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Extreme Edge Computing that leverages the copious yet underutilized computational resources of Extreme Edge
Devices (EEDs) has gained significant momentum lately. Estimating the computational capabilities of EEDs
can be strenuously challenging since EEDs are user-owned devices, and are thus subject to a highly dynamic
user access behavior (i.e., dynamic resource usage). In this paper, we propose the Resource Usage Multi-
step Prediction (RUMP) scheme. RUMP is the first scheme that strives to enable multistep-ahead prediction
of the dynamic resource usage of EEDs (i.e., workers) in a computationally efficient way, while providing
a relatively high prediction accuracy. Towards that end, RUMP exploits the use of the Hierarchical Dirichlet
Process-Hidden Semi-Markov Model (HDP-HSMM). In addition, RUMP uses the Simple and Exponential Moving
Average (SMA&EMA) and Savitzky-Golay (SG) filters to improve the prediction accuracy. We scrupulously
study the trade-off between computational efficiency, prediction accuracy, practicality, and adaptability of the
underlying prediction model by conducting complexity analysis, performing various experiments on a testbed
of heterogeneous workers, and comparing the HDP-HSMM model used in RUMP to three other prominent
prediction models in different dynamic resource usage scenarios. Extensive evaluations show that RUMP
achieves a 91% categorical multi-step prediction accuracy and renders a small performance gap of 6% on
average in terms of the Mean Absolute Error (MAE) compared to representatives of state-of-the-art prediction
models, while yielding a low computational complexity.

1. Introduction

With the pervasive proliferation of the Internet of Things (IoT), 23.3
billion IoT devices are expected to be connected to the Internet by
2025 [2]. This substantial growth is expected to impose unprecedented
demands on computing resources to satisfy the stringent Quality of
Service (QoS) requirements associated with delay-critical and/or data-
intensive applications, such as the Metaverse, Large Al models, Tactile
Internet, virtual and augmented reality, crypto-currency mining, and
smart cities [3,4]. Such strict requirements can be challenging to satisfy
in Cloud Computing (CC), due to the need to transmit massive amount
of data to remote data centers, which significantly increases latency and
thrusts a heavy traffic load at backhaul links [5].

Extreme Edge Computing (EEC) has emerged as a propitious com-
puting paradigm that can alleviate the aforementioned issues [6-9].
EEC harvests the profuse yet underutilized computational resources of
Extreme Edge Devices (EEDs), such as PCs, Laptops, tablets, smart-
phones, and connected vehicles [10]. Thus, EEC offers the computing
service much closer to end-users, which can drastically curtail the
delay and improve the QoS. In addition, parallel processing at EEDs

can democratize the edge and permit more players to establish and
administer their own edge cloud [1,6-9]. Consequently, EEC paves
the way for a new tech market that is people-owned, democratically
managed, and accessible/lucrative to all, and it has thus been adopted
by various industrial entities [11].

Despite the promising potential of EEC, the viability of such a
system is hindered by the heterogeneous nature of EEDs (i.e., work-
ers), and the fact that EEDs are user-owned devices, which subjects
them to a highly dynamic user access behavior. In particular, users
can access their devices at any given time to run an intensive ap-
plication, such as streaming a video, playing a video game, running
augmented reality, etc. This can dynamically alter and impact the
devices’ available computational resources. Note that these resources
are affected by the demands of the applications run, the operational
conditions set, and the limits defined by the device’s specifications [12].
Consequently, EEC cannot rely on the same resource characteriza-
tion/estimation techniques used for infrastructure-based edge nodes or
cloud servers. Successful, consistent, and reliable task offloading and re-
source allocation services that can adapt to the dynamic environment in
EEC require new intelligent resource characterization techniques [13].
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Resource characterization, which involves estimating the perfor-
mance of workers in terms of job completion time or throughput,
requires benchmark tasks to be run on the devices [14]. Given the
dynamic resource usage of workers in EEC, it is essential to charac-
terize the worker in each possible resource usage state with several
benchmark tasks [12]. Thus, it is imperative to identify the resource
usage state and run the benchmarks in a timely manner to correctly
characterize the worker. Such characterization can enable a dynamic
usage-aware scheduler to take into account the resource usage state of
the worker when allocating tasks.

Resource characterization that relies on capturing and estimating
the highly dynamic resource usage in EEC is mostly overlooked in
existing schemes. In addition, predictive models that are proactively
used in infrastructure-based edge computing paradigms suffer from
various drawbacks, such as high complexity in Machine Learning (ML)-
based models [15-17], and the long inference time and inability to
predict for multiple related features making pattern matching-based
models univariate [18-21]. These drawbacks render such models im-
practical to cope with the highly dynamic user access behavior of EEDs.
In this paper, we propose the Resource Usage Multi-step Prediction
(RUMP) scheme. RUMP incorporates the use of the Hierarchical Dirich-
let Process-Hidden Semi-Markov Model (HDP-HSMM) to predict the
resource usage state of EEDs over multiple steps ahead.

The HDP-HSMM model is used in RUMP due to its unique fea-
tures that can foster operational efficiency. In particular, HDP-HSMM
has the ability to make labeled and numeric multi-step predictions
using a single model only, while being trained in a semi-supervised
approach, allowing it to identify patterns in the data without requiring
intensive labeling efforts [22]. This makes it more practical, effective,
and versatile for inference in the context of EEDs. This is as opposed
to machine learning models that require a separate model per step
size, and require modifying the model to do either labeled or numeric
prediction [15,16]. Note that single pattern matching models [21]
can be used for multiple step sizes using a sliding window technique
that uses prior predicted time steps to predict the next. However,
such models are incapable of categorical prediction. In contrast, the
HDP-HSMM model possesses such a capability.

Our contributions can be summarized as follows:

+ We account for the dynamic user access behavior in EEC by
proposing the RUMP scheme to estimate the dynamic resource
usage of workers and enable efficient resource characterization.
RUMP is the first scheme in EEC that enables practical and
computationally efficient multi-step prediction of resource usage.
We improve the prediction accuracy of resource usage by using
the Simple and Exponential Moving Average (SMA&EMA), and
Savitzky—-Golay (SG) filtering techniques [23] to remove noise,
smooth out fluctuations in the input data, and highlight trends
over time.

We study the trade-off between the prediction accuracy of re-
source usage and the computational efficiency of the underlying
prediction model by conducting complexity analysis and compar-
ing RUMP to three prominent prediction models, namely the Hy-
brid Bi-directions LSTM Encoder-Decoder (HBLED) model [17],
the k Nearest Neighbors Time Series Prediction with Invariance
(kKNN-TSPI) model [21], and the Hybrid Bayesian Particle Swarm
Hyper-Parameter Optimization (HBPSHPO) model [16].

We conduct performance ranking of RUMP and representative
state-of-the-art prediction models by using the Multi-Criteria Per-
formance Measure (MCPM) [24], and statistical tests [25], namely,
the Friedman test and the Nemenyi post-hoc test.

We perform extensive evaluations on a realistic testbed of hetero-
geneous workers in different dynamic resource usage scenarios.

The remainder of the paper is organized as follows. Section 2
presents an overview of the related work. Section 3 introduces RUMP.
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Section 4 presents the complexity analysis of RUMP and the other
models. Section 5 presents the performance evaluation results, analysis,
and discusses the performance, complexity, and effectiveness trade-offs.
Section 6 concludes the paper and presents future research directions.

