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Abstract: The proliferation of the Internet of Things (IoT) has revolutionized traditional services,
giving rise to emerging smart infrastructures by connecting the physical and digital worlds. Sensory
data is essential in IoT-based systems for providing context-aware and location-based services. Hence,
the accurate localization of IoT devices is paramount. Anchor misplacement can significantly affect
location information and coverage services in IoT. We study the effect of anchor misplacement in
typical IoT settings where sensors are randomly deployed, can be mobile, and may belong to multiple
providers. We identify sensing coverage holes formed by anchor misplacement and analyze their
presence and impact. To mitigate the impact of anchor misplacement on network reliability, we
propose a framework to identify the affected sensor nodes and then identify and remove misplaced
anchor nodes. The validity of our approach is verified, and its effectiveness is demonstrated by
several experiments with different network topologies and parameters. Our results are promising
and can be utilized in multiple coverage applications, such as smart agriculture systems and habitat
monitoring, regardless of the sensors or deployment types. It also sheds light on best practices and
methods for a reliable design of IoT-based systems.

Keywords: wireless sensor network; Internet of Things (IoT); IoT deployment; localization; sensing
coverage; reliable services; intra-triangle coverage; Delaunay triangulation

1. Introduction

As the Internet of Things (IoT) applications expand into many different domains, it is
important to consider the reliability of these services. The sensors’ physical location and
sensing coverage are two primary services of IoT applications, and these services must be
delivered reliably for the IoT to be successful. In this research, we concentrate on improving
IoT localization and sensing coverage by building upon our previous work found in [1].

The location of sensors and sensing coverage are directly influenced by the strategic
deployment of nodes, ensuring efficient data collection and monitoring.

The methodologies for deploying sensor nodes depend on various factors, including
the specific application, dimensions of the targeted area, degree of knowledge about the
node density and positions, as well as the accessibility of the target region. Generally, two
primary deployment approaches can be identified: deterministic and random. The deter-
ministic deployment approach considers several predetermined factors, such as network
topology, sensor positioning, inter-sensor distance, and density. This method of sensor
deployment offers greater control over resource constraints. Energy consumption optimiza-
tion is typically the primary metric in many deterministic deployment strategies [2–4]. A
common example of this type is grid-based deployment, which includes hexagonal, square,
and equilateral triangular patterns. The equilateral triangle configuration provides full
coverage while minimizing the required sensor nodes [5]. The Art Gallery problem is a
traditional problem of this type of deployment [6], where the objective is to position the
minimum number of sensors to ensure complete monitoring of every point in the gallery.
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In contrast to deterministic deployment, random deployment lacks information regard-
ing the network topology and the specific positions of sensors. This mode of deployment
is well-suited for extensive networks in harsh and remote environments, such as forests,
mountainous regions, and hazardous locations, such as chemical leak sites and nuclear
facilities. Nevertheless, random deployment cannot ensure complete sensing coverage [7].
Continuously maintaining all sensors in an active state results in rapid energy consumption,
ultimately leading to network disconnection. As a consequence, some regions within the
network may not receive sensing reports [8,9].

In both deployment methodologies, the communication between sensor nodes them-
selves and sensor and anchor nodes can be classified as either single-hop or multi-hop. Due
to the increased transmission power required for longer distances, sensors with limited
power reserves utilize shorter transmission ranges to conserve energy. As a result, the
collective sensing data is transmitted from the originating node to the destination through
multiple intermediate nodes or relays. Conversely, sensor nodes equipped with a continu-
ous power supply maintain the capacity for single-hop communication with a sink node,
enabling direct peer-to-peer exchanges.

1.1. Localization in IoT Networks

The Internet of Things (IoT) establishes a large-scale network composed of diverse
sensor-enabled nodes. Wireless Sensor Networks (WSNs) are one of the primary drivers
of IoT advancements. Typically, a WSN contains thousands of low-cost, low-power sen-
sor nodes. These networks have numerous applications, including military surveillance,
wildlife tracking, and environmental monitoring. Determining the sensors’ physical posi-
tions is crucial for maintaining trusted IoT-based services.

Localization is fundamental to data collection and routing planning, enabling efficient
information delivery to the target station. For instance, autonomous vehicles would
face significant safety risks without precise positioning, resulting in increased accidents.
Similarly, incorrect data from sensors in wildfire monitoring systems would undermine
the service quality. Sensor localization methods can be categorized as anchor-based or
anchor-free approaches.

Anchor nodes have more capabilities than sensors and are aware of their actual
positions. Consequently, they serve as reference points for determining the unknown
locations of other sensors. Conversely, anchor-free localization leverages tools such as
relative positioning, mapping, and embedded GPS clients. In this study, we adopt an
anchor-based strategy to localize IoT sensors. Specifically, we intend to utilize time of
arrival (ToA) or time difference of arrival (TDoA) alongside the path loss model for signal
measurements received at the sensor.

1.2. Sensing Coverage in IoT Networks

In a sensing field, a point is considered covered if it lies within the sensing proximity
of a sensor node, meaning that the Euclidean distance between this point and any sensor
node is less than the designated sensing range. Consequently, the sensing field may have
either full or partial coverage. To address partial coverage, cooperative sensor networks
can be employed, allowing for the deployment of sensor nodes belonging to multiple
entities. For instance, when heterogeneous temperature sensors owned by three disparate
sensing providers are deployed within a specified region, as illustrated in Figure 1, they
can be regarded as shared resources. Cooperation among these sensors can yield improved
quality of service (QoS) while also enabling the incorporation of participatory sensors such
as smartphones.
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1.3. The Relationship between Localization and Sensing Coverage

Identifying the presence of coverage gaps and outlining them constitutes a significant
obstacle in the IoT context. Coverage gaps arise when sensing fields exhibit incomplete
coverage. The sensing coverage requirements of IoT applications vary; for instance, certain
applications necessitate single-sensing coverage where a minimum of one sensor is needed
to observe any point within the target zone. Conversely, other applications demand
extensive coverage, which entails k sensors to oversee each point within the area [10].

Additionally, there exist multiple methods for approximating a sensor’s position; how-
ever, GPS is typically not employed due to energy constraints and the need for cost-effective
sensors. Alternative solutions include anchor-based and anchor-free approaches, with the
former being prevalent owing to its accuracy, while the latter offers rough localization
precision. This study utilizes the anchor-based strategy.

The sensing coverage quality directly correlates with the credibility of aggregated
sensing reports at the sink node; nevertheless, these reports are influenced by various
error factors such as measurement discrepancies and anchor misplacement. These error
components affect sensors’ location estimates, consequently leading to inaccurate location
imprints on aggregated reports and ultimately degrading the quality of sensing services.

