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Abstract— Driver behavior profiling has been gaining increased
attention due to its relevance in many applications. For instance,
car insurance telematics and fleet management entities have
been recently using smartphones’ embedded sensors, On-Board
Diagnostics II (OBDII) units and other on-board IoT devices to
collect data on vehicles’ behavior and evaluate the risk profile of
drivers. In this context, this paper presents a robust data-driven
framework for calculating drivers’ risk profile measured in terms
of the additive inverse of the predicted risk probability. The
Strategic Highway Research Program 2 (SHRP2) naturalistic
driving study (NDS) dataset, which is the largest dataset of its
kind to date, is utilized to build the risk prediction models. Crash
and near-crash events are used to quantify riskiness whereas
balanced baseline driving events (i.e., events captured during
normal day to day driving episodes) are used to reflect total
exposure or driving time per driver. Thirteen mutually exclusive
behavioral risk predictors are identified, and the feature matrix
is formulated. A sensitivity analysis is then performed to find
the best number of balanced baseline events below which drivers
are filtered out. Different machine learning models are selected,
customized, and compared to achieve best risk prediction perfor-
mance. Finally, the utilization of the proposed prediction model
within an envisioned driver profiling cloud-based framework is
briefly discussed.

Index Terms— Internet of intelligent vehicles (IoIV), driving
behavior profiling, data-driven applications, intelligent trans-
portation systems (ITS), prediction models, vehicle-to-cloud
(V2C) applications.

I. INTRODUCTION

THE Internet of Things (IoT) is gaining increasing rele-
vance in many applications due the recent advancements

in communications, identification and sensing technology [1],
[2]. IoT enables objects to sense and communicate information
in real-time which facilitates information exchange, analysis
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and decision making [3]. According to Gartner report in [4],
it is expected that 20 billion IoT devices will be connected by
2020. This new wave of technology has gained its significance
in a wide range of applications such as in smart homes [5],
[6], connected wearables [7], and intelligent transportation
systems’ (ITS) applications [8] including driver risk profiling,
which is the focus of this paper.

According to the World Health Organization (WHO) global
status report in road safety, it is anticipated that road crashes
will be the seventh leading cause of death in 2030 unless
serious actions are taken [9]. Recently, researchers have been
utilizing the Internet of Intelligent Vehicles (IoIV) technology,
with attention on ensuring safe driving [10]. IoIV technology
refers to the dynamic mobile communication between vehicles
(V2V), vehicles and road infrastructures (V2I), vehicles and
humans (V2H) or vehicles and cloud (V2C) with the primary
objective of minimizing driving risk and ensuring a better
driving experience.

Driver risk profiling is an emerging V2C driving application
which has particular significance in the fleet management and
car insurance telematics domains [11]. In fleet management,
fleet administrators are keen on tracking the behavior of their
drivers to ensure the safety of their fleets and the roads. Like-
wise, car companies are adopting a new insurance paradigm
called pay-how-you-drive (PHYD) in which insurance premi-
ums are adapted according to the real-time behavior of drivers.
In both domains, data that reflect a subject vehicle’s (sv)
behavior is collected using smartphones’ embedded sensors
and/or On-Board Diagnostics II (OBDII) units, and is then
sent to the cloud for analysis. In the cloud, different figures of
merit (FOMs) are typically calculated for each trip using
collected data and a driver’s risk score is provided accordingly.

Modeling the actual risk score based on the detected FOMs
is viewed by many as an intricate problem. The reason is that
the process of designing efficient scoring models necessitates
the existence of enough and reliable data, which is not always
available. Consequently, different insurance companies have
been adopting several scoring models that assign different
weights to each FOM [12]. Although several insurers are
viewing the number of harsh braking events as the best risk
predictor, there is no common agreement about the statistical
significance of such measure.

Among the different data collection approaches, naturalistic
driving studies (NDSs) have recently prevailed [13]–[15].
NDSs provide researchers with the opportunity to study the
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behavior of drivers, explore the different driving patterns,
and provide data-driven approaches for calculating the risk
associated with several driving behaviors [16]. For instance,
the Strategic Highway Research Program 2 (SHRP2) NDS
dataset offers an unprecedented amount of driving context
data for almost 9,000 recorded crash and near-crash events
and more than 20,000 balanced base-line events (i.e., normal
driving events proportional to the total driving per driver) for
more than 3,000 drivers [17]. The collected data gives not only
the opportunity to study the prevalence of behavioral factors
during risky events but also their prevalence through normal
driving episodes, which enables the conduction of statistically
sound studies. This dataset is considered by far the largest of
its kind. Consequently, the efficient utilization of such dataset
can lead to a formulation of more robust driving risk models
and can provide more insights into the significance of each
risk predictor.

This paper presents a novel robust data-driven framework
for evaluating drivers’ risk scores and the incorporation of this
framework in a cloud-based driver profiling system.

The main contributions of our paper can be summarized as
follows:

1) We provide a practical, robust data-driven framework
for calculating drivers’ risk profiles (i.e., aggregated risk
scores) as a function of the predicted risk probability
of their behavioral patterns. This is achieved by the
utilization of the behavioral context information during
base-line, crash and near-crash events of SHRP2 dataset.

2) A comparative study between selected and customized
machine learning algorithms is performed to determine
the best performing algorithm for the risk prediction
problem. Algorithms are compared in terms of their
average performance and their performance consistency
through various testing samples.

The remainder of this paper is organized as follows.
In section II, a background review and the related work are
provided. Section III presents the proposed risk profiling
framework. Also, the mathematical formulation of the risk
prediction problem is introduced. In section IV, the adopted
data filtering and pre-processing processes are discussed.
In section V, machine learning algorithms that are utilized to
predict riskiness are presented. The selection process of these
algorithms and the customization of their hyper-parameters for
the presented risk prediction problem is motivated. In section
VI, performance assessment metrics that are employed to
measure the performance of the utilized models are discussed.
Results and discussion are then presented in section VII.
An envisioned cloud-based profiling system based on the
developed risk prediction model is highlighted in section VIII
and conclusions are finally presented in section IX.

