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ABSTRACT

Vehicular Ad hoc Network (VANET) is a foundation stone for con-
nected vehicles. As vehicles’ safety depends heavily on the ex-
changed data’s accuracy, VANET has a low tolerance for false data.
The process of intentionally exchanging inaccurate data is called
misbehaving. Machine learning (ML)-based solutions were heavily
invested in detecting misbehavior messages. However, they also
have some limitations with respect to how much they can detect.
To overcome such limitations, we introduce situation awareness
(SA) as a powerful concept that can break the limits of the used
ML models, leading to more accurate and reliable solutions. Situ-
ation awareness uses environmental elements and events to gain
a holistic view of the system at any given time. In this paper, we
propose using SA to predict the trust of the surrounding cars and
consequently reevaluate the outcome of the used ML model. Based
on the collected data and SA information, we may reject a message
classified as benign by the ML model or vice versa. We used VeReMi
dataset to evaluate the proposed approach called SAMM (Situation
Awareness with Machine Learning for Misbehavior Detection in
VANET) on different ML models with a wide range of features. The
results show that the proposed approach improves the system’s
accuracy for various misbehavior attacks by enhancing the recall
rate up to 24% and 50% in some cases.
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1 INTRODUCTION

Vehicle connectivity is becoming a monolith of road safety. The
annual growth of connected vehicles reached 18.7% since 2016 [25].
Vehicles with Electronic Control Units (ECUs) communicate via
various technologies to form Vehicular Ad Hoc Networks (VANETs).
VANET is a self-organized network where vehicles connect in a
decentralized manner, enhancing the driving experience and ame-
liorating safety and traffic management [6]. Different types of en-
abled communications have been utilized in VANET like Vehicle-
to-Vehicle (V2V), Vehicles-to-Infrastructure (V2I), and generally,
Vehicle-to-Everything (V2X) [4].

Consequently, security in connected vehicles has become a criti-
cal issue [4, 11]. VANET messages are broadcasted throughout the
network, allowing everyone to share information with everyone.
Hence, VANET nodes need to deal with distinguishing between
malicious and benign messages [29]. Message authenticity and
correctness are the main factors for achieving a secure and safe
communication process. Message authentication has been a target
for many researchers and has some standard protocols (IEEE 1609).
Nevertheless, message correctness assurance remains a challenge.

Basic Safety Messages (BSMs) are one of the most critical ex-
changed messages in VANET. BSMs were defined by the Society of
Automotive Engineers (SAE) in SAE J2735 standards [18]. Moreover,
these messages are periodically shared and contain information
exchanged between nearby vehicles. Specifically, they contain data
such as speed, location, and time. Such information are used for
various purposes like collision avoidance and traffic jam detection.
Unfortunately, due to the public nature of BSMs, malicious nodes
can broadcast false information, which can result in devastating
consequences [12].

The open sharing environment in VANET led to dealing with a
specific type of attack called misbehavior attacks, where vehicles
share misleading information. Misbehavior messages are authentic
messages that contain false information [33], and exchanging such
erroneous information in VANET can propagate quickly. Addition-
ally, cars and driver profiling may depend heavily on this informa-
tion. Thus, assessing the trustworthiness of the surrounding nodes
became integral because we need to guarantee the correctness of
the received information and protect the driver’s decision-making
process from getting influenced by false information.

Content integrity requires critical and integral decision-making.
However, traditional network security mechanisms tend to trust
whoever manages to get inside the network. Hence, conventional
all-or-none security mechanisms cannot deal with attacks aiming
at message correctness. Moreover, trust evaluation has established
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itself as an asset for enabling secure and reliable exchanged in-
formation between network entities [17]. Accordingly, utilizing
machine learning for attack classification and trust evaluation for
inside attacks (e.g., misbehavior attack) can lead to a more secure
environment in VANET.

Situation awareness (SA) has shown promising results in the
field of Cyber Defense [20]. SA is about reaching the state of being
aware of the circumstances around us. Primarily, we are interested
in the events that are particularly relevant to the current situation.
Ultimately, deploying situation awareness in VANET, especially
for security, depends heavily on the environment and the behav-
ior of the surrounding cars. Furthermore, SA relies massively on
the amount and the quality of the provided data. Therefore, the
more information you provide, the better your awareness of your
surroundings.

This paper demonstrates using SA on ML models’ results for
detecting misbehavior attacks. In this context, SAMM quantifies
situation awareness in VANET by calculating a trust score using
collected information from the environment. Subsequently, the trust
information is fed to the situation awareness model. The result is a
misbehavior detection system that uses the powerful classification
of ML and augments the accuracy of these results by utilizing the
trust information obtained from the situation awareness model.

