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Robust Positioning for Road Information
Services in Challenging Environments
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Abstract—Next-generation Intelligent Transportation
Systems (ITS) of future road traffic monitoring will be
required to provide reports on traffic status, road conditions,
and driver behaviour. Road surface anomalies contribute
to increasing the risk of traffic accidents, reduced driver
comfort and increased vehicles’ damage. The conventional
integrated Global Navigation Satellite System (GNSS)/ Inertial
Navigation System (INS) positioning solutions can suffer
from errors because of inertial sensor noises and biases,
especially when low-cost and commercial grade inertial
sensors are used. In this work, we use a reduced inertial
sensor system utilizing Micro-Electro-Mechanical-System
(MEMS) based inertial sensors, to integrate with the GNSS
receiver and provide robust positioning in urban canyons. To provide acceptable performance in challenging urban
environments, our method de-noises the MEMS-based inertial sensor measurements using a technique based on a
Bi-orthonormal search, which separates the monitored motion dynamics from both the inertial sensor bias errors and
high-frequency noises. As a result, the performance of the positioning system is improved, providing reliable positioning
accuracy during extended GNSS outages that occur in various areas. To show the significant enhancement achieved by
the proposed approach, we examined the system performance over three road test trajectories involving MEMS-based
inertial sensors and GNSS receivers mounted on our test vehicle. The superior performance of our proposed INS/GNSS
integrated positioning system is demonstrated in this paper during various GNSS outages, in different areas, and under
multiple driving scenarios.

Index Terms— Road information services, intelligent transportation systems, connected vehicles, positioning, spectral
de-noising, Kalman filter.
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I. INTRODUCTION

A. Background and Motivation

SMART cities’ are receiving tremendous interest from gov-
ernments and the demands, challenges, and applications

are the primary focus of the Information and Communication
Technology (ICT) community. According to the consume news
and business channel (CNBC) [1], various cities around the
world are expected to invest $41 trillion in smart technologies
within the next two decades.

Furthermore, in their report regarding the Smart City chal-
lenge, the U.S. Department of Transportation has assessed
the effect of smart technologies in ITS on the development
of smart cities [2]. The rapid evolution of sensing technolo-
gies led to a broad acceptance and wide range of applica-
tions of ITS and Road Information Services (RIS) [3], [4].
Consequently, ITS and RIS contribute dramatically towards
the advancement of future smart cities [5], [6]. Recently,
there have been numerous applications on the evolvement
of intelligent vehicles, including driver behaviour assess-
ment and safety-related issues regarding the occupants of
the vehicle [7], [8]. While in [9]–[12], the authors used
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crowdsourcing for RIS, traffic management, and road surface
conditions monitoring.

Undoubtedly, robust positioning and localization-based sys-
tems are required for ITS and RIS systems and applications
to perform efficiently [13], [14]. Specifically, monitoring road
surface anomalies such as potholes and utility holes requires
adequate positioning for the monitored events [12], [15].
Otherwise, the detection of these events can be misleading
or useless. To date, GNSS receivers are the most popular
candidate for location determination, but this technology faces
a few challenges which limit its capabilities [14]. Severe
multipath and total signal blockage in downtown cores and
urban areas are the significant challenges in acquiring accurate
and continuous geo-referencing [13].

To overcome GNSS positioning systems challenges, INS,
when integrated with GNSS receivers, provides accurate and
continuous positioning [14]. Low-cost MEMS-based inertial
sensors (accelerometers and gyroscopes) that are embedded
in INS systems in land-vehicles and ubiquitous smart devices
are not susceptible to the same challenges of GNSS. How-
ever, stand-alone INS solutions are prone to long-term posi-
tion drifts and errors [16]. To avoid positioning errors in
INS solutions, inertial sensors’ biases and different sources
of noises were analyzed and assessed. In particular, iner-
tial sensors noises were categorized into short and long-
term errors [17], [18]. The short-term errors are dominated
by high-frequency components, while long-term errors are
presented by low-frequency components. Short term errors
(i.e., additive white Gaussian noise) are a result of elec-
tronic equipment and power supplies. Also, the random angle
walk is considered short-term noise due to its high-frequency
nature [18].

On the contrary, exponentially correlated noise that results
from internal or external temperature variations is considered
as long-term errors [17]. Bias instability from electronic
components appear in low-frequency components and is also
regarded as long-term errors [18]. To suppress inertial sensor
noises, in [19], a Wavelet Multi-Resolution Analysis (WMRA)
was proposed to eliminate the long-term errors of INS that
are mixed with low frequencies, to describe the vehicle
motion. WMRA adopted a wavelet function of the Daubechies
family together with a soft thresholding technique. However,
the lack of sufficient experimental results that span different
and complicated real driving scenarios limit the reliability of
the proposed method.

Authors in [20], applied a Daubechies wavelet-based
de-noising technique to eliminate inertial sensor noise before
integrating INS with GNSS in a combined solution. The
proposed method used soft thresholding for noise-suppressing,
and the authors compared their integration system after
de-noising with low pass filtering (LPF) - based system
integration. The results did not show significant enhancement
regarding root mean square error, as the wavelet-based inte-
grated system outperforms the LPF by approximately 20%.
Also, the major limitation of the authors’ proposed scheme
is that they only considered GNSS without INS. In [21],
a de-noising technique that combines wavelet de-noising and
Allan Variance (AV) analysis was proposed to suppress both

short and long-term noises. The authors utilized road test
experiments to assess the proposed de-noising technique on
the performance of loosely coupled INS/GNSS integration.
In their results, the combined de-noising method achieved a
maximum error of 53.61 m compared to 92.51 m obtained by
AV de-nosing only. The major drawback is that AV needs big
data sets to produce consistent AV curves, which introduces
additional complexity to the proposed solution. Also, the lack
of experimental validation with extended and multiple GPS
outages made the assessment of the positioning error enhance-
ment not clear enough.