II. BACKGROUND AND RELATED WORK

A. Driving Behavior Profiling

Driver profiling is based on acquiring continuous informa-
tion about the behavior of an sv driver through the use of
unobtrusive devices such as OBDII units and/or smartphones
[18]. This data is then processed and classified into driving

Fig. 1. Driver behavior classification and scoring.

behaviors which are inputted, along with other FOMs such
as trip duration, to a scoring function as shown in Figure 1.
A scoring function is a model that can take different forms
and assigns weights to the FOMs according to their risk
impact [12]. Conventionally, there are four driving behavioral
FOMs that are utilized as risk quantification measures (i.e.,
risk predictors) to calculate a risk score for a certain driver
[11], [12]. These FOMs are:

1) Braking: number of harsh braking events.
2) Speeding (relative or absolute): number of excessive

speeding events whether more than the speed limit or
relatively higher than surrounding vehicles.

3) Cornering: number of events when turning at a higher
than posted speed.

4) Acceleration: number of hard acceleration events.
Several industrial products and research frameworks have

been implemented and proposed. For instance, car insurance
companies have developed different smartphone applications
that are compatible with IOS and Android operating systems
and are capable of detecting and evaluating the behavior of
drivers by utilizing smartphones’ sensors such as: accelerom-
eters, magnetometers and GPSs. Examples include TDMyAd-
vantge, Aviva RateMyDrive and StateFarm DriverFeedback
applications [19]. The aggregated scores over many trips are
used to adjust the drivers’ insurance premiums.

Research in this field has taken two main directions:
1) Driver behavior detection and classification. This

includes the detection of certain events such as: aggres-
sive acceleration, aggressive lane change, etc. [20]–[24].

2) The development of risk prediction and scoring func-
tions that accurately reflect risk rate given the detected
behaviors [25], [26].

While the former contains many contributions; proposals and
frameworks, the latter has very few. Indeed, the choice of
scoring functions has been very subjective due to the absence
of a frame of reference which is due to the lack of large-scale
and reliable datasets.

Large-scale driving datasets are necessary to develop a
reliable data-driven risk prediction model that can infer the
statistical dependence between detected behaviors and the
expected driving risk (e.g., crash and near-crash probability).
Such a model is crucial to provide drivers with fair risk
scores based on the risk potential of their different behav-
ioral patterns. The Developed scoring function can be used
within a smartphone application or in a cloud server after the
detection/classification of driving behaviors during a specific
driving trip.

Driver behavior detection has been extensively studied in
the literature. Authors in [27] evaluated the performance of
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four machine learning algorithms in detecting seven different
driving maneuvers. Authors concluded that Random Forests
algorithm is superior over other algorithms in the detection
of such events. In [28] the authors proposed “DriveSafe”
iPhone application that is capable of detecting drowsy and
distracted driving behaviors by utilizing the iPhone’s built-in
rear-camera, microphone, inertial sensors, and GPS. Authors
in [29] utilized DriveSafe application to provide a large-scale
naturalistic driving (ND) dataset (UAH-DriveSet) in two road
types (i.e., highways and secondary roads). With 500 minutes
of publicly available ND data, UAH-DriveSet is expected to
facilitate the research in the field of driving behavior detec-
tion/classification. In [23], authors proposed an HMM-based
model to detect abrupt and normal driving maneuvers in
both longitudinal and lateral directions. Events were detected
using smartphones and authors claimed to have a classification
accuracy of ∼ 95%. Authors in [18] proposed an application
called MobiDriveScore that acquires data from a smartphone
and a vehicle’s network (i.e., CAN-bus) to detect risky events.
A smartphone application called CarSafe was proposed in
[30] to detect dangerous behaviors. Authors utilized smart-
phones’ dual cameras to detect a number of dangerous events.
The smartphone was mounted on the dash of the car. They
used the front camera to detect drowsiness and distraction
whereas the rear camera was utilized to detect tailgating
and unintentional lane changing. A fuzzy logic based smart-
phone application was proposed in [25]. A complete driving
behavior detection and scoring system was proposed and
discussed and four unique driving events were detected with
high accuracy by fusing smartphone’s accelerometer, gravity,
magnetic, and GPS data. Moreover, authors used two different
smartphones with different sampling rates and resolutions and
compared their detection performances which were found to
be consistent. Similar work was presented in [31] in which
authors used accelerometer, gyroscope, and magnetometer
sensors of a smartphone to detect sharp turning, aggressive
acceleration and abrupt lane changing, and sudden braking.
To compensate for the varying time of events, a dynamic time
wrapping (DTW) algorithm was implemented and maneuvers
were then classified according to their risk level using a
binary Bayesian classifier. Other proposals such in [32] aimed
to predict the driving behavior at signed intersections using
HMM-based model. More recently, authors in [20] proposed
five HMM-based models that are capable of classifying the
behavior of the driver by taking into account the behavior of
surrounding vehicles. Models were trained and tested using
the 100-CAR dataset.

Despite the research efforts mentioned above in event detec-
tion and driver behavior classification field, contributions in
formulating reliable scoring functions are still very primitive
[25], which motivated the formulation of reliable data-driven
scoring models presented in this work.

B. SHRP2 NDS Dataset

Human error contributes to approximately 90% of crashes
[33]. In order to examine the influence of different driving
behaviors on the crash rate, different approaches have been

proposed including the ND data collection approach [13].
ND data collection methodology provides three important
advantages over other data collection methods [14]:

1) Detailed information about the behavior of a driver prior
to a crash or near-crash events.

2) Exposure data, which provides vital information about
the frequency of occurrence of different driving behav-
iors during normal driving episodes.

3) The amount and reliability of collected data paves the
way for conducting statistically sound studies.

