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Abstract— Recent research on predictive video delivery
promised optimal resource utilization and quality of ser-
vice (QoS) satisfaction to both dynamic adaptive streaming
over HTTP (DASH) providers and mobile users. These gains
were attained while presuming an idealistic environment with
perfect predictions. Thus, a robust QoS-aware predictive-DASH
(P-DASH) is of paramount importance to handling the practical
uncertainty implied in predicted information. In this paper,
we propose a stochastic QoS-aware robust predictive-DASH
(RP-DASH) scheme over future wireless networks that takes into
account imperfect rate predictions. The objective is to achieve
long-term quality fairness among the DASH users while capping
the probability of service degradation by an operator predefined
level. A deterministic formulation is then obtained using the
scenario approximation, which adopts the probability density
function (PDF) of predicted rates. A linear conservative approx-
imation is introduced to provide an NP-complete formulation,
which can be optimized by commercial solvers. Since exact PDF
might not be available, Gaussian approximation is adopted by
the introduced scheme to provide a closed form less complexity
formulation. To support real-time implementations, a guided
heuristic algorithm is devised to obtain near-optimal resource
allocations and quality selections, while satisfying the predefined
QoS level. Previous non-robust P-DASH schemes are evaluated
in this paper, while considering typical error models in predicted
rates. Such schemes resulted in increased QoS and the quality
of experience degradations with the network load, which was
avoided by the introduced RP-DASH. Results further revealed the
ability of RP-DASH to reach optimal and fair QoS satisfactions.

Index Terms— Channel state information, radio access
networks, resource management, robustness, video.

I. INTRODUCTION

MORE than 75% of the global mobile data traffic is
expected to be video content in 2020 [1]. This predicted

increase is almost fourfold compared to the other internet
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applications such as browsing, gaming and e-mails. Such
growth is driven by the ongoing rapid development of both
the mobile devices and the adaptive dynamic streaming proto-
cols that enhance the user’s experience under varying chan-
nel conditions [2], [3]. Dynamic Adaptive Streaming over
HTTP (DASH) refers to one type of these protocols which
has been standardized in the 3GPP [4]. Each video file is
encoded at multiple bit rates within the server, and thus enables
channel aware quality selection. This selection is currently
user-driven, yet it increases the risk of buffer underrun and
video stops when users greedily request high bitrates that
require more resources than the amount calculated by the
resource allocator. Hence, a shift towards selection becoming
network-centric is gaining momentum in current research to
bridge the gap between the decisions of resource allocator and
the user device especially in multi-user scenarios [5]. As such,
an optimized end-to-end performance can only be achieved
by jointly selecting the video quality and resource sharing
among the mobile users. In addition, joint decisions allow
the network, during low load scenarios, to pre-buffer large
portions of the video or increases the quality, thus strikes a
balance between energy-saving and user saisfaction. During
high load scenarios, as users experience different channel
conditions, the network can fairly select the quality and secure
the necessary amount of radio resources for each user.

In essence, DASH schemes aim to improve the Quality of
Service (QoS) by minimizing the number and durations of
stops, and initial buffer delays while maximizing the video
quality measured by the bitrate [3]. Current network-centric
DASH decisions are based either on previous or future channel
conditions. Non-predictive DASH adopts reported measure-
ments from user device to calculate the amount of resources
and video quality of each user for the next time slot. On the
other hand, Predictive-DASH (P-DASH) leverages upcom-
ing channel rates to calculate long-term decisions [6], [7].
Compared to the non-predictive scheme, P-DASH promised
significant energy savings, user fairness, and resource utiliza-
tion [6]–[10]. The energy-efficient P-DASH in [6] was able to
predict the users with poor channel conditions in the future
and pre-buffers their content ahead. Thus, avoids stalls and
quality degradation in poor future conditions. Similarly, the
P-DASH in [10] provided a higher video quality and less
number of video stops compared to traditional non-predictive
DASH approaches in high load scenarios.
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While both DASH approaches rely on reported or predicted
information, developing robust techniques became of para-
mount importance. In essence, a robust technique defines a
certain level of constraint satisfaction that has to be met by
the decision maker while solving a problem accommodat-
ing uncertain or erroneous information. In case of DASH,
reported channel measurements are typically subjected to
delays and errors due to the random behaviour of wireless
channel [11], [12]. Our recent work on predictive streaming
with fixed quality (i.e. non-DASH) [13]–[15] studied the
challenges in assuming ideal predictions and demonstrated
the importance of adopting robust QoS constraints to define a
probabilistic satisfaction level which limits the service degra-
dations when actual rates fall below their predicted values.
The impact of such uncertainties, on the QoS and resource
utilization, will be more significant in the case of P-DASH
where both the future resources and qualities are jointly
determined by the network.

This paper introduces a predictive DASH framework that
is robust to rate uncertainties, and thus guarantees both QoS
satisfaction and video quality fairness among the users over the
time horizon. The contributions of this paper are summarized
as follows:

1) We propose a network-centric Robust Predictive-DASH
(RP-DASH) approach that seeks joint optimization of
radio resource sharing and video quality selection for
each user during an anticipated time horizon using
future predicted rates and mobility traces. The main
objective is to achieve long-term quality fairness among
the users over the time horizon while avoiding the video
stops due to buffer underrun in order to maximize the
QoS. Unlike non-predictive counterparts, the proposed
approach allows the network to pre-buffer future video
content in high quality to users with poor anticipated
rates. Such users will be able to stream the pre-buffered
high quality content during poor radio conditions result-
ing in higher fairness.

2) We introduce a stochastic optimization model based
on Chance Constrained Programming (CCP) to cap the
risk of QoS violation, under rate uncertainties, by a
certain predefined level. Such probabilistic level allows
the operator to control the trade-off between predica-
tion gains (i.e. long-term quality fairness) and the QoS
violation (i.e. video stops) during uncertain situations.
In principle, CCP incorporates the future rates as random
variables to capture the uncertainties resulting from
imperfect prediction and channel variations. This model
differs from existing predictive DASH approaches which
adopt deterministic constraints with average values of
predicted rates. Hence, such approaches will not be
robust when users experience lower rate values than the
average value adopted in allocation of resources.

3) In order to solve the proposed stochastic model, a closed
form solution that replaces the probabilistic infor-
mation must be derived. To that end, we use Sce-
nario Approximation (SA) to obtain a deterministic
model based on both: the discrete Probability Den-
sity Function (PDF) of random modelled rates, and

the predefined probabilistic level. While the decision
is taken over a time horizon and for both resources
and quality, conventional SA results in a combinatorial
complexity. As such, we introduce a linear approxi-
mation to aggregate the dependency between the time
horizon constraints which reduces the formulation to a
polynomial model. Such approximation is said to be safe
since the resulting solution satisfies the predefined QoS
level in the probabilistic CCP model.