In [22], a high-resolution spectral analysis algorithm named
Fast Orthogonal Search (FOS) was adopted. FOS models the
low-frequency band that contains the vehicle dynamics to
suppress short and long-term errors of the inertial sensors.
The main advantage of FOS is in adopting a non-orthogonal
candidate function that is capable of determining a frequency
component between the Fast Fourier Transform (FFT) bins.
This technique avoids the energy dissemination into other
integer frequency component, which is known by spectral
leakage phenomena [23]. The FOS algorithm divided the
data into small windows to assume stationarity at each
time window. One limitation in [22] is that the maximum
tackled outage length was 40 seconds. This outage period
is not reflecting complicated scenarios such as downtown
cores that can experience a few minutes of continuous
GNSS outages.

Considering INS/GNSS integrated positioning systems,
there are various integration approaches that entirely or par-
tially utilize the Inertial Measurement Units (IMUs) as embed-
ded accelerometers and gyroscopes [14], [24], [25]. Applying
the Kalman Filter (KF) in the integration of GNSS and INS
was the most utilized integration methodology [14], [15].
On the other hand, the Particle Filter (PF) was proposed as
a competitive alternative for integrated positioning [26], [27].
Consequently, the major challenge of the linearized KF is that
the stochastic sensor errors and navigation error states are
linearly modelled. Such linearized modelling leads to solution
divergence, especially during GNSS extended outages [24].

On the other hand, PF techniques such as Sampling/
Importance Re-sampling (SIR), Mixture PF (MPF) and Par-
allel Cascade Identification PF (PCI PF) have the capabil-
ities of nonlinear modelling [27], [28]; that allow the PF
to model high order motion dynamics and noise character-
istics [14]. The major challenge in adopting PF techniques
for INS/GNSS integration is their high computational com-
plexity compared to the linearized KF and extended Kalman
filter (EKF) [14].

Also, during extended GNSS outages, the integration solu-
tions mainly rely on the full inertial measurement units
(IMUs), which have limitations due to the uncompensated
biases [14]. The integration filters are operated in prediction
mode when the GNSS updates are not available. The predicted
INS errors are being considered in the mechanization solution
to enhance its performance. However, the compensation is
not always efficient, and notable residual errors are remain-
ing [14], [16]. A Reduced Inertial Sensor System (RISS) [14]
is utilized to overcome the INS biases and noise errors.
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In RISS, only two accelerometers, one gyroscope and a wheel
odometer, are used instead of full IMUs. The odometer speed
is considered in RISS to avoid the errors of the accelerom-
eter biases. The pitch and roll angles are computed through
combining accelerometers and odometer measurements, thus
to prevent the horizontal gyroscope errors and biases [14].
Nevertheless, noise from inertial sensors and errors need to be
eliminated to enhance the performance of the RISS in extended
GNSS outages.

B. Problem Statement

As previously mentioned, obtaining an accurate and contin-
uous positioning is challenging when only relying on GNSS
receivers in urban areas and downtown cores. Also, the solu-
tion of adopting inertial sensors embedded in INS for provid-
ing an integrated positioning solution along with GNSS has
two main challenges: the first one is the inertial sensor noise
that leads to high drifts and errors in the positioning solution,
especially during GNSS outages. The second one is the error
from using linearized integration filters or the demanding
computational complexity of the non-linear integration filters.

Accordingly, to maintain a robust and consistent ITS for
RIS applications, a reliable and continuous positioning system
should be adopted to overcome the previously mentioned
challenges.

C. Contribution

The specific contributions of this paper are in the field of
INS/GNSS integration and are the following:

a- Proposing a Bi-Orthonormal (BIO) technique for
de-noising raw measurements, being used on the
low-cost MEMS accelerometers and gyroscopes that are
employed for INS in the 3D RISS.

b- Enabling the operation of the 3D RISS system inde-
pendently over various periods without GNSS measure-
ments, both in downtown areas and other GNSS denied
environments.

c- Demonstrating the performance of the proposed
BIO-enabled 3D RISS through road test experiments in
downtown Kingston, ON, and Montreal, QC. We also
compare the performance to the recently published
methods in the same areas.

II. METHODOLOGY

In this section, we present the system configuration used
to integrate INS/GNSS to provide a 3D (longitude, latitude
and altitude) navigation solution. Generally, INS/GNSS is
incorporated into different forms and techniques. Regarding
the integration forms, a full IMU with six degrees of freedom
(three accelerometers and three gyroscopes) is used to provide
the INS solution and then is integrated with GNSS [27], [28].
Partial usage of the IMU is applied to provide INS/GNSS
in [14], [29] to eliminate the effects of the sensor errors.
In RISS, a single gyroscope with its sensitive axis coincides
with the vertical axis of the land vehicle, the forward and
transverse accelerometers, which, together with an odome-
ter, are all used to provide the INS solution [14], [30].

Fig. 1. System model of INS/GNSS KF integration.

Fig. 2. EKF-Based BIO-3D RISS/GNSS closed-loop loosely coupled
integrated positioning system, where P, V and A are the position velocity
and attitude, respectively.