2. Related work

Several methods for modeling and predicting resource usage have
been proposed for different computing systems, including grid comput-
ing [26], volunteer computing [27], cloud computing [28], and more
recently, edge computing [16]. However, there is still a lack of methods
that can effectively handle the highly dynamic user access behavior and
resource usage of workers in EEC.

In infrastructure-based edge computing paradigms, resource charac-
terization can be categorized into reactive and proactive techniques [29].
Reactive techniques rely on modifying resource allocations when shifts
in resources are detected, either through pattern-matching [18-21,30],
or threshold-based techniques [26]. In contrast, proactive techniques
rely on predicting future resource shifts before they occur. While both
reactive and proactive techniques enable adaptation to resource usage
variability and availability, proactive techniques have been shown to
achieve higher prediction accuracy at the expense of higher computa-
tional complexity [29].

Sekma et al. [19] develop a reactive technique to predict the CPU re-
source availability in a volunteer computing grid using Auto-Regressive
(AR), Vector Auto-Regressive (VAR), and polynomial fitting models.
However, such models assume that the time series is stationary, which
is not always the case, since usage may change with behavioral changes
of the user. Sorkunlu et al. [26] use an anomaly detection method based
on a residual error of a tensor composed of the compute nodes, resource
usage information, and time to adapt to abnormal system behavior.
Thus, such an anomaly detection method is quintessentially reactive.
The problem with reactive techniques is that they tend to ignore the
long-term dependencies detected in system-level monitoring signals,
which can curtail their predictive abilities [29]. As a result, reactive
approaches might repeatedly make the same errors, thus affecting the
proper management of the computational resources.

In contrast to reactive techniques, proactive techniques that include
the use of ML models and state-based models can indeed capture long-
term dependencies and recurrence in the system. In Rusty [29], a
Long-Short Term Model (LSTM) is trained to predict lower-level ar-
chitectural events and system-level characterization under interference
to gain insights into the system state and guide the task scheduler.
In [16], a combination of LSTM and Convolutional Neural Networks
(CNN) are used to predict the resource usage of EEDs, where the
architecture of the models is automatically designed to maximize per-
formance using hyper-parameter search optimization methods, thus
performing better in comparison to other ML models, such as support
vector regression, multiple linear regression, XGBoost, and Deep Neural
Networks (DNN). In [17], the Hybrid Bidirectional LSTM Encoder—
Decoder (HBLED) model is proposed. HBLED combines bidirectional
LSTM layers in the encoder with unidirectional LSTM layers in the
decoder. The encoder—-decoder model is a way of using recurrent neural
networks for sequence-to-sequence prediction problems. It consists of
an encoder that transforms the input sequence into a compressed
encoding, and a decoder that reconstructs the output sequence from
the encoded input. The encoder-decoder model can handle variable-
length input and output sequences, which makes it suitable for multi-
step and multi-variate prediction tasks. The bidirectional LSTM layers
can capture both forward and backward dependencies in the input
sequence, while the unidirectional LSTM layers can generate future
predictions based on the encoding and previous outputs. Furthermore,
Violos et al. [16] use a combination of Bayesian and particle swarm
optimization for ML hyper-parameter search to tailor complex models
of different architectures to predict EED resource usage.
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Fig. 1. The Hierarchical Dirichlet Process - Hidden Semi-Markov Model (HDP-HSMM) components, including the state durations (D,), observations (y,), hidden states (x,), and

super states (z,), for t € {1, ...

,T} were T is the length of the observation sequence, and is used to denote the end of a sequence, and s € {1,2,...

,S} where S are the number of

super-states. In addition to concentration parameters (), penalty parameter (f), sticky parameter (x), base measure parameters for emissions (H), and distributions (G), distribution

parameters for emissions (¢;) and durations (w,), and lastly, the state transition matrix P,;, where i, € {1,

ML techniques have a high predictive power. However, they are
computationally intensive, and suffer from long training times and
low adaptability to resource usage patterns that continuously change
in real-time [15]. Consequently, they are rendered impractical for
resource usage prediction in EEC paradigms. In addition, most proposed
ML-based models have limited usability within the context of EEC, due
to their reliance on 1-step ahead predictions that fail to capture the
highly dynamic nature of such systems.

Multi-step ahead prediction of CPU loads using a pattern matching
technique has been proposed in distributed systems [30]. Parmezan
et al. [21] propose the k Nearest Neighbors Time Series Prediction
with Invariances (kNN-TSPI) model, which is a local approach used for
time series prediction. The kKNN-TSPI algorithm works by finding the
k examples that are the nearest to an unlabeled example based on a
similarity measure, while accounting for various types of invariances
in the data. This technique can handle multi-step ahead prediction
by recursively applying the model on its own predictions, known as
the sliding window approach. It also has the advantage of rendering
negligible training time, as well as the ability to use a single model
for multi-step ahead predictions. However, it is unfit for multi-variate
prediction of resource usage in EEC, due to the explosive number of pat-
tern combinations, which impacts prediction accuracy and computation
time [31].

State-based models have been shown to reliably capture the dynam-
ics of worker resource usage [32]. The types of state-based models
include the Hidden-Markov Model (HMM) [33] that can accurately
model continuous resource usage data, and the Semi-Markov model
(SMM) [27] that can predict the time duration of the model’s states,
thus enabling forward predictions of the worker’s dynamics. Pramanik
et al. [34] show that Markov-state models are problematic in such dy-
namic scenarios due to lack of memory. Thus, resource usage patterns
have non-Markovian properties. However, the Hidden Semi-Markov
model is nonetheless suitable for modeling the relationship between the
dynamic run-time of edge-native applications and the resource usage.

In contrast to existing schemes, the proposed RUMP scheme is
tailored to model and capture the dynamic resource usage of EEDs
in a computationally-efficient way by using the HDP-HSMM model.
HDP-HSMM combines the accuracy of HMMs and the time-dimension
predictability of SMMs [27]. HSMM is practical and adaptable for EEC
systems, since it requires lower complexity and workload, uses a single
model for multi-step numeric and label prediction, and adapts to new
data input. In an earlier version of RUMP [1], we employed the HDP-
HSMM model and investigated the use of the Hybrid Bayesian Particle
Swarm Hyper-Parameter Optimization (HBPSHPO) model [16] only.
However, the possibility of achieving more performance improvements
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via rigorous data preprocessing has not been explored, and no other
predictive models have been investigated. In this paper, we provide an
extended version of RUMP that incorporates data filtering techniques as
a preprocessing step to induce performance improvements, particularly
in terms of prediction accuracy. In addition, along with the HBPSHPO
model, we analyze the use of two additional predictive models in
terms of computational complexity and performance, namely, the pat-
tern matching technique, kNN-TSPI [21], and the ML-based technique,
HBLED [17]. Moreover, we conduct more extensive experiments and
expand the performance evaluation metrics. Furthermore, we conduct
performance ranking of RUMP and the other three prediction models by
employing the Multi-Criteria Performance Measure (MCPM) alongside
statistical tests, including the Friedman test and the Nemenyi post-hoc
test. Lastly, as opposed to existing schemes that rely on simulations, we
conduct extensive experiments on a realistic testbed of heterogeneous
workers.