4) While SA provides benchmark solutions for the robust
approach, mobile operators strive to minimize the
effort of obtaining the discrete PDF. Hence, we pro-
pose a second deterministic model based on Gaussian
Approximation (GA) that only requires the variance
and the inverse Cumulative Density Function (CDF)
of predicted rate which is assumed to be normally
distributed. Although GA resulted in unsafe allocation
(i.e. violated the QoS level) in our prior energy-efficient
predictive work [15], recent error models [12] report
the validity of Gaussian distribution in representing the
rate uncertainty. As such, applying GA in the proposed
P-DASH delivery and comparing its performance to SA
will unveil the trade-off between robustness and error
modelling cost on one hand, and prediction gains on the
other hand

5) We propose a low-complexity guided heuristic search
algorithm to obtain real-time solutions for the determin-
istic equivalent GA formulation. Although the formu-
lated model can be optimized by commercial solvers,
real-time solutions are not attainable by conventional
numerical techniques. Our guided heuristic exploits the
problem’s distinct features to devise an initial feasible
solution. This solution is iteratively optimized using the
basis of predictive and robust optimization. Simulation
results demonstrate the competence of such guided
heuristic to satisfy the QoS level without significant
degradation of the selected video quality when compared
to optimal solutions (obtained from commercial solvers).

The paper is organized as follows. In Section II we pro-
vide a background on DASH and robust stochastic-based
optimization. Section III presents the preliminaries, system
model, and the robust probabilistic formulation. Section IV
and Section V introduce the Scenario and Gaussian based
deterministic formulations and their linearized conservative
forms. The low complexity guided heuristic is presented in
Section VI, simulation results are discussed in Section VII
and finally, we conclude the paper in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Dynamic Adaptive Streaming Over HTTP (DASH)

DASH was essentially introduced to improve the user
experience and resource utilization under wireless channel
fluctuations [2]. The video file is split and delivered in the
form of small segments where the quality of each segment
is adapted proportionally to the user’s channel condition.
In particular, low-quality segments are selected when the user
is experiencing low channel rates (e.g. user at the cell edge)
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in order to avoid video stalling. On the contrary, high-quality
segments are delivered when peak channel rates are observed
(e.g. user at the cell center) to exploit the available radio
resources and improve the user’s experience. The original
DASH protocol relies on the user device, aware of the video-
specific information and channel conditions, to select the
segment quality and request it from the streaming server. Such
user-centric approach, however, is unaware of the total network
load and other users demands which are considered by the
resource allocator. Therefore, a user might select a high-quality
level, due to the high measured channel rate, although the
network resource allocator will not necessarily devote the
whole radio resources to that user in the next time slot. Such
limited resources, selected by resource allocator, might not be
sufficient to deliver the high-quality segment, requested by the
user, and thus increases the risk of video stalling [5].

Research efforts are currently concerned with shifting the
DASH from a user-centric decision to a network driven
decision in order to bridge the gap between the objectives
of individual users and the resource allocator [16]. To that
end, the network jointly optimizes the segments qualities and
the resource sharing among the users. Thus, avoids the greedy
quality selection by the users when they overestimate the avail-
able radio resources. At the Base Station (BS), the resource
allocator overwrites the user’s requested quality before for-
warding it to the server [16]. Recent BS storage capability
provides another implementation flexibility where the video is
locally cached with different quality representations, and the
segments are sent at the resource allocator’s quality.

Conventional network-centric DASH [17]–[19] adopts
recent channel measurements, reported by the user’s device,
to optimize the network gains (e.g. resource utilization) and
QoS (e.g. quality and interruptions). Each user reports the
current channel conditions to the network which in turn cal-
culates both the segment’s quality and the amount of resource
share for each user at a certain time slot. These reactive deci-
sions only achieve local optimal network performance without
QoS guarantees due to overlooking the users’ future radio
conditions. Predictive-DASH (P-DASH) [6]–[10], oppositely,
foresee the upcoming radio conditions to derive long-term
policy while allocating the current resources. For example,
two users at the cell center (i.e. good radio conditions), one is
moving towards the cell edge while the other will not move.
As the former experiences poor radio conditions in the future,
the resource allocator must prioritize this user by allocating
more resources during peak radio conditions. Long-term fair-
ness in terms of quality and stalls can be achieved by either
pre-buffering the future content or increasing the current video
quality. On the contrary, users in poor conditions and moving
towards high channel rates will be allocated a small amount
of resources. An unprecedented challenge is the uncertainty
in future information such as user’s location and channel rates
which makes the P-DASH decisions suboptimal or non-robust.

B. Robust Stochastic Optimization

Mobile operators substantially rely on users device mea-
surements to predict the future channel conditions [10], [20].

Therefore prediction accuracy depends on the capabilities of
mobile devices and their estimation methods. Nevertheless,
the random nature of the received signal level over the
wireless channel will cause temporal and spatial variations in
the reported measurements and their consequent estimations.
Accordingly, relying solely on the average values to represent
future channel rates as in [6], [9], and [10] will not guarantee
QoS satisfaction. As the predicted rates fall below their aver-
age values, the minimal amount of resources allocated to the
users in poor radio conditions will not be sufficient to satisfy
the selected quality. Similarly, when the channel experiences
outages during anticipated peak conditions, the large amount
of resources will not be optimally utilized. This is in addition
to the increased risk of video stops when high-quality levels
are selected for these peaks.

Robust techniques have been discussed in the literature
for non-predictive allocations (i.e. without time horizon) in
order to handle uncertainties or delays in the instantaneous
user reported measurements [21]–[23]. Stochastic optimization
is typically used to provide a robust formulation of the
allocation problem in which the predicted uncertain values
are represented as random variables [24]. For the problem
at hand, we focus on CCP in which the constraints accom-
modating random variables are represented in a probabilistic
form with a maximum violation degree denoted as ε ∈ [0, 1].
A deterministic equivalent form is then derived to obtain a
closed form representation which can be further solved by
mathematical optimization techniques.