The integration techniques are provided by either linearized
estimation filters (e.g., KF and EKF), or nonlinear filters
(e.g., PF) [14], [26], [27], [30]. Another classification can be
done with regards to the GNSS/INS coupling tightness, where
the setups are loosely coupled, tightly coupled, or ultra-tightly
coupled integration [14], [29].

A. System Model

For the INS/GNSS integration, INS increasingly drifts with
time due to the implicit mathematical combination within
the mechanization process, which causes the bias errors of
both accelerometers and gyroscopes to be accumulated [21].
KF can be utilized in INS to optimally estimate the error-
state, including position errors, velocity errors and orientation
errors. In general, KF is an algorithm for optimally estimating
the error state of a system from measurements corrupted by
noise. The KF algorithm is a sequential recursive algorithm
for optimal least-mean variance estimation of the error states.
In addition to its benefits as an optimal estimator, the KF
provides real-time statistical data related to the estimation
accuracy of the error states. This data is very useful for
quantitative error analysis [14]. In Figure 1, we present the
system model used for INS/GNSS integration.

As shown in Figure 2., within this paper, we adopt a closed-
loop 3D RISS loosely coupled integration because it is robust
and simple to implement compared to the other integration
forms [14]. In the following subsections, we present in detail
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the BIO-based signal de-noised 3D RISS/GNSS positioning
system.

B. Bi-Orthonormal De-Noising Technique

As mentioned earlier, a powerful de-noising for the inertial
sensors is required to suppress the short and long-term noises.
In literature, there were multiple spectral analysis techniques
used for signal representation and de-noising such as FFT [20],
Short Windowed Fourier Transform (SWFT) [14], Wavelet-
based Multi-Resolution Analysis (WMRA) [19] and FOS [22].
All these proposed techniques have limitations in de-noising
the inertial sensors at low and high frequencies.

We propose to use the BIO technique to provide the
required de-noising for our setup, as it will reduce the dimen-
sions required to represent any vector, and thus, it decreases
the noise impact. The proposed method employs optimized
selection criteria to determine candidate functions (basis).
This basis represents the outputs of the sensors using an
over-complete dictionary of candidate functions and finally
compute their corresponding coefficients. Hence BIO offers
a significant enhancement for sensor output analysis and
reconstruction accuracy.

The BIO optimal signal representation [31], [32] is based
on defining a k-dimensional subspace H1 of a Hilbert space,
H spanned by a set of basis {li }. Then, the subspace H1 is
a k-dimensional subspace spanned by a partial set of basis
{l1, l2, . . . , lk}. The optimal bi-orthogonal technique generates
two sets of bi-orthonormal basis linked to the partial set of
basis. The first set is the bi-orthonormal set {h1, h2, . . . , hk}
that is related to the partial set of basis in H . The second one
is

{
ĥ1, ĥ2, . . . , ĥk

}
that is linked to the same partial set of

basis in H1.
For a vector y that belongs to H , the closest vector to y

in the minimal norm sense from amongst the vectors in H1,
is defined by ŷ = ∑k

i=1〈y, ĥi〉li . The main idea is to find the
closest vector ŷ to y while being represented in a lower num-
ber of dimensions. Considering the theorem of bi-orthonormal
optimal approximation [31], the optimal approximation coef-
ficients of vector y belonging to H through subspace H1

are the projections of y on vectors
{

ĥ1, ĥ2, . . . , ĥk

}
which

are bi-orthonormal to the given partial set {l1, l2, . . . , lk}
spanning H1, and belonging to H1.

The bi-orthonormal set
{

ĥ1, ĥ2, . . . , ĥk

}
related to a finite

set of basis {l1, l2, . . . , lk} belonging to the space spanned by
the given basis, is calculated through the following steps:

a. Establishing the inner product matrix between the basis
{l1, l2, . . . , lk} elements to give a matrix of scalars P X :

Px �

⎡
⎢⎣

〈l1l1〉 · · · 〈lkl1〉
... · · · ...

〈l1lk〉 · · · 〈lklk〉

⎤
⎥⎦ (1)

b. Calculating the inverse matrix P−1
l which represents all

the inner product combinations between the elements of
the bi-orthonormal set {h1, h2, . . . , hk} associated with

the basis {l1, l2, . . . , lk} elements:

P−1
l �

⎡
⎢⎣

〈h1h1〉 · · · 〈hkh1〉
... · · · ...

〈h1lk〉 · · · 〈hkhk〉

⎤
⎥⎦ (2)

c. Using the matrix P−1
l , the elements of the set

{h1, h2, . . . , hk} are obtained employing the linear
combination:

ĥi =
∑k

j=1
〈hi hl〉l j For j = 1, 2, .., k (3)

where each one of the inner products is obtained from
the matrix in Eqn. (2). These steps present an optimal
approximation of signal y given that the partial set of
basis {l1, l2, . . . , lk} is already known. The elements of
a partial set of basis are usually unknown and then
determining the partial set of basis is crucial to the signal
representation steps.