The main contributions of this paper are threefold:

e We introduce a novel approach for misbehavior detection
based on situation awareness named SAMM.

e We evaluate our approach on a publicly available dataset and
different types of machine learning models and demonstrated
better results compared to the ones obtained with just the
machine learning models.

e We contribute toward the standardization of VeReMi dataset
by providing new baselines which future researchers can
compare with.

The rest of the paper is organized as follows. In Section 2, the
work related to misbehavior detection, machine learning, and situ-
ation awareness in VANET are discussed. In Section 3, we discuss
the attack model along with the dataset and situation awareness.
Section 4 provides a detailed description of SAMM, the misbehavior
detection model using situation awareness. Section 5 highlights
the simulation results of the proposed model. Finally, Section 6
concludes the paper and presents the future work.

2 RELATED WORK
2.1 Misbehaving Detection

Misbehavior detection focuses on identifying messages with in-
correct or anomalous data. Misbehavior detection can be divided
into node-centric or data-centric techniques [24]. A node-centric
technique considers the data being correct if the sender can be
trusted [31]. A Data-centric technique verifies the data itself to de-
termine its correctness. We outline some of the existing work that
discuss misbehavior detection. Bissmeyer et al. [3] proposed a way
where message correctness verification depends on central decision-
making authority. A central place receives the collected data and
has the authority to make decisions regarding the nature of the
data, whether normal or misbehaving. This approach suffers from
dealing with a voluminous amount of data. The work by Grover et
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al. [7] can be considered as an example of a consensus method. In
this scheme, a group of nodes tries to identify malicious nodes that
perform any kind of misbehaving. Abu-Elkheir et al. [1] proposed a
position verification scheme to help vehicles have more acumen for
other vehicles” announced positions. They used direct and 2-hop
neighbors to create a lower and upper boundary for the sender
position, and if the sent position is beyond this plausibility area,
a flag will be raised. In the absence of 2-hop neighbors, they used
Received Signal Strength Indicator (RSSI) to verify an announced
distance against relative distance to distance measures. The pro-
posed scheme showed promising results for position verification in
VANET.

Deploying a misbehavior detection system (MDS) for identifying
internal attacks has shown promising results. Different works [9, 10]
adopted ML-based MDS to detect falsification attacks. Khattab et
al. [8] proposed an IDS which extracts features from a trace file to
detect attacks in VANET. They used an artificial neural network
(ANN) and fuzzified data to detect abnormal behavior of vehicles.

Van der Heijden et al. [31] shed light on the lack of generalized
MDSs models due to the lack of a standard dataset for MDSs eval-
uation. Van et al. [32] published a labeled dataset called VeReMi
for misbehavior attacks in VANET. VeReMi dataset aims to create a
standardization platform upon which various misbehavior detec-
tors can be evaluated. So et al. [28] produced ML-friendly features
using VeReMi dataset. They compared the effectiveness of relying
only on plausibility checks against using plausibility checks as amal-
gamated features within the ML models. Finally, they evaluated
the models’ ability to classify various attack types. In addition to
adopting ML in MDS, trustworthiness measurement demonstrated
how powerful a tool it could be for misbehavior detection [21].

2.2 Situation Awareness

Many different domains utilized situation awareness (e.g., robotics,
psychology, Al and computer science) [15]. However, utilizing SA
for VANET security is still in its early stages. Hong et al. [14] pro-
posed a situation awareness trust architecture (SAT). SAT addressed
three aspects (trust attributes or policy control, proactive trust, and
social trust). In the proposed architecture, trust attributes consist
of entity trust and data trust. Also, they showed how to set up the
trust in advance by using the vehicular network instead of waiting
for a particular event to occur. Finally, they proposed using social
networks in the absence of Road Side Unite (RSU) infrastructure by
using the surrounding vehicles’ assessment of the situation. Thus,
this work proposes utilizing situation awareness for establishing
trust in VANET, but it lacks real or simulated experiments, unlike
our proposed work.

The work in [19] investigated the network security situation as
a nonlinear time series. It used a radial basis function (RBF) neu-
ral network as it can achieve a nonlinear combination between
the input space and the output space. In this case, the input is
previously-stored values about the history and current situation,
while the output is the following state situation with different time
windows. The time windows represent the selected number of con-
tinuous situation values (e.g., setting 3, 4, or 5 continuous situation
values). The simulation experiment showed how the RBF neural
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network achieved better results than the backpropagation (BP) neu-
ral network predicting the network security situation. However,
it may be improved significantly using an optimization algorithm
and adjusting the RBF neural network structure.