Robust stochastic work utilizes different techniques such as
Scenario Approximation (SA), Gaussian Approximation (GA),
Bernstein Approximation (BA) and Markov inequality [12],
[14], [22], among others, to obtain the CCP deterministic
form. The GA assumes that all the random variables, in the
formulation, follow a normal distribution. Their summation
results in a multivariate random variable whose mean and
covariance is a function of the statistical parameters of each
single random variable. This derives a Second order Cone
Programming (SoCP) formulation which also incorporates the
inverse of the Gaussian Cumulative Density Function (CDF)
and the QoS degradation level ε. Similarly, the BA adopts
the Moment Generating Function (MGF) to develop a SoCP
deterministic form that only depends on the support of random
variables and the QoS degradation level ε as well. The Markov
inequality [23] on the other hand provides a linear empirical
approximation. However, the optimal coefficients for such
approximation are not easily attainable and do not model
the trade-off between optimality and degree of constraint
satisfaction. The SA utilizes the discrete PDF of the random
variables to create a scenario tree using all the combinations.
The allocator has to ensure that the calculated resources satisfy
the scenarios with total probability more than 1 − ε.

Our earlier work in [13]–[15] focused on robust energy-
efficient predictive allocation approaches where the objective
was to minimize the energy consumption at a constant video
quality. The conventional GA resulted in an unsafe approxi-
mation in which the QoS violations surpassed the maximum
predefined probabilistic level in the CCP model [15]. This
necessitates a new design of CCP in which the per slot
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probabilistic level is jointly optimized over the time hori-
zon constraints to consider their interdependence. The BA,
on the other hand, resulted in conservative solutions that
decreased the energy savings of the predictive scheme [14].
The comparison between GA and BA revealed a trade-off
between the predication gains (i.e. energy savings in that
case), QoS violations, error modelling cost and computational
complexity. The optimization problem in previous work was
mainly concerned with striking a balance between the energy
consumption (which is a network metric) and the users QoS
satisfaction. The SA was not used in previous as it compro-
mises the continuity of the energy-saving problem. This is
unlike the problem at hand which balances two QoS metrics,
mainly quality fairness and video stops, and solves for both
integer and continuous decision variables.

Our proposed Robust Predictive-DASH (RP-DASH) scheme
aims to optimize the resource sharing and quality of segments
over a time horizon such that long-term quality fairness is
achieved among users while the probability of video stops
is kept below the violation degree ε. Both SA and GA
are adopted to obtain deterministic equivalent forms. This
is followed by linear and convex approximations to obtain
optimal benchmark solutions by commercial solvers, and a
low complexity guided heuristic for real-time allocations.

III. ROBUST PREDICTIVE DASH FORMULATION

A. Preliminaries

We use the following notational conventions throughout
the paper. X denotes a set and its cardinality is denoted
by |X |. Matrices are denoted with subscripts, e.g. x = (xa,b :
a ∈ Z+, b ∈ Z+). Pr {x} is the probability of event x.
1x is an indicator function that is equal to one if event
x is true and equals 0 otherwise. r̃ represents a random
variable whose expectation is E[r̃ ], its CDF is dented by

�r̃ (x) = Pr {r̃ ≤ x} =
x∫

−∞
N(r̃ , t)dt and the PDF is N(r̃ ).

The number of realizations in a discrete PDF is denoted
by |J | and r ( j ) denotes the j th realization of random vari-
able r̃ . �(x) represents the CDF of a normally distributed
random variable with zero mean and unit variance, while its
inverse CDF is denoted by �−1

x corresponding to the xth

percentile.

B. System Model

The system considers a group of BSs, each serves an active
user set denoted by M , where the user index is i ∈ M . The
video is transmitted from the server to the Evolved Packet
Core (EPC) and then cached at the BS.

1) BS Radio Resources: The active users share the BS
resources (airtime fractions) at each time slot t . The resource
allocation matrix x = (xi,t ∈ [0, 1] : i ∈ M , t ∈ T ) represents
the fraction of resources devoted to deliver user i content
during time slot t .

2) Rate and Mobility Prediction: For the resource allo-
cation, prediction of rate is done by mapping the user’s
current location to the Radio Environment Map (REM)

at the network. The REM contains both the user’s loca-
tions and the corresponding average rate values denoted as
r̄i,t = E[r̃i,t ]. We assume that user’s mobility trace is known
for the next T timeslots, where each slot is denoted by
t ∈ T = {1, 2, · · · , T }. The mobility can be predicted
based on usersâŁ™ predefined paths (e.g. train or bus routes)
and supported with today’s mobile devices that are typically
equipped with localization systems such as Global Positioning
System (GPS) and Wi-Fi. Such predictability is supported by
measurements in public transportation [11] and verified in
existing predictive video delivery [9], [25] which constructed
offline REM for a certain geographical area. In real-time,
the network adopts GPS-based locations and velocities to
estimate users mobility traces and retrieve the corresponding
average channel rates from the REM.

3) Predicted Rate Error Model: In order to model predic-
tion uncertainties, future rate is modelled as random variable
denoted by r̃i,t . The random variable is either described by
1) its discrete PDF when the realizations and their probabilities
are known or 2) the Gaussian distribution in which the standard
deviation is denoted by σi,t and can calculated by [14]. Both
error rates are depicted in Fig.1(a)-Fig.1(b). This Gaussian dis-
tribution error model is motivated by the findings in [13], [20],
and [22] and will be used to quantify the trade-off between
error PDF modelling and robustness. In both cases, the per
slot rate errors are assumed to be independent. Particularly,
the error of predicting the rate is function of erroneous rate
in REM, variations in the wireless signal (which changes
the SINR) and user location uncertainty. These parameters
are calculated at each slot based on the independent channel
gains [22], [26].

4) Video Quality Selection: Each video segment can be
transmitted and played back at quality level q ∈ Q, where
Q is the set of possible segment qualities. The binary decision
variable κ

(q)
i,t is equal to 1 if the video segment transmitted to

user i at time slot t is encoded in quality q , and 0 otherwise.
Each segment consists of vq bytes of data, which depends on
the selected quality level q .

5) Per Slot Demand Probabilistic Constraint: In order
to experience smooth video steaming, with minimal stalls,
the total duration of delivered content should be more
than or equal to the elapsed playback time till slot t . Thus,
the cumulative allocated data to user i at each time slot t
should be more than the total data size of the requested video
segments. This is modelled by a probabilistic chance constraint
which ensures that the probability of video stops at slot t
does not exceed εi,t . The playback duration of each segment
is denoted by τi,t .

The RP-DASH scheme in this paper aims to calculate both
the airtime fractions xi,t and segments quality κ

(q)
i,t for each

user i at time slot t such that all users experience fair video
qualities while meeting the QoS level. Particularly, QoS is said
to be satisfied when users experience video stops, due to buffer
underrun, with probability below ε.