The optimum signal representation can be achieved by
searching the partial representation set and selecting basis
elements one at a time. The selection criterion of a term to be
added to the representation depends on the minimization of
the signal representation error. The error is computed through
norm-2 of the difference between the original signal and the
obtained representation utilizing the considered term as

lm = min︸︷︷︸
m

{∥∥y − ym

∥∥}
(4)

where ym is the signal vector formed by adding the mth term of
the signal representation basis set. The algorithm selects a term
that minimizes the error model. Subsequently, the selection of
additional terms from the pool of the residual basis elements
is conducted. BIO adopts three stopping conditions for the
selection algorithm. The first is achieved by pre-determining
the number of terms to be added to the signal approximation.
While the second can be obtained through a thresholding
technique where the algorithm stops adding terms if the error
reduction is kept below a specific threshold. With the prior
knowledge of the original signal representation, BIO stopping
criterion can be applied when the error level between the
constructed signal and the original one meets a sufficient
threshold. This sequential procedure of signal representation
requires the construction of the matrix P x and it’s inverse at
each step. This is followed by the development of approxi-
mate signal representation, ym . The number of floating-point
operations, γ , required for optimum signal representation is
equal to [33]:

γ = M K

(
K 3 + K 2

2
(6N − 1) + K

2
(10N − 1) − N

)
(5)

where N is the number of samples in vector y, K is the number
of basis elements, and M is the number of selected basis
elements. γ may increases extraordinarily by increasing the
number of terms (K), length of signal (N) and the number
of basis chosen elements (M). BIO reduces the algorithm
processing time and complexity through averting multiple
matrix computations by deriving the term selection criteria.
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As shown in Figure 2, the readings of one gyroscope
and two accelerometers of the RISS system are the input of
the BIO stage. In the BIO stage, we applied the introduced
algorithm to de-noise the gyroscope and accelerometers data
to suppress both short and long-term errors and noises. The
continuously de-noised linear accelerations and angular rota-
tions will enhance the results of the mechanization process
and improve the accuracy of the computed position updates
through the RISS/GNSS integration module described in the
following section.

C. 3D RISS/ GNSS Integration

As we stated before and shown in Figure 2, we adopted 3D
RISS that utilize one gyroscope, two accelerometers and an
odometer. The main advantage of using the 3D RISS rather
than full IMU is when the pitch and roll angles are calculated
using accelerometers. The biases or noises of the two omitted
gyroscopes are avoided. Also, calculating the velocity using
the forward speed gathered by the odometer allows bypass-
ing any uncompensated noises or biases of two accelerome-
ters [14], [26], [34]. Accordingly, the de-noised sensor signals
along with the odometer measurements, are the input for the
mechanization process. Basically, the navigation state vector
of 3D RISS is given by x = [ϕ, λ,�, ve, vn , vu, r, p, A]T

where ϕ is the latitude, λ is longitude, � is altitude, ve is
the velocity towards east, vn is the velocity towards north,
vu is the up velocity, r is the roll angle, p is the pitch angle,
and A is the azimuth. Consequently, pitch angle is given by
the [32], [34]:

p = sin−1
(

fy − aod

g

)
(6)

where fy is the forward acceleration, aod is the vehicle
acceleration calculated using the vehicle acceleration recorded
by the odometer, and g is the gravitational acceleration. The
roll angle is obtained as follows [34], [35]:

r = − sin−1
(

fx + vodωz

g cos p

)
(7)

The transversal acceleration is fx , the vehicle speed
extracted from the odometer measurement is vod , the angular
rotation around the vertical Z-axis is ωz . Besides, considering
relatively low values of pitch and roll, the azimuth angle is
calculated as follows:

Ȧ = −
(
ωz − ωe sin ϕ − ve tan ϕ

RN + �

)
(8)

where RN is the normal radius of the Earth curvature and h is
the altitude. All the linear acceleration and angular rotation
values are compensated for their biases and de-noised. More-
over, the three velocities can be transformed from forward
velocity and computed as follow:

ve = vod sin A cos p (9)

vn = vod cos A cos p (10)

vu = vod sin p (11)

Considering RM as the meridian radius of curvature, the lat-
itude ϕ, the longitude λ, the altitude �, can be calculated as
follow:

ϕ̇ = vn

(Rm + �)
(12)

λ̇ = ve

(RN + �) cos ϕ
(13)

�̇ = vu (14)

It is worth mentioning that the primary source of error in 3D
RISS is the gyroscope measurement error [14]. As its errors
introduce errors in horizontal velocity and positions, which is
not the case while using the accelerometers as their effects are
small.

As mentioned in Section I.A, there are various techniques
used in integrating the INS and GNSS. Considering the
open-loop KF, in some cases, the dynamic error model is
linearized around a nominal navigation state while neglecting
some representative terms [24]. Also, the absence of the
feedback from the KF to the INS dynamic model leads
to imprecise prediction in the presence of extended GNSS
outages [30].

On the other hand, the PF general INS/GNSS integration
is suitable for nonlinear-based dynamic systems [27]. In PF
filtering technique, extensive computational processes are held
as conditional probability functions are adopted for state rep-
resentation. Accordingly, particles that are weighted samples
are used to approximate the probability density functions
along with the prediction, update and re-sampling held at each
iteration [28].

The EKF closed-loop process, as shown in Figure 1,
surpasses the KF as the linearization is carried out on the
corrected RISS outputs. This is besides the bias compensation
of the gyroscope measurements achieved by the EKF. Thus,
reliable and accurate navigation can be obtained while bypass-
ing expensive computational processes of PF [30]. In the
following paragraphs, we present the EKF 3D RISS/GNSS
integration model.

