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Abstract—We study the task scheduling problem in vehicular
clouds. Task scheduling in vehicular clouds must deal with the
transient nature of the cloud resources and a relaxed definition
of non-preemptive tasks. Despite a rich literature in machine
scheduling and grid computing, this problem has not been ex-
amined yet. We show that even the problem of finding a minimum
cost schedule for a single task over unrelated machines is NP-
hard. We then provide a fully polynomial time approximation
scheme and a greedy approximation for scheduling a single task.
We extend these algorithms to the case of scheduling n tasks.
We validate our algorithms through extensive simulations that
use synthetically generated data as well as real data extracted
from vehicle mobility and grid computing workload traces.
Our contributions are, to the best of our knowledge, the first
quantitative analysis of the computational power of vehicular
clouds.

I. INTRODUCTION

Cisco introduced the concept of fog computing to deal with

Big Data analytics and applications in the Internet of Things

[1], [2]. Fog computing attempts to improve the performance

of systems through computations that are closer to the cus-

tomers requesting the service rather than being located in

far off data centres [3], [4]. The vehicular cloud (VC) is a

particular implementation of fog computing. A vehicular cloud

can support computations that are typically sent to a cloud

system by applications running on mobile devices. Apple’s

voice recognition system, Siri, is one such application.

Olariu et al. [5] introduced the concept of vehicular clouds

about the same time when Cisco was promoting the notion

of fog computing. In vehicular clouds, smart vehicles are

equipped with components that have sensing, computing, and

wireless communication capabilities which can be harvested

for data storage, computing, infotainment, and sensing services

[6], [7], [8]. Wireless technologies such as WAVE (wireless

access for vehicular environment) which is based on the IEEE

802.11p standard, can be used by the vehicles to support

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)

communications. However, the vehicles are not owned by

the service providers and they are a transient computation

resource. Coordinating such computing resources requires

solving scheduling problems with specific constraints. In ve-

hicular clouds, incentives are offered to the vehicle owners to

encourage renting their resources to the service providers, thus

minimizing renting cost is one of the goals of the scheduler.

In this paper, we focus on the task scheduling problem in

vehicular clouds. There is an impressive amount of literature

on scheduling tasks in domains such as machine scheduling

[9], distributed, and grid computing [10]. Most popular ob-

jectives for these task scheduling problems are focused on

quality of service parameters such as makespan or lateness. In

the vast majority of the problems, the computation resources

are always available. This assumption has been relaxed in

machine scheduling problems with availabilities [11] in which

the processors are available to execute jobs only during certain

moments in time. The objectives most studied in problems of

scheduling with availabilities are minimizing maximum and

total job completion time and minimizing maximum lateness.

Scheduling problem with availabilities where preemption is

not allowed makes the problem instances difficult to solve. In

contrast, tasks scheduled on a particular resource in a vehicular

cloud can be paused, transferred to another resource, and

resumed on that resource. This is needed for example, when a

particular vehicle leaves the cloud and all of the jobs assigned

to it need to be transferred to other vehicles. In addition,

for VCs with no infrastructure support to store the state of

running processes, a task cannot be paused and resumed at a

later time because the resource storing its state may leave the

cloud. We are thus interested in a task scheduling problem with

availabilities subject to a relaxed notion of non-preemption:

once a task is started on a resource, it must be executed

to completion without interruption, except when execution is

transferred to another resource and is resumed immediately.

We call this constraint VC-preemption.

We adapt the three field problem notation that is standard

in the machine scheduling literature to our context: T/M/C,

where T is an integer representing the number of tasks to be

scheduled, M represents the machine environment which is

I for identical machines or U for unrelated machines, and C
is the constraint which is V C for VC-preemption with task

deadlines. The problem objective is to minimize the cost of

the schedule.
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To the best of our knowledge, no previous study of a

machine scheduling problem with such a constraint has been

carried in the literature we surveyed. Our contributions are

summarized as follows:

• We show that the problem of scheduling a single task

on a set of unrelated machines to minimize scheduling

cost and subject to a task deadline and VC-preemption

(1/U/V C) is NP-hard, by exploiting the connections of

the problem with knapsack cover (KC) [12].

• We provide a fully polynomial time approximation

scheme (FPTAS) for problem 1/U/V C by extending the

idea used in an FPTAS for knapsack cover [13] to our

problem with VC-preemption.