1.4. The Impact of Anchor Misplacement

Anchor misplacement pertains to the issue wherein an anchor node occupies a par-
ticular position, yet assumes it is situated elsewhere [11]. For instance, an anchor node B
erroneously assumes that it is located in a specific position while it is actually elsewhere.
Numerous factors contribute to this issue, including cyberattacks, soil erosion, potential
anchor displacement due to animal or human activities, or simply human error. Utilizing
misplaced or inaccurate anchor nodes for localizing sensor nodes results in localization
inaccuracies of sensor nodes [11,12]. Likewise, the quality of coverage is impacted as
incorrectly estimated sensor locations yield invalid sensing reports. Consequently, the
presence of anchor misplacement exacerbates sensing coverage. For example, in a smart
agriculture system, anchor misplacement may prompt the inadvertent irrigation of per-
ceived dry areas or the application of pesticides to healthy plants. Figure 2 illustrates the
effects of a misplaced anchor on localizing 80 sensor nodes and 20 anchor nodes within
a 200 × 200 target field. The actual location of this specific anchor is (13.1, 115), while its
perceived or declared location is (6.1, 108). The figure demonstrates the impacted sensors
and their imprecise locations.
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1.5. Motivation

Cooperative sensing offers substantial benefits to WSNs by enhancing sensing reliabil-
ity and expanding sensing coverage [12]. Nonetheless, current studies concerning sensing
coverage typically assume an accurate anchor node position. In other words, literature
research overlooks the anchor misplacement issue that affects both localization and sensing
coverage. Figure 3 demonstrates the significance of mitigating the influence of anchor mis-
placement on localization precision and, consequently, on sensing coverage: an increased
number of misplaced anchor nodes leads to a decline in IoT system service dependability.
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Moreover, related research presumes that sensors are homogeneous and singularly
affiliated with one sensing service provider. Relevant research focuses on deterministic
sensor placement and deployment planning to achieve superior coverage and lengthen net-
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work lifetime [13,14]. In contrast, this study considers sensors as heterogeneous, randomly
deployed, and associated with multiple sensing service providers.

In the domain of IoT security, anchor misplacement complications prove more perilous.
For example, a hacker may target anchor nodes to tamper with their locations, resulting in
inaccurate data collection and subsequent unreliability. Such issues become life-threatening
when software/hardware errors or malicious attacks aim at autonomous vehicular sensor
nodes, like LiDAR (Light Detection and Ranging). LiDAR technology is intended to supply
precise geospatial data swiftly for informed decision-making. Consequently, the mali-
cious alteration of LiDAR data such as modifying positioning coordinates or introducing
inaccuracies in distances to nearby vehicles or objects causes severe safety concerns.

These points raise the following primary research questions: Q1: How does anchor
misplacement influence the balance between detection latency and service reliability? De-
tection of misplaced anchors is more effective when more non-misplaced nodes participate
in validating localization results for a fixed number of misplaced anchors executing sensor
localization. However, an excess of validators magnifies communication overhead, sub-
sequently increasing latency in the detection phase completion. Q2: What impact does
anchor misplacement have on sensory data aggregation coverage? Q3: Can new types of
coverage holes be identified and their areas quantified?

In this study, our objective is to address these research questions by devising a dis-
tributed, fast, and dependable method to detect misplaced anchors in WSNs. We strive to
minimize anchor validators to achieve high reliability with reduced latency. Furthermore,
we analyze the effects of anchor misplacement on sensory coverage in cooperative WSNs.

1.6. Contributions

The contributions of our work can be summarized as follows:

1. We propose an efficient framework for detecting anchor misplacement, which neces-
sitates minimizing anchor validators’ involvement to ensure service reliability and
minimal convergence latency;

2. We investigate and evaluate the presence of anchor misplacement issues in IoT systems
and their effect on reliability. We show that using misplaced anchors for localizing
sensors leads to imprecise positioning and compromised sensory data integrity;

3. Our study provides an in-depth analytical examination of how anchor misplacement
impacts sensor localization and sensing coverage;

4. We suggest approaches for detecting coverage gaps resulting from anchor misplace-
ment and estimating their size, along with determining upper and lower limits for
these uncovered regions. By employing Delaunay Triangulation (DT), we divide
the target sensing area into equilateral triangles. As intra-triangle coverage gaps
are irregular, we aim to identify each gap locally and establish its boundaries. Our
Intra-triangle Coverage (ITC) assessment method is decentralized, requiring only the
vertices of each triangle to participate in calculations, thus ensuring scalability and
energy efficiency;

5. We validate our proposed methodology’s efficacy under various conditions while
demonstrating superior localization accuracy and reduced perceived uncovered regions.

To the best of our knowledge, this is the only research investigating IoT sensing cover-
age under anchor misplacement by locally identifying new coverage holes and quantifying
their area.

The structure of the rest of this paper is organized as follows. Section 2 provides an
overview of fundamental definitions and models related to sensing coverage in WSNs, as
well as various sensor deployment approaches. It also introduces the problem formula-
tion and assumptions of our study. Preliminary findings utilizing the Voronoi Diagram
(VD) and Delaunay Triangulation (DT) for efficient coverage are discussed in Section 3.
A comprehensive investigation of ITC is conducted in Section 4. The effects of anchor
misplacement on sensing coverage, along with a method for determining the lower and
upper bounds of sensing coverage gaps, are presented in Section 5. A resilient framework
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for detecting and mitigating the influence of misplaced anchors is described in Section 6.
Experimental results that validate our proposed framework and demonstrate its effective-
ness are detailed in Section 7. Finally, Section 8 provides a conclusion and suggests future
research directions.

2. System Model and Problem Description

Ensuring proper coverage is essential for reliable and effective sensing services. To
achieve this, it is important to measure the accuracy of sensing reports in reflecting the
physical surroundings of the target sensing field. Without adequate coverage, such services
may become unreliable or obsolete. A list of notations and acronyms can be found in
Table 1.

Table 1. Notations and acronyms.

Notation Description

G(V, E) A network graph G.
S Set of sensor nodes.
B Set of anchor nodes (Bb∪Bm).
V Set of sensor and anchor nodes (S∪B).
E Set of links/edges.
n |S|, the number of sensor nodes.
m |B|, the number of anchor nodes.
Bb Set of benign anchor nodes (i.e., not misplaced).
Bm Set of misplaced anchor nodes
DT Delaunay triangulation.
VD Voronoi diagram.
da,b Euclidean distance between node a and node/point b.

da,b
′ The distance between node a and node b measured via received signal

strength (RSS) method.
si A sensor node in a sensing field S, 1≤i≤n
Rsi A sensing range of sensor node si.

2.1. Sensing Coverage Formulation

Sensing coverage holes are one of the main reasons that degrade the quality of sensing
services. They exist when any sensing node does not cover some points in the sensing field.
The following is a definition of sensing coverage.

Definition 1. Let S denote the target sensing field and N = {si : si is a sensing node; 1 ≤ i ≤ n},
where n is the number of sensing nodes. (xi, yi) refers to the location of si in a plane which is
unknown initially. Each si has estimated location (xi

′,yi
′) and a sensing range Rsi . Let p be a point

in S, then p is covered if there is at least one si such that p is within a distance of Rsi from si. In other
words,

{
∃ si
∣∣dp,si ≤ Rsi , 1 ≤ i ≤ n

}
, where da,b is the Euclidean distance between a and b.

2.2. Types of Sensing Coverage Holes under Anchor Misplacement

Figure 4 shows the full and partial coverage.
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Anchor misplacement introduces new categories of coverage gaps, such as the per-
ceived and hidden unreported actual coverage holes.