Hashem et al. [13] explored the use of SA in VANET from the
perspective of improving traffic safety. By utilizing the exchanged
information through communication channels like basic safety
messages in VANET, they can be aware of the state of the network
around the hour. In particular, they utilized SA to maintain the
used routing links’ stability and help the quality of service (QoS).
The routing algorithm updates the calculated QoS metrics if one
established route becomes ineffective.

3 PRELIMINARIES AND PROBLEM
FORMULATION

3.1 Dataset and Attack Model

VeReMi dataset is publicly available and actively maintained on
GitHub, ensuring its integrity. There are five different attacks repre-
sented in VeReMi: constant position, constant offset, random posi-
tion, random offset, and eventual stop. VeReMi contains 225 simula-
tions with three different traffic densities (low, medium, and high).
Every vehicle that receives a message creates a log file that consists
of the sender vehicle ID, a unique message ID, position (x,y,x), RSSIL,
and velocity (x,y,z). One of the reasons for using VeReMi dataset is
its recent attention in VANET security study. Mitchel et al. [22] dis-
cussed the need for a standardized dataset so that future researchers
can validate their work. So et al. [27, 28] used a modified version of
VeReMi to create a ML-friendly model of the metrics that we used
in one of our experiments.

3.2 Plausibility Checks and ML for Detecting
Misbehavior

One of the main approaches used recently for message correctness
is the adoption of plausibility checks. Mainly, plausibility checks
are used as a feature vector to enhance the ML models’ classifi-
cation capabilities [28]. In our experiments, we used a number of
features and plausibility checks. Most of them were introduced in
the previous works [27, 28]. The used plausibility checks are as
follows: (1) displacement in X and Y positions, (2) difference in X
and Y velocities, (3) acceleration in X and Y, (4) predicted position
in X and Y, (5) predicted velocity in X and Y, (6) difference between
calculated and predicted position in X and Y, (7) difference between
calculated and predicted velocity in X and Y, (8) distance between
X and Y, and (9) distance between predicted X and Y.

3.3 Situation Awareness

Situation awareness (SA), in its basic form, is about knowing what’s
happening in your vicinity. Figure 1 shows both the three phases of
SA and its adoption in the context of VANET security for detecting
misbehavior attacks. In the first phase (perception), we rely on the
data represented in BSMs. Then, in the second step (comprehension),
we use the collected data to calculate plausibility checks, feed them
to the ML model, and provide it to the trust equation. Finally, in
the last step (projection), we consider the ML and the trust model
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Figure 1: Situation awareness phases in VANET trust model

scores to assess the situation at that particular moment and predict
the imminent situation’s development.

One major challenge in SA is how to measure it. Quantitative
analysis is used to represent the network security situation state
at one point in time [16]. While quantitative analysis can provide
warnings about the network security situation, it suffers from the
lack of information regarding the true nature of the attack. Nev-
ertheless, some well-known techniques for measuring situation
awareness are inherited from military aviation testing, like sub-
jective ratings, simulation freeze, and task performance measures.
In our case, we are extending one of these measuring techniques-
subjective ranking technique (SART)- to apply it in the security
domain. In the subjective ranking, ranking a driver is based on the
ranking by observers or other drivers. In our work, we similarly
measure situation awareness by giving a score for the vehicle in the
form of a trust score built upon other drivers’ reported observations.

3.4 Trustin VANET

Ensuring the integrity of exchanged data in VANET is a must. It is
more critical for BSM data. Trust management systems in VANET
use related information as values for trust functions or as inputs for
the trust inference models. The trust score or the inference results
can determine the trust level of a certain vehicle. Accordingly, our
model used the collected data from basic safety messages along
with data from the environment as values for the trust calculation
function, Logistic Trust (LT) [2].

Logistic Trust (LT) model was adopted for measuring SA in
terms of how trustworthy the vehicles in the network are [2]. LT
is very compatible with SA as it is time and experience-driven. SA
tends to collect data iteratively over time, which contributes heavily
to the LT trust scoring process. Logistic trust model consists of the
following three parameters:

Dissatisfaction: It measures the contradiction of the received
information from vehicle s. IF i,(s) is the number of incorrect
messages s sent and v, (s) is the total number of sent messages by
s, then dissatisfaction in time-slot n is

On(R,s) = %(Ss)) (1)

while the total dissatisfaction up to time slot n is

Zn: Sn(R.5)

Su(R,s) = 17 )

Flag: In the original LT, the flag parameter is part of the direct
trust. Also, if the dissatisfaction score was higher than a certain
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pre-declared threshold S, a flag @, (R, s) is raised for this s vehicle.
We modified this part by making the flag part of the indirect trust
and raising the flag after a certain number of attacks. We did this
because LT was designed for Ad hoc networks in general; this
made the flag parameter more tolerant of misbehaving. Originally,
the flag used to be lowered if the dissatisfaction score went below
the threshold after more interactions. In VANET, the cars do not
have that long interaction time to interact to the point where the
dissatisfaction score can get higher and lower over a long period.
Therefore, we found that cars should be flagged after a certain
number of attacks. In the event that a flag was raised by mistake,
the overall trust score does not solely depend on the flag state. Since
other parameters (e.g., expectation, dissatisfaction) may result in
accepting the received messages from that car.