• We describe a natural greedy algorithm for problem

1/U/V C. We note that our greedy algorithm is trivially

optimal for the version with identical machines, 1/I/V C.

• We provide a standard greedy algorithm to schedule n
tasks on unrelated machines with VC-preemption (prob-

lem n/U/V C) that repeatedly calls a procedure to solve

1/U/V C.

• We give a simple and powerful lower bound on the cost

of the optimal solution for scheduling n tasks by solving

a knapsack cover problem fractionally [14]. We use this

bound to calculate approximation ratios of our algorithm

for problem n/U/V C on an extensive set of problem

instances.

• We perform a comprehensive empirical evaluation of

our task scheduling algorithm for problem n/U/V C
with both the greedy and PTAS procedures for solving

1/U/V C, using both synthetically generated data and

real data extracted from vehicle mobility traces and

grid workload traces. We note that the scheduling prob-

lems studied here are off-line, the set of tasks and the

availability of the resources are known at the start of

the simulation. Our results indicate that the n/U/V C
algorithm with the greedy procedure for 1/U/V C and

the proposed lower bound on the optimal solution are

extremely powerful. On the synthetic problem instances,

the average gap between the lower bound of the schedule

cost and the solution returned was less than 2.5% and

it was no larger than 25% on the real data instances.

These findings are pivotal for the evaluation of a vehicular

cloud task scheduler in the on-line setting where tasks and

resource availabilities become known with time.

• We provide the first, as far as we know, quantitative

evidence on the processing capability of a vehicular cloud

using real life grid workload traces and considering the

transient nature of the cloud resources and the specifics

of task VC-preemption constraints. We observe that more

than 92% on average of the grid processes were scheduled

successfully on the vehicular cloud in the most con-

strained of the instances, and, when given some slack,

a vehicular cloud can serve all but a handful of the most

compute intensive jobs which need to be offloaded to the

classical cloud.

The remainder of this paper is organized as follows. In

Section II, the system model for task scheduling in VC is

described. Complexity of the problem and proposed algorithms

are discussed in Section III. In Section IV, experimental results

are presented. Section V concludes the paper.

II. SYSTEM MODEL

We consider a vehicular cloud consisting of a set of m
vehicles available during a determined time interval. We

denote vehicles by symbol i. Each vehicle i has a processing

speed (processing capability) denoted α(i). It represents the

number of operations the processor can handle per unit of

time. The start and end of the availability interval of vehicle i
is denoted t−i and t+i , respectively. A constant rental cost per

unit of time, C(i), is associated with vehicle i.
Each processing task k has a processing requirement ρk,

measured in machine instructions, which needs to be served

by the resources in the vehicular cloud (VC). We consider an

offline environment where the problem instance is completely

available. We assume that all the tasks have a common

deadline T , representing the maximum allowable duration

each task can take to finish. We note that this requirement

can be made more general to include task specific deadlines.

The algorithms proposed here can handle this extension.

VC-preemption: Processing of any task can be interrupted

at any time and resumed immediately on another processor.

We call this event task migration. In this study, we focus on

the effect of availability of processors on the computational

capabilities of the cloud and ignore the task transfer cost. A

task is allowed to migrate to a different processor if the current

processor becomes unavailable or if a more cost efficient

processor is found.

Schedule: A task schedule consists of an assignment of

tasks to processors at certain moments in time. If a task k is

assigned to lk different machines, then the schedule for task k
specifies a list of lk consecutive time intervals denoted Lk =
(δ1, δ2, . . . , δlk) and a corresponding sequence of machines

Mk = (i1, i2, . . . ik) so that task k is scheduled on machine

is during the time interval δs. A time interval δs consists of

a pair of time values, δs = (δ−s , δ+s ) with δ−s < δ+s . The time

intervals are consecutive, δ+s = δ−s+1. If we abuse the notation

to denote by δs the duration of time interval δs, then a feasible

schedule must satisfy the task’s demands,
∑lk

s=1 δsα(is) = ρk,

and if two tasks are scheduled on the same machine, then the

time intervals during which the two tasks are scheduled are

disjoint.

Cost of schedule: Any schedule has a cost asso-

ciated equal to the total cost of renting the resources,∑n
k=1

∑
i∈Lk

C(s)δs. The objective of the scheduling is to

minimize this cost.

III. RESOURCE ASSIGNMENT IN VEHICULAR CLOUDS

The single task allocation on a set of vehicles sub-problem

can be related to the knapsack cover (KC).