The Virginia Tech Transportation Institute (VTTI) has been
pioneering this approach since the beginning of this century
with two large-scale data collection projects, the 100-CAR
NDS and more recently the SHRP2 NDS. In SHRP2 NDS,
3542 drivers were recruited in six different sites in the United
States, and their vehicles were equipped with unobtrusive data
acquisition systems (DASs) containing mainly forward radar
sensors, video cameras, OBD units to acquire the vehicle’s
CAN bus information, and global positioning systems (GPSs).
Participants were then asked to use their vehicles in their
normal day to day driving routine. Data was continuously
recorded which resulted in more than 35 million miles of
driving data. This is, by far, the largest amount of naturalistic
driving data ever recorded to date [14].

Data reductionists were then able to extract almost
9,000 risky events which are comprised of crash and near-crash
events. Moreover, normal driving events where randomly
chosen for each driver to offer exposure information. These
episodes are called balanced baseline events as their number is
balanced with the total driving time of a driver. The operational
definitions for each type of these events can be found in [34]
and are briefly as follows:

1) Crash: any contact made with an object (alive or inani-
mate) either moving, or fixed, by the vehicle driven by
sv driver. This also includes inadvertent departures of
the roadway if contact is made.

2) Near crash: any driving maneuver(s) performed by the sv
driver that will avoid their vehicle from being involved
in a crash.

3) Balanced baseline events: epochs of data selected to
provide exposure information. They are 21 seconds long
and their number is proportional to the total driving time
for each driver.

In this work, we utilized the information of 1836 crashes of
all severity levels which represent ∼ 6% of the overall number
of events, 6881 near-crash events which constitute ∼ 24% of
the overall number of events, and 20179 baseline events which
represent ∼ 70% of the overall number of events. The number
of baseline events reflect the total driving time of drivers over
the period of SHRP2 study. Baseline events were used in this
work to provide a “snapshot ”of the behavioral patterns of
drivers on the long-term. The detailed selection criteria of the
number of baseline events per driver can be found in [34]. The
dominant driving behaviors prior to crash/near-crash events or
during baseline events were extracted and recorded from the
collected SHRP2 data by VTTI data reductionists.
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Fig. 2. Block diagram of the adopted data filtering and pre-processing on SHRP2 raw data.

Fig. 3. Block diagram of the proposed driver’s risk profiling system.

III. PROPOSED DRIVER PROFILING FRAMEWORK

In this section, the mathematical formulation of the pro-
posed driver risk profiling framework is presented. Figure 2
depicts the block diagram of the adopted offline data filtering,
pre-processing, and risk prediction model selection processes.
The figure shows the logical sequence of processes applied
on the SHRP2 raw data towards a robust risk prediction for
different behavioral patterns. Data filtering and pre-processing
process consists of merging the raw SHRP2 contextual driving
behaviors to increase their importances, feature and output
engineering, and filtering out unrepresentative data, whereas
the risk prediction model selection phase is composed of the
training, testing, and selection of the risk prediction models.
Figure 3 shows the online risk profiling process which is
composed of the online risk prediction, driver scoring and
profiling. The specifics of the system’s individual components
are explained in sections IV and V.

In the proposed framework, the long-term predicted risk of
different behavioral patterns are used to reflect the short-term
per trip risk scores. To predict the long-term driving risk, each
driver is represented by a feature vector denoted by “FI D”
which is expressed as:

FI D =
[

B1(%) . . . BM (%) Ttotal

]
(1)

where the vector entries “Bi (%)” represent the frequency of
occurrence of each identified behavior with respect to other
behaviors and Ttotal is a categorical variable that reflects the
total exposure (driving) time for a driver represented here in
terms of the total number of base-line driving events. In this
work, thirteen mutually exclusive driving behaviors have been
identified as risk predictors as will be detailed in the following
section. The identified behaviors are depicted in table I with

a brief description of each. The risk prediction is formulated
as both a classification and a regression problem as will be
discussed in the following section. The risk prediction is
initially defined as the process:

F : FI D → P(Risk|FI D) (2)

where P(Risk|FI D) is the probability of driver I D being
involved in a risky event given his/her feature vector FI D .
P(Risk|FI D) is governed by the summation of the crash
(C) and near-crash (NC) conditional probabilites as shown
in equation 3:

P(Risk|FI D) = P(C|FI D) + P(NC|FI D ) (3)

These conditional probabilities are expressed herein in terms
of crash, near-crash, and captured baseline events for each
driver as follows:

P(C|FI D) = NCI D

NTI D
(4)

P(NC|FI D ) = N NCI D

NTI D
(5)

where NCI D and N NCI D are respectively the numbers of
recorded crash and near crash events for driver I D, and NTI D

represents the total number of recorded events for driver I D.
A driver’s score is then computed in terms of the additive
inverse of P(Risk|FI D) as shown in equation 6.

ScoreI D = 1 − P(Risk|FI D) (6)

Practically, scores are calculated for each trip. In this
context, a one-to-one mapping between the categorical variable
Ttotal and the trip time should be performed. A risk profile for
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TABLE I

SUMMARY OF DRIVING BEHAVIORS

Fig. 4. Weighting function of the risk profile.

a certain driver (RPI D ) can then be expressed in terms of the
weighted average score over the last K trips:

RPI D =
j=J1∑

j=T1−K

α j × ScoreI D( j) (7)

where
j=J1∑

j=T1−K

α j = 1 (8)

α j is the weight associated with the jth trip of the last K
trips and can take a shape of an exponentially moving average
function to give more weight for recent trips as being depicted
in Figure 4.