C. Stochastic Chance Constrained Formulation

The introduced robust P-DASH and fair quality selection is
formulated based on Chance Constrained Programming (CCP)
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Fig. 1. Illustration of SA and GA operations.

as follows:

maximize
x,κ

⎧
⎨

⎩
min∀i∈M

∑

∀t∈T

∑

∀q∈Qi

κ
(q)
i,t vq

⎫
⎬

⎭

subject to: C1: Pr

⎧
⎨

⎩

t∑

t ′=0

r̃i,t ′ xi,t ′ ≥
t∑

t ′=0

∑

∀q∈Qi

κ
(q)
i,t ′ vq

⎫
⎬

⎭

≥ 1 − εi,t , ∀ i ∈ M , ∀t ∈ T ,

C2:
t∑

t ′=0

∑

∀q∈Qi

κ
(q)
i,t ′ τi,t ′ ≥ t, ∀ i ∈ M , ∀t ∈ T ,

C3:
∑

q∈Qi

κ
(q)
i,t ≤ 1, ∀ i ∈ M , t ∈ T ,

C4: κ
(q)
i,t ∈ {0, 1} , ∀ i ∈ M , t ∈ T ,

C5:
|M |∑

i=1

xi,t ≤ 1, ∀t ∈ T ,

C6: xi,t ≥ 0, ∀ i ∈ M , t ∈ T . (1)

εi,t ∈ [0, 1] is the probability that the QoS of user i is
unsatisfied at time slot t , where εi,t = 1 is the maximum
QoS violation. The objective function aims to maximize the
minimum total quality of each user to attain the fairness
among the users over the time horizon. The QoS chance
constraint in C1 guarantees that the total delivered content
to the user satisfies the anticipated demand (function of the
selected quality) by a minimum probability of 1 − ε while
considering uncertainties in future rates. The constraint in
C2 complements C1 to ensure that the total duration of the
selected segments should be greater than the elapsed playback
time to avoid video stops. C3 and C4 ensure that, for each
user, only one quality level is selected at a given time slot. The
fifth constraint C5 models the limited resources at each base
station by ensuring that the sum of the airtime fractions is less
than 1 second which is the duration of the allocation slot. The
last constraint C6 ensures the non-negativity of the decision
variable. Indeed the above formulation does not have a closed
form solution due to the probabilistic constraint C1. As such,
we will initially adopt the SA to obtain a deterministic
equivalent form in the next section.
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IV. SCENARIO BASED APPROXIMATION

A. Multi-Stage Scenario Based Approximation

The Scenario approximation adopts the discrete Probability
Density Function (PDF) of the uncertain rates to derive a
deterministic representation for the probabilistic constraint.
The PDF of every rate r̃i,t contains all the realizations r ( j )

i,t

and their probabilities p( j )
i,t to construct the scenarios over

the time horizon. The approximation ensures that resource
allocations and quality selections satisfy the scenarios whose
total probability of occurrence is more than the defined QoS
level (i.e. 1−ε). Each scenario corresponds to one combination
of the possible realizations of the uncertain rates in C1. For
example, the constraint in the second time slot includes the
rates in both the first and second time slot. The scenarios will
comprise all the possible combinations of the realizations of
these two rates. As illustrated in Fig. 1(c), the first scenario
consists of r (1)

1,1 and r (1)
1,2. Where r (1)

1,1 represents the first

realization of the rate at t=1, and r (1)
1,2 is the first realization

of the rate at t=2, both for the first user. The probability of
this scenario will be the product of the individual probabilities
(i.e. s(1)

1,2 = p(1)
1,1 × p(1)

1,2). The deterministic equivalent of C1 in
Eq. 1 is captured by C7-C9 below

maximize
x,κ,δ

⎧
⎨

⎩
min∀i∈M

∑

∀t∈T

∑

∀q∈Qi

κ
(q)
i,t vq

⎫
⎬

⎭

subject to: C7:
t∑

t ′=0

r ( j )
i,t ′ xi,t ′ ≥ δ

( j )
i,t

t∑

t ′=0

∑

∀q∈Qi

κ
(q)
i,t ′ vq ,

∀ i ∈ M , ∀t ∈ T , ∀ j ∈ Ji,t ,

C8:
∑

j∈Ji,t

s( j )
i,t δ

( j )
i,t ≥1 − εi,t , ∀ i ∈ M , t ∈T ,

C9: δ
( j )
i,t ∈{0, 1} , ∀ i ∈M , t ∈ T , j ∈ Ji,t ,

(C2 - C6) (2)

where r ( j )
i,t is the j th realization of the uncertain predicted

rate at time slot t for user i . s( j )
i,t is the probability of the j th

scenario at time slot t for user i . δ
( j )
i,t is a binary decision

variable which equals to 1 if the j th scenario at slot t must be
satisfied by the decision variable and equals 0 otherwise (C9).
Constraint C8 guarantees that the total probability of all the
satisfied scenarios exceeds the minimal QoS level 1 − ε.

While the above formulation is deterministic and robust,
it poses the following three main challenges to the solver:

1. Non-linearity: due to the joint optimization of quality
and airtime fractions, the right hand side in C7 will
be non-linear (both decision variables are multiplied).
Despite the dimensions of C7, the problem is NP-hard
and reaching the optimal solution is not guaranteed.

2. Exponential complexity: the QoS constraint at each time
slot is a function of the rate in both the current and
preceding slots (C7 in Eq. 2 and Fig. 1). Thus, at each
time slot t the number of considered scenarios will be

∏t
t ′=0 |Ji,t ′ |, where |Ji,t ′ | is the number of realizations of

the uncertain rate ri,t ′ . Assuming that all the rates have
equal number of realizations (i.e. |Ji,t ′ | = |Ji |), thus the
total number of scenarios for each time slot constraint
per user will be (|Ji |)(t).

3. Explicit rate information: the scenario-based approxima-
tion requires the exact values of realizations for all the
rates and their corresponding probabilities. This requires
collecting large number of samples for each achievable
channel rate value in order to construct an accurate
discrete PDF. Due to the large number of physical
layer configurations such as Multiple Input Multiple
Output (MIMO) and Modulation and Coding Scheme
(MCS), more possible rates can be achieved. Hence,
increases the burdens of prediction stage.

In the next subsection we address the first two challenges
while the third challenge is tackled separately in the next
section by the Gaussian based approximation. We note that
the first challenge can be tackled by simple linearization since
one of the decision variables is binary, but the other challenges
require more effort.