Problem 1: Knapsack Cover (KC): Given is a set of n items

X = {1, ...., n} with a cost ci ∈ Z
+ and a size si ∈ Z

+

for each item and a demand D ∈ Z
+. The goal is to find a
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minimum cost subset of items F ⊆ X subject to the constraint

that the total size of F is at least as large as D.

Given an instance of KC, we construct an instance of

1/U/V C as follows. Each object in KC corresponds to a

machine with an availability interval and speed calculated so

that it equals the size of the object. The availability intervals

are chosen so that they are consecutive in some arbitrary order

of the objects. The single task has the processing requirement

equal to D. We double the number of machines by adding

exactly one machine with the availability interval equal to

that of a machine corresponding to a KC object but with zero

speed and zero cost. It can be argued that any KC solution

corresponds to a feasible schedule for 1/U/V C consisting

of machines corresponding to the objects in the KC solution

plus possible other machines with zero cost and speed that are

chosen to satisfy the VC-preemption constraints.

A. The algorithms

We partition the time into consecutive time intervals. Each

time interval [t1, t2] is such that t1 and t2 represent the

starting or the ending point of the availability interval for

some machine and no other availability interval starts or ends

between t1 and t2. In fact, the set of available machines

does not change between t1 and t2. We call these intervals

partitions. The available processors in each partition are

called the objects and are denoted by oij .

Definition 1: An arbitrary partition Pi is a set of objects

{oi1, oi2, ....} such that each object oij ∈ Pi has a length of

δi = Pt+i −Pt−i , where δi represents the partition length, Pt−i
is the start time, and Pt+i is the end time of partition Pi.

We denote the set of partitions and set of objects as P and

O, respectively. The end time of the last partition corresponds

to the deadline T . The resource capacity (sij) and the total

access cost (cij) of an object oij ∈ Pi is computed by

multiplying its processing speed per unit of time and the

cost per unit of time, respectively, with its length. Moreover,

we introduce the notion of scheduling intervals, collectively

represented by set I, where each interval Ii is defined as

follows:

Definition 2: A scheduling interval Ii, denoted by

[Pt−s , P t+t ], is a collection of objects from partitions

{Ps, Ps+1, ...., Pt} where Pt−s and Pt+t are the start time

and the end time, respectively, of this interval. The scheduling

interval length |Ii| is measured as the number of partitions

from Ps to Pt.

A scheduling interval corresponds to the actual period of time

that a task is scheduled on the vehicular cloud processors. If

the scheduling interval for a task is known, then the actual

minimum cost schedule for that task can be obtained by

solving an instance of the multiple choice knapsack cover

problem.

Problem 2: Multiple Choice Knapsack Cover Problem

(MCKCP): Given n classes N1, N2, ...., Nn of items, where

each item j ∈ Ni has a non-negative size, sij and a non-

negative cost cij , and given a demand D ∈ Z
+, the objective

is to choose exactly one item from each class such that the

total size of the chosen objects is at least D and the total cost

of the objects is minimized.

Since we do not know the optimal scheduling interval for

task k, we can enumerate all possible scheduling intervals and

we can solve the MCKCP corresponding to the scheduling

interval, retaining the case with the smallest cost.

Scheduling for n/U/V C can be approached in a greedy

fashion. This is the “main procedure” that takes each task,

one at a time, and schedules it with the minimum cost

by calling a second procedure, the “single task scheduling

procedure” which solves the 1/U/V C problem. This second

procedure can be implemented with two algorithms, a PTAS

and a greedy approximation. Depending on the algorithm used

for scheduling one task, we call the algorithm for problem

n/U/V C GrGr or GrPTAS respectively.

B. PTAS for 1/U/V C problem

The procedure enumerates all O(m2) scheduling intervals.

For a given scheduling interval, we need to solve an in-

stance of MCKCP. Let the scheduling interval consist of

partitions P1, . . . , Pz . A scaling based fully polynomial time

approximation scheme (FPTAS) for minimum knapsack cover

(KC) problem is proposed in a thesis by Islam et al. [13].

Their proposal uses a dynamic programming (DP) approach

for solving the KC problem. We extend this scheme to the

MCKCP problem.