IV. DATA FILTERING AND PRE-PROCESSING

A. Feature Engineering

As mentioned earlier, thirteen driving behaviors are iden-
tified and utilized to extract drivers’ feature vectors FI D to
train and validate the proposed risk prediction models. Based
on the adopted selection criteria, the selected behaviors are
comprehensive and mutually exclusive in nature. They are
chosen according to the following procedure:

1) In the SHRP2 dataset, driving behaviors are classified
into 54 unique behaviors, spanning all possible driving
behaviors. In the dataset, the three most identifiable
behaviors inside the event time frame are recorded. For
simplicity, only the most dominant behavior is chosen,
which makes behaviors mutually exclusive for a given

event (P(Bi ∩ B j )k = 0, where P(Bi ∩ B j )k is the
probability of the simultaneous occurrence of behaviors
Bi and B j at event k).

2) Behaviors that can be classed under the same category
are combined to increase features’ importance. Merg-
ing behaviors was an iterative process that included a
compromise between reducing the models’ over-fitting
and avoiding the too broad generalization of behaviors
resulting from merging too many behaviors in one
“general” behavioral category. We initially attributed the
over-fitting problem to there being a relatively small
number of samples in some of the original behavior cat-
egories. Following our behavior merging process, which
significantly enhanced the over-fitting performance, such
behaviors - due to their rarity in the dataset - were
proven to be a cause for over-fitting. At each behavior
merging iteration, the classification/regression model is
tested for over-fitting by comparing the model’s train and
test performances. As long as the model’s performance
is improving, additional behaviors with lower number
of samples are merged with their corresponding “more
general” behavioral categories. The “general” behavioral
categories are chosen as to avoid overlap between them
and to avoid the broader generalization that makes such
behavioral classifications meaningless (e.g., good/bad
behaviors). For instance, excessive speeding behavior
is clearly distinct from sudden braking, slow driving,
improper reversing, etc. An example of merged behav-
iors is the merging of: “Driving slowly: below speed
limit” and “Driving slowly in relation to other traffic:
not below speed limit” behaviors under the general
behavioral category of “Driving slow”. By following the
same procedure for other behaviors, a total of 13 behav-
ioral categories are identified.

The initial dataset is then formulated as shown in equation 9.⎡
⎢⎢⎢⎢⎣

Driver B1(%) . . . BM (%) Ttotal Outcome

1 F1 P(Risk|F1 )

.

.

.
.
.
.

.

.

.

N FN P(Risk|FN )

⎤
⎥⎥⎥⎥⎦ (9)
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The initially formulated features are further processed to
enhance the performance of the models. Third order polyno-
mial non-linear terms of the original features were added to
increase models’ flexibility. Moreover, to capture the interac-
tions between the initially formulated features (i.e., the joint
effect of features on risk), features’ third order interaction
terms were generated. Considering only three original features
( f1, f2, f3), their third order transformation is equivalent to
(1, f1, f2, f3, f 2

1 , f1. f2, f1. f3, . . . , f1. f2. f3). With the large
number of transformed features (i.e., 680), a feature extraction
process was needed to reduce the feature space dimensionality.
Such a process was crucial to enhance models’ over-fitting
performance and to minimize their training/testing processing
time. For these reasons, Principal Component Analysis (PCA)
technique was applied. As a result, the set of features was
significantly reduced to a new set of features (often called
principal components) that were still able to represent most of
the variability in the data.

B. Data Filtering

Feature engineering process was followed by data filtering.
The purpose of the filtering process was to remove cases
(i.e., drivers) which did not have enough data to represent
their behavioral patterns (i.e., insufficient number of baseline
events). Such cases contributed in the models’ irreducible error
which is caused because of the limitation in the dataset. A
sensitivity analysis was applied to find the minimum number
of events (Ebest ) a driver should have without being filtered out
from the dataset. Threshold values, which represent different
numbers of captured events for each driver, in the interval
[4, 10] were experimented and models’ performances quan-
tified in terms of Mean Square Error (MSE) were recorded
for each threshold value. The trade-off was to find the best
models’ performance in terms of their MSE without losing too
much data which can decrease a model’s reliability. Having a
marginal MSE enhancement in the proposed models’ perfor-
mance with a threshold value greater than 6, an Ebest = 6 was
adopted as a filtering criteria. Figure 5 depicts the histogram
distribution for the number of captured events for all drivers
contributed in the SHRP2 project.

After the filtering process, 29% of the cases were excluded.
Despite the large number of filtered cases, there were still
enough cases (i.e., 2007 cases) for the models’ to be trained
on and to be able to generalize with a high level of accuracy
on test cases as shown in section VII. In real life applications,
the rate at which behaviors are detected is supposed to be
high enough to represent the behavioral patterns of all drivers.
Detected behaviors during a certain trip will be augmented in
the risk scoring function and drivers will be profiled according
to the expected risk of their behavioral pattern.

Filtered data are highly skewed to the left as can be
deduced from figure 5. In section V, different machine learning
algorithms are investigated and compared to obtain the best
modeling performance for such skewed data.

C. Feature Scaling

Classification bounds for machine learning algorithms such
as SVM and KNN are obtained by calculating the Euclidean

Fig. 5. Histogram distribution for the number of captured events for drivers
in the SHRP2 dataset.

distance between feature vectors. These algorithms will not
work efficiently without feature normalization [35]. This is
because if one of the features has a broader range of values
than the others, the aforementioned algorithms will be biased
to this specific feature since the minimum distance will be
governed by that feature. As a result, it is always a good prac-
tice to have the same range of values for all features. In this
work, feature normalization was applied to the SVM, KNN,
ELM, and ANN based models. The following normalization
equation was adopted:

X̂ = X − μx

σx
(10)

where X is the raw feature vector, X̂ is the normalized feature
vector, μx is the mean of X , and σx is the standard of deviation
of X .

D. Dependent Variable (Output) Selection

In this work, the risk prediction problem is formulated using
two different approaches. Initially it is formulated as a binary
classification problem according to the following expression:

OutcomeI D =
{

1, if P(Risk|Fth
I D) > pth

0, otherwise
(11)

where pth is a threshold risk probability above which the
driver is considered risky. The value of pth can vary according
to the driving risk tolerance. In this work, a value pth = 0 is
adopted.