B. Linear Look-Back Scenario Approximation

The nonlinearity of QoS constraint C7 is solved by exploit-
ing the problem’s structure. The scenario decision variable δ

( j )
i,t

is governed by the QoS constraint C8, as such a minimal
number of scenarios should be satisfied (i.e. δ

( j )
i,t = 1). For

each satisfied scenario (i.e. δ
( j )
i,t = 1), the corresponding

airtime allocation (i.e. left hand side of C7) should guarantee
the satisfaction of the selected demand (i.e. video quality)
while considering the worst case of the selected scenario.
The objective function plays the main role in discarding the
scenarios (i.e. δ

( j )
i,t = 0) whose realizations have very low

values. In that case, both sides of C7 are equal to zero, and
the scenario is not satisfied by the calculated airtime fractions.

A new linear representation for C7 in Eq. 2 is introduced
to capture the above strategy and avoid the exponential com-
plexity due to considering the realizations of all previous time
slots. Instead, the new formulation considers a linear look-
back on the preceding rate realizations to decrease the large
number of scenarios at each time slot. Only one conservative
realization denoted by r (γ )

i,t is selected to represent each of the
rates in the previous slots. The number of scenarios at slot t
will depend only on the realizations in this slot (|Ji,t |) and the
number of previous slots (t − 1) instead of all the realizations
of the latter. In order words, |Ji,t | × (t − 1) scenarios are
considered instead of (|Ji |)(t). The new linear formulation is
represented as follows:

maximize
x,κ,δ,Y

|M |∑

i=1

Yi

subject to: C10:
t∑

t ′=0

∑

∀q∈Qi

κ
(q)
i,t ′ vq −(

t−1∑

t ′=0

r (γ )
i,t ′ xi,t ′ +r ( j )

i,t xi,t )

≤ B(1 − δ
( j )
i,t ), ∀ i ∈ M , t ∈ T ,
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C11:
∑

j∈Ji,t

p( j )
i,t δ

( j )
i,t ≥1−εi,t , ∀ i ∈M , t ∈T ,

C12:
t∑

t ′=0

∑

∀q∈Qi

κ
(q)
i,t vq ≥ Yi , ∀i ∈ M,

(C2 - C6, C9) (3)

The minimum function operator in the objective of Eq. 2
was replaced by introducing auxiliary variable Yi and the
fairness constraint C12 which must be satisfied for all users.
C10 represents the linear look-back constraint in which p( j )

i,t
is the probability of realization j of channel rate ri,t and B

is a very large number that forces the airtime allocation
to satisfy the demand when scenario j is considered. r (γ )

i,t
approximates the channel rates of the preceding timeslots and
can be calculated as follows

minimize
θ,r(γ )

i,t

r (γ )
i,t

subject to: r (γ )
i,t ≥

∑

j∈Ji,t

r ( j )
i,t θ j

θ j

j∑

j ′=1

p( j ′)
i,t ≥ ε, ∀ j ∈ Ji,t

θ j ∈ {0, 1} (4)

The objective function in Eq. 4 aims to select the optimal
value of the aggregated rate rγ

i,t for the slot realizations
such that very low values with conservative solutions and
high values with non-robust solutions are ignored. The first
constraint ensures that the calculated value of rγ

i,t surpasses
some realizations due to their low values; where ignoring
such realizations avoid conservative solutions. The second
constraint guarantees that the sum of probability of the ignored
realizations is below the degradation level ε, to achieve robust-
ness. The last constraint defines θ as a binary decision variable.
Since the objective function is minimization which is subjected
to the second constraint, the decision variable is

∑
j θ j = 1.

Thus only one realization value is selected to satisfy the first
constraint.

V. GAUSSIAN BASED APPROXIMATION

A. Gaussian Linear Conservative Formulation

The third challenge of Scenario Approximation (SA) is
tackled by adopting the Gaussian Approximation (GA) which
does not require the explicit realizations and their probabilities
for all future rates. Instead, GA obtains a deterministic closed
form for C1 using the CDF of multivariate random variables.
Thus the probabilistic constraint C1 is replaced by the follow-
ing deterministic form

Pr

⎧
⎨

⎩

t∑

t ′=0

r̃i,t ′ xi,t ′ ≥
t∑

t ′=0

∑

∀q∈Qi

κ
(q)
i,t ′ vq

⎫
⎬

⎭

= 1 −
∫ Di,t

−∞
N(r, μ,
)dr

= 1 −
�(

Di,t −μi,t

i,t

) − �(
−μi,t

i,t

)

Si,t
≥ 1 − εi,t , (5)

Using the inverse CDF, the following closed form can be
obtained:

μi,t + Si,t �
−1
εi,t


i,t ≥ Di,t , ∀ i ∈ M , t ∈ T , (6)

where:

Si,t =
t∏

t ′=0

(
�(

r (u)
i,t ′ − r̄i,t ′

σi,t ′
) − �(

r (l)
i,t ′ − r̄i,t ′

σi,t ′
)
)

μi,t =
t∑

t ′=0

r̄i,t ′ xi,t ′ ,


i,t =
√√
√
√

t∑

t ′=0

x2
i,t ′σ

2
i,t ′ ,

σ 2
i,t ′ = E[(r̃i,t ′ − r̄i,t ′)

2],

Di,t =
t∑

t ′=0

∑

∀q∈Qi

κ
(q)
i,t ′ vq

r (l)
i,t and r (u)

i,t are the lower and upper bounds of the real-
izations of future predicted rate r̃i,t (i.e. the support). Typical
values of the channel rates in the current and future networks
are more than the corresponding variance values (i.e. μi,t >>


i,t ) and thus �(
−μi,t

i,t

) ≈ 0. Si,t is used to normalize the
truncated probability distribution of the random rates.

The above deterministic form, however, is a mixed integer
quadratic constrained programming which is NP-hard. A linear
approximation is adopted, which turns the problem to
NP-complete. This is done by the budgeted robust approxima-
tion of [21] on Eq. 6 as follows. Let 


(L)
i,t = ∑t

t ′=0 |xi,t ′σi,t ′ |,
thus 
i,t < 


(L)
i,t , and �( 1


i,t
) > �( 1



(L)
i,t

). This guarantees

the satisfaction of C1 by substituting 
i,t with 

(L)
i,t . Such

approximation will result in a linear but conservative formu-
lation compared to the original Gaussian approximation.

