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Abstract—Novel mobility-aware resource allocation schemes
have recently been introduced for efficient transmission of stored
videos. The essence of such mechanisms is to lookahead at
the future rates users will experience, and then strategically
buffer content into user devices when they are at peak radio
conditions. For example, a user approaching poor coverage will
be preallocated additional video segments to ensure smooth
streaming. Advances in mobility prediction and real-time radio
environment map updates are driving forces for such Predictive
Video Streaming (PVS) mechanisms. Although previous efforts
have demonstrated the large potential gains of PVS, ideal channel
predictions were assumed. This paper addresses the problem of
channel uncertainty in PVS, and proposes a robust resource
allocation framework that 1) models channel uncertainty, 2)
solves the PVS problem with a tunable level of quality of service
guarantees, and 3) learns the degree of uncertainty, and adapts
the channel model accordingly. Numerical results demonstrate
the effectiveness of the proposed approach for PVS under channel
variability.

I. INTRODUCTION

Network operators are facing formidable resource man-
agement challenges to cope with the phenomenal growth of
mobile traffic. Specifically, video accounted for over 50% of
the traffic in 2012, with projections of a 14-fold increase
by 2018 [1]. To address this growth, predictive resource
allocation techniques that exploit user mobility have been
recently proposed to improve throughput and fairness [2],
[3], as well as video streaming delivery [4]–[7]. This is
accomplished by leveraging the knowledge of the future rates
users are expected to experience, and then performing long-
term Resource Allocation (RA) plans over several seconds. By
doing so, Base Stations (BSs) can schedule more resources
to users during their respective peaks, and prioritize users
that are headed to poor channel conditions. This is opposed
to instantaneous RA and admission control strategies [8],
[9]. Long-term RA planning is particularly useful for stored
video delivery that can be strategically buffered in advance
at the users’ devices. For instance, if it is known a user is
approaching a low coverage area, content can be prebuffered
to support smooth streaming. Furthermore, as this enables effi-
cient content prebuffering, energy is saved since transmission
will not be needed during poor conditions [4], [5], [7].

The underlying assumption of Predictive Resource Alloca-
tion (PRA) approaches is that a user’s future channel states
are highly reproducible. This is achieved by coupling mobility
information with a Radio Environment Map (REM) or Band-

width (BW) map, typically generated with road drive tests
measuring signal strength and network performance metrics at
different locations. Indeed, analyses on human mobility traces
reveal that people tend to follow particular routes regularly
[10], [11], and several practical studies investigating the corre-
lation between location and received data rates have also been
conducted [3], [12], [13]. Yao et al. [12] analyze bandwidth
traces collected from two independent cellular providers for
routes running through different radio conditions including
terrestrial and underwater tunnels. Their findings confirm the
correlation between mobile bandwidth and location. The work
in [13] conducts a similar measurement study, and addresses
other contextual factors such as user speed, time of day, and
humidity to predict the available bandwidth more accurately.
However, while such maps provide a reasonable estimate of
the wireless data rates, they do not accurately capture the dy-
namics of network congestion or environmental/geographical
changes. For instance, a BW map may be more accurate in
a rural area and less so in a more urban region. Further, the
accuracy of the map may change with time due to fluctuations
in network dynamics at rush hours vs. other times. Therefore,
there is a need to model rate prediction uncertainty itself,
and thereafter develop PRA solutions that incorporate such
models. To this end, this paper presents a fuzzy-based robust
RA framework for Predictive Video Streaming (PVS) under
channel uncertainty. We summarize the main contributions of
this paper in the following:

• We model uncertainty in the REM measurements by us-
ing triangular fuzzy numbers. We show that the triangular
membership function provides a good approximation of
the REM variations, if the Signal to Noise Ratio (SNR)
exhibits a Gaussian prediction error.

• We develop a robust RA framework for predictive video
streaming that incorporates the fuzzy REM. The frame-
work allows the operator to control the desired degree of
constraint satisfaction under rate uncertainty.

• The proposed framework also ‘learns’ the degree of
uncertainty in the REM through feedback and prediction,
via a Kalman Filter (KF), and tunes the fuzzy model to
reflect the current channel variability.