(1) In the case of the perceived coverage gap, Figure 5a illustrates an ideal scenario in
which sensor s1 is precisely localized, unaffected by anchor misplacement. Conversely,
Figure 5b demonstrates a situation where the localization of s1 is dependent on a
misplaced anchor, subsequently generating a false coverage hole. This hole is present
in two triangular regions: s1

′s2
′s3
′ and s1

′s3
′s4
′.
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Figure 5. A triangulation in the vicinity of sensor node s1. (a) An ideal case is where there are no
coverage holes. (b) A perceived coverage hole due to anchor misplacement.

(2) The hidden, unreported actual coverage gap is illustrated in Figure 6. Figure 6a shows
the presence of actual coverage holes within the triangular regions s1s6s7 and s1s7s2.
Conversely, Figure 6b demonstrates that a misplaced anchor hides these holes due to
the imprecise localization of sensor s1.
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2.3. Network and Sensing Models

In the implementation of collaborative sensing, sensor nodes are attributed to distinct
providers. A collection N comprises sensor nodes, while a collection M includes anchor
nodes. These anchor nodes are strategically positioned at locations of interest (i.e., predeter-
mined coordinates) to facilitate the localization of sensor positions. WSNs predominantly
employ multi-hop communication for routing sensed information from source sensors to-
wards a sink node. Within cooperative sensing, an originating node possesses the potential
to direct its acquired data towards multiple sinks (i.e., data processing facilities).

The generation rate of sensed data packets by a sensor si will highly depend on its
capabilities. Nevertheless, in WSNs, this rate is maintained at a lower threshold to conserve
battery power and avoid network congestion.

Numerous sensing models can be developed in accordance with application prerequi-
sites and the ambient environment. However, these models suggest that sensing efficacy
fades as distance increases. This observation is captured in the subsequent formula [15].

SN(si, p) =
λ(

dsi ,p
)K (1)

where SN denotes the sensibility between the sensor node si and point p, and both λ and K
are positive constants related to the sensor’s technology.

There are two types of sensing models: binary disc and probabilistic.

(1) Binary Disc Model

In the binary disc model, a sensor node is presumed to perform 360◦ monitoring.
Consequently, a point within the sensing field is considered covered if it lies inside the
circular sensing range of at least one sensor node. If this condition is not met, the point is
deemed uncovered, as per the equation provided.

C(p) =
{

1 i f dsi ,p ≤ Rsi

0 otherwise
(2)

Thus, the binary disc model abstracts the sensing coverage of si by a disc of radius
Rsi as shown in Figure 7.
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(2) Probabilistic Sensing Model

The model is contingent upon the uncertainty associated with sensor detection. It
employs the detection probability, considering a point p situated at a distance exceeding
the uncertainty value, yet remaining within the specified range [16].

C(p) =


1
0

e−αβγ

i f dsi ,p ≤ Rsi − ε
i f dsi ,p ≥ Rsi + ε

i f Rsi − ε < dsi ,p < Rsi + ε
(3)

In this context, ε represents the uncertainty value inherent in the sensor’s detection
capabilities. The variable β is defined as β = dsi ,p − ( Rsi − ε). Both α and γ serve as
parameters assessing the likelihood of detecting object p when it is situated at a distance
exceeding ε yet still lies within the range of Rsi . Variations in these parameter values are
indicative of distinct characteristics associated with different sensor types, thus resulting in
diverse detection probability scales.

In this research, we adopt the binary disk sensing model for the sake of simplicity.
Figure 7 shows the disk model representation of the overlapped region in Figure 1.

2.4. Channel Model

Both anchor and sensor nodes have wireless transceivers. The transmission power of
a specific node, si, is represented by Psi . These nodes engage in communication through
wireless channels, adhering to the established path loss model. When assessing the path
loss between two nodes, si and sj, with a Euclidean distance of d, it can be quantified in
decibel scale by utilizing the following formula.

PL(d) = PL(d0) + 10η log
(

d
d0

)
(4)

where PL(d0) is the path loss at the reference distance d0, and η is the path loss exponent.
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To better estimate the distance between the IoT nodes si and sj, we follow the formula-
tion adopted in [17] for the variance:

σsi ,sj
2 =

dsi ,sj
2

SNR
(5)

where SNR is the signal-to-noise ratio.

2.5. Communication Model

Two sensor nodes are adjacent/neighbors if they can communicate directly (i.e., have
1-hop wireless-link communication). We define NH(si) to denote the set of sensor nodes in
the neighborhood of si, that is, NH(si) =

{
sj

∣∣∣dsi ,sj ≤ Psi and dsi ,sj ≤ Psj , si 6= sj, sj ∈ N
}

.
Upon receiving the transmitted data, each sensor node is capable of determining its prox-
imity to the emitting sensor through the utilization of a signal strength indicator (SSI).
The resulting graph generated by the collective sensor nodes and wireless connections is
referred to as a routing graph. Multiple potential routing paths exist within the routing
graph that can link the source sensor node to a sink. A routing path is characterized as a
series of wireless connections which initiate at the source sensor and end at the sink, with
no repetition of nodes.

Throughout the process of validating anchor misplacement, a node may function as
either the transmitter or recipient of a message. The propagation of this message occurs
through either 1-hop or multi-hop methods. As detailed in Section 1, it becomes evident that
a node necessitates increased power capacities for single-hop communication with other
nodes. Denote Psi ,s as the transmission power prerequisite for node si to engage in single-
hop communication with any node located within the target field. Similarly, Psi ,m signifies
the required transmission power for node si to establish multi-hop communication toward
the base station via adjacent nodes. Clearly that Psi ,s ≥ Psi ,m . Nodes typically employ
single-hop communication techniques for broadcasting messages to all other participating
nodes comprehensively.

2.6. Problem Description

Anchor misplacement adversely affects the dependability of IoT-based systems, result-
ing in special sensing coverage holes due to imprecise positioning of impacted sensor nodes.
Consider Bj as a misplaced anchor node, with M′ ⊆ M representing the collection of mis-
placed anchor nodes. Analogous to the sensor node neighborhood discussed in Section 2.3,
the neighborhood, NHB

(
Bj
)
, of the anchor node Bj consists of all interconnected anchor

nodes via a single-hop connection.
This research delves into the impact of anchor misplacement on sensing coverage

efficacy. Assuming random deployment of sensor nodes and location inaccuracies induced
by misplaced anchors, we investigate the new types of coverage holes, detect them, and
determine the size proportions for coverage holes in relation to the overall area. Moreover,
we aim to establish upper and lower bounds on coverage holes in a distributed manner.

Leveraging sophisticated computational geometric constructs such as the Voronoi
Diagram (VD) and Delaunay Triangulation (DT), our analysis exploits these powerful
structures. Our method for identifying and constraining coverage holes relies on the
localities of each convex polygon within the computational architecture representing the
sensing field.

In the context of this study, we establish the following assumptions:

• Initially, IoT sensors have the capability to transmit and receive data packets amongst
neighboring devices, a crucial aspect for disseminating localized sensor information
and facilitating the creation of a distributed computational framework;

• The positions of these sensors are predetermined, enabling the effective development
of the VD and DT;



Electronics 2023, 12, 3172 11 of 27

• To ensure successful construction of the DT, no three adjacent sensors align in a
straight line;

• The sensing target area is bounded, which is consistent with the majority of IoT
application scenarios.