The final deterministic mixed integer linear equivalent for
the RP-DASH in Eq. 1 is summarized as

maximize
x,κ,Y

|M |∑

i=1

Yi

subject to: C13: μi,t + Si,t �
−1
εi,t


L
i,t ≥ Di,t ,

∀ i ∈ M , t ∈ T ,

(C2 - C6) (7)

B. Discussion and Comparison to Scenario Approximation

We are now interested in discussing both the robustness
and conservatism of the GA and compare them to those of
the SA. In Fig. 1(a)-Fig. 1(b), both the GA and SA are
illustrated for one time slot where ε is set to 0.05. For
the Gaussian distribution, 0.95 of the samples lies within
the interval [μ − 2σ,μ + 2σ ]. As such, the GA based
RP-DASH will be adopting the lowest rate realization as
depicted in Fig. 1(a). On the other hand, the SA will only
select the highest rates whose total probabilities will sum
up to 0.95. This results in a higher rate value selected by
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the SA and thus less conservative solution. When the major-
ity of total probabilities are above the mean value, GA is
more conservative, while roughly symmetric PDF around the
mean will result in selecting the same rate realization as SA
(i.e. equal conservative). In conclusion, the GA will always
select the same or lower rate compared to the SA which makes
the former a more conservative and robust approximation at
each time slot specially when rate distribution is shifted above
the predicted mean value.

Both the original multi-stage SA and the linear look-back
SA are illustrated in Fig. 1(c)-Fig. 1(d) for two consecutive
time slots. The later will be more conservative since it ignores
the rate realizations above r (γ ) in the first time slot. These
values could have been combined with the rate realizations in
the next time slot and resulted in less conservative solution.

VI. REAL-TIME OPTIMIZER

This section introduces the guided heuristic algorithm to
obtain real-time solutions for the formulated RP-DASH prob-
lem. This is in addition to analyzing its computational com-
plexity.

A. Limitations of Optimal Commercial Solvers

The Scenario-and Gaussian-based robust formulations in
Eq. 3 and Eq. 7 are represented in mixed integer linear
programming forms. The main advantage of these forms
is that an optimal feasible solution can be obtained using
branch and bound or simplex techniques. Such conventional
techniques are currently well developed and implemented in
many commercial solvers such as Gurobi [27]. These solvers
use their own developed heuristic algorithms to calculate
an initial feasible solution which satisfies the constraints.
Other neighbouring solutions are then explored by means
of branch and bound or simplex algorithms, while using
the duality gap to evaluate the optimality of each solution.
Although zero or low duality gaps (i.e. optimal solutions)
can be achieved by commercial solvers, the execution time
highly increases with the problem’s dimensions (i.e. number
of constraints and decision variables). A guided heuristic
algorithm is proposed in this paper to provide a real-time
feasible solution with low optimality gap from commercial
solvers solutions.

B. Guided Real-Time Heuristic

The introduced guided heuristic search algorithm is aware
of the problem’s structure that includes the interdependency
between the constraints and their impact on the value of
objective function. This is in addition to considering the motive
of robust and predictive allocation in calculating the airtime
fractions and video qualities. In essence, the algorithm starts
by satisfying all the QoS constraints using the available radio
resources while ignoring the objective function in that stage.
This first stage contains two problem specific knowledge:
1) the buffering capabilities of the users and 2) the direct rela-
tion between the QoS and the resource limitation constraints.
The former knowledge can be used to push the video content
in advance and thus avoid stalling in congested time slots.

In the next step, the value of objective function is maximized
while exploiting three other problem features: 1) the trade-off
between the fairness (i.e. the objective function) and the above-
mentioned two constraints, 2) the time horizon and the buffer
status of each user, and 3) the competition between the users,
experiencing different channels rates, on the radio resources
of one time slot.

Algorithm 1 Initialization and QoS Satisfaction Stages of
Guided Heuristic

Input : Users: M , Time Horizon: T , Average
Predicted Rates: R̄, Rate Variances: 
,
Maximum Violation: ε and Video
Qualities: Q;

Output : X ;
Initialization: X = ∅, κ = ∅ Nt = 0 ∀t ∈ T

1 Define: Ri,t = r̄i,t − Si,t �
−1
εi,t

σi,t ;
2 for i ∈ M do
3 for t ∈ T do
4 Set κ0

i,t = 1 ;
5 Set C13 of Eq. 7 to an equality and solve for xi,t ;
6 Nt = Nt + xi,t ;
7 end
8 end
9 for t ∈ T do

10 if Nt > 1 then
11 Set k = t − 1;
12 while k > 0 do
13 Calculate the residual airtime �xi,t = Nt − 1;
14 Calculate the demanded airtime

�xi,k = �xi,t × Ri,t
Ri,k

;

15 i∗ = argmaxxi,k∀i ∈ M ;
16 if Nk + �xi∗,k ≤ 1 then
17 Update xi∗,k , xi∗,t , Nt and Nk ;
18 break;
19 end
20 k = k − 1;
21 end
22 end
23 if Nt > 1 then
24 Return Infeasible Problem;
25 end
26 end
27 return X

The heuristic implements two main consecutive stages sum-
marized in Algorithm 1 and Algorithm 2, respectively and are
detailed as follows:

1) Satisfaction of Minimal Quality: In this initial stage
(Algorithm 1), the lowest video quality is assigned to all users
over the time horizon (Algorithm 1, line 3). Then, the amount
of airtime that satisfies this quality level is calculated (line 4)
and used to update the total amount of allocated resources
at each time slot (line 5). Such allocation guarantees the
satisfaction of QoS constraint C13 in Eq. 7.

However, in high load scenarios, due to high QoS levels
(i.e. 1 − ε) or a large number of users, the total allocated
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Algorithm 2 Optimization Stages of Guided Heuristic

Output: X and κ ;
1 Define: Ri,t = r̄i,t − Si,t �

−1
εi,t

σi,t ;
2 for t ∈ T do
3 while Nt < 1 do
4 Calculate Vi,t = ∑t

t ′=0
∑

∀q∈Q κ
(q)
i,t ′ vq for all users;

5 for i ∈ M do

6 Calculate a possible higher quality level κ
(q ′)
i,t vq ′ ;

7 Calculate the required airtime �xi,t to satisfy

κ
(q ′)
i,t vq ′ ;

8 Update Vi,t using κ
(q ′)
i,t vq ′ ;

9 end
10 Select the set of users l with minimum Vi,t ;
11 Select user k from l with minimal �xi,t ;

12 Update Nt , xk,t , and κ
(q)
k,t ;

13 if l is empty then
14 while t ′ < T do
15 Select user i with maximum

(Ri,t ) × (ri,t ′ − ri,t );
16 Repeat lines 5 − 6 and line 11 for user i with

t = t ′;
17 end
18 end
19 end
20 end
21 return X and κ

resources in a certain time slot might violate the airtime
constraint C5 in Eq. 1. Accordingly, the preceding time slots
with vacant resources will be used to pre-buffer the content
of the highly loaded time slots as depicted in lines 11-21
of Algorithm 1. While efficient exploitation of the radio
resources is mandatory, the algorithm selects the user with the
highest achievable rate in this preceding slot and pre-buffers
the content (lines 13-16). Thus, less airtime is consumed
and the chance of satisfying the radio resource constraint
C5 is increased. In case of non-vacant resources, the problem
is said to be infeasible (lines 23-25). Other bounding and
streaming constraints are implicitly satisfied by the above
iterative procedure.