As opposed to previous works on PRA [2]–[7], we also
implement the system in a standard compliant Long Term
Evolution (LTE) simulator [14] for more practical results.
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A. Related Work

The work in [4]–[6] are closest to this paper where rate
predictions are used to minimize system utilization for stored
video delivery. The authors in [4] consider the optimization
problem for the multi-user single cell case, and develop
optimal RA algorithms for the single user case. In [5], [6],
we also discuss the potential energy savings that can be
achieved by a mobility-aware wireless access framework.
An architecture is presented with the composite functional
elements and their interaction is discussed. However, in both
these works, ideal channel predictions are assumed and the
proposed solutions do not incorporate uncertainty, or provide
robust measures to ensure streaming continuity under channel
variability. This is addressed in this paper through a Robust
Resource Allocation (RRA) framework for PVS. It is worth
noting that robust allocation provisions have been proposed
for other network functions and application as in [15], [16],
where the uncertainty is in the instantaneous Channel Quality
Indicator (CQI).

B. Paper Organization

In the following section, we present the system model.
Section III presents the predictive streaming optimization
problem without channel uncertainty considerations. The pro-
posed RRA framework is then presented in Section IV, and
applied to the streaming problem of Section III. We discuss the
numerical results in Section V, and conclude in Section VI.

II. SYSTEM MODEL

We use the following notational conventions: X denotes a
set and it’s cardinality is denoted by X . Matrices are denoted
with bold letters as follows x = (xa,b : a ∈ Z+, b ∈ Z+).

A. System Overview

Consider a BS with an active user set M, where an arbitrary
user is denoted by i ∈ M. Users enter from the left cell edge
and move in a straight line towards the other edge, requesting
stored video content that is transported over HTTP (i.e. as in
progressive download). We assume that the wireless link is the
bottleneck, and therefore the core network bandwidth is set to
1Gbps and the video content is always available at the BS.

B. Radio Environment Map and Mobility Information

The REM assumed to be typically available at the service
provider would contain the average data rates at different
network locations. In order to model such a radio map, we
use the Friis Spectrum Loss propagation model in ns-3 [14].
The Signal to Interference plus Noise Ratio (SINR) at each
x and y coordinate that users traverse is then computed and
the corresponding achievable rate is determined based on the
CQI-to-Modulation and Coding Scheme (MCS) mapping in
3rd Generation Partnership Project (3GPP) standards for LTE
[17]. We assume that user mobility information is known
accurately for the upcoming T seconds, which we call the
prediction window, and at a per second granularity. This results
in a total of T time slots within the prediction window,

which we denote by the set T = {1, 2, · · · , T }. From this
information, we construct a matrix of future user rates, defined
by r̂ = (r̂i,t : i ∈ M, t ∈ T). The values in this matrix will
then be fuzzified to account for uncertainty according to the
model presented in Section IV-C1.

C. Resource Sharing and Scheduling

BS airtime is shared among the active users during each slot
t. We define the resource allocation matrix x = (xi,t ∈ [0, 1] :
i ∈ M, t ∈ T) which gives the fraction of time during each
slot t that the BS bandwidth is assigned to user i. The rate
received by each user, at each slot, is the element-wise product
x� r̂. Airtime sharing is implemented as a time division rate
controller over the Round-robin (RR) scheduler in ns-3 [14].

III. PREDICTIVE VIDEO STREAMING: LIMITATIONS OF

CRISP RA FORMULATIONS

The essence of predictive video streaming is to strategically
transmit content ahead of time at the User Equipment (UE),
after which transmission can be momentarily suspended while
the user consumes the buffer [4], [6]. If we consider a user re-
questing a stored video at slot t = 1, with a streaming rate of V
[bit/s], then the minimum cumulative video content for smooth
streaming is Di,t = V · t. The cumulative allocation made to
a user i by slot t is denoted by Ai,t =

∑t
t1=1

xi,t1 r̂i,t1 . To
experience smooth streaming, Ai,t ≥ Di,t ∀ t for user i.