3. Computational Geometry Tools for Analyzing Sensing Coverage: Auxiliary Results

In this section, we introduce auxiliary lemmas and corollaries that will be employed
as essential tools for identifying coverage gaps and their corresponding proportions. The
foundation of these auxiliary findings is derived from VD and DT. Subsequently, we explore
the possibility of achieving full sensing coverage of a target field, denoted as S.

Consider a point p belonging to the field S. We define si as a dominant sensor of
point p if it holds the shortest distance to p in comparison to all other sensors within
S. In other words, dom(p) =

{
si

∣∣∣dsi ,p = min
(

dsj ,p, 1 ≤ j ≤ n
)}

, where si, sj ∈ S. Let

1 
 

 . Assume si = dom(p) has the maximum distance to a point
p among all other sensor nodes; if MaxMin(S) ≤ Rsi , then S is fully covered. However,
calculating MaxMin(S) across an infinite number of points p within S is not practically
viable. To address this challenge, we employ VD for segmenting the sensing field S into
adjacent convex polygons, called cells, denoted as Vor(s1), Vor(s2), . . . .., Vor(sn). Each cell
Vor(si) is connected to only one sensor si, with 1 ≤ i ≤ n, as illustrated in Figure 8.
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The perpendicular bisector of the line segment linking sensors si and sj splits the
plane into two half-planes. Let h(s i, sj

)
denote the half-plane that contains si, while

h(s i, sj
)

denotes the half-plane that contains sj. Note that a point p∈ h(s i, sj ) if and
only if dsi ,p < dsj ,p. Thus, Vor(si) is the intersection of all half-planes generated by the
perpendicular bisectors of the line segments of si and each sensor in its neighborhood, i.e.,
NH(si). Each bisector line segment is called an edge, and the endpoints of this edge are
called vertices. For any point p in Vor(si), 1 ≤ i ≤ n, si is the closest sensor to p. Note that
if p is on a common edge of two neighboring polygons, then it is equidistant from the two
sensors associated with these polygons [1].

The following lemma provides the necessary and sufficient conditions to have full
coverage in VD.
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Lemma 1 ([1]). Sensing field S is fully covered if and only if all vertices in its corresponding
Voronoi diagram have a distance less or equal to Rsi to at least one of their associated sensors, si.

The coverage problem of sensing field S is now converted, by Lemma 1, from checking
a non-finite set of points in S into testing a finite set (The size of this set is at most 2n− 5 [18])
of points representing the cell’s VD vertices. This lowers the computational cost, adding to
the feasibility of the solution. If MaxMin(S) ≤ Rsi is maintained, the full coverage of S is
guaranteed. Thus, VD is a powerful tool to show the existence of coverage holes in WSNs.
However, VD is unable to quantify the area size of coverage holes. This is due to the fact
that Voronoi polygons have different convex shapes with various numbers of edges and
have a non-unit-circular model. Therefore, VD does not provide much information about
the location and the size of each coverage hole in the field.

Therefore, a more effective structure is required to manage and monitor the border-
lines of individual coverage gaps. To accomplish this objective, it becomes essential to
convert each VD cell into elemental structures that facilitate local and precise tracking
of such coverage holes. This transformation entails triangulating Voronoi cells such that
sensor vertices configure generated triangles. The edge of a triangle, sisj, is formed if Vor(si)
and Vor(sj) have a Voronoi edge e in common, perpendicular to e and bisected by e. This
process generates DT, which produces angle-optimal planar triangles such that the circle
that circumscribes any triangle, with non-collinear sensors, is devoid of any other sensors.
It is noteworthy that the convexity property of VD persists in DT, as each triangle consti-
tutes a basic convex polygon. Figure 9 demonstrates various Voronoi cell triangulations.
Subsequently, we present a corollary linking the coverage problem to DT’s edges.
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Figure 9. Sample DT of VD: Triangulations incident to sensor si.

Corollary 1 ([1]). If a sensing field is fully covered, the distance of each edge, sisj, within the
triangles does not exceed Rsi + Rsj .

Considering the Delaunay triangulation of sensing field S, let si and sj be two triangle
vertices that have sensing ranges Rsi and Rsj , respectively, then the following lemma holds.

Lemma 2. Let ∆ be a Delaunay (acute) triangle with vertices si, sj, and sk, and let r be a radius of
the circle that circumscribes ∆. ∆ is fully covered if and only if the following formula holds.

Rsi
2 + Rsj

2 + Rsk
2 ≥ 9

√
3

2π
r2 (6)
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Proof. Assume that ∆ is completely covered. The circle with radius r that circumscribes
∆ has a center denoted by c, which represents the farthest point from vertices si, sj, and
sk. The distance between any of these three vertices and c equals to r. Each of the sensor
vertices will contribute to covering the intra-triangle of ∆. This contribution depends on
the sensing range of each sensor vertex. Figure 10 illustrates the concept of sensing and
intra-triangle coverage. Since ∆ is covered, then every point within ∆ including c is covered
as well. Since ∆ is fully covered, the sum of contributions of the three sensors must cover
the entire intra-triangle of ∆. This is formulated as follows:

CNT(si, ∆) + CNT
(
sj, ∆

)
+ CNT(sk, ∆) ≥ A(∆) (7)

where CNT(sl , ∆) denotes the contribution of sensor sl in covering the area of triangle ∆.
This contribution represents a sector area with a radius Rsl .

CNT(sl , ∆) =
α

2
Rsl

2 (8)
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Figure 10. An illustration of sensing coverage using the concept of the intra-triangle contribution of a
sensor node.

For acute triangulation, α = π
3 . A(∆) =

√
3

4 a2, where a is ∆’s side length. Consequently,
(7) can be written as follows:

π

6
Rsi

2 +
π

6
Rsj

2 +
π

6
Rsk

2 ≥
√

3
4

(√
3 r
)2

(9)

This completes the proof of the “if” part.
To prove the (only if) part, assume Formula (6) is held. Let us prove the full coverage

of ∆ by contradiction. Assume that ∆ is not fully covered. Consequently, there exists a point
p in ∆ that is not covered by any sensor, i.e., d(p , sl) > Rsl , where l ∈ {i, j, k}. This means

CNT(si, ∆) + CNT
(
sj, ∆

)
+ CNT(sk, ∆) < A(∆)

�

In the case of homogeneous sensors, we derive the following corollary about a lower
bound for sensing coverage.
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Corollary 2. In the domain of cooperative sensing, utilizing a network of homogeneous sensors
with a sensing range Rsl , full coverage is effectively achieved when the following formula holds.

Rsl
2 ≥ 3

√
3

2π
r2 (10)

As depicted in Figure 11, the minimum sensing ranges for both homogeneous and
heterogeneous sensor types to attain full sensing coverage within triangular region ∆ are
illustrated. For instance, homogeneous sensors necessitate a sensing range of no less than
0.91r, which effectively guarantees full sensing coverage, as shown by the circle-marked
blue curve. Conversely, to accomplish full sensing coverage with heterogeneous sensors,
the square root of the left-hand side of Equation (10) must adhere to the boundary defined
by the red curve.
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Next, we investigate how to detect and define the bounds of each uncovered area
in DT.

