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Abstract—Estimating the location of sensor nodes in wireless
sensor networks is a fundamental requirement in a variety of
sensing applications. In large scale dense deployments where the
area covered by sensor nodes is very large, it is impossible to
localize all sensor nodes using single-hop localization techniques.
A solution to this problem is to use a multi-hop localization
technique to estimate sensor node positions. In some deployments
it is required to maintain the anchor nodes at the edge of the sim-
ulated area. In previous work, we introduced a new localization
scheme that uses distance measurements to localize sensor nodes
using a collinear and non-collinear mobile anchor nodes placed
at the edge of the sensed area. A Kalman Filter was then used
to improve the location accuracy for each node. In this scheme
each SN estimated its location from two independent directions
then use such information to improve localization accuracy. In
this paper, we extend the work to use side localization using
hop measurements and fixed anchor node. We also compare
the performance of using side localization for both hop and
distance measurement. Through simulation we show that side
localization using distance and hop measurements outperform
DV-Hop and DV-Distance, which are mainstream localization
protocols. The weighted mean hop measurement gives higher
localization accuracy than using using distance measurement.
However, if Kalman Filter is used distance measurement gives
better localization accuracy.

Index Terms—Localization, Positioning, Multihop, Collinear-
ity, Flip Ambiguity, Kalman Filter.

I. INTRODUCTION

In Wireless Sensor Network (WSN) monitoring applica-
tions, it is important to locate the position of an event to
take the correct action. To localize Sensor Nodes (SNs) in
WSN, anchor nodes broadcast their location with operating
instruction to the SNs, and SNs use such information to
estimate their positions. Most localization schemes require a
high-density deployment of anchor nodes to ensure SNs have
enough references to estimate their positions.

Depending on the application and size of the terrain, local-
ization techniques can either be single-hop or multi-hop. In
single-hop techniques, un-localized SNs require a minimum
of three anchor nodes in 2-D and four anchor nodes in 3-
D within their transmission range in order to estimate their
locations using one of the distance measurements: Received
Signal Strength Indicator (RSSI), Time of Arrival (ToA) or
Angle of Arrival (AoA) [1].

However in a large scale deployment, the terrain where
the SNs are deployed is so vast that not all the SNs can
be located in the transmission range of three anchor nodes
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Fig. 1: WSN with Collinear Anchor Nodes.

at the same time. Therefore it is impossible to localize all
SNs using single-hop localization techniques. Thus a multi-
hop localization technique is used to estimate the positions
of SNs in large scale environments. Multi-hop localization
techniques are classified into two major categories: distance-
based and connectivity-based. Distance-based or range-based
localization techniques rely on the individual inter-sensor
distance data. Connectivity-based or range-free localization
techniques depend mainly on the connectivity information
(hop count) to estimate the locations of the un-localized SNs.

In many scenarios the sensed area is located in an isolated
terrain (i.e., dense rain forest or rocky terrain). SNs are usually
randomly deployed into isolated terrain to collect information
about the environment and send such information to the SNs
at the edge. In such isolated environment especially in rain
forest the GPS signal is distorted from the tops of the trees.
Thus to collect, process and maintain the information several
anchor nodes are placed at each side of the isolated terrain.
Such anchor nodes are used to localize the position of SNs.
The collected information is processed with the position of a
SN. Fig. 1 illustrates the studied environment.

In this paper, we use both connection and distance based
methods to estimate the distance between SNs. After that
we use the location information coming from both directions
of the network to increase the localization accuracy for the
SNs. The SNs estimate their positions two times from the
anchor nodes at the edge of the sensed area to decrease the
effect of the error propagation. After this process, we use
Kalman Filter to decrease the localization error coming from
the longer hop direction based on the information coming
from the shorter hop direction. Simulation results show that
using information from two different directions significantly
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increases the localization accuracy.
The remainder of this paper is organized as follows. Related

work is covered in Section II. Section III presents the proposed
scheme. The simulation environment and results are discussed
in Section IV. Conclusions are given in section V.