It has been illustrated in [5] how BS transmission time can
be minimized by leveraging future user rate knowledge. A
predictive scheme will wait to make bulk transmissions at
times of high channel conditions, while making the mini-
mal transmissions that avoids video stalling at other times.
This achieves lower airtime usage, resulting in lower power
consumption or more resources for other services. The cor-
responding optimization problem of minimizing BS airtime,
without causing any streaming discontinuities can be formu-
lated as the following Linear Program (LP) [6]:

minimize
x

T∑
t=1

M∑
i=1

xi,t (1)

subject to: C1: Di,t −Ai,t ≤ 0, ∀ i ∈ M, t ∈ T,

C2:
M∑
i=1

xi,t ≤ 1, ∀t ∈ T,

C3: xi,t ≥ 0 ∀ i ∈ M, t ∈ T.

Constraint C1 ensures that the cumulative video content re-
quirement is not violated at each time slot, while C2 expresses
the resource limitation at each base station. It ensures that the
sum of the airtime of all users is equal to 1 at every time slot.
Finally, C3 provides the bounds for the resource allocation
factor.

The solution of the LP in Eq. 1 minimizes airtime without
degrading the video only if the predicted rates are accurate.
For example, if the actual rate is less than the predicted rate,
the airtime is minimized, but the user will suffer from video
stalls. On the other hand, if the actual rate is greater than the
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Fig. 1. Robust resource allocation framework for PVS.

predicted one, then a prebuffering opportunity is lost, resulting
in relatively higher total airtime, had the user capitalized on the
high rate. To capture and adapt to such variations, we present
a fuzzy-based robust RA framework in the following section.

IV. ROBUST RESOURCE ALLOCATION FRAMEWORK FOR

PREDICTIVE VIDEO STREAMING

A. Overview

Fig. 1 illustrates the proposed RRA framework for pre-
dictive video streaming. The fuzzifier determines the fuzzy
rate r̃ which is then used by the rate allocation optimizer
to plan the required airtime. The scheduler implements the
airtime division among users and measurements of the rates
experienced r̄ are recorded. This is fed back to a channel
variation tracker that predicts the current degree of uncertainty.
Based on this, the fuzzifier modifies the membership function
of the fuzzy rate r̃ to more accurately reflect the channel
variations. The values of r̄ are also fed back to the rate
allocator to re-solve the RA problem based on the received
user rates. We now present the RRA framework in detail.

B. Fuzzy-Based Rate Allocation Optimization

The fuzzy rate allocation optimizer used in the RRA
framework is based on the fuzzy linear programming model
introduced in [18] and [19]. In this approach, the fuzzified rate
r̃ is determined based on 1) the degree of rate uncertainty, and
2) the required level of constraint satisfaction. The formulation
in Eq. 1 can be updated to account for the fuzzified rate r̃ by
modifying constraint C1 as follows:

C̃1 : Di,t −

t∑
t1=1

r̃i,t1xi,t1 ≤ 0, ∀ i ∈ M, t ∈ T. (2)

Once r̃ is obtained, an LP solver can be used to solve the
airtime minimization problem defined in Eq. 1, with the fuzzy
C̃1 constraint. We now discuss the details of determining r̃.

C. Fuzzifier: Modeling Rate Uncertainty

1) Rate Membership Function: We represented the fuzzy
predicted rate r̃i,t by a triangular membership function as
shown in Fig. 2. The right ru and left rl most points on the
x-axis define the limits of the triangle’s base, which physically

represent the boundaries on the variation of the predicted rate
r̂. This can be expressed mathematically as:

μr̃ =

⎧⎪⎪⎨
⎪⎪⎩

L(r̃) = r̃−r̂
r̂−rl

+ 1, if rl ≤ r̃ ≤ r̂

R(r̃) = r̃−r̂
r̂−ru

+ 1, if r̂ ≤ r̃ ≤ ru

0, otherwise.

(3)

This membership function was found to be an acceptable
approximation of a Gaussian error overlaid on the predicted
rate, as shown in Fig. 3. The step structure appears due to the
discrete MCSs in LTE, resulting in specific Transport Block
(TB) sizes. As some TBs correspond to larger SNR ranges,
there are some irregularities in the step structure.