Expectation: p,(R,s) is the mean of the recommendations re-
garding vehicle s in time slot n

bu(s) +1
bn(s) + gn(s) +2
where bad recommendations are represented as b, (s), and good

recommendations are represented as gp(s). Altogether, the final
trust score is given by

pET(R,s) = 3)

1

tn(Rv 3) == s
1+e (V.W+ W)

©

where

V = {6a(R,5), pET (R, 5), (R, 5), tn-1(R, 5)}

In our version of LT, the V is a vector of the values of the four
main components of the trust equation: dissatisfaction, flag, expec-
tations, and the trust score for the vehicle s in the previous time
slot.

From the above discussion, we can formulate the problem into
two parts. First, we need to measure SA in terms of a trust score
based on LT. Second, we have to integrate ML with SA. The first
part will help utilize SA with ML and find a way to incorporate
both in the decision-making process. The second part will lead to
overcoming ML limitations and improving its detection rate.

4 PROPOSED APPROACH

In this section, we describe the proposed situation awareness and
machine learning approach for misbehavior detection. In the pro-
posed approach, we have two main goals: measuring situation
awareness to reflect the state of the network in a given time using
logistic trust, and adopting this holistic view with the acquired in-
formation from the used machine learning model to achieve better
results in detecting misbehavior attacks.

4.1 Measuring SA Using LT

In order to measure SA, we utilized the Subjective Ranking Tech-
nique (SART) concept [26]. In SART, observers in the network can
rate a driver. Following the same concept in VANET, other drivers
can act as observers to rank a certain vehicle. Logistic Trust (LT)
[2] was used for ranking vehicles by calculating their trust score.
In SAMM, when vehicle R receives a message from vehicle s,
LT calculates the trust score for vehicle s using two sources of
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Figure 2: Situation awareness and machine learning for de-
tecting misbehavior attacks in VANETs

information: Vehicle R’s direct experience with vehicle s and in-
direct experience between other vehicles and vehicle s. LT uses
three main parameters, namely, dissatisfaction, flag, expectation,
for trust calculations. In Section 3, we explained how each parame-
ter is calculated. In this section, we will present how we adopted
these parameters in our approach.

4.1.1 Dissatisfaction. 5, (R, s) is a measure of the inconsistency
of the received information from a certain vehicle. We measure
dissatisfaction by calculating the difference between the correct
and incorrect received messages from vehicle s. Initially, we create a
counter for correct and incorrect messages for every vehicle. Then,
every time we mark a message as benign, we increase the correct
message counter by one and vice versa. After that, we use Equation
1 to calculate the total dissatisfaction in the current time slot.

4.1.2  Flag. an(R,s) is related to the number of attacks detected
from a certain vehicle s. A flag is raised if a vehicle exceeds a certain
threshold in terms of the number of attacks.

4.1.3 Expectation. py(R,s) is a reflection of what other vehicles
in the network think about vehicle s. We look at reported attacks
from other vehicles as bad recommendations b, (s) and non attack
interactions as good recommendations g,(s). Consequently, we
calculate expectation according to Equation 3

4.2 Integrating SA with ML for Misbehaving
Detection

In this section, we discuss the main components of the SA model
shown in Figure 2.

4.2.1 System input: Generally, in SA systems, the input is the
state of the environment. SA was integrated with the purpose of
enhancing the detection rate of ML models, and the input here is
the output of ML models. Another difference is the way we build
the used ML models. For the purpose of building the ML model in
a way that is related to the environment, plausibility checks are
mandatory for the ML building process. Plausibility checks use the
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Algorithm 1 SAMM algorithm

Inputs:

Messagep,: Current received message

Carp: Sender vehicle

A: Weight vector for the trust vector variables

attackProb: The ML model probability that a message is an attack message
nonAttackProb: The ML model probability that a message is a non attack message
dissatis factionValue: The dissatisfaction value

dissatis factionT hreshold: The dissatisfaction threshold

attackThreshold: The threshold of the message being an attack

notAttackThreshold: The threshold of the message being a non attack
trustAttackThreshold: The threshold of the trusting score for not accepting the message
trustnotAttackThreshold: The threshold of the trusting score for accepting the message
flagThreshold: The threshold for raising flag