The problem is then formulated as a regression problem
where OutcomeI D takes the soft values of P(Risk|Fth

I D ):

OutcomeI D = P(Risk|Fth
I D) (12)

Each of these two risk prediction representations is impor-
tant according to the domain in which driver profiling is
applied. For instance, in the fleet management domain where
drivers are warned if their behavior entails risky maneuvers,
the binary classification would be more sensible. On the other
hand, for insurance applications the adoption of the classifica-
tion scenario may cause the loss of important information due
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to the generality that classification entails, since risk scores
are averaged over several trips.

V. SELECTION AND CUSTOMIZATION OF ALGORITHMS

In order to tackle the risk prediction problem, a perfor-
mance comparative study is performed on several selected
and customized machine learning algorithms. In this section,
we present the six machine learning algorithms selected and
the choice of their hyper-parameters. The selection of the
candidate algorithms was motivated by two main factors:

1) The non-linearity of the feature space which motivated
the sole use of non-linear classifiers/regressors.

2) The inter-dependencies between the risk prediction fea-
tures. Inter-dependencies are clearly present between the
initial behavioral features

(
i.e., (Bi(%)

)
because their

values are complementary to each other. This occurs
because they represent the rate at which each behavior
occurs and they add up to one for each driver. So the
increase/decrease in one feature will be reflected in the
decrease/increase in other features. To show this mathe-
matically, a vector that shows the correlation coefficients
between the first and the rest of the features is displayed
below:

Corr1,i = [1.0,−0.565,−0.481, · · · , 0.114] (13)

Note that the absolute values of the correlation
coefficients is larger than zero, which reflects the
inter-dependencies between features. This led us to
exclude algorithms that assume features’ independency
such as the Naive Bayes algorithm.

The selected algorithms and the choice of the adopted
hyper-parameters are presented next.

A. K-Nearest Neighbors (KNN)

Despite its simplicity, the KNN algorithm has been suc-
cessfully applied in several classification and regression based
applications. The algorithm labels a new feature vector by
applying a majority voting rule on the labels of its nearest
neighboring samples, where neighbors are found by calculat-
ing their distances from the new feature vector. [36]. Distance
is calculated using different measures such as: the Chebyshev
distance (L1-Norm), the Euclidean distance (L2-Norm), and
more generally the Minkowski distance (L p-Norm). In the
context of the proposed framework, for a feature vector FI D

∈ R
M+1, the Minkowski distance between two feature vectors

is defined as:

D(Fl , Fm) =
⎛
⎝M+1∑

i=1

|Fl(i) − Fm(i)|p

⎞
⎠

( 1
p )

(14)

The choice of the optimal number of neighbors (K) as
well as the Minkowski distance parameter p depends on the
data distribution and the feature space size. This is usually
considered a heuristic optimization problem and is beyond the
scope of this paper. However, for the choice of K, we tested
odd values to avoid tied votes [37]. Also, we noticed that
performance does not improve for K > 5 and a performance

TABLE II

SVM ADOPTED HYPER-PARAMETERS

degradation occurs for K > 11. Consequently, a K value of
5 has been adopted. Concerning the other hyper-parameter
p, large values are usually chosen if the feature space is
large. Since the feature space of our problem is relatively low
(only 13 features), the commonly used L2-Norm distance (i.e.
p = 2) has been used.

B. Support Vector Machines (SVM)

SVM is a very popular machine learning algorithm that
has been applied in different classification and regression
problems. For instance, it has been applied in bioinfor-
matics, road anomalies and driver behavior classification,
and other wide range of applications [21]. The algorithm
is based on the margin-maximization principle detailed in
[38]. In order to achieve the best classification performance,
different hyper-parameters need to be optimized. Grid search
technique is adopted in this work to find the best combi-
nation of hyper-parameters. Grid search technique performs
an exhaustive search over a grid of hyper-parameter values
to find the best set of hyper-parameters. It is often used
when limited number of hyper-parameters with limited search
spaces need to be optimized. The results presented in table II
represent the effort of three rounds of grid-search tuning
where the search space for each hyper-parameter is confined
at each round. We used the area under the Receiver Operating
Characteristic (ROC) curve as a performance metric for grid
search.

In this work,the optimization is performed over four
hyper-parameters which are the regularization parameter C ,
the kernel function k, the polynomial degree p, and the
sensitivity parameter γ . The parameter C is necessary to
avoid the overfitting problem. It is a regularization parame-
ter where a small value indicates high regularization and a
large value reflects low regularization. It determines which
training samples are considered as outliers. The k parameter
specifies the type of the kernel function. The kernel function
transforms the data such that data separation would be easier.
The usefulness of this function depends on the distribution
of the data, which is not always intuitive for data with high
dimensions (multi-variable data). So, we tried three popular
kernels which are linear, polynomial and Gaussian radial basis
functions. γ is a sensitivity parameter to measure the similarity
between the feature vectors. For instance, if γ is large,
feature vectors will be considered similar only if the Euclidean
distance between them is small. A more detailed explanation
of these hyper-parameters are found in [39]. Table II shows
the investigated hyper-parameters and the best combination is
shaded. Finally p is the order of the polynomial kernel.
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TABLE III

DT AND RF ADOPTED HYPER-PARAMETERS

C. Decision Trees (DTs) and Random Forests (RFs)

Unlike KNN and SVM, DT and RF classifiers (or regres-
sors) do not rely on the minimum distance criterion. A decision
tree finds a splitting point on the best predictor’s histogram and
incrementally builds a tree-structured classifier (or regressor)
in a top-down fashion. Decision nodes in each level are
chosen such that the entropy is minimized (or equivalently
the information gain is maximized). For instance, the top most
decision node (the best predictor node) will have the highest
homogeneity as it will maximize the information gain. RFs are
very similar to DTs except they use a multitude on decision
trees on random subsets of the data to reduce overfitting, which
is a common DT problem. DTs and RFs are very intuitive and
because of their trackable structure, the importance of each
feature can be easily measured, which can be very insightful
in many applications, see [40] for detailed information.