II. BACKGROUND AND PREVIOUS RESEARCH

In motivating our proposed research work to address the
challenges we discussed, we first will review the previous
localization systems techniques in relation to two relevant
aspects: multi-hop localization techniques, and the problem
of flip ambiguity .

A. Multi-hop Localization

Multi-hop localization schemes are based on either distance-
based or connectivity-based strategies. In connectivity-based
strategies the SNs obtain the absolute measurements of node
distances using Received Signal Strength Indicator (RSSI),
Time of Arrival (ToA), or Time Difference of Arrival (TDoA)
[2]–[4], while in distance-based strategies the SNs use the
connectivity information to estimate the location of SNs based
on the position of the anchor nodes [2, 5]–[7].

Niculescu and Nath propose two localization schemes, one
based on distance measurement, the other is based on con-
nectivity information [2]. The authors’ distance-based scheme
is called Distance Vector (DV)-distance, and has the anchor
node sending beacon messages to all its immediate neighbors.
Immediate (first-hop) neighbors to the anchor node estimate
the distance to the anchor by using signal strength mea-
surement. These neighboring nodes then forward the beacon
message to the second-hop neighbors to infer the distance to
the anchor, and so on until the network is completely covered
in a controlled flooding manner. Once an unknown node has
three or more distances estimated to different anchor nodes, it
computes its position using multilateration.

The second scheme proposed in [2] is the DV-hop, which
operates in three stages. First, the the algorithm computes the
number of hops for all the SNs to the anchor nodes. Next,
the anchor node gets the number of hops required to reach
the other anchor nodes, calculating the average length of one
hop by dividing the total distance by the number of hops. SNs
then estimate the distance by multiplying the number of hops
by the average length for one hop.

Stoleru et al. propose a scheme called MDS-MAP that uses
multi-dimensional scaling (MDS) to determine SN locations
by using only connectivity information [3]. The operation of
MDS-MAP consists of three steps: 1) Finding the shortest
paths for all pairs; 2) applying classical MDS to the distance
matrix; 3) using three or more anchor nodes to transform the
relative map to positions based on the positions of anchor
nodes.

Wu et al. propose a self-configurable positioning technique
for multi-hop wireless networks [4]. A number of nodes at
each corner of the network serve together as an anchor for
estimating the distances by a Euclidean distance estimation
model. The authors used ToA to estimate the distance for each
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Fig. 2: Collinear anchor nodes a, b and c causing a flip ambiguity
for SN n.

hop. Once ToA information is received by an SN, the sum of
these distances is computed by minimizing an error objective
function.

The above solutions work well in isotropic networks, i.e.,
in networks where the hop count between two nodes is
proportional to their geometric distance. However, they exhibit
a dramatic drop in performance when used in anisotropic
networks, i.e., in networks with non-uniform node distribution
where there is a concave region at its center. For connectiv-
ity based multi-hop localization Savarese et al. [5] propose
AHLoS (Ad-Hoc Localization System) algorithm, where a
small fraction of nodes have the knowledge of their position
to estimate the location of other SNs using collaborative and
iterative multi-lateration algorithm. In AHLoS at least three
SNs know their position in order to estimate the position of
other nodes. Nagpal et al. [6] calculate a global coordinate
system for the whole network by estimating the Euclidian
distance of each hop between SNs. The SNs use the number of
communication hops to estimate how far they are from anchor
nodes. When an SN receives at least three different positions
from different anchor nodes, the SN combines the distance
from the anchor nodes and estimates its position based on the
hop count to each anchor. Akbas et al. [7] localize the position
of SNs floating in the Amazon river based on stationary anchor
nodes placed at a bank of the river. Their localization algorithm
uses multi-hop between SNs and anchor nodes. Each SN keeps
a single weight value for each anchor it is associated with. The
saved weight represents how far the SNs are to each anchor
node. The anchor node uses these weights to estimate the SNs
position.