Outputs:
Misbehavingy,: Message n is a misbehaving message
Benignp: Message n is a benign message

Variables:

trustScorey: Vehicle current calculated trust score
flagn: A flag which indicates whether the sender is an attacker or not

1: if Message; is detected as an attack and Cary, is not in attackerList then

2: add Cary, in attackerList and attack counter is initialized to 1

3: /*Calculate the trust score using the modified logistic trust model*/

4. if Messagey, is detected as an attack message by the ML model then

5 if Carp number of attacks > flagthreshold then

6: set flagn to 1

7: attackMessagesPercentage = (receivedAttackesMessages / receivedMessages) * 100

8 if attackMessagesPercentage > dissatisfactionThreshold then

9 set dissatis factionValue to 1

10: else

11 set dissatis factionValue to 0

12: expectationValue = (receivedAttackesMessages + 1) / (receivedAttackesMessages + receivednonAttackesMessages + 2)
- =

13: trustScore, = 1/1+ eV - W+

14: /*Modifying the model output based on the trust score*/

15: if trustScore, < trustAttackThreshold and nonAttackProb > notAttackThreshold then

16: Benigny

17: else

18: if Message; is detected as a non attack and Cary, is not in nonAttackerList then
19: add Cary, in nonAttackerList and a non attack counter is initialized to 1

20: else

21: increase the non attack counter by 1

22: if trustScore, < trustnotAttackThreshold and attackProb > attackThreshold then
23: Misbehavingy,
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collected information from the environment, which is crucial for
SA. We also did not take the output of the ML in terms of 0 or 1 but
in terms of probabilities. Thus, it gives us a better understanding of
how the ML model assisted the situation by providing a percentage
of the message being benign or malicious. Another input here is
“Feedback”, and its role is to enhance the results in the future. We
build the current decision in time n, considering the previously
collected and computed information in the time slot n — 1. Also, in
the LT, we include the previous trust score in calculating the trust
score in time n.

4.2.2  SA Level 1- Perception: To better detect misbehavior attacks,
perception starts with collecting the surrounding vehicles’ data
stored in the BSMs. Such data include the vehicle’s location, speed,
and send time. Another source of information is the outcome of
machine learning. The outcome is the probability of whether the
received message is an attack. The general rule in SA is that more
information leads to better predictions.

4.2.3 SA Level 2 - Comprehension: Misbehavior detection needs to
analyze the provided data to improve upon perception. For instance,
we calculate the trust elements of the trust function as the ratio
of false and benign messages or other vehicles’ recommendations
about a certain vehicle to compute its reputation.

4.24 SA Level 3 - Projection: The projection step concerning mis-
behavior detection leads to the capability of estimating other ve-
hicles’ level of trust. Accordingly, this is achieved through the
build-up knowledge of vehicles’ behavior and the awareness of the
current situation (outcomes of SA level 1 and level 2). In level 3, we
determine the most trustworthy cars and vice versa. Also, we iden-
tify the vehicles that showed signs of misbehaving before and see
if they exceeded the defined threshold of misbehaving. Ultimately,
this will be used in the next step to enable the most suitable decision
in the current time to be taken. Hence, it determines whether to
accept the received message or not.

4.2.5 Environmental factors: Various elements like network stabil-
ity and density affect the situation awareness process. Additionally,
the deployment of sensors and security software also plays a role
in the environment where the system operates. System factors as-
sist on different levels of SA and cooperate in the decision-making
process. In our case, we assume that network stability and density
are fixed, and they are the same for all vehicles.

4.2.6 Individual factors: There exist individual or group attributes
that influence the SA process [23]. Individual goals and objectives
may change according to the environment, which leads to new
plans to meet these new goals. In our case, the system operator
may change the trust acceptance threshold for a better detection
rate. In addition, the operator can apply a different model for mea-
suring situation awareness other than the LT model. Moreover, the
operator can decide to target different types of misbehavior attacks.

4.3 SA with ML Algorithm for Detecting
Misbehavior Attacks
As shown in Algorithm 1, after receiving a classification result

regarding a recently received message from a surrounding vehicle
(line 4), we either confirm this classification or change it based
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on SA decision. The algorithm makes use of the data collected
from the environment by calculating dissatisfaction (lines 9 and 11),
expectation (line 12) and raising flags (line 6) according to the recent
situation. Finally, we combine two main sources of information:
the ML model decision and the calculated information based on
the environment, to reach a final decision. ML model information
comes in the form of probability, not discrete decisions. Therefore,
instead of identifying whether this is an attack message, we are
more interested in the probability of this message being an attack or
benign. Furthermore, the environment information is used to reflect
SA and predict the surrounding cars’ trust value. Accordingly, we
use these two values (classification probabilities and trust value) to
either keep the initial classification obtained from the ML model
regarding the received message or change it (line 16 and line 23).
Finally, we end up either accepting a message which was classified
as an attack or vice versa (lines 16 and 23).