2) Optimizing Long-Term Fairness: This stage
(Algorithm 2) aims to maximize the value of objective
function without violating any of the aforementioned satisfied
constraints. While the objective is to maximize the long-term
quality for each user, the algorithm tries to achieve this on
both the current and the future time slots. In each time slot
with vacant resources, both the cumulative quality and the
required airtime to increase the current slot’s quality are
calculated for each user (lines 3-7). The user with minimal
quality (both cumulative and increased values) is selected as
long as the required airtime is less than the available vacant
resources (line 9). In case of more than one user with the
same quality, the one that requires less airtime is selected
(line 10). This procedure is repeated for all users as long as

there are vacant resources in the current slot and the video
quality is improving.

For low-load scenarios, due to either a small number of
users or high achievable rates, the resources at a certain time
slot might not be fully utilized. As such, predictive allocation
is performed in order to maximize the quality of the users
experiencing their highest channel conditions in the current
time slot. This is modelled by calculating the ratio between
the achievable rate in this time slot and the minimal future
rate. Thus, users with peak radio conditions who are heading
towards the cell edge (line 14) will have the highest ratio and
thus can use these vacant resources to increase the quality of
future video content (lines 13-16). The achievable rate used to
calculate all the airtime allocations is a function of the average
value, variance, CDF and QoS level as derived in C13 of Eq. 7.

C. Algorithm Complexity

The first part of the heuristic (i.e. Algorithm 1) consists
of two successive loops, the first is in lines 1-9 and has a
complexity O(MT ). The second loop, however, has a higher
complexity of O(MT 2) due to revisiting the preceding time
slots in lines 9-27. Similarly, the second part of the heuristic
(i.e. Algorithm 2) has a complexity of O(QMT 2) ≈ O(MT 2)
due to the relatively small number of available quality levels
compared to the length of the time horizon. The complexity
of the whole proposed heuristic is O(MT 2) which is lower
than numerical optimization methods.

VII. PERFORMANCE EVALUATION

A. Simulation Setup

We simulate the proposed RP-DASH using the Long Term
Evolution (LTE) module in Network Simulator 3 (ns-3) [28]
which is integrated with Gurobi commercial solver [27] to
obtain optimal solutions for all the formulated problems. The
fading model of 3GPP defined in [29] is added to the received
power at the user device to apply variations in predicted rate.
Users follow random predefined paths within the cell coverage
region at varying velocities from 25 to 40 km/h, which
correspond to typical values in urban areas. All the simulation
parameters and values are presented in Table I, and the average
of all output results, over 50 simulation runs, is reported
in the following subsections. We compare the introduced
RP-DASH scheme with an existing non-robust P-DASH tech-
nique. The abbreviations, definitions and solution methods of
the comparative schemes are summarized in Table II. Existing
non-robust P-DASH techniques, referred to as P-DASH, are
simulated by replacing the random rates in Eq. 1 with the
average rate values. The performance bounds are obtained by
PP-DASH which assumes perfect prediction of channel rates
(without errors) to replace the random variable in C1 Eq. 1.

B. Evaluation Metrics

1) QoS Satisfaction and QoE Levels: In order to assess the
robustness of the simulated schemes, we measure the QoS
satisfaction using the number and duration of video stops
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TABLE I

SUMMARY OF MODEL PARAMETERS

denoted by η and ζ , respectively and calculated as

ηi =
|T |∑

t=0

1Ri,t <Di,t . (8)

ζi =
|T |∫

0

ζi,κdκ/

|T |∫

0

dκ. (9)

where Ri,t = ∑t
t ′=0 ri,t ′ xi,t ′ is the cumulative video content

received by user i till time slot t while ri,t is the actual channel
rate measured by user i at timeslot t . ζi,κ equals to 1 if user i
experienced a video stop at time instant κ where κ << t .
Both metrics are normalized to the total video duration and
expressed in percentages.

While the network performance is calculated by the average
of each QoS metric, the resultant Quality of Experience
(QoE) is also reported to model the users’ perception. QoE,
in essence, is a subjective metric that represents the service
end-to-end performance level from the user’s perspective, and
can be calculated using the Mean Opinion Score (MOS)
formula in [31] and [32] depicted below:

M OSV S = 1

|M |
|M |∑

i=1

(2.99 × e−0.96ηi + 2.01). (10)

M OSV D = 1

|M |
|M |∑

i=1

4.59 × e−3.44ζi . (11)

Where M OSV S and M OSV D are the MOS values due to
number and duration of video stops, respectively. The value
of MOS varies from 1 to 5 which represents very poor to
excellent service, respectively.

2) Video Streaming Quality: A key performance parameter
of DASH is the selected quality of all the segments over the
time horizon for each user i , denoted by Vi , and calculated as

a function of the segment size as follows

Vi =
∑

∀t∈T

∑

∀q∈Qi

κ
(q)
i,t vq ∀i ∈ M (12)

The Vi metric is averaged over all users to assess the conser-
vatism of the schemes, while the optimality of the objective
function is measured by the fairness using the Jain’s index
below

J =
(
|M |∑

i=1
Vi )

2

|M |
|M |∑

i=1
Vi

2

(13)

C. Simulation Results
1) Comparison With Non-Robust P-DASH: We firstly com-

pare both the SA and GA formulations of the introduced
robust P-DASH against the existing non-robust P-DASH for
different values of QoS degradations and standard deviations.
The existing non-robust P-DASH suffered from an increased
number and durations of video stops with the standard devi-
ations of shadowing as depicted in Fig. 2(a) and Fig. 2(b),
respectively. Although only four users are considered, this QoS
degradation resulted in average and poor MOS values due
to frequent stops with long durations as shown in Fig. 2(c)
and Fig. 2(d), respectively. This is attributed to the average
predicted values of rates adopted by the P-DASH which did
not account for the rate variations and uncertainties. As such,
the highest quality levels were always selected by the non-
robust scheme as depicted in Fig. 3(a). This is as opposed
to the introduced GRP-DASH and SRP-DASH formulations
which were able to keep the percentage of stops and durations
below the QoS degradation level ε × 100%. An increasing
trade-off between the QoS and QoE improvements on one
hand and the quality degradation on the other hand is deduced
over different ε levels as in Fig. 2(a)-Fig. 2(d) and Fig. 3(a),
respectively. The main objective (i.e. quality fairness), did not
suffer a significant degradation as reported by the Jain’s index
in Fig. 3(b).