We assume first that the cost of objects in the MCKCP are

all integer. We denote the DP sub-problem by S(i, c), which

represents the maximum total size of objects from partitions

{1, ...., i} for i ≤ z given a budget c used to pay the costs of

the objects. The DP sub-problem can be obtained recursively,

S(i, c) = max
oij∈Pi∧cij≤c

S(i− 1, c− cij) + sij (1)

In this relation, we extend the total size of the objects selected

by one more partition.

Let cmax be the highest cost of an object among the z
partitions. Then a feasible solution cannot have cost larger

than zcmax. If there are a total of n objects, then the total

running time taken for building the DP table is O(nzcmax).
Once the DP table S(, ) is built, the optimal solution can be

found by looking at the entry that satisfies the demand with

minimum cost c. Thus, we can say that 1/U/V C can be solved

in time that is pseudo-polynomial in the size of the problem.

The above pseudo polynomial time algorithm can be con-

verted into a FPTAS using cost scaling. Suppose we can guess

the value c∗ representing the maximum cost of an object

used by the optimal solution to the MCKCP (we can run this

procedure n times, once for each possible value of c∗, and

keep the best solution). The guessed value c∗ can be used as a

simple lower bound on the cost of the optimal solution in the

proof of the (1+ε) approximation factor of our algorithm. We

choose a scaling factor k∗ = εc∗
z and we scale every object j

from partition i with cost cij ≤ c∗ to integer cost c′ij = � cij
k∗ �.

It can be shown that the dynamic programming algorithm from

(1) is an FPTAS when executed over the scaled costs c′ij . We
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can state the following theorem. Details are omitted due to

space constraints.

Theorem 1: For a fixed ε > 0 and O(m) partitions, there

is a FPTAS for the 1/U/V C problem that outputs a (1 + ε)-

approximation solution with running time O(n2m3

ε ).

C. Greedy algorithm for 1/U/V C problem

We propose a natural greedy algorithm to solve the

1/U/V C problem. The idea is as follows: we enumerate all

scheduling intervals. Given a fixed scheduling interval, we

select the object from each partition with the smallest cost

per unit of size value. We select the best feasible solution

obtained over the set of all scheduling intervals.

IV. EXPERIMENTAL ANALYSIS

We evaluated our scheduling algorithms in three different

scenarios: i) fixed number of vehicles and varying number

of tasks, ii) varying the ratio between tasks with a large

demand (long tasks) and tasks with a small demand (short

tasks) while maintaining the ratio between total demand and

the total available processing resource constant, and iii) task

profiles extracted from real grid workload traces.

We generated the test instances for the first two scenarios

randomly. We used a normal distribution for the duration

of the availability intervals for the machines. To choose the

starting time for the availability intervals, we chose a particular

moment within the simulation time window and we generated

the starting point of the machine availabilities using the normal

distribution around it. We used a uniform distribution between

values 1 and 10 for the speed and cost per unit of time for each

vehicle. We used a bi-modal distribution for task requirements

to create sets of short and long tasks. We call a task short

(long) if its processing requirement needs a fifth of (three

times) the average duration of a partition (see Section III-A)

to serve at the average machine speed.

a) Scenario i: In these experiments, we vary the number

of tasks while keeping the resources fixed. We categorized

the test instances into two groups: small-size and large-size,

based on the values of m (the number of machines) and n
(the number of tasks). For small-size instances m and n values

are taken from set {5, 8, 10} and {5, 10, 20, 30, 50, 100, 200},

respectively. For large-size instances m ∈ {20, 30, 50} and

n ∈ {10, 20, 30, 50, 100, 200}. We generate 10 random ma-

chine instances for each value of m and 10 random sets of

tasks for each value of n. We solved instances corresponding

to all possible combinations of values for m and n and we

report the average over all of the instances with the same

value of n.

We propose the following simple lower bound on the

cost of the optimal task schedule. Consider all machines

i ∈ {1, . . . , n} indexed in non-decreasing order of their cost

per speed ratio (
C(i)
α(i) ≤ C(i+)

α(i+) for all 1 ≤ i ≤ n − 1). This

ratio represent the cost for serving a unit of demand. Given a

problem instance I , we calculate the cost of serving the total

demand of I by the cheapest resources. Clearly, the optimal

schedule cannot do better than this. If CA(I) represents the
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cost of the solution returned by algorithm A on instance I and

C ′(I) is the value of this lower bound, then the approximation

ratio of algorithm A on instance I is
CA(I)
C′(I) ≥ 1.