The algorithm’s complexity is O(n). Even though we search
multiple lists (e.g., attacker list, non-attacker list), we still do not
have any nested loops. Accordingly, integrating SA should not pose
a considerable overhead.

5 EXPERIMENTS AND RESULTS

We conducted four different experiments to understand the im-
proved aspects and their nature after utilizing SA. The first exper-
iment (Section 5.1) is different from the other three and can be
considered a pre-experiment. The pre-experiment gives an idea
about the effectiveness of the SA algorithm itself in general.

We conducted the other three experiments on ML models to
demonstrate the influence of SA on the ML detection rate for misbe-
havior attacks. We used a publicly available dataset named VeReMi
for these experiments to test a wide range of misbehaving attacks.
We established the ground truth ourselves in the second experiment
(Section 5.2). Therefore, we built the ML model and calculated the
plausibility checks in order to make SA the only variable in the
equation. Thus, we compared the detection results between the
ML model and the ML model with SA to investigate the impact
SA has on the accuracy rate of detecting misbehavior attacks. The
third experiment (Section 5.3) helped us refine our understanding
of the effect of SA on identifying misbehaving. Furthermore, we
compared this work against a very recent work [30] that used fed-
erated learning on top of ML instead of SA, as in our case. Finally,
in the fourth experiment (Section 5.4), we further demonstrated the
influence of SA on enhancing ML models’ capabilities in detecting
misbehavior attacks.

5.1 Investigating the Correlation Between SA
Calculated Trust and Attack Density

This experiment was conducted to observe the correlation between
the measured trust expectations for the vehicles in the network and
their actual behavior over time. Therefore, we have the calculated
trust value and the reported attacks based on ML.

We used a scatterplot to represent the correlation between the
inverted trust value and the number of detected attacks for each
vehicle. Figure 3 shows the correlation in all five attacks in addition
to the correlation coefficients at the top left corner. Each dot in the
plot represents a vehicle. A dot’s location depends on the number



SAMM : Situation Awareness with Machine Learning for Misbehavior Detection in VANET

of detected attacks for this vehicle and the calculated trust score.
The error region is also illustrated in Figure 3 as the area in light
blue. This error region corresponds to the 95% confidence interval
of the estimate.

Positively correlated variables move in the same direction as
shown in the graph. We used the inverse of the trust value to
simplify the scatterplot’s visualization between calculated trust
and detected attacks. Also, the correlation coefficient on the top of
the graph reflects the association between two variables. Variables
with a correlation coefficient magnitude over 0.5 are considered
moderately correlated. In this experiment, the minimum obtained
correlation was 0.59, and we reached 0.71 in the random offset
attack. The scatterplots for all the attacks show a small gap between
the trust scores. The gap is not considerable, but it resulted from
the outlier nodes (i.e., cars with a small number of attacks with
high trust scores and cars with a large number of attacks with
low trust scores). We added an area around the nodes (the small
blue circle) related to this node’s number of detected attacks and a
color bar to show where most of the nodes lay and how small the
outliers’ numbers are. The gap may look smaller in the first three
attacks, but the scale is too small. Accordingly, “smal” here does
not reflect more outliers covering the area because the difference is
insignificant. Primarily, this shows how the calculated trust results
correlate to the cars’ behavior in the actual scenario. However, this
experiment was an early stage one which we considered as a proof
of concept for our assumption. Thus, we cannot interpret the result
coherently as to how the correlation coefficients and the types of
attacks are related. However, this will be done in the subsequent
experiments.

5.2 Analyzing the Effect of Using SA on ML
Attack Detection Rate

To fathom the merging between ML and SA, we needed to study
the outcome of the plain ML model after synthesizing SA. For this
experiment, we designed the ML model and the plausibility checks.
Consequently, we made sure to make SA as the only variable in the
equation.

5.2.1 Parsing dataset. We started with importing all VeReMi . json
files. Each file belongs to one vehicle and contains the received
BSMs from its neighbors in a 300-meter range. Also, attack files
are categorized into three different density scenarios: low (35 - 39
vehicles), medium (97 - 108 vehicles), and high (491 - 519 vehicles).

Because SA reflects the system situation at a specific time, we
made sure to sort all the records in chronological order. Most impor-
tantly, this is different than most of the used approaches out there,
where they mainly focus on pairing the sender and the receiver mes-
sages. This pairing process results in changing the records’ chrono-
logical order. Of course, the traditional approach is not wrong, but
it only focuses on creating attack features without considering time
as one of the elements. After that, we converted all the files to . csv
file format without concatenating them together.