B. Flip Ambiguity

When anchor nodes are located on a straight line, the flip
ambiguity problem results [8]. Traditionally, the term “flip am-
biguity” labels the confusion resulting from collinear anchor
nodes. As illustrated in Figure 2, anchor nodes a, b, and c are
collinear. Node n estimates its position through measurements
da, db, and dc. Each measurement defines a ranging circle
centered at the anchor node. Due to measurement errors, the
three measured circles do not intersect at a common point,
which causes ambiguities in determining whether the position
of the SN is n or n′ [9].

The problem of flip ambiguity is approached from different
perspectives in the literature. The work done by Eren et al.
and Goldenberg et al. test the unique localization conditions

 
811

Authorized licensed use limited to: Queen's University. Downloaded on December 12,2022 at 17:28:55 UTC from IEEE Xplore.  Restrictions apply. 



and construct localizable networks using the rigidity theory
[10, 11]. The authors show that maintaining a global rigidity
in the localized networks decreases the collinearity of anchor
nodes. However, it is hard to maintain the global rigidity of
the network unless it is compensated by a priori information
from the network [12].

Localization algorithms in [9, 13] identify possible flip
ambiguities caused by collinearity of anchor nodes and de-
crease the effect of flip ambiguity during the localization pro-
cesses. Moore et al. propose a robust quadrilaterals localization
scheme to identify possible flip ambiguities in fully connected
sensor quadruples [9]. The scheme has two steps. In the first
step, the distance measurement between two anchor nodes SA

and SB is used to estimate the two possible locations of the
un-localized SN SD. Then in the second step, a third anchor
node SC is used to decide which of the two possible locations
for the un-localized SN satisfy the distance constraint. If both
locations satisfy the condition, the scheme will ignore this SN.
In [13], it was was noted by Sittile that if sensors SA and SC

are used in the first step in [9] instead of sensors SA and SB ,
and sensor SB is used in step 2 instead of sensor SC , this
may result in a different value for the robustness criterion,
which would affect the overall localization performance. Such
dependency is eliminated by including all three permutations
when localizing SD, i.e., (SA, SB , SC), (SA, SC , SB) and (SB ,
SC , SA). This inclusion, however, increases the computational
complexity of the algorithm.

To reduce the error caused by trilateration, Yang et al. [14]
propose a sequential localization scheme that estimates SNs
location and controls the errors introduced in each step. In
their sequential scheme, a set of anchor nodes is chosen and
the expected error is tracked in each step to minimize the
error. However, flip ambiguity cannot be avoided by error
control as it can be triggered even by the smallest errors
if the anchor nodes used to localize the SN are collinear.
Basu et al. solved the problem of collinearity by using both
distance and angle measurements [15], where the localization
problem is transferred to a convex form and solved using linear
programming. However, the scheme by Basu et al. cannot
work if either the distance or angle measurement does not have
a clear boundary. Also, the scheme depends on the knowledge
of both distance and angle measurements, which requires
additional hardware. To identify and reduce the error caused
by flip ambiguities, Kannan et al. introduce a scheme that
recognizes SNs with possible flips using simulated annealing,
and offer a refined scheme through the use of a ranging model
and a bounder check, despite the refinement, however, the
scheme may not identify all flips [16].

III. THE SIDE LOCALIZATION SCHEME

The side localization scheme is described in details in
this section. The two main goals for this approach are: 1)
to enhance the position estimation of localized SN without
deploying anchor nodes in the sensing area as the cost of
anchor node is much higher than normal SNs and 2) to propose

a solution that overcomes the collinearity problem that appear
from using a mobile vehicle that moves in straight lines

To solve the collinearity that results from the studied envi-
ronment that is shown in Fig. 1, we propose a new localization
scheme that estimates the distance between two nodes using
RSSI measurements. SNs then estimate their position using
the estimated distance, message flow direction and laws of
trigonometry [17]. In the following, we first formulate the
localization problem. The proposed scheme is then described.
Finally, Kalman Filter is used to reduce localization errors.