To achieve the best risk prediction performance,
we optimize the maximum depth (M D) of the decision
tree and the number of trees in the random forest estimator
(n_estimators). Performance is also calculated in terms of
the area under the ROC curve. Table III depicts the values
that are used for the two hyper-parameters and the best
combination is shaded. The values presented herein are the
fine-tuned values of the last round of trials.

D. Deep Neural Networks (DNNs)

Using multiple sequential computational layers, Deep
Neural Networks (DNNs) learn data representation through
multiple levels of abstraction as depicted in figure 6. Based
on the original features from the input layer, each hidden
layer creates more complex features based on interactions of
features from a previous layer. DNNs do not need feature
engineering since features with higher levels of abstraction
are naturally extracted during back propagation. Using back-
rpopagation algorithms such as Stochastic Gradiant Descent
(SGD), ADAM algorithm, RMSProp, Limited memory BFGS,
etc., DNNs learn how the internal parameters between every
two layers represented by the matrix W (i) should change to
minimize a chosen aggregated loss function L(W ), where
W = [W (1), W (2), . . . , W (H)] for a DNN with H hidden
layers.

In this work, a customized feed-forward DNN was adopted.
The adopted DNN’s hyper-parameters include the rate at which
the weights are updated at each iteration (learning rate α),
Momentum which helps in preventing oscillations around
the cost function global minimum, the number of hidden

Fig. 6. An example of a DNN with two hidden layers.

TABLE IV

DNN ADOPTED HYPER-PARAMETERS

TABLE V

ELM ADOPTED HYPER-PARAMETERS

layers, the number of hidden units per layer, the regularization
parameter (L2 penalty) which helps in preventing over-fitting,
the number of epoches, the optimization algorithm for updat-
ing the network’s weights and the choice of the activation func-
tion. Due to the large number of hyper-parameters, Grid search
was discarded as it is considered a computationally inefficient
hyper-parameters’ optimization technique in such cases. So,
we applied the random search technique to find the optimal
set of hyper-parameters which are displayed in table IV.

E. Extreme Learning Machines (ELMs)

A special case of Artifical Neural Networks (ANNs) is the
Extreme Learning Machines (ELMs). An ELM is a single
layer feed-forward ANN with a random number of hidden
neurons and Ordinary Linear Least Squares (OLS) algorithm
applied to find the network weights’ matrix through a single
optimization step. ELMs take much less training time than
ANNs trained through back-propagation and can give compa-
rable results. The only two hyper-paramters in ELMs are the
number of hidden units, and the activation function. Table V
shows the chosen ELM’s hyper-parameters which were found
through grid search.
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VI. PERFORMANCE ASSESMENT METRICS

To quantify the quality of the algorithms presented in the
previous section, different performance assessment metrics for
classification and regression models have been adopted.

A. Classification Models

1) Accuracy: is one of the most often used measures for
assessing the performance of machine learning algorithms.
It measures the overall performance of a classifier and is
expressed as:

Accuracy = Tp + TN

Tp + TN + Fp + FN
(15)

where Tp, TN , Fp , FN are respectively referring to the number
of true positive, true negative, false positive and false negative
samples.

2) F1-Score: also called the harmonic mean of precession
and recall. It gives an insight on the combined performances
of precession and recall. It is defined as:

F1 = 2 × Precession × Recall

Precession + Recall
= 2Tp

2Tp + Fp + FN
(16)

3) ROC Curves: reflect the classification performance of
a binary classifier as we change a threshold on the classifier
soft probability values. It is a comparison of the recall (i.e. the
true positive rate) and the false positive rate as the threshold is
altered. Using ROC curves, the performance of a classifier is
measured mainly in terms of the area under the curve (AUC),
where the better the classifier performs, the closer the AUC
gets to 1.

B. Regression Models

Let Ŷ be a vector of NT predictions containing the predicted
risk probabilities for NT drivers, and Y is the test vector that
contains the true NT risk probabilities.

1) Mean-Square Error (MSE): MSE is defined as the
squared sum of the averaged differences between predictions
and true labels. It can be expressed as:

M SE = 1

NT

NT∑
1

(Yi − Ŷi )
2 (17)

2) Mean-Absolute Error (MAE): MAE is defined in terms
of the absolute deviation between true and predicted values.
This is mathematically written as:

M AE = 1

NT

NT∑
1

|Yi − Ŷi | (18)

3) R2 Value: also known as the coefficient of determination
is another important statistical measure for assessing the
performance of prediction models. It measures how much
variance in the test vector Y the model can describe. It is
computed using this formula:

R2 = 1 − SSRegression

SST otal
(19)

where SSRegression and SST otal are, respectively, the squared
sum of the regression error and the squared sum of the total
error. They are mathematically expressed in equations 20
and 21:

SSRegression =
NT∑
1

(Yi − Ŷi )
2 (20)

SST otal =
NT∑
1

(Yi − Ȳ )2 (21)

where Ȳ is the mean of the test vector Y . So, an R2 value of
zero indicates that the model does not perform better than a
line that passes through the mean of the test vector Y . On the
other hand, an R2 value of 1 indicates that the model can
explain all the variability of the test vector Y around Ȳ .

VII. RESULTS AND DISCUSSION

This section presents the performance results of the algo-
rithms described in section V. The algorithms were imple-
mented in Spyder (Python 3.6) integrated development envi-
ronment (IDE) using the Scikit-Learn Library for Machine
Learning and Data Mining.

A. Training and Testing Splitting Methodologies

Two training and testing splitting methodologies have been
adopted to train and validate the models.

1) General Splitting Approach: this is the common method
used for choosing a randomly selected portion of the
dataset for training and leaving the remaining dataset
for testing. The splitting ratio usually depends on the
amount of collected data and the application. In this
work, 70% of the dataset is utilized for training. As a
result, 1, 404 training samples and 603 testing or vali-
dation samples are used after fixing the random seed for
the splitting process to a constant number.