5.2.2  Plausibility checks and supporting features. We calculated
eight different plausibility checks and features which we represent
in Section 3. Some features were calculated as plausibility checks,
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Figure 3: Correlations between SA trust and attack density

while others were calculated to gain more insight into the envi-
ronment. Subsequently, feature numbers 1, 6, 8 are the plausibility
checks, while the others act as supporting features. We needed the
supporting features to expand the understanding of the surround-
ing cars’ behavior and use them in calculating plausibility checks
(e.g., calculating acceleration a to calculate position later).

5.2.3 Random forest and trust calculation. Many researchers adopted
machine learning models for anomaly detection [5]. Besides, the
random forest classifier has shown better results in terms of high
accuracy, especially while dealing with extensive data.
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The first and second experiments were performed on Python
3. We used the scikit-learn library (sklearn.ensemble) for the
Random forest classifier. We used 0.75 of the data for training and
the rest for testing. The number of the used trees in the Random
forest classifier is 100. After training the model, we assessed and
saved the accuracy score for each one of the five attacks. Afterward,
Algorithm 1 identifies the effect of including SA on the final results.

Table 1 demonstrates the difference in performance between the
obtained results from the ML models and the ones after including
SA in all three different traffic density scenarios. We observe a sig-
nificant increase in the total accuracy rate on the various types of
attacks in different densities, except for the first attack in the high
density. It was possible due to the simplicity of this attack. Using
displacement as a plausibility check for this attack makes detection
accurate, almost near 100%, and any small change would signifi-
cantly affect the result. However, SA considers outside elements,
not just the plausibility checks, influencing the outcomes. Another
reason behind such behavior is the type of injected information.
To make our approach as generic as possible, we chose not to filter
the provided information based on the targeted attack. Therefore,
we prevented the data from being fixed to only what we tried to
detect. Still, more than 90% of the cases show a very promising
increase in the detection rate. Finally, we can see how integrating
SA has enhanced the overall detection rate except for the attacks
that do not require further inference, such as constant position.
Nevertheless, some attacks such as constant positions are straight-
forward attacks that can be detected using the traditional machine
learning approaches. Therefore, while SA does not contribute more
in detecting such simple attacks, it complements the conventional
approach to detecting more complex attacks.

5.3 Examining the Effect of Using SA on Recall
and Precision in ML

In this experiment, we investigated the enhancement in attack
detection between the recently published approach in [30] and ours.
Researches adopting ML for misbehavior detection systems focus
on the ML models or feature detection. In this work, we are trying to
push the limits of ML for attack detection in VANETS by introducing
the idea of integrating situation awareness. Similarly, the work
in [30] enhanced the straightforward ML models in VANETs for
privacy-preserving against misbehavior detection. They proposed
using Federated Learning (FL) for misbehavior detection without
sharing BSM data with a third party, achieving better precision,
recall, and performance. Their work studied the effect of using FL
versus traditional ML models, while ours studies the effect of SA
over traditional models. Consequently, the experiments followed
their approach of comparing the basic ML model against the “add
to” version of it.

We constructed two sub-experiments. We operated on the same
dataset (VeReMi) and implemented their neural network. In the
first sub-experiment, we chose the plausibility checks to use for
the model. Still, the only difference between the two tested works
was the used features and plausibility checks, as we consider them
as part of the SA model. In the second sub-experiment, we left
everything the same, even the used features. The idea behind this
experiment is to observe the effect of SA just on the model itself.
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Figure 4: Recall comparison between the obtained results by
the KNN model and after integrating SA
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Figure 5: Precision comparison between the obtained results
by the KNN model and after integrating SA

In terms of evaluation, we followed their precision and recall
evaluation matrix as shown in Table 2. This will give us more
insights into the behavior of SA on ML results. Given that precision
and recall affect each other, we found out that SA enhances recall
even if it is at the cost of precision. For Attacks 1, 3, and 4 in
Table 2a we observe a notable increase in recall in return for the
small sacrifice in precision. Even for the second sub-experiment,
we notice a boost in recall in all the different attacks, as shown
in Table 2b at the expense of a minor reduction in precision, as
mentioned.