A. Problem Formulation

We consider a two-dimensional WSN localization problem,
where there are number of anchor nodes located at both ends
of the sensing area as shown in Fig. 1. Assume that there are
M SNs that are deployed randomly in the sensing area, where
the SNs need to localize their positions. The position of ith SN
is denoted by xi = [xi yi]

T . The distance measured between
the ith and jth SN is

di,j =
√
(xj − xi + xerr)2 + (yj − yi + yerr)2

where xerr and yerr ∼ N (0, σ2).
(1)

where ri,j = ‖xi − xj‖ is the noise free distance between
SN i and j, and εi,j ∼ N (0, σ2

i,j) represents the uncorrelated
noise. σ2

i,j is assumed to be accurately estimated and is known
a priori [18]. Without loss of generality we assume that there
are N anchor nodes located at the edge of the sensing area.
Let αl

i and αr
i ,∀i = 1, 2, . . . , n, respectively be the positions

where the left and right anchor nodes broadcast their positions
while they are moving on the edges of the sensing area. Each
SN localizes its position two times from the left and right sides
and saves the number of hops to the left and right edge. The
estimated positions of ith SN from the left and right side that
are p and q hops away from the left and right anchor nodes
are represented by x̃l,p

i and x̃r,q
i , respectively. For example,

xl,3
k means node k received a packet that is 3 hops away from

the left edge.

B. Side Localization Scheme

We extended the scheme we proposed in [19] to work with
fixed anchor instead of mobile anchor. The extended scheme
use either hop count or RSSI to estimate the distances between
SNs. In this paper we explain the algorithm used to estimate
the location of SN using hop information, while [19] explains
in details the algorithm using RSSI.

The algorithm works as follow: Each SN requires a mini-
mum of two SNs with a known position from each direction
in order to estimate its position from one direction.

This localization scheme has three different lists: unknown-
PosList, leftPosList and rightPosList. The unknownPosList
saves anchor SN positions when the direction of the message
is unknown at the beginning. The leftPosList and rightPosList
are used when the SN has enough information that enables the
SN to identify whether the message is coming from the right
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or left direction. This algorithm has three phases to estimate
the location of SNs.

In the first phase, the anchor nodes on the side of the
sensing area send their location with the hop count initialized
with zero. The SNs saves the number of hops to each anchor
node through the shortest path along with the anchor node’s
location in the unknownPosList. Thus at the end of the first
phase, each SN maintains a list of {xi, yi, hi}, where xi and yi
are the coordinates of anchor i and hi is the shortest number
of hops to reach anchor i. SNs exchange the shortest hop
location packets only with their neighbors. When an anchor
node receives a location packet from other anchor nodes, it
estimates the average distance for a single hop for the entire
network. The average distance of a single hop of anchor i is
calculated as follows:

avgHopi =
M∑
j=1

√
(xi − xj)2 + (yi − yj)2

hj
, where i 6= j.

(2)
In the second stage, the anchor nodes broadcast their

estimates of the average distance for a single hop. When
a SN receives the message of the average distance for a
single hops, it starts to classify the anchor nodes saved in
its unknownPosList. This process is done as follow. First, the
SN calculates the different between the ys of the first 2 saved
elements in the unknownPosList. If the difference between
them is smaller than a given threshold, this means the change
in y coordinate is very small, thus these two anchors are
in the same direction and vice versa. But if the difference
between them is greater than the given threshold, then this
means that each anchor is located in different direction. If
y1 is less than y2, then y1 is saved in leftPosList and y2 is
saved in rightPosList and viceversa. This is repeated for all the
elements in the unknownPosList. After the SN has classified
the elements in the unknownPosList, it starts to estimate its
location x̃l,p

k using leftPosList and x̃r,q
k using rightPosList s

stated in [19], where , x̃l,p
k is the estimated position from the

left direction that is p hops away from the left edge and x̃r,q
k

is the estimated position from the right direction that is q hops
away from the right edge. The value of the distance of average
hop received as the distance between the distance between
SNs. After that the SNs forward its location as long as with
the distance of average hop received.

