoff between the AQI and coverage in this
case as well. Fig. 10(b) shows these results for different
reputation thresholds (0.3, 0.5, and 0.7).

The results involving the TI metric are shown in Fig. 11.
The same above discussion related to the AQI metric applies
to the TI metric. Fig. 11(a) shows that there is a tradeoff
between the ratio of achieved coverage and the TI value
of the covering set with changing the reputation threshold.
Fig. 11(b) shows that the same tradeoff is maintained under the
RBMC-MC algorithm while changing the vehicular density.

We study the effect of changing the reputation threshold
RT h on the total recruitment cost while keeping the density of
vehicles fixed (200 vehicles per the 5Km area). We compare
the performance of the two heuristic solutions with differ-
ent values of RT h . As expected, Fig. 12 shows that with
increasing RT h , the total recruitment cost increases and the
two solutions converge because they all get restricted to very
limited options which are the vehicles with ri above/equals to
the threshold.

Finally, we assess the coverage achieved by the RTR
framework with probability of vehicles leaving their
announced trajectories. We compare the RBMC solution con-
sidering this probability with four different ranges of the

Fig. 12. Total recruitment cost with varying reputation thresholds.

Fig. 13. Coverage assessment for different ranges of the confidence degree.

degree of confidence Di . In Fig. 13, we present the assessment
results obtained with these four ranges of Di considering
different densities of vehicles available in the area of interest.
The results show that, in a dense environment (400-500 vehi-
cles in the 5Km area), even with low values of Di (high
probabilities of a vehicle not sticking to its trajectory), our
framework achieves a high coverage ratio. This is attributed
to the fact that the selection scheme includes sufficient vehicles
in the covering set to compensate for probabilities of leaving,
which enhances the reliability of our framework. In a sparse
environment (100 vehicular densities), the achieved coverage
ratio is lower because of the non-sufficient availability of
covering vehicles. We remark that RBMC-MC with probability
of leaving, and RBMC with redundancy and probability of
leaving are straightforward extensions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the reputation-aware, trajectory-
based RTR framework for recruiting vehicles for public
sensing services. The framework utilizes the spatiotemporal
availability of participants and their reputation to select a set
of vehicles that achieves coverage of an area of interest with a
budget cap. We proposed a reputation assessment scheme and
a pricing model as parts of the framework that are used to
feed the third module, the selection scheme, with a reputation
score and a recruitment cost of each candidate participant to
start the selection process. In a previous work, we formulated
the selection problem as an ILP optimization problem for a
main recruitment objective; maximizing coverage with mini-
mum cost. In this paper, we presented greedy heuristic solu-
tions that handle the aforementioned recruitment objective for
real-time services. The RTR framework generalizes the basic
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selection case to some practical cases that an SP faces during
the recruitment process such as probability of a vehicle not
sticking to its announced trajectory and having redundancy
requirements. The performance evaluation results showed that
the proposed greedy heuristics achieve results close to the opti-
mal benchmarks and succeed in efficiently handling cases with
high probabilities of vehicles not sticking to their trajectories.

Our future work includes investigating techniques from the
computational geometry field that can be used for solving the
trajectory-based selection process and comparing them to our
greedy heuristics. We plan also to study the use of auction-
based pricing in our framework for having the participants bid
for their prices instead of computing them by the SPs.
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