4. Intra-Triangle Coverage: Beyond Ideality

By employing DT, the coverage issue is systematically converted into an analysis of
individual triangle coverage within the comprehensive triangulation. Lemma 2 asserts that
a failure to satisfy its condition results in an uncovered area within the circumcircle of ∆.
With respect to the maximum angle θ in ∆, we can distinguish three distinct circumcenter
scenarios: residing within ∆ when θ < π

2 , outside ∆ when θ > π
2 , or on the longest side

opposite to θ = π
2 . Despite DT offering superior optimal-angle planar triangles (angles

approximating π/3), random deployment scenarios may yield angles larger than π/3. This
gives rise to the following question: What constitutes the minimum sensor density for
well-behaved DT?

Consider Rsl as the minimum sensing range among all IoT sensors present within
target field S. Under optimal conditions, all angles of ∆ equate to π/3 (forming an equilat-
eral triangle) with the triangle’s side length represented by a =

√
3Rsl [19]. Consequently,

the triangle’s area in this instance is 3
√

3
4 Rsl

2. Additionally, any triangulation includes
2N – 2 − β triangles, with N representing sensor quantity and β indicating sensors lo-
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cated along the convex hull boundary of field S [20]. Assuming sensing field S exhibits
dimensions L × L, each triangle must cover an area size of L2

2N−2−β . Thus, we deduce the
following equation:

L2

2N − 2− β
<

3
√

3
4

Rsl
2 (11)

This gives
2L2

3
√

3Rsl
2 +

2 + β

2
< N (12)

We assume that the minimum density is achieved. As demonstrated in the proof of
Lemma 2, the coverage contribution of a sensor sl corresponds to the size of the angular
sector centered at sl with radius Rsl . Calculating the contribution of si in ∆ requires the
angle at sl as shown in (8). Since the lengths of all edges of ∆ are known, we use the cosine
formula to extract the angle at each sensor.

α = cos−1
(

a2 + b2 − c2

2ab

)
(13)

where a, b, and c are the lengths of ∆’s sides, and α is the angle opposite to the side of length
c. Therefore, α is plugged into (8) to get CNT(sl , ∆), where α is the angle at sl in a triangle
∆. The following formula gives the intra-triangle coverage of ∆, denoted by ITC(∆).

ITC(∆) = ∑
sl∈V(∆)

CNT(sl , ∆)− Amut, (14)

where Amut = (A1,2 + A1,3 + A2,3)− A1,2,3, V(∆) is the set of the three vertices of ∆, and
Ai,j is the common area size contributed by both angular sectors centered, respectively, at
vertices si and sj, and A1,2,3 is the area covered by all three vertices.

Next, we incorporate our intra-triangle coverage examination to detect coverage gaps
within a target sensing field.

5. A Deeper Look at the Effect of Anchor Misplacement on Sensing Coverage

We revisit the concept that anchor misplacement results in two distinct types of
coverage gaps: inaccurately perceived and hidden, unreported true coverage holes. To
tackle these emerging coverage gaps near the sensor nodes affected by anchor misplacement
(i.e., localized using misplaced anchor nodes), we employ our analysis from the preceding
section. Let N′ ⊆ N represent the set of impacted sensor nodes. Furthermore, let Csi denote
the actual sensing coverage area encompassed by sensor node si. We now present several
crucial auxiliary definitions.

Definition 2. The collective actual sensing coverage (Cact) of all affected sensor nodes in WSN is
defined as a union of their physical sensing coverage in the target field. That is, Cact =

⋃|N′ |
i=1 Csi .

Let s′i be the erroneous estimated location of si. si will report sensed data from an
inaccurate location, creating a perceived coverage around s′i. Further, let Csi

′ denote the
perceived sensing coverage area that is covered by the affected sensor node si as if si is in
s′i coordinates.

Definition 3. The collective perceived sensing coverage (Cper) of all affected sensor nodes in WSN

is defined as follows. Cper =
⋃|N′ |

i=1 Csi
′.

In order to analyze and distinguish between Csi and C′si , as well as to identify the
scenarios resulting in different types of coverage holes, we employ DT in examining
the problem within the vicinity of each impacted sensor node. We utilize a distributed
algorithm, as described in [21], to construct the DT representing the targeted sensing field
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S. Lemma 2 offers a suitable criterion for demonstrating the presence of coverage holes.
Based on the evaluation presented in Section 4, subtracting ITC(∆) from ∆’s full area size
reveals the unmonitored region within ∆ as follows:

UNC(∆, G) = A(∆)− ITC(∆) (15)

where A(∆) refers to the area size of ∆ and is given by the following equation.
A(∆) =

√
d(d− a)(d− b)(d− c), where d = a+b+c

2 and a, b, and c are the length of
the sides of ∆.

Assume s2 is a sensor node affected by anchor misplacement, with its incorrect es-
timated location represented by s2

′, having coordinates (x′, y′). Let
→
v = (∆x, ∆y) be the

corresponding localization error vector. The adjusted coordinates for s2’s position are
(x′ − ∆x, y′ − ∆y). Figure 12 illustrates the structural modification of the Delaunay triangle
due to anchor misplacement’s influence on localizing sensor s2.
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To evaluate the impact of anchor misplacement on sensing coverage gaps, we must
assess the sensing coverage under two different scenarios: in the presence and absence of
anchor misplacement. Specifically, for each sensor node si affected by anchor misplacement,
we determine the coverage gap by contrasting the sensing coverage of si and its neighboring
nodes with that of si

′ and its surrounding nodes. This enables us to compare Csi and Csi
′ in

their vicinities. Figures 5 and 6 show the vicinity of affected sensor s1 (i.e., s2s3s4s5s6s7) and
the vicinity of s1

′ (i.e., s2
′s3
′s4
′s5
′s6
′s7
′). The triangulation process within these vicinities

allows us to examine the uncovered areas in each triangle.
Next, we employ the notion of history in graph theory to illustrate our analysis further

and compute the sensing coverage for every affected sensor node in both scenarios: when
anchor misplacement is present and when it is absent.

5.1. Anchor Misplacement as a Graph Operator

Let DT be a Delaunay Triangulation of IoT sensors in the target field with no anchor
misplacement. Such misplacement triggers alterations in DT , subsequently influencing
the localization accuracy pertaining to sensor nodes. The change in DT can manifest in
either the length metric of the edges or modifications in the DT structure, as certain sensors
establish or extinguish connections based on their erroneous locations. Let DT

′ denote the
new triangulation after anchor misplacement.

Consequently, anchor misplacement functions as a graph operator capable of mapping
an input-provided graph (i.e., DT) onto a distinct graph, DT

′. For an impacted sensor
si ∈ DT , its counterpart si

′ ∈ DT
′ signifies accurate localization prior to anchor misplace-
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ment. However, erroneous localization post-anchor misplacement would classify it as si
′.

Thus, from a geolocation standpoint, si and si
′ can be perceived as distinct sensors.