In the final stage, the anchor nodes estimates its location
using the information of anchor nodes coming from the other
direction. i.e. if the anchor node is one the left side, it
uses the location information coming from the right side to
estimate its location. After that the anchor node compares
the estimated error with the actual location and identify the
localization error and divide it by the number of hops to
estimate the average localization error per hop. The anchor
node forwards the localization error the SNs. The SNs uses
the average localization error to enhance its location using the
Kalman Filter. The Kalman Filter is discussed in details in the
following subsection.

Estimated position from 
low accurate direction 

(Dynamic Model) 

Estimated position from 
high accurate direction 
(Measurement Model) 

Kalman  
Filter 

Χ 𝑘
𝑟,𝑞

= ∅𝑘Χ𝑘 + 𝜔𝑘  

Χ 𝑘
𝑙,𝑝

= 𝐻𝑘Χ𝑘 + 𝑣𝑘  

+ 

- 

+ 

- 

Χ 𝑘
𝑙,𝑞

− Χ 𝑘
𝑟,𝑝

Estimation 
error 

Χ 𝑘
𝑟,𝑞

Fig. 3: The Kalman Filter left/right integration for p < q [20].

After SN i has estimated its location from both directions,
the SN can use the mean to estimate its position. However, the
estimated position from the direction with the larger number
of hops contains more errors than the direction with smaller
hops number (i.e., if q < p, then x̃r,q

k is more accurate than
x̃l,p
k ). By using mean the SN does not take into consideration

the error propagated for each hop. Thus, the weighted mean
can be used to consider the propagation error for each hop.
The weighted mean estimation is calculated as follow:

x̃k =
(x̃l,p

k × q) + (x̃r,q
k × p)

p+ q
(3)

However, the weighted mean does not take into considera-
tion the error gained from each hop. Thus the Kalman Filter
is used in place of the weighted mean. The Kalman Filter
reduces the estimation errors by taking into consideration the
error gained from each hop along with the number of hops.

C. Location Enhancement using Kalman Filter

We propose to use Kalman Filter in place of the weighted
mean. Kalman Filter is an optimal estimation tool that en-
hances one measurement giving a more accurate measurement
from another source using a sequential recursive algorithm
[20]. We use a Kalman Filter that corrects the estimated
location of the side that has the larger number of hops using
the information provided from the side that has the smaller
number of hops. This helps to estimate the error resulting from
the larger number of hops. Figure 3 shows the Kalman Filter
block diagram used in this study.

In order to complete the development of the state-space
of the discrete time Kalman Filter equations, the system’s
dynamic and measurement models for the SN have to be
defined. The system static and measurement model equations
if p < q (x̃l,p

k and x̃r,q
k are switched if q < p) are represented

as follows, respectively:

xr,p
k = φkxk + ωp

k (4)

zk = xl,q
k = Hkxk + νqk (5)

where xk is the actual location of the SN, φk is a static trans-
mission matrix that relates xk with its previous state. Since
there is no change in the SN state, i.e., location, the φk,k−1
matrix is represented as an identity matrix, Qp

k = E[ωp
k (ωp

k)
T ]

and Rq
k = E[νqk (νqk)

T ] are the covariance matrices for the p
and q hop count coming from the left and right directions. Qk

and Rk are assumed to be uncorrelated as they are received
from two different directions with different numbers of hops.
The Qk and Rk for single hop is calculated at the anchor node
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TABLE I: A Summary of Kalman Filter equations for p < q.
Kalman Filter Algorithm

Covariance matrix initialization:
P0 = E〈(x− x̃0)(x− x̃0)T 〉 (6)