3. Resource usage multi-step prediction (RUMP)

In RUMP, we model the workers’ dynamic resource usage using a
Hidden Semi-Markov Model (HSMM) to enable multi-step prediction
of the workers’ resource usage state. The implementation uses the
Hierarchical Dirichlet Process (HDP) for a Bayesian nonparametric
extension of HSMM [22]. The extension of HDP-HSMM enables the
model to infer the number of hidden states using a weak-limit Gibbs
sampling method without requiring prior knowledge. This is since the
workers’ usage behavior and the applications runs tend to vary from
one user to another. Moreover, the use of explicit duration semi-Markov
modeling overcomes the limitation of the resource usage data being
non-Markovian, since the time when the next resource usage state is
reached depends on the time spent in the current state and not just the
state itself. To learn the model, the resource usage information of the
worker, such as CPU time and memory percent usage, is collected at
a fixed interval over a long enough period to capture all the possible
resource usage states. A graphical representation of all components of
HDP-HSMM is shown in Fig. 1.

3.1. Hierarchical Dirichlet process - hidden semi-Markov model (HDP-
HSMM)

In this section, we present the underlying HSMM and HDP compo-
nents of the prediction model used in RUMP. All the notations used in
this section are shown in Table 1.
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3.1.1. The HSMM model in RUMP

Much like the Hidden Markov Model, the Hidden Semi-Markov
Model is composed of two layers; a hidden state layer and an obser-
vation/emission layer, represented by random variables. However, the
HSMM additionally expresses the time duration of states, which is lim-
ited to a geometric distribution in HMM. An application running on a
worker, which is considered as a hidden state from the perspective of an
EC service provider, has a similar relation to the corresponding resource
usage pattern. Note that the latter can be viewed as emission from
a distribution of values previously observed. State transition patterns
can be modeled probabilistically, where each entered state is given an
explicit duration, also drawn from a distribution. Such a Semi-Markov
model is defined as an explicit duration Semi-Markov model. Thus, the
model is able to capture different time scales of resource usage patterns,
which is particularly important for EEDs with diverse workloads and
performance characteristics.

The observations are represented by y, € R* for r € {1,2,...,T},
where T is the length of the observation sequence. In RUMP, the
observations are the values of the resource usage information, such
as CPU time, memory percent usage, and network rates. Moreover,
the observations, drawn from a distribution corresponding to a hidden
Semi-Markov state, are represented by a sequence of random variables
x;, € {1,2,...,N}, forming a Markov chain for the sequence of N
possible states. The hidden states represent the resource usage states
associated with applications and processes running on an EED. The
state transition matrix, which collects the transition probabilities in a
row-stochastic matrix, is denoted P,;, where P;; = p(x,.; = jlx, = ).
The emission distribution with parameters {6;} is represented by the
probability p(y;|x;, 6,).

The HSMM is augmented with a random variable, denoted D,,
representing state duration time drawn from a distribution specific to
the entered state with the probability mass function p(d,, |x, = i,®;),
where {w;} are the duration distribution parameters. Once D, of an
entered state passes, a Markov transition occurs towards a different
state. To simplify representation, a sequence of the same hidden state is
represented by “super-states” z,, where s € {1,2,...,S} for S possible
super-states. Each super state has associated resource observations,
multiple consecutive resource usage states, and avoids self-transition
within the time D, (i.e. a super-state transitioning to another instance
of the same super-state). In RUMP, the super-states also represent the
resource usage states associated with the hidden-states x, over the
duration D;. More details of how self-transitions are eliminated using
an additional auxiliary variable can be found in [22]. Note that we
assume that the models are time-homogeneous. This means that the
transition probabilities do not change with time. However, the model
may be modified to adapt to changes in the underlying data over time
using extensible Markov Models [35]. The worker’s dynamic resource
usage scenario allows the models to adapt with time to regularly
evolving worker usage behaviors. The state transition probabilities of
the model are derived from a given sequence of observations/emissions
using the standard message-passing inference of the forward-backward
algorithm, also called smoothing [22].

3.1.2. State-inference using HDP

The HSMM generation method used in RUMP relies on the Hier-
archical Dirichlet Process (HDP) [22]. The HDP allows for Bayesian
non-parametric inference of the hidden states (resource usage states)
and hidden-state duration distributions, instead of the usual treatment
from a non-Bayesian perspective that approximates parameters using
the Expectation-Maximization algorithm. The HDP allows the model to
automatically determine the optimal number of states and transitions
without manual intervention, allowing for a more data-driven and
adaptive approach to predicting resource usage. As such, the model
parameters are treated as random variables with HDP priors p({ P, }|a),
p({6;}1H), and p({w;}|G), where « > 0 is a concentration parameter
specifying the shape of the distribution, and H and G are the base
measures used to parameterize the emission distribution and duration
distribution, respectively. The base measures are sampled from the
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Table 1
Table of notations for RUMP.
Symbol Description
Vi Observations, for ¢ € (1,2,...,T)
T Length of the observation sequence
X, Hidden states € {1,2,...,N}
N Number of possible hidden states
P, State transition probability
0; Emission distribution parameters
z Super-state sequence, s € (1,2,...,.5)
S Number of possible super-states
D, Duration time of super state s
; Duration distribution parameters
a Concentration parameter
H Base measure for emission distribution
G Base measure for duration distribution
L Dimension of the Dirichlet distribution
K Sticky parameter

resource usage data. The inference approach enables the modeling of
uncertainty over parameters, and the prediction of observations and
state sequences by integrating out all possible parameters. In RUMP,
H and G are learned from the resource usage data. H serves as a prior
distribution of the parameters of the emission distribution (i.e., the
distribution of resource usage observations given a particular state),
while G serves as a prior distribution of the parameters of the duration
distribution (i.e., the distribution of the time spent in a particular state).

The HDP acts as a prior over infinite-state transition matrices biased
by a set of states that are consistently re-entered in each smoothing
iteration, i.e., the draw of the forward-backward message passing
algorithm, which is itself parameterized by a discrete measure . The
p parameter penalizes large numbers of states and reduces them to the
states that are consistently visited in the sequence. A weak-limit Gibbs
sampler is used to completely represent the transition matrix in a finite
form based on L-Dimensional Dirichlet distributions. The L parameter
can be sampled over without being set beforehand using the beam
sampling technique [36]. The « parameter allows for some control
over duration statistics (i.e., encouraging longer or shorter periods),
which is known as the sticky property [22]. With these parameters, the
sampler constructs the other parameters by drawing samples from the
posterior probability p({x,},{6,}.{P},{@,}|y,, H,G,a). Moreover, the
sampler accelerates mixing (i.e., estimating contributions of sources to
a mixture) by allowing for block sampling of the entire state sequence
simultaneously. Thus, the Gibbs sampling approach iteratively updates
the model parameters based on the resource data and the current
estimates of the other parameters, allowing the model to converge
to a more accurate representation of the underlying data-generating
process. Through this iterative process, the model learns the structure
of the data, such as the number of resource usage states, the transition
probabilities between the states, the resource usage data distributions
of each state, and the duration distributions of each state.