For the EKF, the discrete-time domain is given by [30], [36]:

δxk+1 = �k,k+1δxk + Gkwk�t (15)

where the state transition matrix is �k,k+1, the error state
vector is given by δxk , the noise parameter matrix is Gk ,
wk is a Gaussian noise vector with a zero mean and �t
is the time interval. The system dynamic matrix F can be
downsized to provide the state transition matrix �k . Given
that the measurement model of the discrete KF is presented
by [36]:

The 3D RISS error state vector is given by [30]:

δx = [
δϕ, δλ, δ�, δve, δvn , δvu, δA, δaod, δbz

]T (16)

where δϕ is latitude error, δλ is longitude error, δ� is altitude
error, δve is east velocity error, δvn is north velocity error,
δvu is upward velocity error, δA is azimuth error, δaod is the
error in acceleration extracted from odometer measurements,
and δbz is the gyroscope bias error. The mentioned motion
equations are linearized to obtain an error model of the
closed-loop EKF used for INS/GNSS integration in this work.
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This linearization process is performed by keeping only the
first term of Taylor’s series expansion. Accordingly, these
linearized equations are used to build the F matrix, and the
position of each term can be indicated by Fmn , where m is
for the row and n is for the column. These equations are
given by [30]:

δϕ̇ = δvn

(RM + h)︸ ︷︷ ︸
F15

(17)

δλ̇ = δve

(RN + �) cos ϕ︸ ︷︷ ︸
F24

+ ve tan ϕ

(RN + �) cos ϕ︸ ︷︷ ︸
F21

(18)

δ�̇ = δvu︸︷︷︸
F36

(19)

δv̇e = sin A cos pδ︸ ︷︷ ︸
F48

aod + aod cos A cos P︸ ︷︷ ︸
F47

−
(

ωz − bz − ωe sin ϕ − ve tan ϕ

RN + �

)
︸ ︷︷ ︸

F54

δvn + vn︸︷︷︸
F45

δbz

+ vn

(
ωe cos ϕ + vesec2ϕ

RN + �

)
︸ ︷︷ ︸

F41

δϕ + vn tan ϕ

RN + �︸ ︷︷ ︸
F44

δve (20)

δv̇n = cos Acos P︸ ︷︷ ︸
F58

δaod + aodsin Acos P︸ ︷︷ ︸
F57

δA

−
(

ωz − bz − ωe sin ϕ − 2ve tan ϕ

RN + �

)
︸ ︷︷ ︸

F54

ϕve + ve︸︷︷︸
F45

δbz

+ ve

(
ωe cos ϕ

vesec2ϕ

RN + �

)
︸ ︷︷ ︸

F51

δϕ (21)

δv̇u = sin p︸︷︷︸
F68

δaod (22)

δ Ȧ = δbz︸︷︷︸
F79

+
(

ωe cos ϕ + vesec2ϕ

RN + �

)
︸ ︷︷ ︸

F71

δϕ + tan ϕ

RN + �︸ ︷︷ ︸
F74

δve

(23)

The odometer and gyroscope errors are modelled as a
Gauss-Markov process of the first order [36] and given by:

δ ˙aod = βod︸︷︷︸
F88

δaod +
√

2βodσod
2ω (t) (24)

δḃz = −βz︸︷︷︸
F99

δbz +
√

2βzσz
2ω (t) (25)

where βod and σod are the Gauss-Markov process parameters
for δaod , while βz and σz are for δbz . Thus, the full dynamic
F matrix can be constructed given the terms denoted at each
corresponding place, and the rest of the terms are set to zero.
Consequently, the measurement model for the loosely coupled
integration of INS/GNSS gives the difference between the

GNSS position/velocity and INS position/velocity as:
δz = Dδx + v (26)

where the measurements vector δz is given by:

δz =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕG N SS − ϕI N S

λG N SS − λI N S

hG N SS − hI N S

veG N SS − veI N S

vnG N SS − vnI N S

vuG N SS − vuI N S

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

Moreover, the design matrix D is given as:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(28)

where the term v is a Gaussian noise vector with zero mean
with covariance matrix R = 〈vvT 〉. The EKF algorithm is
divided into two stages; the prediction is given by [14]:

�k,k+1 = I + Fk�t (29)

P−
k+1 = �k,k+1 P+

k �T
k,k+1 + Qk (30)

As I is the identity matrix, P−
k+1 is the prior estimate of error

state covariance matrix and Qk is the system noise matrix.
While the update stage is given by [14]:

K k+1 = P−
k+1 DT

[
D P−

k+1 DT + Rk

]−1
(31)

δx+
k+1 = K k+1δzk+1 (32)

P+
k+1 = (I − K k+1) P−

k+1 (33)

Given that, δx+
k+1 is the estimation of the error state and P+

k+1
is the posterior error covariance matrix estimation.

In the following section, we present the capabilities of
the proposed BIO 3D RISS/GNSS in providing continuous
and accurate navigation solutions during different outage peri-
ods. The potential of the BIO appears in bringing up the
performance of the low-cost IMUs to the high-end versions
regarding the measurement quality. Also, the de-noised inertial
measurements lead to accurate position computation in the
mechanization process.

Furthermore, the EKF-based integration accurately predicts
the navigation solution during various and extended GNSS
outages that outperform the traditional KF and PF navigation
solutions. The impact of the proposed BIO based de-noising
appears during GNSS outages where the positioning resolution
relies totally on inertial sensors. We conducted several con-
trolled experiments where a reference solution from a high-end
navigation system is available. As will be described in detail
in the following section, our tests involve introducing various
types of GNSS outages in terms of the motion dynamics and
the periods of the interruptions. During these different GNSS
outage types, we assess the performance of the BIO based
de-noising method and how it can improve the positioning
accuracy in challenging GNSS environment.
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III. EXPERIMENTAL SETUP, RESULTS AND DISCUSSIONS

To assess the capabilities of the proposed INS/GNSS inte-
gration system, we undertook three road experiments held in
Kingston, Ontario and Montreal, Quebec, spanning multiple
driving scenarios and areas. During these experiments, there
were periods of straight driving, taking sharp turns, driving
at various speeds, and full stops. The trajectories contained
downtown scenarios where the GNSS receiver experienced
multipath and successive outages as well as urban roadways,
highway sections, driving through a tunnel, and driving where
a complete and continuous outage of GNSS was present.