2) Defining the Degree of Rate Uncertainty: The α-cut
representation of the membership function indicates the values
of fuzzy numbers (r̃α,l ≤ r̃α ≤ r̃α,u) with a degree of
membership that is equal to or greater than α [18]. The α-
cut of the left side of the triangular membership in Fig. 2 can
be determined by setting L(r̃α,l) = α, and solving for r̃α,l:

r̃α,l = α(r̂ − rl) + rl. (4)

Similarly, the α-cut of the right side is:

r̃α,u = α(r̂ − ru) + ru. (5)

Depending on the degree of rate variations, a suitable value
of α can be selected to reflect the uncertainty in the predicted
rate. For instance, a dynamically changing environment will
suffer from wide variations from the predicted rate, and thus
a small value of α should be assigned as shown in Fig. 2. The
corresponding fuzzy rate would include most of the values
along the triangle’s base. On the contrary, a higher value of α
is suitable for a stable channel, with slight rate variations.

3) Controlling Constraint Satisfaction under Uncertainty:
Although each α-cut results in a range of possible rates, only
one value should be selected (i.e. as the predicted one). This
value is then used to solve the rate allocation problem as
shown in Fig. 1. This process is performed based on the
desired degree of constraint satisfaction, which is denoted by
lα ∈ [0, 1]. A larger lα corresponds to a higher requirement

Fig. 2. Triangular membership function of the fuzzy predicted rate r̃ with
different α-cuts, and lα values.
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Fig. 3. Variation of TB size due to a Gaussian prediction error for different
error variances σ. The originally predicted TB size is 1383 Bytes.

of constraint satisfaction [18], and therefore a very low rate
should be selected from the set of the available rates in the
(α)-cut. This will result in allocating more airtime to the user
to ensure that the streaming constraint Eq. 2 is satisfied even
with a pessimistic choice of r̃. On the other hand, a higher rate
(i.e. an optimistic choice) of r̃ can be selected if the constraint
satisfaction level is low. This will result in lower airtime
and BS resource consumption. In other words, lα provides
an operator trade-off between guaranteeing Quality of Service
(QoS) and minimizing BS airtime under rate uncertainty.

4) Determining the Fuzzified Rate (r̃): The degree of rate
uncertainty (α), and the constraint satisfaction requirement (lα)
can be jointly coupled to determine the fuzzified rate (r̃) as
illustrated in Fig. 2, and expressed mathematically as [18]:

r̃ = lα × L(r̃α,l) + (1− lα)× R(r̃α,u). (6)

Here, the α-cut controls the ranges of L(r̃α,l) and R(r̃α,u),
while the choice of lα determines the final value selected
within that range. To interpret Eq. 6 further, let us consider
the follow cases:

1) Highest Predictability (α = 1): If α = 1, there is
no rate uncertainty, and L(r̃α,l) = R(r̃α,u) = r̂. Thus,
r̃ = r̂, and the optimization problem in Eq. 1 can be
solved directly.

2) Lowest Predictability (α = 0): If α = 0, the fuzzy
rate will vary between the extreme values of rl and
ru in Fig. 2. Consequently, depending on the constraint
satisfaction lα, the final value of r̃ is determined. For
example if:

• lα = 0: Such a choice is suitable if the network
operator is either optimistic about the predicted rate,
or has a higher preference to efficiency over QoS
guarantees. In this case, Eq. 6 reduces to:

r̃ = R(r̃α=0,u) = ru. (7)

• lα = 1: Now the inverse holds, and the operator
wants to guarantee constraint satisfaction. Accord-

ing to Eq. 6, the lower bound rate is selected:

r̃ = L(r̃α=0,l) = rl. (8)

D. Adaptive α-Tuning: Tracking Rate Variability

In practice, the degree of rate variability will vary with
geographical location and time. This lends a fixed value of
α inefficient, and an approach is needed to predict and update
α periodically based on feedback from the measured channel
rates in the previous time slots. As illustrated in Fig. 1, this
is accomplished in two stages discussed below.