3.2. Data filtering

Time-series data often contains unwanted components, such as
trend, seasonality, and volatility, which can affect the accuracy of
prediction models. To mitigate the impact of these unwanted com-
ponents on the accuracy of prediction models, various preprocessing
techniques can be applied to the time-series data to remove or reduce
these components [37,38]. One such technique is the simple moving
average (SMA) filter [39], which calculates the average of the data
points within a specified window and moves the window across the
data to create a smoothed series. The SMA filter is easy to implement
and can provide a basic estimate of the future values. However, for
time-series data that has trends or seasonality, the exponential moving
average (EMA) [40] filter may perform better, since it assigns more
weight to the most recent observations and can more effectively capture
trends in the data. The EMA filter reduces the lag between the smoothed
series and the original series by giving less weight to older data points.



R. Kain et al.

4 —— No Filter
10— 1 esees SMA
A ==+ EMA
2 ] Sav. Golay

Power Spectral Density [VA2/Hz]

0.1

0.2 0.3

k & 0.4
Frequency [Hz]

0.5

(a) Memory Percent Usage

Fig. 2.

The Savitzky-Golay filter [23] is a sophisticated digital filter that
can handle data with both trends and noise. It is suitable for data that
is highly irregular and that can be smoothed while preserving its overall
shape. The Savitzky—Golay filter operates by fitting a polynomial func-
tion to a subset of adjacent points in the data and using the function to
smooth the data. The degree of the polynomial function and the size of
the subset can be modified to balance the trade-off between retaining
trends in the data and eliminating noise.

The periodogram in Fig. 2 shows the Power Spectral Density (V2/Hz)
to frequency (Hz) spectrum of the time series data, which helps us
understand the impact of the filter on the data. As shown in Fig. 2, the
periodogram reveals a strong low-frequency component in the resource
data, indicating that there are significant fluctuations over long periods
of time. To smooth out these fluctuations and capture the overall trends
in the data, we can apply either the Simple Moving Average (SMA)
filter or the Exponential Moving Average (EMA) filter. The SMA filter
can address autocorrelation at smaller lags by smoothing out short-term
fluctuations, but it also reduces the power spectral density at higher
frequencies, meaning it dampens the higher frequency oscillations in
the data. Moreover, the EMA filter can account for autocorrelation that
arises due to trends and seasonality, making the data more stationary
(i.e., having constant mean and variance over time).

In contrast to SMA and EMA filters, the Savitzky—Golay filter smooths
out the noise in the data, in addition to preserving the overall shape of
the time series. The Savitzky-Golay filter can address the autocorrela-
tion that arises from both trends and noise present in the time series
data having complex patterns, noise, and trends. This may be observed
in the sudden attenuation in the power spectral density for a specific
range on frequency components, shown in Fig. 2(b). The frequency
range may be controlled with the window size and polynomial degree
chosen. Based on our analysis, we recommend using the EMA filter, for
two reasons. First, it assigns more weight to recent data points, which
makes it more responsive to changes in the data. Second, it follows the
unfiltered data more closely, but with a consistent attenuation, which
reduces noise and preserves the signal, which is especially crucial for
reducing errors that may compound in multi-step ahead resource usage
prediction.

3.3. Use cases

In addressing the complexities of resource usage in EEDs, RUMP
benefits a broad range of use cases. One key use case is that of resource
planning and allocation, where RUMP’s predictive capabilities facilitate
advanced provisioning of resources in EEDs. By gauging future resource
demands, organizations can strategically plan and assign resources,
ensuring uninterrupted delivery of offloaded services. This predictive
resource allocation presents an innovative approach to contend with
the highly dynamic nature of resource utilization, which is a salient
research problem inherent in EEC environments.
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Another crucial use case lies in task scheduling and load balanc-
ing. Harnessing RUMP’s understanding of prospective resource usage,
scheduling and load distribution can be significantly enhanced. By
taking into account the projected resource needs of EEDs, tasks can be
appropriately distributed to avoid resource competition and boost sys-
tem performance. For instance, using a dynamic usage-aware scheduler,
benchmark tasks can be allocated based on predicted resource states.
This enables not only precise characterization of devices under diverse
usage states but also timely execution of tasks, effectively capturing the
dynamic essence of resource consumption.

Managing user-requested tasks is another beneficial use case for
RUMP. With accurate forecasts of resource usage, tasks requested by
users can be scheduled judiciously. This capability is particularly valu-
able in situations characterized by high resource competition and fluc-
tuating usage patterns. By anticipating the future state of resources,
RUMP can guide task allocation to prevent potential resource scarcity
or overloads, thereby establishing a balanced and efficient EEC system.

RUMP is also instrumental in energy management and QoS opti-
mization. Predictive insights into resource usage can support energy-
efficient strategies by allowing the application of power-saving tech-
niques during low demand periods, optimizing energy consumption.
Concurrently, proactive management of QoS requirements is enabled,
since service providers can allocate resources based on anticipated com-
putational needs of user-owned devices. This ensures that QoS targets
are consistently met and user experiences are continually improved. By
addressing these research problems, RUMP presents a promising avenue
for the advancement of EEC systems.

4. Complexity analysis

In this section, we showcase the complexity of the HDP-HSMM
model used in RUMP in addition to the multiple baseline models: (1)
The Hybrid Bayesian Particle Swarm Hyper-Parameter Optimization
(HBPSHPO) model [16], (2) The Hybrid Bidirectional LSTM Encoder-
Decode (HBLED) [17], and (3) The KNN-Time Series Prediction with
Invariance (kNN-TSPI) [21]. All models are used for resource usage pre-
diction, and we analyze their complexities in terms of Big O notation.

4.1. HDP-HSMM

The most computationally intensive part of HDP-HSMM model used
in RUMP results from the message passing step using the forward—
backward algorithm, i.e. the smoothing process. The algorithm has a
complexity of O(T? Ngiates + TNS2tates)’ where Ngi,es is the number of
hidden states (i.e., the resource usage states) and T is the observation
sequence length (i.e., the resource usage data). However, not all steps in
the sequence need to be considered. Thus, it is enough to consider the
steps where a change in the super-state (i.e., the long running resource
usage states) is most likely. Such change are referred to as the change
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points. The complexity is reduced to O(TéhangeNStates + TChangeNétates)
if change-point detection is used when using the weak-sampler on the
observations, where Thange i the number of possible change points,
which is much less than 7.

4.2. HBPSHPO

The LSTM-CNN based model in HBPSHPO [16] uses the Particle
Swarm meta-heuristic (PS) to optimize the model architecture until it
stops according to termination criteria with value C. Thus, the number
of PS rounds, denoted Npgq, is a function of the termination criteria
value Npgg = f(C). HBPSHPO also uses Bayesian optimization to
optimize the selection of activation and loss functions within Npq
number of iterations per particle in the PS. Moreover, a separate LSTM-
CNN model needs to be trained for each step size, denoted Ngeps- Thus,
the number of LSTM-CNN models trained is Nyjoqeis = Npso X Npo X
Ngieps- Each model has a complexity of O(UT), where U is the number
of LSTM-CNN units and T is the input data sequence length. It follows
that the complexity of the HBPSHPO method is O(TU Nyyge1s)- Note
that the complexity of U is different for each layer type, i.e., LSTM and
CNN. For an LSTM layer, the complexity is typically O(L>T), where L
is the number of LSTM units. For a Conv1D layer, the complexity is
O(f'kIyIg/s"), where f’ is the number of filters, k is the kernel size,
Iy is the number of input channels, I is the input size, and s’ is the
stride of the convolution.