The first trajectory is in downtown Kingston which includes
narrow urban streets with rough road surfaces. It also involves
driving at relatively low speeds. The second trajectory is
in downtown Montreal which contains a dense metropolitan
area with heavy traffic that requires multiple stops and starts.
This trajectory has a drive in a long tunnel, which implies
220 seconds of natural GNSS outage. The third trajectory
experiences highway driving at relatively high speeds between
Napanee and Kingston.

In all three trajectories, the MEMS-grade IMU provided by
Crossbow (model IMU300CC-100) was used as the RISS com-
ponent in the proposed system. While the land vehicle forward
speed was collected from the on-board diagnostics (OBD)
interface using the CarChip device at a data rate of 1 Hz.
The proposed system results were evaluated and compared to
high-end reference solutions. In the first trajectory, the ref-
erence solution was obtained by NovAtel Span integrated
solution. This solution is conducted by the integration of an
OEM4 GNSS receiver with IMU-CPT logged at 100 Hz.
However, the integrated solution is provided at 1 Hz.

Regarding the second and third trajectories, the reference
solution is supplied by NovAtel G2 Pro-Pack SPAN unit that
integrates a Honeywell HG1700 tactical-grade IMU logged at
100 Hz with an OEM4 GNSS receiver. The positioning accu-
racy of the two references (ground truth) is within 1.8 meters.
Also, the references azimuth angle accuracy is 0.05 degrees.
Further details on the specifications of the reference can be
found in [37]. Regarding the specifications of the multiple
IMUs used for the three trajectories, Table I summarizes their
main features and specifications.

A. First Trajectory

In this trajectory, we mounted the setup on a van, as shown
in Figure 3. The experiment was held in Kingston. Further-
more, as shown in Figure 4, this trajectory spans the downtown
core and urban roads with different driving scenarios. These
scenarios include left and right turns with different angles,
straight driving, multiple stops, and various traffic conditions.
The distance covered was approximately 14 kilometers, and
the duration of the trajectory was approximately 35 minutes,
including times when the van was stationary.

To demonstrate the BIO denoising capabilities, Figure 5.
provides a sample of the inertial measurements of the
low-grade IMU-Xbow before and after de-noising compared
to the IMU-CPT during 35 seconds. BIO de-noising has
significantly enhanced angular rotation measurements around

TABLE I
SPECIFICATIONS OF THE UTILIZED IMUS

Fig. 3. Testbed mounted in a land vehicle (Van) utilized for the first
trajectory.

the Z-axis of the IMU-Xbow as shown in the highlighted part
of Figure 5.

To assess the performance of the proposed system under
GNSS complete outages, we introduced eight simulated total
outages in the post-processing process. The duration of each
outage is 60 seconds during various driving scenarios, speeds,
and roads, as shown in Figure 4. The system performance,
in Tables II and III providing the root means square (RMS)
and Maximum 2D positioning error, respectively. In the two
tables, we showed the errors for the 3D RISS/ GNSS and
the BIO-3D RISS/GNSS systems. The BIO-3D RISS/GNSS
presents better performance than 3D RISS/GNSS in terms of
lower 2D positioning errors during the eight simulated outages.
In conclusion, the BIO-3D RISS/GNSS enhances the average
2D RMS error of the 3D RISS/GNSS by approximately 69%.

To provide a comparison of the performance of the proposed
method, we show the position solution of the BIO system
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Fig. 4. Road test trajectory in kingston with multiple GNSS outages
(in black).

Fig. 5. Angular Rotation Measurements for the IMU-Xbow, BIO
de-noised IMU-XBOW and the IMU-CPT during 35 seconds of the Frist
Trajectory.

TABLE II
2D RMS HORIZONTAL POSITION ERROR IN METERS

DURING GNSS OUTAGES, FIRST TRAJECTORY

along with the 3D RISS/GNSS and the NovAtel reference
solutions. During the fourth outage, the land vehicle turned
three times, two stop signs, and one yield sign. This route

TABLE III
2D MAXIMUM POSITION ERROR IN METERS DURING

GNSS OUTAGES, FIRST TRAJECTORY

Fig. 6. Positioning solution during the GNSS forth outage of the first
trajectory.

Fig. 7. The azimuth of BIO-3D RISS and NovAtel reference during the
forth outage of the first trajectory.

had scenarios of driving with variable speed during complete
GNSS outage. The geo-referencing solutions of the two sys-
tems and the reference solution are shown in Figure 6.

In addition, Figure 7 illustrates a comparison between the
azimuth angles calculated by BIO-3D RISS/GNSS system
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Fig. 8. Positioning solution during the GNSS seventh outage of the first
trajectory.