1) Kalman Filter Rate Variability Predictor: The rate vari-
ability is determined repeatedly by the channel variation
tracking function in Fig. 1. This is accomplished by comparing
the difference δαt

between the previously calculated α-cut
value αt−1, and the measured α-cut ᾱt corresponding to the
actual rates r̄t experienced by the user during the scheduling
of the previous time slot as follows

δαt
= ᾱt − αt−1, (9)

where ᾱt is calculated by equating Eq. 6 to r̄t and then solving
for α as outlined below

ᾱt = r̄t−(lαrl+(1−lα)ru)lα(r̂−rl)+(1−lα)(r̂−ru). (10)

For a high channel variance, the measured α-cut ᾱt will
fluctuate and thus the error δαt

should be increased. On the
other hand, stable channels will result in fairly equal measured
α-cut ᾱt values, and thus the error will start to decrease.
Instead of calculating the error based only on the current
measurements, a Kalman Filter (KF) will be used to track
the error based on its previous values as well. The standard
KF operations and equations are summarized below [20]:
Prediction Phase:

X−
t = ΦtX

+

t−1 (11)

P−
t = ΦtP

+

t−1Φ
′

t +Q. (12)

Measurement Phase:

Kt = P−
t H

′

t(HtP
−
t H

′

t +R)−1 (13)

X+
t = Xtt

− +Kt(zt −HtX
−
t ) (14)

P+
t = P−

t −KtHkP
−
t (15)

where X−
t and X+

t are the priori and posterior error values
respectively. P−

t and P+
t are the error estimation matrices

respectively. H and Φ are the observation and state transition
matrices respectively, while Q and R are the process and the
measurement noise covariance matrices respectively, and K is
the Kalman filter gain.

In our model, the priori error X−
t represents the error in the

calculated degree of uncertainty δα and is assumed to be the
same as the corrected error of the previous time step X+

t−1.
Thus, the state transition matrix is set to unity. The observation
zt represents the current error in the degree of uncertainty
based on the current measurements δαt

shown in Eq. 9. The
observation is updated every time slot based on the average
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measured rate r̄t. Since the observations zt and the predicted
state value X−

t represent values for the errors in the degree of
uncertainty, the state observation matrix H is set to unity. The
values of Q, R and the initial value of P (P+

0 ) are obtained
from excessive tuning and their values are shown in Table I. In
summary, the KF equations (11-15) are modified as follows:
Prediction Phase:

δα
−
t = δα

+

t−1 (16)

P−
t = P+

t−1 +Q. (17)

Measurement Phase:

Kt = P−
t (P−

t +R)−1 (18)

δα
+
t = δ−αt

+Kt(δαt
− δ−αt

) (19)

P+
t = P−

t −KtP
−
t (20)

2) α-Tuning Utility: After estimating the rate variation
from the tracked error δα

+

t using the KF, the value of αt

is determined. When rate variations are low, δα
+
t ≈ 0, which

should correspond to αt ≈ 1. Contrarily, high variations result
in larger values of δα

+
t , which should lead to αt ≈ 0. This

mapping is accomplished using the following utility

αt = 1− e−γ/|δα
+

t
|, (21)

where γ controls the rate of decrease with increasing δα
+

t .

V. PERFORMANCE EVALUATION

A. Simulation Set-up

The simulation is performed using the LTE module in
the Network Simulator (ns-3) [14], with model parameters
as indicated in Table I. Gurobi [21] is used to solve the
rate allocation optimization and is integrated in the simulator.
Average BS airtime and video degradation (VD) are the
performance metrics, where VD is the fraction of constraint
violation, i.e. Eq. 2.

TABLE I
SUMMARY OF MODEL PARAMETERS

Parameter Value
BS transmit power 43 dBm
BW 5MHz
T 60 s
τ 1 s
V 1 [Mbps]
BER 5× 10

−5

Velocity 30 km/h
P0 1

Q 0.1
R 10

α0 0.5
δα0

0.7

Packet size 8× 10
3 [bits]

Packet rate (from core network to BS) 10
3s−1

Total number of packets 7.5× 103

Buffer size 109 [bits]

B. Effect of Constraint Satisfaction (lα)

In Fig. 4, we investigate the effect of the constraint satis-
faction level lα, for a single user. The results were averaged
over 100 different log-normal error distributions for different
variances σ, and predictability levels (α-cuts).