Given DT(si), denote the set of all triangles within DT induced by ssi and its neighbors,
i.e., NH(si). Analogously, DT

′(si
′) represents the set of all triangles in DT

′ induced by si
′

and its neighbors. For instance, the triangulation process of DT(s1) includes all triangles
in DT induced by s1 and its proximate nodes, denoted as NH( s1) = {s2, s3, s4, s5, s6, s7}
in Figures 5 and 6. Consequently, we term DT(si) the graph history of DT

′(si
′) due to

its preceding graph state prior to anchor displacement. This notation is represented as
DTh

′(si
′) = DT(si). The notion of graph history has been previously explored in various

graph theory domains, such as characterizing the asymptotic behavior of iterated line and
path graphs [22,23].

Clearly, the subgraphs DT
′(si
′) and their history counterpart, DTh

′(si
′), may exhibit

dissimilarities. Indeed, the inaccurate localization of sensors results in the presence of
certain vertices in DT

′(si
′) but not in DTh

′(si
′), or vice versa. The precise positioning of

each sensor within the target field serves as a crucial aspect of our investigation, as both
subgraphs DT

′(si
′) and DTh

′(si
′) could be isomorphic but yet display variations concerning

edge lengths. Two graphs are isomorphic if they contain the same objects (i.e., vertices)
linked in the same way. A demonstration of this observation can be found in Figure 13,
which depicts one triangle of DT

′(s2
′) alongside its graph history, DT

′(s2
′).
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Figure 13. A partial snapshot of DT
′(s2
′) and its history.

To construct DTh
′ from DT

′, we proceed as follows: Firstly, identify the misplaced
anchor nodes. Subsequently, eliminate the impacted sensor nodes si, along with their
associated edges, and reintroduce them in their accurate positions. Ultimately, form the
triangulation within their vicinity. The average number of neighbors for si, denoted as
|NH(si)|, does not surpass six; thus, the average quantity of triangles in both subgraphs
DT
′(si) and DTh

′(si) remains below six [20]. These findings show the minimal computa-
tional cost entailed by our methodology.

5.2. Identifying Coverage Holes under Anchor Misplacement

In this subsection, we detect/delineate the inaccurately perceived and hidden unre-
ported coverage holes. To accomplish this, we focus on the mutual triangles present in
both DT

′(si
′) and DTh

′(si
′). An empty intersection signifies that DTh

′(si
′) corresponds to

an entirely novel structure, with none of the NH(s i) elements belonging to DT
′(si
′). This

scenario arises when anchor misplacement results in an extremely inaccurate location for
sensor si, causing the estimated position si

′ to fall outside of si’s proximity. We recognize
the subsequent classifications of a potential shared triangle ∆ existing between DT

′(si
′) and

DTh
′(si
′):

1. Full local coverage of ∆ is maintained in both DT
′(si
′) and DTh

′(si
′);

2. Full local coverage of ∆ exists in DTh
′(si
′), but not in DT

′(si
′). This is the case of false

perceived coverage hole;
3. There is no full coverage in both DT

′(si
′) and DTh

′(si
′);
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4. The full local coverage of ∆ exists in DT
′(si
′), but not in DTh

′(si
′). This is the case of

hidden actual unreported coverage holes as shown in Figure 14.
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Categories 1 and 3 deal with extreme cases where the triangle ∆ is either covered in
both DT

′(si
′) and its history or not.

Our primary objective involves detection, identification, and quantification of coverage
gaps corresponding to categories 2 and 4. In Section 3, we present a comprehensive analysis
that effectively detects such coverage anomalies. Subsequently, we introduce an intra-
triangle coverage technique in Section 4, which serves as an effective tool for estimating the
magnitude of the coverage hole. Leveraging the concept of history delineated in Section 5.1,
we identify the type of coverage gap. We then proceed to compute the proportionality
between perceived sensing coverage, C′si , to the actual sensing coverage, Csi . This coverage
ratio is designated as CRC1-CRC4 for categories 1–4, respectively.

CRC1 =
Area(∆, DT

′(si
′))

Area(∆, DTh
′(si
′))

CRC2 =
UNC(∆, DT

′(si
′))

Area(∆, DT ′(si
′))

CRC3 =
UNC(∆, DT

′(si
′))

UNC(∆, DT
′(si
′))

CRC4 =
UNC(∆, DTh

′(si
′))

Area(∆, DTh
′(si
′))

(16)

In the context of graph G, Area(∆, G) denotes the area of triangle ∆, while UNC(∆, G)
signifies the magnitude of uncovered space within ∆, as per Equation (15). It is crucial
to recognize that if the ratio does not equal 1 for both categories 1 and 3, inaccuracies in
sensing reporting from ∆ sensor nodes may occur. Under such circumstances, the actual
coverage in the history graph could be either overestimated or underestimated.

The methodology remains applicable even when multiple sensors within triangle ∆
are impacted. Let us consider si and sj as two affected sensors and neighbors in DTh

′(si
′).

Redundancy in calculations arises due to shared triangles by DTh
′(si
′) and DTh

′(sj
′),

leading to ITC(∆) being computed twice since both si and sj are affected. Consequently, it
is necessary to adjust the overall ITC value accordingly within both DT

′(si
′) and DTh

′(si
′).

The coverage ratio expressed in Equation (16) is straightforward. By applying it to
intra-triangle scenarios, we can identify varying coverage hole types caused by anchor
misplacement and compute their respective percentages. Subsequently, our resilience
framework enables detection of misplaced anchors and determination of impacted sensor
node sets.

5.3. Calculating Lower and Upper Bounds of Coverage Holes

The intra-triangle coverage gap zones, or uncovered regions, exhibit varying geometric
shapes. Nonetheless, we choose to represent the lower and upper boundaries of each
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uncovered region within a triangular area ∆ via circular models. The lower boundary
circle is defined as a circle with its center at the polygon’s centroid, which exclusively
encompasses the uncovered region in ∆ and serves as the largest circle inscribed within
this space. Conversely, the upper boundary circle pertains to the smallest circumscribing
circle that completely surrounds the uncovered region of ∆. To calculate the lower and
upper boundaries for ∆’s uncovered region, we employ the subsequent methodology:
initially, we find a set U consisting of intersection points—those situated between angular
sectors and ∆’s perimeters, along with any intersection points existing among angular
sectors themselves. Let si and sj be two vertices in ∆. If Rsi + Rsj > d

(
si, sj

)
, we dismiss

intersection points located between circles centered at si and sj and the edge sisj. Let
U′ represent the revised set comprising intersection points. The points contained in U′

formulate a polygon P. Our objective lies in determining the minimal/maximal circle that
circumscribes/inscribes polygon P. To accomplish this, it is imperative to pinpoint centroid
c of this specific polygon with coordinates derived from the following formula [24].

cx =
1

6A

|U′ |−1

∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (17)

cy =
1

6A

|U′ |−1

∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi) (18)

where A is the area and is given by A = 1
2 ∑
|U′ |−1
i=0 (xiyi+1 − xi+1yi), and (xi, yi) and

(xi+1, yi+1) are two consecutive points on P’s hull. Let Rl = Minpi∈U′d(c, pi). The cir-
cle centered at c with radius Rl represents a lower bound of the uncovered area in ∆.
Likewise, let Ru = Maxpi∈U′d(c, pi). Then πRu

2 represents the size of the minimum circle
that circumscribes P and, thus, serves as an upper limit for the uncovered area within ∆.