4.3. HBLED

The HBLED model’s complexity is largely determined by the layers
it contains and their individual complexities. The most computationally
intensive layers in HBLED, are the Bi-directional LSTM, LSTM and the
Time Distributed Dense layer. For each LSTM layer, the complexity is
typically O(T L?), where T is the input data sequence length and L is
the number of LSTM units. Bidirectional LSTM layers have twice the
complexity of a single LSTM layer, i.e., O(2T L?). The Time Distributed
Dense layers have a complexity of O(T F?), where F is the number of
features. The model’s total complexity is the sum of the complexities of
each layer, and is multiplied by the number of steps considered, since
each step size requires a separate model. Thus, the total complexity is
O(T(BL? + F*)Ngteps)-

4.4. kNN-TSPI

The kNN-TSPI model has a time complexity of O(T'Qk), primar-
ily determined by the similarity search, where k is the number of
neighbors, T is the size of the time series, and Q is the length of the sub-
sequences. This means that the time complexity of kNN-TSPI depends
on both the size of the time series and the length of sub-sequences used
for matching. Compared to traditional kNN, which has a time complex-
ity of O(T logT), the kKNN-TSPI model can be more computationally
expensive, especially for large O and k. The kNN-TSPI has a linearly
scaling time complexity as the length of the sub-sequences Q and the
number of neighbors k are of small and fixed numbers compared to
T, however, the model is univariate and is incapable of multi-feature
prediction. To predict on multiple features, a separate model is required
for every feature F, therefore, the time complexity of KNN-TSPI for
our use case is O(T FQk). It should be noted that there are some ad-
ditional computational overheads due to techniques used for obtaining
amplitude and offset invariance (©(Q)), complexity invariance (O(Q)),
and treatment of trivial matches (@(k)). These additional overhead
complexities are small compared to the main complexity term.
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4.5. Comparison

When comparing the time complexities of the different models,
we find that they fall into two categories: low complexity and high
complexity. These categories are based on the dominant components
that make up the different complexities in the context of multi-step
prediction of EED resource usage. The HDP-HSMM used in RUMP
and the kNN-TSPI fall into the low complexity category, while the
HBLED and the HBPSHPO fall into the high complexity category. The
HDP-HSMM in RUMP has low complexity when using change point
detection, which reduces the dominant term T2 to T, hange- The KNN-
TSPI has low complexity due to its linear relation to T, but it has
an additional term F because it requires a separate model for each
predicted feature. As a result, for the kKNN-TSPI, predictions of features
are made without considering their interdependence, which limits gen-
eralization. The kNN-TSPI is unsuitable for our use case for two reasons:
(1) it cannot predict resource usage states (labels) because it is only
capable of making numeric predictions, and (2) it does not adapt to
changes in data patterns over time. As a pattern matching technique,
if a similar pattern is not found in historical data, it cannot accurately
predict resource usage data.

Both the HDP-HSMM in RUMP and kNN-TSPI are independent of the
number of steps considered, making their complexities lower than those
of HBLED and HBPSHPO. The complexities of the ML-based models,
HBLED and HBPSHPO are higher, since they depend on both the size
of the training data and the layer composition of the models. The data
used for our experiments have a sizable observation sequence length
T, on the order of 10*. For HBLED, the number of LSTM units (L) is
on the order of magnitude of 102, while for HBPSHPO, the number
of LSTM or ConvlD units is on the order of 10°. F, k, and Q have
the lowest magnitudes compared to the other terms. While other the
complexity terms are ranked in order of magnitude as follows: U >
T > Tepange > L > Nisogers > Nsyares- In the next section we conduct a
performance evaluation to compare the models’ accuracy in prediction
resource usage data for multiple steps.

5. Performance evaluation

In this section, we evaluate the performance of the HDP-HSMM
model used in RUMP compared to three representative state-of-the-
art prediction models; the Hybrid Bi-directions LSTM Encoder-Decoder
(HBLED) model [17], the k-Nearest Neighbors Time Series Prediction
with Invariance (kKNN-TSPI) model [21], and the Hybrid Bayesian
Particle Swarm Hyper-Parameter Optimization (HBPSHPO) model [16].

We use the following performance metrics: (1) the Mean Absolute
Error (MAE), which is calculated as the average magnitude of errors
between the predicted and actual values without considering their
direction, (2) the Root Mean Square Error (RMSE), which represents the
square root of the average squared differences between the predicted
and actual values, and is sensitive to outliers, more severely penalizing
larger errors compared to smaller ones, (3) the Coefficient of Determi-
nation (R?), specifically 1 — R?, and is used to assess the proportion of
unexplained variance in the data, where a smaller 1— R? value indicates
better model performance due to the model’s ability to account for
a greater amount of variance, (4) the Mean Absolute Percent Error
(MAPE), which is calculated as the average percentage of error between
the predicted and actual values, and that is useful for comparing model
performance on data with varying scales, (5) the Symmetric Mean
Absolute Percent Error (SMAPE), which serves as a variation of MAPE
that takes into account the direction of the difference between the
predicted and actual values (i.e., positive or negative difference), and
(6) the Prediction Accuracy (%) for categorical predictions, which is
calculated by dividing the number of accurately predicted labels by the
total number of labels.

To compare and rank the performance of the models, we conduct
various experiments, and use the Multi-Criteria Performance Measure
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Table 2
Workers’ specifications and labels.
Worker Raspberry Pi 4B specifications
RAM (GB) CPU freq. (GHz)
A 8 1.8
B 4 1.5
C 2 1.5
D 2 1.2

(MCPM) [24], as well as two statistical tests [25]. The MCMP is used
to compare the different metrics based on direction (the proportions
of different metrics) rather than magnitude (the absolute values of
metrics). The statistical tests are performed to assess whether there are
significant differences among the models and filters. The Friedman’s
test is used to compare multiple groups across multiple dependent
variables. It compares the ranks of the models across all datasets and
provides a p-value, indicating whether there is a significant difference
between the models. When there is a significant difference, the Ne-
menyi post-hoc test is used to compare the models’ ranks pairwise and
provides a critical difference value that indicates which models differ
significantly from each other [25].

5.1. Experimental setup

In order to assess the multi-step prediction models on heterogeneous
workers that accurately reflect EEDs in various usage scenarios, we
utilize a group of four devices, specifically the Raspberry Pi (RPi)
4B model, with varying RAM sizes and CPU cycle frequencies. It is
important to note that the standard CPU frequency of the RPi 4B model
is 1.5 GHz. However, we increase the heterogeneity of workers by
overclocking and throttling the RPis. Consequently, we utilized CPU
frequencies of 1.8, 1.5, and 1.2 GHz, along with RAM sizes of 8, 4, and
2 GB, respectively. Table 2 summarizes the specifications of the RPis
(i.e., workers) used.

We implement dynamic resource usage scenarios by sequentially
running a set of applications for different durations. The applications
include playing a video game, streaming a YouTube video on a browser,
emulating real-time augmented reality, and mining a low-power crypto-
currency called Duino-coin. To emulate augmented reality, we impose
ArUco markers on a sequence of image frames, similar to a live video
stream. The Duino-coin uses the SHA-1 cryptographic function for
encryption on a variant of a blockchain, known as a hash-chain. We
also include idle periods where no application is running. To create
different usage scenarios (known as resource usage states), we use two
types of sequence for each worker: a random sequence and a patterned
sequence, which consists of a recurring sequence of applications over
a specific duration.