Fig. 9. The azimuth of BIO-3D RISS and NovAtel reference during the
seventh outage of the first trajectory.

and the azimuth angle extracted from NovAtel reference. The
graph shows the proposed solution and how the reference
coincide. We also provide the performance of the systems
during the seventh outage. During this outage, the van had
periods of straight driving, curvy road driving, and two
right-hand turns of which one was directly after a stop sign.
Figure 8. presents the navigation solution of the two systems
and the reference solution. This figure shows the BIO-3D
RISS/GNSS outperforms the conventional RISS/GNSS. In the
seventh outage, BIO-3D RISS/GNSS has better performance
than the 3D RISS/GNSS system. In Figure 9, we highlight the
consistency of the azimuth calculations during outage number
seven extracted from BIO-3D RISS/GNSS when compared to
the NovAtel reference.

B. Second Trajectory

For this trajectory, a van was utilized for the road experiment
in Montreal. During this trajectory, a distance of approximately

Fig. 10. Road test trajectory in montreal with multiple GNSS outages
(in black).

TABLE IV
2D RMS HORIZONTAL POSITION ERROR IN METERS DURING

GNSS OUTAGES, SECOND TRAJECTORY

100 km was covered in 85 minutes of continuous driving.
As shown in Figure 10, this road test had urban roadways
where some roads were straight, and some had more signifi-
cant slopes. Also, the trajectory had right and left turns with
various angles, multiple stops at stop signs and traffic lights,
and numerous speeds according to the road nature and traffic.

To appraise the performance of the proposed system dur-
ing GNSS complete outages, we introduced eight simulated
outages and one real outage that occurred while driving in
the tunnel crossing the St. Lawrence River. In addition to
comparing the performance of the BIO-3D RISS/GNSS to the
3D RISS/ GNSS, we compared our results to the results of
the MPF 3D RISS system in [27].

To ensure a fair and reliable comparison, we analyzed
the results during the same outage durations and areas [27].
Accordingly, Tables IV and V present the RMS and Maximum
2D horizontal position errors for 3D RISS/ GNSS, BIO-3D
RISS/ GNSS, and MPF 3D RISS concerning the same refer-
ence provided by NovAtel G2 Pro-Pack SPAN unit.

The RMS and maximum error results show a significantly
better performance of the proposed system when compared
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TABLE V
2D MAXIMUM HORIZONTAL POSITION ERROR IN METERS

DURING GNSS OUTAGES, SECOND TRAJECTORY

Fig. 11. Positioning solution during the GNSS third outage of the second
trajectory.

to 3D RISS/GNSS. The BIO-3D RISS/GNSS enhanced the
average 2D horizontal RMS position errors by 49%. Also,
enhancement of approximately 45% is achieved for the aver-
age 2D positioning maximum error. The BIO-3D RISS/GNSS
outperformed the performance of MPF 3D RISS by 23%.
Regarding the average 2D maximum positioning error, the pro-
posed system surpasses the MPF 3D RISS by 20%.

These results show the significance of adopting BIO
de-nosing in the closed-loop loosely coupled integration of
the GNSS and INS through KF instead of applying the com-
putationally demanding PF solutions. To give an overview of
the performance of the BIO-3D RISS/GNSS system, we show
the results of the positioning solutions compared to the 3D
RISS/GNSS concerning the NovAtel reference solution during
selected outages. A detailed description of the outages is
mentioned in [27]. Also, we present the results of the azimuth
angles obtained by BIO-3D RISS/ GNSS and compare it to
the ones provided by the NovAtel reference for the same
selected outages. In these chosen outages, we considered
various driving scenarios to span multiple dynamics and
areas. For the third outage, in particular, Figure 11 provides
the 2D positioning solution of our system compared to 3D

Fig. 12. The azimuth of BIO-3D RISS and NovAtel reference during the
third outage of the second trajectory.

Fig. 13. Positioning solution during the GNSS forth outage of the second
trajectory.

RISS/GNSS while considering a ground truth solution by
the NovAtel reference. Figure 11 and Table IV shows the
performance of BIO-3D RISS/GNSS regarding the average
2D position-errors.

However, towards the end of the outage, the proposed
system drifts, achieving a higher maximum 2D position error
compared to 3D RISS/GNSS and MPF 3D RISS. This drift
affects the azimuth angle of the proposed system, as shown
in Figure 12. Furthermore, we illustrate the performance of
the proposed method during the forth outage in Figure 13
to examine the performance in the presence of different
dynamics. Accordingly, BIO 3D RISS/GNSS grants a bet-
ter positioning solution than 3D RISS/GNSS concerning the
NovAtel reference solution. Moreover, we assess the system
performance during the outage no.4 by comparing the azimuth
angle calculated by BIO-3D RISS/GNSS with the reference,
as shown in Figure 14.
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Fig. 14. The azimuth of BIO-3D RISS and NovAtel reference during the
forth outage of the second trajectory.

Fig. 15. Positioning solution during the GNSS ninth outage of the second
trajectory.

The azimuth of the proposed system followed the same
behaviour of the azimuth extracted from the reference and
provided a consistent performance through the full length of
the outage. In Figure 15, we evaluate the performance of
the BIO-3D RISS/GNSS system during natural and complete
outages. We provide the positioning solution of the proposed
method with the 3D RISS/GNSS. Both systems are com-
pared with the reference during the ninth outage. In this
outage, a complete and natural GNSS Outage occurred and
lasted for 220 seconds while driving in a tunnel crossing the
St. Lawrence River. The new system achieved an RMS 2D
position error of 12.45 m and a maximum 2D position error
of 13.60 m. These results enhanced the maximum 2D position
error of 3D RISS/GNSS by 41 % and the MPF 3D RISS by
nearly 38%. A consistent azimuth angle performance of the
proposed system compared to the azimuth of the ground truth
is shown in Figure 16.