Both bounding circles are centered at the centroid of a polygon P encompassing the
uncovered area. Utilizing centroid c, as opposed to the circumcenter of ∆, proves more
efficient for these reasons: (1) IoT sensor range variability causes the circumcenter of ∆
to not always belong to the uncovered area. (2) If the circumcenter resides outside ∆,
intra-triangle coverage calculations become irrelevant. (3) Centroid c-based bounds offer
tighter representation as they more accurately represent the uncovered area. Deriving from
our analysis, below is a summary of steps for calculating lower and upper bounds within
this advanced Algorithm 1.

Algorithm 1 [1]: Lower and Upper Bounds (LUB)

Input: triangle ∆
Output: c, lowerBound, upperBound
If HasCoverageHole (∆) then

P = findPolygon (∆);
c = findCentroid (P);
Rl = findRadiusLowerBound (P, c);
Ru = findRadiusUpperBound (P, c);
lowerBound = πRl

2;
upperBound = πRu

2;
return c, lowerBound, upperBound;

End if

In the LUB algorithm, it is assumed that every sensor has been localized and their
positions are identified. During the construction of DT, each sensor recognizes its adjacent
neighbors in every triangle ∆ present in DT. The LUB algorithm commences by verifying
the presence of a coverage hole through the HasCoverageHole (∆) function, which evaluates
∆ against the coverage criteria detailed in Lemma 2. Upon identifying a coverage hole, the
findPolygon (∆) function comes into action to find the polygon that strictly circumscribed
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the uncovered. The findCentroid (P) method employs Equations (17) and (18) to determine
P’s centroid. The subsequent step involves calling the findRaduisLowerBound (P, c) function
to compute the shortest distance between P’s vertices and c, signifying the radius of the
lower bound. In a similar manner, findRaduisUpperBound (P, c) yields the greatest distance
between P’s vertices and c.

6. Resiliency Approach for Misplaced Anchors

In this Section, we propose a distributed scheme that takes input from affected sensors
during the validation process, and outputs the set of misplaced anchors.

6.1. The Proposed Scheme

The proposed methodology focuses on establishing the accuracy of localization and
subsequently, the validity of sensing coverage by pinpointing misplaced anchors via their
impacted sensors. This approach is carried out through a two-phase process: Phase 1
(detection of affected sensors) involves each node calculating its distance to all other nodes
through two methods: (a) Euclidean distance, and (b) using received signal strength (RSS).
Denote dsi ,sj and dsi ,sj

′ as the distance between nodes si and sj utilizing Euclidean distance

and RSS, respectively. We introduce x(i) as the distortion vector between dsi ,sj , and dsi ,sj
′ for

node si in relation to all other nodes sj as illustrated below.

x(i) =
∥∥∥dsi ,sj − dsi ,sj

′
∥∥∥2

(19)

where j ∈ [1, n], j 6= i. It is clear that the total number of vectors corresponds to a multiple
of the sensor nodes count. In order to calculate the average two-way distances, which
include dsi ,sj , dsj ,si , dsi ,sj

′, and dsj ,si
′, an extensive computational effort is necessary. This

leads to increased latency in identifying misplaced anchors. To address this challenge, we
investigate two scenarios:

(1) Computation of a single vector originating from one sensor to all other sensors.
For enhanced efficiency, we strategically select a sensor node situated near the target
field’s center;

(2) Calculation of multiple vectors followed by obtaining the average for two-way distances.
Regardless of the case employed, Phase 1 will yield a single vector output. Subse-

quently, we arrange this vector in descending order based on distortion levels from high
to low. Employing the K-means algorithm with K = 2 clusters, we classify the vector
elements into two distinct categories: sensors with relative accuracy and those affected by
misplaced anchors.

In Phase 2 (determining misplaced anchors), the objective is to leverage the outcomes
of the K-means algorithm from the prior phase to pinpoint misplaced anchor sets. Among
the two produced classes, the one exhibiting a high mean localization error signifies im-
pacted sensors. As a result, misplaced anchors reside within those that have localized the
affected sensors. To establish the misplaced anchor set, let BL(si) = {bk, k = {1, 2, 3}}
represent a collection of anchors involved in localizing sensor node si via the trilateration
technique. Additionally, let Sa ⊆ S be a subset of relatively precise sensor node loca-
tions. We delineate benign anchors, Bb, as a collective set of anchor nodes participating in
localizing all relatively accurate sensors as follows.

Bb =
⋃

si∈Sa

BL(si) (20)

Consequently, the misplaced anchors, Bm, belong to the complement set as follows.
Bm = B\Bb. It is crucial to recognize that Bm and Bb are not necessarily mutually exclusive.
In fact, these misplaced anchors may contribute to the localization of certain sensors, even
though the K-means algorithm deems their positions relatively accurate. Next, we enhance
the detection scheme to address this particular aspect.
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6.2. Enhanced Detection Scheme

The earlier proposed methodology had the potential to yield an increased rate of
false alarms regarding incorrectly positioned anchors. To address this issue, we propose
the subsequent refinement process. Firstly, we organize the category/cluster of relatively
precise sensors, arranged in descending order according to their localization inaccuracies.
Next, we examine each sensor within the sorted group individually.

Considering si as the sensor with the most significant localization error amidst others
in the ordered category, we look into b1, b2, and b3—the anchors responsible for localizing
si. We then assess these three anchors based on specific criteria: should any of these anchors
be nearer to the influenced group’s centroid rather than that of the relatively precise sensors
cluster, and exhibit a distortion greater than a particular threshold compared to a benign
anchor, it is then reclassified as Bm. This threshold depends on historical information
accounting for SNR. In evaluating an anchor, bj, we employ a technique similar to our
earlier discussion concerning distortions between Euclidean and RSS-based distances as
highlighted below: ∥∥∥dbi ,bj

− dbi ,bj
′
∥∥∥2
≥ ε (21)

where bi denotes a benign anchor. We continue repeating the second step as long as there is
at least one anchor participating in localizing sensor si that fulfills the specified criteria. To
guarantee this procedure’s efficiency, we select bi from among benign anchors that have
contributed to localizing high-accurate sensors.

7. Numerical Results and Discussion
7.1. Simulation Results

In this section, we rigorously evaluate our resiliency methodology and demonstrate
its effectiveness. Our analysis involves experimental trials on both a homogeneous and a
heterogeneous network, leveraging the devised framework to assess network dependability.
The aggregate of simulation outcomes is achieved by iteratively performing the experiments
and computing the mean values from the distinct results. This specific figure correlates to
result convergence and fluctuation. For instance, if the outcomes reach stability and exhibit
minimal variability after x iterations, then we embrace x (or a value exceeding x) as an
optimal number of repetitions.

7.2. Validation

Initially, we demonstrate the effectiveness of our technique by identifying the impacted
sensors and subsequently the misplaced anchors. Our goal is to categorize these two sensor
groups utilizing the K-means clustering algorithm. We implement this in the experimental
environment illustrated in Figure 2. Upon executing Phase 1 of our method, Figure 15
emerges, presenting the groups of affected and relatively unaffected sensors alongside their
centroids. Most affected sensors are accurately integrated into group 1, showcasing our
approach’s technical proficiency.