The full resource usage dataset encompasses over 550,000 distinct
data points spanning 768 h of applications running on EEDs. The
data is gathered from various resource usage scenarios over numerous
48-hour periods, with a monitoring interval of 5 s. Applications run
sequentially, and the duration of each is determined by the previously
computed state time lengths. The resource usage state time lengths
are calculated considering factors such as the total runtime, various
application runtime lengths, and the maximum application runtime
length. Resource usage is continuously monitored and documented at
the specified intervals using the psutil Python library [41]. The
datasets capture user CPU time, system CPU time, and idle CPU time,
percent memory usage, network upload and download size and rates,
disk IO, and more. We focus on modeling user, system, and idle CPU
time, as well as memory usage. We associate resource usage informa-
tion with resource usage states using labels, such as “Game”, “Stream”,
“Augmented Reality” (AR), “Mining”, and “Idle”, which are then given
numerical labels for input into the prediction model.
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For performance evaluation, we focus on four datasets per worker;
two for each sequence type, labeled ‘“random” and “patterned”. In
terms of resource usage values, we focus on percent memory usage, as
well as user, system, and idle CPU times. Fig. 3 illustrates a sample
distribution of resource usage for worker A following the random
sequence type for the different resource usage states. The figure shows
the distinction between the predicted resource usage states and their
corresponding actual values. As depicted in Fig. 3(a), Fig. 3(b), and
Fig. 3(c), the “Game” state exhibits the highest mean values of user
CPU time, idle CPU time, and system CPU time, respectively, followed
by the “Mining”, “Stream”, and “AR” states. In addition, as shown in
Fig. 3(d), the “Stream” state leads in terms of the mean value of percent
memory usage, followed by the “AR”, “Mining”, and “Game” states.
Whereas the “Idle” state is naturally the lowest in all resource usage
values.

In terms of preprocessing, differentiating and filtering are applied
to the data. The differentiation process involves calculating the first-
order difference for each of the resources to remove running trends,
and high frequency-based variations/seasonality. The filtering process
involves the EMA filter, where we use a window size of 2. In RUMP, x
is the only parameter that requires tuning based on the distribution of
the resource usage states duration. We set x to 0.05 with filtering and
0.1 without filtering. We conduct different experiments over varying
number of steps, set to 1, 2, 5, 10, and 15, corresponding to 5, 10, 25,
50, and 75 s, respectively. We split the datasets into training and testing
sets using a 70%-30% split. The code and data used for the experiments
are accessible via GitHub.!

5.2. Results and analysis

In our experiments, we study the impact of the number of steps
and data sequence types, as well as the impact of data filtering on
the performance of RUMP, kNN-TSPI, HBLED, and HBPSHPO. We also
assess the categorical multi-step prediction for each worker in RUMP.
In addition, we discuss the trade-off between complexity, performance,
and effectiveness among RUMP, kNN-TSPI, HBLED, and HBPSHPO.
Below is a detailed discussion of such experiments and analysis.

1- The Impact of the Number of Steps and Data Sequence Type

Fig. 4 depicts the performance of RUMP, kNN-TSPI, HBLED, and
HBPSHPO in terms of the average MAE of the user CPU time (Fig. 4(a)),
idle CPU time (Fig. 4(b)), system CPU time (Fig. 4(c)), and memory
percent usage (Fig. 4(d)), for both random (R) and patterned (P) state
sequences, over varying step sizes. It can be observed that as the
number of steps decreases, all the models can effectively capture finer
patterns in the data, due to their use of more frequent data points.
However, as the number of steps increases, the models tend to provide
a more generalized understanding of data trends, possibly sacrificing
some level of detail in the predictions. Thus, all models exhibit various
degrees of gradual increase in MAE as the number of steps increases.

Fig. 4 also shows that the predictions made using the different mod-
els more often show better performance when predicting on patterned
(P) data in comparison to random (R) data sequence. This indicates that
HBPSHPO, HBLED, and kNN-TSPI may be overfitting to the patterned
sequence data, leading to a gain in accuracy at the expense of model
generalization. In contrast, RUMP follows the same pattern for the user
CPU time and idle CPU time, but not for the system CPU time and
memory percent usage.

Considering the average percent difference between RUMP and the
other models in terms of MAE, for the values in Fig. 4, we observe that
RUMP outperforms HBPSHPO for the random data sequence by 3% and
4% at step sizes 5 and 10, respectively. Whereas HBPSHPO outperforms
RUMP by 6%-16% for the random and 11%-37% for the patterned data
sequence at the other step sizes. It can also be noted that HBLED and

1 https://github.com/RuslanKain/rump-ec
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Fig. 3. Distribution of the preprocessed Resource Usage for different states in random sequence for Worker A. The bottom and top dashed lines in the violin plots indicate the
25th and 75th quantiles, respectively, the middle dashed line represents the median, and the black dot indicates the mean.

KkNN-TSPI outperform RUMP for both the random and patterned data
sequences by 25%-81% and 67%-85%, respectively. This is because
of the nature of the HDP-HSMM model used in RUMP, which, unlike
the other models, does not rely on a function that maps input to
output, but rather draws the output from a probability distribution.
The probability distribution is associated with a resource usage state,
that is recognized by RUMP based on the input values. Thus, output
values in RUMP tend to be more volatile since they are drawn from
a probability distribution. This volatility can be seen in Fig. 5, which
depicts the actual and predicted system CPU time on worker A for
1-step predictions yielded by RUMP and the other models. As shown
in the figure, the predictions made by RUMP tend to fluctuate more
than those made by the other models which more closely follow the
level of the actual observations. The volatility shown by RUMP does
not mean that the inferences made by RUMP are less useful, since
the hidden state corresponding to the predicted observation may still
be correct, (as explained later). Moreover, the fluctuations in all the
models’ predictions are also product of the variability of the resource
usage data itself, which merits the use of filters to smooth out the signal
with the aim of reducing prediction errors. The next experiments show
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that when incorporating the EMA filtering technique into RUMP, it
starts to outperform HBLED.

To show the impact of large stepsizes, Fig. 6 depicts two sets of
violin plots to show the percent difference of RMSE and MAE between
RUMP and HBPSHPO for both patterned and random data for 1 to 15
steps (Fig. 6(a)), and for 1 to 60 steps (Fig. 6(b)). Note that in scenarios
where predictions are made for large step sizes, the kNN-TSPI and
HBLED models are rendered impractical. This is because each step size
in kNN-TSPI and HBLED requires a new model, and re-training must be
applied when new resource usage data is collected. Moreover, HBLED
and kNN-TSPI have higher complexity, due to the number of hyper-
parameter searches for model architecture optimization technique and
the additional kNN-TSPI models needed for each predicted feature.
Thus, in this experiment, we focus on RUMP and HBPSHPO.