2) K-fold Cross Validation: in this approach, the entire
dataset is randomly divided into K equally sized par-
titions. In each training/ testing cycle, a single partition
is kept for testing and all the remaining partitions are
used for training. Training and validation is performed
K times with each of the single partitions used once
for testing. The mean and standard of deviation of the
results can then be obtained to have more a statistical
reflection on the model’s performance. This approach is
superior over the first approach since all data samples
are utilized for both training and testing. In this work,
a 10-fold cross-validation is adopted for all models.

B. Classification Results

ROC curves for the six aforementioned algorithms using
the general splitting approach are depicted in figure 7. As this
figure illustrates, the RF algorithm produces the best AUC
results among all other classifiers followed by the DNN.
Specifically, RF produces the highest true positive rate for
small false positive rates (i.e., F P < 0.1).
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Fig. 7. ROC Curves for DT, SVM, DNN, ELM, KNN and RF classifiers
using the general splitting approach.

Fig. 8. Precision-Recall Curve for DT, SVM, DNN, ELM, KNN and RF
classifiers using the general splitting approach.

Another measure of performance is the precision-recall
curve. It gives useful insight on a classifier’s performance
for unbalanced labels. Figure 8 shows the precision-recall
curves for the six algorithms. Again, the RF classifier clearly
outperforms all other classifiers with an average precision
of 97%.

A summary of the remaining performance assessment
results using the general splitting approach is shown
in Table VI. The table shows a consistency in performance
superiority for RF classifier over the other five classifiers
in all measures. RF achieves an accuracy of 87% and an
F1-score of 0.93.

Figure 9 depicts the performance results using the 10-
fold cross validation approach. The shown figure displays the
variation in performance metrics distributions for the six clas-
sifiers using whisker plots. Points outside whisker plots’ range
[Q1 − 1.5 ∗ I Q R, Q3 + 1.5 ∗ I Q R] are considered outliers,
where Q1 and Q3 are respectively the first and third quartile
values of the whisker plot, and I Q R refers to its interquartile
range (i.e., I Q R = Q1 − Q3). Figure 9a shows that the
RF classifier has an accuracy that ranges between 88.5% and
92.2% with an average accuracy 90%. The figure shows
that the RF classifier outperformed the other five classifiers

TABLE VI

CLASSIFICATION PERFORMANCE RESULTS USING THE GENERAL
SPLITTING APPROACH

TABLE VII

CLASSIFICATION PERFORMANCE RESULTS USING

10-FOLD CROSS-VALIDATION

in the average sense and in its performance consistency over
different training/testing samples. Similar conclusions can be
drawn from figures 9b and 9c where the superiority of the RF
classifier is consistently evident. A summary of the results is
shown in Table VII.

Two important observations can be made from the results.
The first is the superior performance of the RF classifier over
the DNN, whereas the second is the inferior performance
of the SVM when compared to other classifiers. Concerning
the first observation, despite the proven modelling power for
DNNs, they seem to show their full potential when dealing
with highly non-linear modelling problems with large number
of features and a very large number of training samples (big
data). A possible reason of why the RF outperformed the DNN
in this classification problem may be attributed to the size
of the utilized dataset (intermediate size) and the relatively
small feature space since only the 14 original features were
used to train the DNN. With regards to the second observa-
tion, the poor performance of SVM in comparison to other
classifiers is attributed to two main reasons. The first is the
imbalanced classes in our classification problem since we have
more positive labels, and secondly that the performance of
SVM is highly dependent on the optimization of its hyper-
parameters, especially the kernel function. Although different
SVMs were trained on various kernels during the hyper-
parameters’ optimization as mentioned in section V, they still
performed poorly when compared to other algorithms. From
our experience, bagging algorithms (e.g., Random Forests)
almost always outperform SVM for intermediate data-sets with
a relatively low number of features (e.g., the utilized data-
set) unless a kernel that reflects the features’ distribution is
found, which is a computationally inefficient process (i.e.,
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Fig. 9. Whisker plot for accuracy, F1-score and ROC AUC performances
using 10-fold cross-validation.

the computational complexity for training an SVM is between
O(n2) and O(n3) where n is the number of training samples).

C. Regression Results

1) Comparison Between Regressors: We present herein
the comparison results between DNN and RF regressors as
they are the best two performing algorithms in the classi-
fication context. Table VIII shows the MSE, MAE and R2

performance results for DNN and RF regressors using the
general splitting approach. Similar to classification results,
a RF regressor seems to outperform DNN regressor in all
performance measures. Most importantly, R2 value for RF
regressor is considerably higher with a difference gain of 25%
over DNN regressor.

Figure 10 shows the MAE, MSE and R2 performance results
of DNN and RF regressors. Again RF regressor outperforms

Fig. 10. Whisker plot for MSE, MAE and R2 performances using 10-fold
cross-validation.

TABLE VIII

PREDICTION PERFORMANCE RESULTS USING GENERAL
SPLITTING APPROACH

DNN regressor in terms of consistency over different testing
samples and in terms of its average performance. Particularly,
DNN regressor seems to have very inconsistent R2 results
with a relatively small mean when compared to RF regressor.
A summary of the results is shown in Table IX.

Figure 11 depicts the prediction vs. true P(Risk|FI D) for
a random sample of 100 driverS in the test set using RF
regressor. The figure shows the ability of RF regressor to
correctly predict drivers’ risk probabilities in most cases.
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TABLE IX

PREDICTION PERFORMANCE RESULTS USING
10-FOLD CROSS-VALIDATION

Fig. 11. Predicted vs. true risk probabilities for a sample of 100 driver using
RF regressor.