5.4 Improvement in the Recall by Utilizing SA

Finally, we evaluate our approach by comparing our results with the
results obtained by So et al. [28], where they show how they man-
aged to increase the detection of misbehavior using ML and plausi-
bility checks. Unlike the previous experiments, the used dataset is
a special version of VeReMi called ML-friendly VeReMi [28]. In this
version, all the files of one scenario were concatenated together in
one .csv file. Moreover, two attributes were added to each .csv
file named Attacker Type and Receiver Type. “Attacker Type” at-
tribute contains a number from 0 to 5, where 0 indicates that this is
a normal vehicle and the rest of the numbers reflect one of the five
attacks in the dataset. The mapping between the number and the
attack type was obtained from the ground truth file, represented in
the original dataset. Moreover, “Receiver ID” was added to build a
sender-receiver pair that helps represent each sender’s journey.
We did not have to implement the ML model for this experiment
as the code was available [28]. Instead, we added SA to the process
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Traffic density Low Medium High

ML ML & SA | ML ML & SA | ML ML & SA
Constant position | 0.982% | 0.983% 0.97% | 0.98% 0.999% | 0.612%
Constant offset 0.859% 0.878% 0.807% | 0.837% 0.83% | 0.86%
Random position | 0.849% | 0.861% 0.88% | 0.89% 091% | 0.92%
Random offset 0.8436% | 0.861% 0.813% | 0.842% 0.87% | 0.89%
Eventual stop 0.867% | 0.906% 0.904% | 0.922% 091% | 0.92%

Table 1: Comparison between ML detection results with/without SA in different traffic densities

Precision
Constant| Constant] Random | Random Eventual

pos. offset pos. offset stop
FL Model 0% -1% 0% 1% -1%
FL & SA -2% 9% 1% -4% 9%

Recall

FL Model -13% -4% 0% 0% -16%
FL & SA 4% 0% 8% 15% 0%

(a) The enhancement in terms of precision and recall by the Federated
learning model and our model (sub-experiment #1)

Recall
Constant| Constant] Random | Random Eventual
pos. offset pos. offset stop
FL Model -13% -4% 0% 0% -16%
FL & SA 3% 11% 8% 7% 10%

(b) The enhancement in terms of recall by the Federated learning
model and our model where same plausibility checks and features
were used (sub-experiment #2)
Table 2: Examining the effect of using Situation Awareness
(SA) on recall and precision in ML
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Figure 6: Recall comparison between the obtained results by
the SVM model and after integrating SA

to see the effect on the ML model’s final results. However, Figures
4,5, 6, and 7 show the obtained results (for the KNN, SVM, KNN
with SA, and SVM with SA). We did not find a significant difference
between their published results and the ones we got. We had to
compare with the new results to measure the impact of SA on them.
The paper represented two different experiments; one was done
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Figure 7: Precision comparison between the obtained results
from the SVM model and after integrating SA

using the KNN model and the other using SVM. For the KNN model,
Figures 4 and 5 show the increase in recall, especially for attacks
4 and 5, where they achieved an increase in the recall by 36% and
52% with only 3% and 11% decrease in precision. Furthermore, for
the SVM model, Figures 6 and 7 show how we achieved an increase
in both recall and precision in all attacks.

In Figures 4 and 6, we find a small recall rate in the constant
offset attack both for the KNN and the SVM models. Nevertheless,
this is a detection problem in the first place. Looking at how the
same plausibility checks have been used for both models, we can
see how we ended up with the same behavior regarding detect-
ing the same attack (constant offset attack). Accordingly, better
plausibility checks for detecting this attack are needed in general.
Still, under those circumstances, we can see that SA maintained
the same behavior of improving the precision rate when the recall
is saturated as shown in Figures 5 and 7. Ultimately, SA can only
improve recall when there is room for improvement in the first
place.

6 CONCLUSION

Misbehavior attacks are one of the biggest challenges to achieving
a secure and reliable Vehicular Ad hoc Network (VANET). With
all of their advantages, ML models require a new perspective to
perform better and acclimate to VANET characteristics. One of
those characteristics is the ability to share personal information
using Basic Safety Messages (BSMs) in an open environment. In
this work, we used a publicly available dataset VeReMi. We showed
how utilizing SA with traditional ML model approaches can lead
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to better detection of misbehavior attacks. Furthermore, Logistic
Trust (LT) was used to measure SA. By incorporating SA with ML,
we ascertained that the ML model’s classification results still have
room for improvement (by accepting a message labeled as an attack
and vice versa) to obtain a better detection rate. Moreover, we found
that SA increases the network sensitivity to detect misbehaving.
Accordingly, we noticed how this manifested in a better recall rate,
which eventually increased the detection rate. The performance
of the introduced approach was evaluated through extensive ex-
periments. The proposed approach showed promising results with
over 50% increase in recall in some cases. It has been evident that
utilizing SA with ML for misbehavior detection in VANET is promis-
ing for achieving a better detection rate and keeping the network
secure and reliable.
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