As shown in Fig. 6(a) and Fig. 6(b), the prediction accuracy of
RUMP is comparable to the more computationally complex HBPSHPO
model for all step sizes. The additional step sizes, 30 and 60, cause the
distribution of the violin plots to have wider bottoms, where both the
mean and median values are lower, indicating a relatively improved
performance of RUMP for larger step sizes. This means that RUMP is
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Fig. 5. Actual (gray) and predicted CPU time for worker A by RUMP (green), HBPSHPO
(purple), HBLED (blue), and kKNN-TSPI (red).

more capable of capturing long-term patterns in the data. In Fig. 6(b),
the overall average percent difference is 28% in MAE. Note that the
average percent difference in MAE between RUMP and HBPSHPO for
patterned sequence data is 39% and for the random sequence data
17%, in favor of the HBPSHPO model. In some cases, RUMP even

53

outperforms HBPSHPO; for example, the minimum difference in MAE
for random sequence data is -30% (i.e., in favor of RUMP).
2- The Impact of Filtering

In this experiment, we study the impact of data filtering on the
performance of RUMP, HBLED, and kNN-TSPL Fig. 7 depicts each of
these models with and without EMA filters. For simplicity, we refer to
them as RUMP-No Filter, RUMP-EMA, HBLED-No Filter, HBLED-EMA,
kNN-TSPI-No Filter, and kKNN-TSPI-EMA. We conduct the Multi-Criteria
Performance Measure (MCPM) [24] to evaluate and rank the perfor-
mance of these models based on multiple metrics; MAE, RMSE, MAPE,
1 — R?, and SMAPE, at different step sizes. Towards that end, the L2
normalized average of the evaluation metrics is considered and mapped
on a radar chart to obtain the formed polygon’s area. The performance
is ranked based on the minimal area size of the associated polygon. The
area is calculated using the shoelace formula, an algorithm for comput-
ing the area of any simple polygon whose vertices are given by their
Cartesian coordinates. L2 normalization is used so that comparisons
between data points are based on direction (the proportions of different
metrics) rather than magnitude (the absolute values of metrics). As
depicted in Fig. 7, the results are visualized using a radar chart, a
graphical method of displaying multivariate data in a two-dimensional
chart with multiple axes starting from the same point.

We also use the statistical tests [25], namely, the Friedman test and
the Nemenyi (post-hoc) tests to assess whether there are significant dif-
ferences in performance among the models and filters. The Friedman’s
test is used to compare multiple groups across multiple dependent
variables. It compares the ranks of the models across all datasets and
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Fig. 7. Multi-Criteria Performance Measure for RUMP, KNN-TSPI, and HBLED, with and without EMA filter for different step sizes.

provides a p-value, indicating whether there is a significant difference
between the models. When there is a significant difference, the Ne-
menyi post-hoc test is used to compare the models’ ranks pairwise and
provides a critical difference value that indicates which models differ
significantly from each other [25].

As depicted in Fig. 7(a), the MCMP test for step size 1 shows
that KNN-TSPI-No Filter yields the lowest score, followed by kNN-
TSPI-EMA, HBLED-EMA, RUMP-EMA, RUMP-No Filter, and HBLED-No
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Filtering. This shows that EMA filtering renders better prediction accu-
racy in RUMP and HBLED, whereas filtering yields no improvements in
kNN-TSPI, for 1 step prediction. Whereas, the Friedman test results in a
p-value of 0.0169, which is below the threshold of 0.05, indicating that
there are significant differences among the model-filter combinations.
The Nemenyi test is computed for various performance metrics, such
as MAE, RMSE, MAPE, and SMAPE, for all the considered resource
usage values. With a critical difference value of 0.874, the test shows
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Fig. 8. Multi-step prediction accuracy for training and testing phase for all workers for the random and patterned sequences.

significant performance differences that RUMP-EMA significantly out-
performs RUMP-No Filter. Rankings based on the Nemenyi test show
that KNN-TSPI-No Filter and kNN-TSPI-EMA consistently perform better
across multiple metrics. Although both the MCPM and Nemenyi test
rankings show that kNN-TSPI performs well, the Nemenyi test results
reveal a more nuanced picture of the performance across different met-
rics, highlighting the similarities in performance between the kKNN-TSPI
and HBLED models with the EMA filter.

As depicted in Fig. 7(c), the MCMP test for step size 10 shows
that kNN-TSPI-No Filter performs the best, followed by kNN-TSPI-EMA,
RUMP-EMA, HBLED-EMA, RUMP-No Filter, and HBLED-No Filter. the
Friedman test shows a statistically significant difference with a p-value
of 0.0256, while the Nemenyi test indicates that HBLED-No Filter
performs worse than the other models.

The post hoc tests reveal that the EMA filtering method effectively
improves the performance of RUMP and kNN-TSPI models for most
metrics. RUMP-EMA and kNN-TSPI-EMA show statistically significant
differences in several user and idle CPU time metrics compared to the
other models. Notably, RUMP-EMA, HBLED-No Filter, kNN-TSPI-No
Filter, and kNN-TSPI-EMA have comparable error for memory us-
age, while HBLED-EMA stands out as the most different from the
rest in terms of memory resource usage, implying that it is the least
accurate. The Nemenyi test results provide additional insights into
the impact of EMA filtering on the performance of RUMP and kNN-
TSPI, and highlight the significant differences between RUMP-EMA and
kNN-TSPI-EMA and other models for several user and idle CPU time
prediction error metrics.

Fig. 7(b) and Fig. 7(d) show the results of the MCMP test for
step sizes 5 and 15, respectively. For 5-step predictions, it can be ob-
served that kNN-TSPI-No Filter ranks first, followed by kNN-TSPI-EMA,
HBLED-No Filter, HBLED-EMA, RUMP-EMA, and RUMP-No Filter. For
step size 15, the kNN-TSPI-No Filter performs the best, followed by
KNN-TSPI-EMA, RUMP-EMA, HBLED-No Filter, and RUMP-No Filter.
Note that for step sizes 2, 5, and 15, the Friedman test indicates no
significant differences between the model-filter combinations, as the
p-values are greater than 0.05. The 15-step prediction has a large p-
value of 0.3755, while the p-value for the 5-step predictions is 0.052,
respectively. The p-value for 5-step predictions is quite close to the
threshold, suggesting that the differences in model performance is
bordering on statistical significance. Despite the lack of significant
differences, the ranking of the model-filter combinations based on their
MCMP offers valuable insights into their relative performance.

3- Categorical Multi-step Prediction

In this experiment, we evaluate the ability of RUMP to accurately
predict the resource usage state (categorical prediction) of each worker
(worker A, worker B, worker C, and worker D) over varying number of
steps. Note that only RUMP is evaluated in this experiment since the

55

Table 3

Distribution of 1-step predictions in terms of the percent correct state predictions (v),
incorrect prediction as other known states (x), and prediction of unknown states (?) for
the testing-phase patterned sequence data of “Stream”, “Game”, and “Mining” resource
usage states for all workers.

Worker Resource usage states

Stream Game Mining

v X ? v X ? v X ?
A 81.1 9.8 9.1 96.6 0.6 2.8 77.0 2.7 20.3
B 77.0 2.0 21.0 64.3 17.7 18.0 83.4 7.1 9.5
C 85.1 2.9 12.0 92.6 0.4 7.0 92.4 2.5 5.1
D 67.2 18.3 14.5 88.5 2.7 8.8 61.6 9.7 28.7

other models are not designed to predict the resource usage state. For
example, KNN-TPSI is not capable of performing categorical prediction,
since it is a pattern matching technique. This renders kNN-TPSI imprac-
tical and unsuitable to predict the resource usage state of workers. In
contrast, RUMP captures the dynamic resource usage state of workers,
where the resource usage state of a worker in the HSMM model used in
RUMP is represented by the hidden states. Fig. 8 depicts the prediction
accuracy of RUMP in each worker for both the training and testing
data, and for random sequence data in Fig. 8(a) and patterned sequence
data in Fig. 8(b) over different step sizes. Note that the state prediction
accuracy for the training data corresponds to 1-step predictions only,
and is thus represented by horizontal lines since it remains the same
over different step sizes. In contrast, the scattered dots indicate the
accuracy achieved when using the model to infer on testing data for
each step size. We discuss the results of such inference below.