TABLE X

COMPARISON BETWEEN PERFORMANCE RESULTS OF TWO RF MODELS
USING CONVENTIONAL AND EXTENDED FOMS

2) Conventional vs. Proposed FOMs: We compare the
performance of the RF model with the proposed predictors
against its performance using the conventionally used FOMs
that are usually adopted in the car insurance market, which are:
excessive speeding, aggressive driving, sudden or improper
braking and the total exposure time.

Figure 12 depicts the performance results of two RF models,
one with the utilization of the proposed predictors (FOMs) and
the other with the use of only the four conventional predictors
that are used by car insurance companies. The results show
a considerable difference between the two, where the model
with the proposed FOMs is far superior. A summary of the
comparison performance results is shown in Table X.

3) Test Cases: Two test cases are presented in Tables XI
and XII. Table XI shows that the relatively low percentage
of safe driving (i.e., B11) for driver 1 resulted in high risk
probability of 0.655 specially when combined with highly
risky behaviors such as: illegal or unsafe lane change or turn
(B8), fatigue or negligence (B12), excessive speeding (B1), and
aggressive driving (B9). In this case, the proposed RF regressor
was able to predict the risk probability with a very low MSE
of 0.0021.

Table XII shows that the very high percentage of safe
driving for driver 2 (i.e., 87.5 %) was the dominant factor

Fig. 12. RF models’ performances using conventional vs. proposed
predictors.

TABLE XI

TEST CASE FOR DRIVER 1

in having a low risk probability of 0.125. Similar to the first
case, the MSE value here is negligible.

An important finding in the presented and many other
cases is that driving risk can be accurately predicted with
only few events captured with an appropriate sampling
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Fig. 13. Uplink: A driver’s smartphone sends the collected OBDII, radar and its inertial measurements to the cloud for processing. Inside the cloud, behaviors
are classified using sequence modeling and inputted to the proposed driver scoring model. Downlink: A trip score is issued to the driver on a per trip-basis.

TABLE XII

TEST CASE FOR DRIVER 2

time (i.e., balanced base-line events denoted here as Ttotal).
That is because given the relatively low rate at which the
baseline events were taken in the SHRP2 dataset [34], the risk
prediction models’ irreducible error was insignificant and a
snapshot of the behavioral pattern of different drivers was
enough to predict their long-term risk. Therefore, there is no
need for a continuous driving data acquisition to determine
the associated risk of a certain driver. This has its relevance in
minimizing the consumed power of offloading driving data to
the cloud server in a cloud-based profiling system and also in
minimizing the computational cost for predicting driving risk.

Despite the insignificant models’ irreducible error, more
accurate results are anticipated given higher baseline events’
sampling rate which should contribute to minimizing the
models’ errors.

One main limitation of the proposed RF-based driving
risk prediction solution is that it is difficult to interpret.
In other words, the use of the RF-based algorithm limits the
ability to infer the associations between the original driving
behaviors and risk when compared with simpler algorithms
(e.g., linear regression and decision trees). For more reflections
on the associations between driving behaviors and risk, there
should be a compromise between a model’s predictability and
interpretability. Moreover, a risk prediction model may benefit
from exploiting the spatial context of the driving behaviors
using mapping techniques (e.g., GIS mapping) [41], [42]. Such
mapping is expected to enhance the prediction performance
and the interpretability of a model.

VIII. FUTURE WORK: CLOUD-BASED PROFILING SYSTEM

In real life profiling applications, the proposed risk profiling
system can be hosted in a cloud as depicted in Figure 13.

In the envisioned cloud-based profiling system, a smartphone
application will serve as a hub in which real-time vehicle’s
network data (i.e., through OBDII units), the radar range
data, and the smartphone inertial measurements are collected
and forwarded to the cloud. Inside the cloud, such real-time
data are leveraged to detect/classify driving behaviors through
sequence modelling. Detected behaviors are then augmented
in the proposed risk scoring function at the end of each driving
trip. The calculated score is utilized to update the driver’s risk
profile and is sent back to the driver on a per trip basis.

A main challenge of the proposed cloud-based profiling
system is the ability to maintain a reliable communication
link between the vehicle of the subject driver and the cloud.
Reliable communication should ensure the reception of the
vehicular data, and hence the accurate classification of driving
behaviors. In the case of communication disruption, a possible
solution would be storing the non-received data in the subject
driver’s smartphone and re-sending data when communication
is re-established. All stored data should be stamped by the trip
ID number and resent to the cloud where a trip score for the
subject driver is recalculated.

For enhancing the statistical significance of the proposed
results, more data is required. Semi-supervised methods, which
use labeled and unlabeled naturalistic driving data, can be used
at a little time and cost compared to supervised techniques
which necessitates labeling before using the data [43].

IX. CONCLUSION

In this paper, a novel data-driven risk scoring framework for
driver behavior profiling applications is proposed. Six machine
learning algorithms are selected, customized and compared to
achieve the best risk prediction performance. Algorithms are
applied on SHRP2 NDS which is the largest NDS dataset
collected to date. Results show the high performance standards
these algorithms can achieve in predicting risk probability
with a performance advantage of the RF-based predictor.
It was shown that the RF-based predictor can accurately model
skewed data in which the histogram of the number of captured
events per drivers is highly skewed to the left. This has
practical significance in accurately predicting drivers’ risk even
for relatively short driving time. Good performance results
are found consistent even with a relatively small number of
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captured events. This finding is very useful in a cloud-based
profiling system to lessen the amount of consumed power
caused by data offloading, to reduce the computational cost
for predicting driving risk and to minimize the time needed
before warning risky drivers.

A comparison between two customized RF regression mod-
els, one trained with only few conventionally used predic-
tors (FOMs) and the other trained with an extended set of
proposed FOMs is established. The results show that the latter
model outperforms the former in all performance measures as
well as in performance stability over different sets of validation
samples. Finally, given the successful results, the incorporation
of the proposed system into a practical cloud-based driver
profiling system is warranted. This system could be of great
benefit to driver profiling companies in car insurance telemat-
ics and fleet administration domains.
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