C. Third Trajectory

The third road experiment was carried out around Kingston.
The path had extended highway portions between Kingston
and Napanee as well as multiple urban roadways driving.

Fig. 16. The azimuth of BIO-3D RISS and NovAtel reference during the
ninth outage of the second trajectory.

Fig. 17. Road Test Trajectory between Kingston and Napanee with
Multiple GNSS Outages (in black).

As shown in Figure 17, the experiment included various
driving dynamics and areas. For analyzing the performance
of the system, we introduced ten simulated GNSS outages in
the same regions and durations used in [27]. These outages
included different driving scenarios, speeds, and areas.

In Table VI, we present the maximum 2D position errors
during the ten outages for the BIO-3D GNSS, 3D RISS/GNSS,
and MPF 3D RISS concerning a positioning solution reference
provided by NovAtel G2 Pro-Pack SPAN unit. The proposed
system continues to have better performance compared to 3D
RISS/GNSS and MPF 3D RISS. The BIO-3D RISS/GNSS
provides a better average 2D maximum position error than the
3D RISS/GNSS by 62 % and outperforms the MPF 3D RISS
by approximately 26 % regarding the average 2D maximum
positioning errors.

To prove the capabilities of the proposed system, as an
example, we extended the duration of the fifth outage to
four minutes. Concerning the 2D maximum positioning errors,
BIO-3D RISS/GNSS achieves a maximum error of 9.63m.
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TABLE VI
2D MAXIMUM HORIZONTAL POSITION ERROR IN METERS

DURING GNSS OUTAGES, THIRD TRAJECTORY

Fig. 18. Positioning solution during the extended fifth GNSS outage of
the third trajectory.

Fig. 19. The azimuth of BIO-3D RISS and NovAtel reference during the
fifth extended outage of the third trajectory.

While the 3D RISS/GNSS mostly drifts to accomplish a
2D maximum position error of 64.70 m. To challenge the
new system, as an example, we extended the duration of

TABLE VII
MATHEMATICAL SYMBOLS AND DEFINITIONS SUMMARY

the fifth outage to be 4 minutes, as shown in Figure 18.
Concerning the 2D maximum positioning errors, BIO-3D
RISS/GNSS achieves a maximum error of 9.63m. While the
3D RISS/GNSS mostly drifts to accomplish a 2D maximum
position error of 64.70 m. Accordingly, Figure 19 shows the
azimuth angle calculated by the proposed system and com-
pares it to the azimuth angle obtained by the reference. The
figure shows an accurate performance of BIO-3D RISS/GNSS
regarding consistent azimuth angle results during complete and
extended outages of GNSS. It also illustrates and proves the
capabilities and reliability of the proposed method of providing
accurate and continuous positioning during GNSS outages
under various driving scenarios and areas.
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D. Results Summary

The proposed BIO-3D RISS/GNSS positioning system has
shown better performance when compared to 3D RISS/GNSS
and MPF 3D RISS/GNSS positioning systems. In the first
trajectory, BIO 3DRISS/GNSS achieved lower positioning
errors than 3D RISS/GNSS during eight GNSS outages.
These outages included different speeds, left and right turns,
stop signs, road yields and traffic lights. BIO 3D RISS has
enhanced the 3D RISS, 2D RMS positioning errors by 69%
and 2D maximum errors by 55%.

For the second trajectory, BIO-3D RISS/ GNSS has out-
performed both 3D RISS/GNSS and MPF 3D RISS/GNSS
in terms of 2D RMS and 2D maximum positioning errors.
The results demonstrated that BIO-3D RISS/GNSS is better
in performance than the 3D RISS/GNSS in 9 GNSS outages
with different duration and driving scenarios. On average,
BIO-3D RISS/GNSS has enhanced the 2D RMS errors of 3D
RISS/GNSS and MPF 3D RISS/GNSS by approximately
48% and 23%, respectively. Regarding the third trajectory,
in 10 GNSS outages, BIO 3D RISS/GNSS has enhanced
the 2D maximum positioning error of the 3D RISS/GNSS
and MPF 3D RISS/GNSS by approximately 62% and 26%,
respectively. During an extended outage of 4 minutes, BIO-3D
RISS/GNSS has outperformed the 3D RISS/GNSS by 85% in
terms of 2D maximum positioning errors. Finally, we provide
Table VII to summarize all the mathematical symbols and
notations, along with their corresponding definitions that are
used in the paper.

IV. CONCLUSION

Considering the evolution of ITS and RIS systems, there
is a high demand for accurate and continuous positioning
to maintain their efficient operation in all environments.
Geo-referencing road surface conditions in downtown areas
relying only on GNSS technology is challenging due to
satellite signal blockage and multipath effects. To offer reliable
positioning integration with inertial technology is essential.
This paper introduced a novel method to de-noise low-cost
MEMS-based inertial sensors by using the BIO technique
before processing them through inertial sensor mechanization
and their integration with GNSS receivers for geo-referencing.
BIO is a robust de-noising algorithm to suppress the inertial
sensors’ biases and noises. We were able to present an
enhanced INS/GNSS integration using EKF to provide an
accurate 2D position estimation during various outages in
different areas and under different driving scenarios. Our sys-
tem showed a 56% enhancement in geo-referencing accuracy
when compared to 3D RISS/GNSS methods for three different
trajectories. Compared to the MPF 3D RISS, the proposed sys-
tem provided a 23% improvement in georeferencing accuracy.
These results enabled providing an accurate and continuous
geo-referencing during GNSS outages without adopting any
additional sensors or any computational demanding integration
approaches such as PF.
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