We validate our approach by running an enhanced version of Phase 2. We have
calculated the localization errors for different trials (1, 2, 7, 11, 16, 20, 27, 40) and found
that the results converge after 16 trials. Measuring the variance of localization errors
suggests that 20 iterations are enough to provide convergent and stable results. Thus, each
experiment is repeated 20 times for any given network topology. We take a random sample
of 15 observations of averaged localization error values generated by the two anchor groups
per iteration. To analyze the statistical significance of the difference between the localization
errors generated by the two anchor classes, we adopt the following hypotheses:

• Null hypothesis H0: µ = 0, which means the true difference of means for the corre-
sponding anchor groups is equal to zero;

• Alternative hypothesis Ha: µ 6= 0.
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We employ a confidence interval of 95%, which is equivalent to a significance level
of α = 0.05. If the p-value is less than or equal to α, we discard the null hypothesis. This
rejection conveys that there is a statistically significant difference between the localization
errors induced by the two anchor classes, thus favoring the alternative hypothesis. In this
case, the confidence interval does not contain zero.

According to our analysis, with a p-value as low as 1.9551 × 10−4, we can confidently
reject the null hypothesis as it validates significant differences in mean values between
anchor classes. The lower and upper limits of confidence intervals for mean differences fall
between −4.505 and −3.4446, further supporting this conclusion.

Our results show a validation of our approach in identifying misplaced anchors with
a confidence level of 95%.

7.3. Verify the Effectiveness

We demonstrate our framework’s resilience against unreliable nodes in this section. By
effectively mitigating the impact of misplaced anchors on IoT nodes, we aim to minimize
their involvement in the localization process. We employ the NS-3 simulator to model
various experimental scenarios featuring randomly dispersed, non-uniform IoT sensors
across the target field. These experiments intend to show our framework’s efficacy. Addi-
tionally, we utilize a distributed algorithm outlined in [21] to construct a DT that accurately
represents the target sensing field. A comprehensive overview of the simulation settings
can be found in Table 2.
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Table 2. Simulation settings.

Parameter Range

Target Field Area 300× 300 m2 (divided into 2 × 2 grid)

Number of sensor nodes (per cell) 125

Number of anchor nodes (per cell) 30

Transmission range 50–100 m

Sensing range 5 m (with a variance of 2 m)

Anchor displacement value 7 m (with a variance of 2 m)

SNR 30 db

(1) The Effectiveness of Localization and Perceived Coverage

The objective of this cutting-edge experiment is to investigate the influence on Root
Mean Square Distance (RMSD) and the perception of coverage gaps as the proposed frame-
work identifies and discards an increasing number of misplaced anchors. We employ RMSD
as a performance metric to quantify the localization inaccuracies present in the network.

RMSD =

√√√√∑n
j=1

((
xj − xj

′)2
+
(
yj − yj

′)2
)

n
(22)

where
(

xj − xj
′) and

(
yj − yj

′), respectively, are the actual and estimated positions of sensor
node j and n is the total number of sensor nodes.

As illustrated in Figure 16, our framework demonstrates an effective ability to reduce
both the RMSD and the percentage of perceived coverage gaps as the count of identified
anchor nodes increases. The perceived coverage reduction exhibits a sharper decline when
compared to RMSD, attributable to its direct correlation with the number of misplaced
anchors within the network. Conversely, RMSD is primarily influenced by multiple fac-
tors, such as sufficient reliable anchor nodes per sensor and the SNR impact on distance
measurement quality.
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(2) The Effectiveness of Perceived Coverage Holes for Different Sensing Range Values

In order to demonstrate the efficacy of our novel approach when applied to a hetero-
geneous network consisting of varying sensing range values, we conducted simulations
using the following scenario: 40 distinct objects within a terrain, such as gas pipelines.
Sensor nodes have been strategically placed to ensure comprehensive monitoring for gas
leaks throughout all pipes. Our study assumes that anchor-based localization is utilized for
sensor positioning. In cases where anchor misplacement occurs, we aim to highlight the
influence of our proposed method on the percentage of misreported objects. How signifi-
cantly does our proposed framework contribute to mitigating false coverage perception as
an increasing number of misplaced anchors are identified and eliminated from network
services? The findings of this investigation are presented in Figure 17.
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Figure 17. Number of misplaced anchors vs. percentage of misreported objects.

The 95% confidence interval reveals that the proportion of misreported objects within
the three curves becomes statistically negligible as an increasing number of misplaced
anchor nodes are identified and removed. This occurs due to the fact that, irrespective of
the sensing range, the elimination of more misplaced anchors leads to an enhanced validity
in sensing reports and subsequently a decrease in misreported objects. Our findings indicate
that employing a smaller number of sensing nodes with larger sensing ranges results in
a more rapid recovery from anchor misplacements. In essence, the proposed framework
considerably reduces the number of misreported objects as the sensing range expands,
showcasing its technical efficiency.

(3) The Effectiveness of Perceived Coverage Holes for Different SNR Values

Through a series of experiments, we effectively show the high capabilities of our
novel framework at varying SNR levels, namely 10, 20, and 30 dB. The primary objective
is to evaluate the influence of anchor misplacement and measurement inaccuracies on
localization precision. As depicted in Figure 18, our cutting-edge framework exhibits
superior performance with higher SNR levels. This performance can be explained as
follows: as the SNR values decrease, the measurement errors escalate due to weakened
signals, undermining the reliability of the localization system. Interestingly, for an SNR of
10 dB, the RMSD remains relatively stable—excluding additional misplaced anchors does
not affect the RMSD. Furthermore, the application of a 95% confidence interval unveils the
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statistical significance of RMSD values for diverse SNR trajectories, thus highlighting the
crucial role that reduced SNR values play in determining sensing dependability.
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8. Conclusions

In this paper, we proposed a novel resilience framework for detecting anchor misplace-
ment, identifying coverage holes/gaps, and accurately measuring their dimensions. To
achieve this, we performed a comprehensive computational geometry-based examination
of the targeted sensing field, taking into account various error components, particularly an-
chor misplacement. By implementing Voronoi Diagrams (VD) and Delaunay Triangulation
(DT), we strategically divided the sensing field to effectively evaluate coverage deficiencies.
Utilizing VD and DT allowed us to address the coverage gap issue with a minimal number
of points within the target sensing field, subsequently reducing computational expenses
and enhancing the feasibility of our approach in IoT environments.

We then evaluated intra-triangle coverage, revealing novel categories of coverage holes:
actual unreported and perceived coverage holes. The experimental results demonstrated
the validity and efficiency of our proposed resilience framework in attaining localization
precision and sensing coverage while bolstering overall IoT-based system dependability.
These findings provide valuable insights for cooperative and overlapping IoT systems to
optimize resource allocation by either tolerating coverage loss or deploying supplementary
sensors to fill the coverage holes.

As future work, we aim to develop a cutting-edge framework that prolongs the
lifespan of IoT networks through collaborative sensing and leveraging the intra-triangle
analytics provided in this research. For instance, overlapping sensors from multiple
network operators could devise an intelligent sleep mode schedule based on each sensor’s
role. Additionally, mobile sensors may serve as backup support for low-energy sensors
while covering actual unreported sensing gaps.
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