As the number of steps increases, the prediction accuracy of RUMP
decreases for all workers, where the average training-phase accuracy
for all workers is 95% and 93% for random and patterned state se-
quences, respectively. For multi-step inference on unseen testing data,
the average prediction accuracy ranges from 91% to 55%, and 89%
to 60% for random and patterned state sequences, respectively. This
reduces steepness for larger step sizes, suggesting a non-linear relation
with step size due to error propagation from one prediction step to the
next. In Fig. 8, the accuracy results of workers B and D show that they
have a slightly lower starting accuracy compared to the other workers
(i.e., at 1 step).

Table 3 helps explain the source of the aforementioned deviations
by presenting the 1-step prediction accuracy on the unseen patterned
sequence data for the “Stream”, “Game”, and “Mining” resource usage
states for each worker. The table shows that accuracy is relatively
low in the “Stream” state for workers B and D, “Game” for worker
B, and “Mining” state for workers A and D. Besides having the state
incorrectly classified as a different resource usage state, another source
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Table 4
Model yime complexity, accuracy, practicality, and adaptability comparison for all
models.

Model Evaluation criteria

Time complexity Accuracy Practicality Adaptability
RUMP Low Medium High High
HBPSHPO High Medium Low Medium
HBLED High High Medium Medium
kNN-TSPI Low High Low Low

of error is the prediction of a hidden state that does not directly
correspond to the labeled resource usage state. This is due to the
model generating unknown hidden states that are impacted by some
unknown processes instead of the running application. These processes
may include automatic operating system processes, which may run at
any time, or the application itself uses resources abnormally because
the application’s operation is affected by an overloaded system. This
indicates that the model itself is highly accurate, and prediction errors
stem from the fact that the labels in the dataset may fail to completely
capture the unknown resource usage states reflected in the resource
usage patterns, which also impacts the worker’s performance that the
model can detect.

5.3. Complexity, performance, and effectiveness trade-offs

In this section, we discuss the trade-offs between the complexity,
prediction accuracy, practicality, and adaptability of RUMP, HBPSHPO,
HBLED, and kNN-TPSI in multi-step prediction of the workers’ resource
usage in dynamic EEC systems. Note that by practicality, we refer to
the suitability/applicability of the prediction model to EEC systems,
whereas adaptability means the ability to adapt the model to changes
in data patterns over time, which are common due to the dynamic
resource usage of EEDs. Table 4 summarizes the time complexity,
accuracy, practicality, and adaptability comparison between RUMP,
HBPSHPO, HBLED, and kNN-TPSI. Based on the complexity analysis
conducted in Section 4, it can be observed that the complexity profile
of kNN-TSPI is linear with respect to the size of the time series (T)
and the length of the sub-sequences (Q). However, the time complexity
of kNN-TSPI is multiplied for every additional feature (F), which
limits its practicality. The time complexities of RUMP and kNN-TSPI
models are lower compared to ML-based models, since they do not
require several models to predict for multiple step sizes. The kKNN-TSPI
model does not require multiple models because it relies on the sliding
window technique. However, since KNN-TSPI is a pattern matching-
based technique, it is much less practical and adaptable than RUMP for
EEC systems. In addition, kNN-TSPI is incapable of doing categorical
prediction, rendering it unusable for resource usage state prediction.
RUMP, HBLED, and HBPSHPO are capable of resource usage state (cat-
egorical) prediction. However, unlike RUMP, ML-based models (HBLED
and HBPSHPO) require additional modifications and separate models to
do categorical prediction, thus hindering their practicality.

In terms of complexity, the complexities of CNN and LSTM-CNN
models depend on the input size, as well as other factors, such as
the number of filters, the kernel size, and stride. The LSTM-CNN
based model used in HBPSHPO also has an additional complexity
factor, N, odels, which is influenced by the number of particle swarm
optimization rounds and Bayesian optimization iterations. Comparing
the two ML models together, the LSTM/CNN based HBPSHPO model
and LSTM/Bi-directional HBLED model have different compositions
of layers, resulting in distinct complexity profiles. The complexity of
both models is affected by the choice of layers, their sizes, and input
sequence length. Overall, HBPSHPO has the highest computational
complexity compared to other approaches such as CNN-LSTMs or Bidi-
rectional LSTMs, due to its larger number of parameters and more
complex architecture.
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In terms of adaptability, RUMP is highly adaptable if modified to
use an extensible Markov Model [35]. The ML-based models (HBP-
SHPO and HBLED) are capable of being adapted using online-learning
techniques. However, they face issues when the models abruptly and
drastically forget previously learned information upon learning new
information, which is known as catastrophic interference [42].

In the context of worker resource usage prediction, RUMP strikes a
good balance between complexity and accuracy, making it a suitable
choice for large-scale and dynamic environments. Although kNN-TSPI
is the most accurate predictor, it has limited applicability, since it is
univariate, and a combination of models for each feature is required
for the prediction application. Moreover, it has a tendency for over-
simplification as the algorithm focuses on a single variable and ignores
the relationships between features.

In terms of practicality/applicability, RUMP is more practical for
EEC because it employs a semi-supervised approach for validating
automatically captured resource usage states, utilizing the Hierarchi-
cal Dirichlet Process (HDP) with Gibbs Sampling for state inference.
This allows RUMP to accurately assess the device’s state (reaching
a prediction accuracy of up to 95%) unlike kNN-TPSI, which cannot
perform categorical prediction, or HBLED and HBPSHPO that require
additional modifications and separate models to do categorical pre-
diction. As such, RUMP has the significant advantage of achieving a
more comprehensive understanding of the device state changes and
resource management, in comparison to the other models. Therefore,
RUMP offers a desirable balance between computational complexity
and prediction accuracy for multi-step multi-variate time series pre-
diction in the context of worker resource usage, achieving accurate
predictions while maintaining manageable computational complexity,
which crucial for resource management in large-scale and dynamic
environments.

6. Conclusion

In this paper, we have proposed the Resource Usage Multi-step
Prediction (RUMP) scheme to model and predict the resource usage
of heterogeneous workers in Extreme Edge Computing environments.
RUMP deals with the highly dynamic user access behavior in such
environments by using a Hierarchical Dirichlet Process-Hidden Semi-
Markov Model (HDP-HSMM) to provide a relatively high predictive
power without sacrificing computational efficiency or rendering too
much complexity. Extensive evaluations on a realistic testbed have
shown that RUMP is comparable to a representative of the state-
of-the-art machine learning-based models in terms of multi-step and
multi-variant prediction accuracy, while rendering a much lower com-
putational complexity. In-depth assessments have demonstrated that
RUMP achieves an 91% categorical multi-step prediction accuracy and
has a small performance gap of 6% on average in terms of the Mean
Absolute Error (MAE) when compared to representatives of state-of-the-
art prediction models. Additionally, RUMP yields low computational
complexity. In the future, we plan on integrating RUMP as part of an
EEC resource management framework and evaluating it on a larger
testbed of EDDs to investigate its scalability and performance.
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