• Fig. 4(a) shows that as lα increases, airtime also in-
creases. This is because higher lα values will result in a
smaller r̃, thereby requiring more airtime to satisfy Eq. 2.
The result is lower VD as illustrated in Fig. 4(b), since
the constraints are satisfied with higher probabilities.

• To almost eliminate VD, lα ≈ 1 and α ≈ 0.25. This
cause a sharp increase in the consumed airtime.

• As the α-cuts increase, the airtime increases for lα < 0.5,
but decreases for lα > 0.5. The reason is that lα ≈ 0.5
is an inflection point, where r̃ > r̂ for lα < 0.5, while
r̃ < r̂ for lα > 0.5 as illustrated in Fig. 2. As α decreases,
the deviation from r̂ increases, so the effects are more
pronounced at both extremes of lα. A similar reasoning
can be applied to trends of VD in Fig. 4(b).

• Average airtime is less for higher error variances σ.
Referring to Fig. 3, we can see that a higher variance has a
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Fig. 4. Video degradation fraction VD and average BS airtime for varying constraint satisfaction levels lα, α-cuts, and error variances σ.
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TABLE II
EFFECT OF ADAPTING α, WITH lα = 0.75 WITH MULTI-VARIANCE ERROR.

α 0 0.5 0.75 1 Adapt.
VD Fraction 0.08 0.01 0.17 0.19 0.09
Airtime [s] 6.2 5.9 5.89 5.86 5.7

TABLE III
EFFECT OF ADAPTING α, WITH lα = 0.75 WITH THE MULTI-USER,

MULTI-VARIANCE ERROR SCENARIO.

α 0 0.5 0.75 1 Adapt.
VD Fraction 0.04 0.08 0.14 0.35 0.05
Airtime [s] 30.2 26.1 25.1 24 26.6

higher probability of large TB transmissions. Even though
there is a higher probability of small TB transmissions as
well, the overall effect is a reduced airtime since a few
large TBs are sufficient to buffer the video. As a result,
the VD is generally less for higher σ. However, this is
not the case for larger degrees of constraint satisfaction
lα, where it is paramount that the perceived user rates are
greater than the value of r̃.

C. Effect of Rate Variations and Adaptive α-Tuning

We now investigate the effect of variable degrees of channel
uncertainty and the potential gains or adapting α with time.
In this scenario, the error variance is initially high σ = 6, and
then decreases to σ = 2 as the user approaches the cell center.
The airtime and VD results are jointly presented in Table II
for different values of α-cuts (at an lα = 0.75), and compared
to the adaptive-α scheme based on the KF. We can see that
lowering α reduces degradation, but at the cost of an increased
airtime. However, keeping α constantly low, is not ideal in
this case since the channel error variance decreases to σ = 2
during the simulation. The proposed adaptive-α approach is
able to decrease its value when the channel variance is high
in order to avoid VD, and then increase α when the channel
variance is low in order to satisfy the constraint with lower
airtime. This results in an acceptable VD with a low airtime as
illustrated in Table II. This scenario was extended to the multi-
user case, where 8 users enter the cell with an inter-arrival rate
of 5 seconds, requesting a video of 0.5Mbps. The results in
Table III further emphasized the importance of adapting α

using the KF.

VI. CONCLUSION

In this work, we developed a fuzzy-based RRA framework
that incorporates channel uncertainty into the PVS problem,
and provides a tunable level of service guarantees. We also
find that it is important to learn the degree of uncertainty
in order to meet the desired constraint satisfaction levels
without unnecessary resource consumption. To this end, we
incorporate feedback in the framework to learn and adapt to
the degree of channel uncertainty, and re-optimize the RA
in PVS. A detailed numerical analysis of the framework was
conducted to investigate the effects of channel variability and
provide insights to further developments. Future work includes
studying the performance in more complex simulation settings,

as well as investigating the use of stochastic models and other
channel variability predictors within the RRA framework.
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