Fig. 1 shows the approximation ratio as a function of

the number of tasks. Each line in this figure represents the

algorithm used for solving the 1/U/V C instance. Fig. 1a and

1b depict the approximation ratio of small and large instances,

respectively. Additionally, Fig. 2 shows the running times

(in seconds) for large instances where GrGr is significantly

faster than GrPTAS for all ε values. We ignored the time

comparison for small instances as they are almost identical

for all the algorithms. Moreover, Fig. 3 shows the performance

of the algorithms when the number of vehicles increases. As

expected, the cost of the schedule returned by GrPTAS for ε =

0.1 outperforms GrGr in an expense of higher running time.

b) Scenario ii: In this scenario we vary the ratio be-

tween the total processing demand of the tasks and the total

processing capability of the machines. We call this ratio

the constraint level and we denote it by γ. We used five

different constraint levels: 10%, 25%, 50%, 75% and 100%.

We generated machine instances for m ∈ {8, 10, 15, 20} and

task instances for five different ratios β between the total

demand originating from long tasks and the total demand

originating from short tasks for β ∈ {9, 1, 2, 1/2, 1/9}. The
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task instances were generated so that the constraint level

remains constant. For each (γ, β) pair, 10 random instances

were generated, for a total of 250 problem instances.

Figures 4a and 4b depict the performance ratio and the

average running time for different load conditions. We see

that the performance of GrGr and GrPTAS for ε = 0.1 is

almost identical in terms of cost minimization. However, GrGr

is significantly faster than all ε values of GrPTAS as the load

factor increases.

c) Scenario iii: In this experiment we have used a

database of mobility traces collected from taxis in San Fran-

cisco. It contains GPS coordinates of approximately 500 taxis

collected over over 30 days [15]. We assumed that taxis (vehi-

cles) from cabspotting database are equipped with processors.

These processors can be organized to form a vehicular cloud

around a fixed reference point and computational tasks can be

offloaded to this VC for processing. To generate the machine

instances, we selected a reference point in San Francisco and

we computed the availability intervals according to the time

interval in which taxis are within some radius of the reference

point.

For this experiment, the simulation time window was chosen

equal to one day (86400 seconds). We selected 10 slices

of one day duration each from the taxi mobility database

collected within 100m radius of the City Hall. We selected

10 sets of task requirements based on the running time

of processes from 10 randomly chosen slices of one day

duration each of the DAS-2 system workload trace available

from the Grid Workloads Archive (GWA) [16]. The instances

extracted are extremely large, and so we have executed only

the GrGr scheduler as it outperformed the GrPTAS algorithm

in previous experiments. For each machine availability / task

requirement pair, we assigned processor speeds uniformly at

random to obtain a particular constraint level ranging from

100% (heavily loaded) to an instance of 10% (lightly loaded).

Fig. 5a depicts the success rate in terms of the fraction

of demand fulfilled and the fraction of tasks completed as a

function of the system load (load factor). Additionally, Fig.

5b shows the average duration of both tasks accepted and

tasks rejected. Since we relax the constraint level in the graph

from Fig. 5b by increasing the randomly assigned speed of the

processors, we represent the line corresponding to the duration

of a constant task requirement. We thus notice that the average

duration of the accepted tasks increases with the decrease in

constraint level up to the 50% mark. Comparing figures 5a
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Fig. 5. Performance of GrGr in real life scenario.

and 5b indicates that, GrGr was able to schedule most of the

short tasks successfully whereas it failed to schedule some

long tasks. Moreover, increasing the speed of the vehicles

does not necessarily allow the vehicular cloud to process more

tasks in some cases. Fig. 5c depicts the approximation ratio

of the scheduler which is worse than in the case of randomly

generated task requirements. We remark that, for any real

life system, the tasks rejected by the vehicular cloud can be

assigned to a fixed cloud infrastructure.

V. CONCLUSION

Vehicular cloud systems implement the concept of fog

computing and will play a significant role in the Internet of

Things. We argued that task scheduling in vehicular clouds,

unlike in any other distributed computing environment, re-

quires the solution to a machine scheduling problem with

special constraints. We provide a first theoretical and empirical

analysis of the scheduling problem and we present concrete

measurements on the computational capacity of vehicular

clouds. Our findings may not only prove useful to engineers

considering an actual vehicular cloud deployment, but also for

further research on algorithms for concrete resource schedul-

ing problems in vehicular clouds.
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