By increasing the number of users, more and longer video
stops are observed which resulted thus in low MOS values
when using the P-DASH as shown in Fig. 4(a)-Fig. 4(d).
This degradation is caused by the optimistic strategy of the
P-DASH which tries to maximize the quality at the expense
of pre-buffering and thus increases the chance of stops during
channel variations. This was avoided by the GRP-DASH
which, in essence, allocates more airtime than the P-DASH
based on the standard deviation and the QoS degrada-
tion level ε. The optimality gap between the P-DASH and
RP-DASH (GA and SA) also decreases with the increased
load as shown in Fig. 5(a)-Fig. 5(b) since the former has to
retroactively allocate extra airtime after detecting the video
stops.

2) Gaussian and Scenario Based Comparisons: Comparing
the SRP-DASH with GRP-DASH, the latter is found to be
less robust, in terms of average stops, during the low stan-
dard deviations and high QoS degradation levels ε as shown
in Fig. 2(a)-Fig. 2(b). However, this is not the case when the
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TABLE II

COMPARATIVE SCHEMES

Fig. 2. QoS performance of RP-DASH (SA and GA) for 4 users at different degradation levels.

MOS is considered which illustrates that GA is equal or more
robust than the SA as discussed in Section IV especially at
very low values of ε. Since the MOS is calculated by an
exponential function, it reveals that the GA provides a fair
robustness across the users unlike the SA which decreases
the average degradation and conservatism. The optimality gap
in Fig. 3(a)-Fig. 3(b) reveals another trade-off between the

amount of information, required by the SA, and the lower
quality obtained by the GA.

3) Evaluation of the Heuristic and Complexity: The per-
formance of the introduced heuristic is reported for different
numbers of users in Fig. 4(a)-Fig. 4(d). Similar to the GRP-
DASH, the HRP-DASH was able to satisfy the maximum QoS
degradation level ε and provided a stable QoS performance
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Fig. 3. Quality performance of RP-DASH (SA and GA) for 4 users at different degradation levels.

Fig. 4. QoS performance for different number of users at ε = 0.9.

over the load and the channel standard deviation. It can be
also seen that the HRP-DASH was slightly more conservative
than the GRP-DASH and thus reported a smaller optimality

gap in Fig. 5(a)-Fig. 5(b). This demonstrates the ability of
the heuristic to exploit the problem structure and obtain near-
optimal solutions that also satisfy the defined QoS degradation
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Fig. 5. Quality performance for different number of users at ε = 0.9.

TABLE III

EXECUTION TIME OF THE SIMULATED SCHEMES

level ε. The complexity of the both optimal and heuristic
techniques is measured in terms of the execution time as
reported in Table III. The heuristic algorithm only requires less
than 0.1 ms. to solve the RP-DASH formulation irrespective
of the network load (i.e. number of users) and the QoS
degradation level ε. This is unlike the commercial solver which
required tens or hundreds of seconds to reach the target duality
gap. The execution time increases with both the number of
users, due to the larger problem dimension, and the QoS level
(1 − ε) due to the tight feasibility region. When the optimal
SA is used, more execution time is required compared to
the GA due to the added auxiliary decision variables, thus,
presenting a new trade-off between the complexity of SA and
the conservatism of GA.

VIII. CONCLUSION

We introduced a Robust Predictive-DASH (RP-DASH)
scheme to handle uncertainties in predicted rates while achiev-
ing streaming quality fairness among the users. The scheme
adopts a stochastic formulation which incorporates the pre-
dicted information as random variables and guarantee the
QoS satisfaction at a minimum probability level. Deterministic
equivalent forms are then adopted to provide closed form

solutions which can be solved either by commercial solvers
for benchmark solutions, or by the proposed guided heuristic
search for real-time decisions. The performance evaluation,
using a standard compliant simulator, demonstrated the ability
of probabilistic RP-DASH to satisfy the predefined QoS level.
This is unlike the existing non-probabilistic P-DASH schemes
which assume ideal prediction and thus experience increasing
degradation in the users’ QoS and QoE. The results further
revealed a trade-off between the risk of experiencing video
stops and maximizing video quality, which increases the need
for a thorough modelling of user’s preferences. As such, users
seeking high video qualities should be assigned low QoS
probabilistic levels (i.e. 1 − ε) that compromise the number
and duration of stops. In addition to satisfying the QoS level,
the small optimality gap between the SA and GA promises the
adoption of the latter in RP-DASH with quality maximization.
This is unlike the existing conclusions on GA that doubted its
robustness in long-term energy-efficient predictive video deliv-
ery. Adopting the GA in robust predictive DASH will decrease
the cost of uncertainty modelling as the network operator will
not rely on the exact realizations of future rates. Moreover,
near-optimal real-time robust solutions are obtainable for the
DASH scheme through a low complexity guided heuristic
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algorithm that exploits the problem structure. All the above
performance improvements and design flexibilities envision
the implementation of RP-DASH in future wireless networks
under practical uncertainties.

Our future work considers the following enhancements to
the robust predictive DASH delivery:

1. Model the formulation using other user experience met-
rics such as the number and frequency of switching the
quality. This enables assessing the performance gains
and trade-offs of robust predictive DASH under different
operator’s and user’s objectives.

2. Model the uncertainties in the channel vacant capacities
which occurs in high dynamic scenarios with unexpected
user arrivals. This ensures the QoS satisfaction for users
requesting DASH and real-time applications.

3. Examine the potential of exploiting the user’s selected
quality to drive the P-DASH towards less conservative
decisions. In particular, users selecting high-quality levels
compared to the network based values can be used to
learn the variance of the GA or the aggregated rate value
of the SA. This provides real-time tracking of uncertainty
level and adapts the degree of robustness.

4. Extend existing user experience models, i.e. QoE, to cap-
ture the trade-off between video stops and selected quality
using the probabilistic metric. Particularly, a new QoE
model is needed to consider the users preference, i.e. both
quality and stops, as a function of the QoS level ε. Such
model would guide the operator while selecting the value
of ε jointly with the resources and quality of segments
to reflect the user preference.

5. Existing P-DASH focused on optimizing either the QoS
(e.g. video quality), in high load scenarios, or decreas-
ing the energy-consumption in low load cases. A joint
optimization model is desirable to autonomously evaluate
the network load and select the best objective to optimize
(e.g. energy or QoS parameter).
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