State estimate extrapolation:
x̂r
k(−) = φkx̂

r
k−1(+) (7)

A priori covariance matrix:
Pk(−) = φkPk(+)φTk +Qk−1 (8)

Kalman gain matrix:
Kk = Pk(−)HT

k (HkPk(−)HT
k +Rk)

−1 (9)
Update the estimated location:

x̂r
k(+) = x̃r

k(−) +Kk(x̃
l
k −Hkx̃

r
k(−)) (10)

A posteriori covariance matrix:
Pk(+) = (I −KkHk)Pk(−) (11)

after estimating its location from the anchors node located at
the other side and dividing the location error by number of
hops. In order to calculate Qk and Rk for multi-hops, we
multiple the average error per hop by the number of hops.

The Kalman Filter equations used in this study are summa-
rized in Table I. The steps using Kalman Filter are as follows
if p < q (x̃l,p

k and x̃r,q
k are switched if q < p). First, the

covariance matrix is initialized at the left border SN using
Equation 6. After that, the SN calculates the priori covariance
and Kalman gain matrices using Equations 8 and 9. Then, the
right location x̃r

k is updated to x̂r
k using Equation 10. Later, the

SN calculates the posteriori covariance matrix using Equation
11 using the computed values of K, pervious state of x̂r

k(−)
and the accurate data x̂l

k in Equations 9, 7 and 8 respectively.
Finally, the SN forwards the Posteriori Pk(+) matrix to the
next hop SNs to be used as the priori covariance matrix Pk(−).
The SNs that are away from the edge of the network do the
same steps except they use the received posteriori covariance
matrix instead of creating a new one. Finally the SNs estimate
their new location using the following equation:

x̃k =
x̃l,p
k + x̂r,q

k

2
(12)

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme
in two localization scenarios. The first scenario investigates
the accuracy of the localization estimation as the number of
hops increases. The second scenario compares the effect of
increasing the number of hops by increasing the width of the
simulation area. We compare the localization mean square
error between ten different estimation techniques. The ten
estimations are: 1) DV-Distance; 2) DV-Hop; 3) shortest Hop
only using distance measurement; 4) shortest Hop only using
hop measurement; 5) using the mean of both sides; 6) the
weighted mean of both sides using distance measurement; 7)
the weighted mean of both sides using distance measurement;
8) the weighted mean of both sides using hop measurement; 9)
Kalman Filter using hop measurement and 10) Kalman Filter
using hop measurement. In our simulation, using NS3, the
communication range of anchor and SN is set to 30m. All
results are averages of ten different independent runs with
distinct random seeds.

A. Localization error per number of hops

In this scenario, we compare the localization error for each
hop level as the number of hops of the shortest side increases
in the same simulation area. We randomly deploy a 200 SNs in
a simulation area with dimension of 500m× 100m, since we
are interested in studying the effect of the number of hops on
our localization accuracy, which is affected by the width of the
simulated area. Thus, we increase the width of the simulated
area to be 4 times the length. The maximum number of hops
from one end to another using the above dimension is 20.

Fig. 4 illustrates that as the number of hops increases the
localization error increases for all the estimation techniques
except for the mean estimation. The figure shows that using
Kalman Filter using distance measurement gives the least
estimation error, while the mean estimation gives the highest
estimation error. The mean estimation for both hop and dis-
tance measurement, DV-Hop and DV-Distance give the worst
estimation when the difference between the number of hops is
larger as the error from the direction that has a larger number
of hops is huge, which affects the overall estimation accuracy
when we take the mean. However by taking the weighted
mean, we give a lower weight for the estimation from the
direction that has a larger number of hops.

The weighted mean using hop measurement gives higher
localization accuracy than using weighted mean using distance
measurement. However Kalman Filter with distance measure-
ment gives higher localization accuracy than using Kalman
Filter with hop measurement.

The improvement of Kalman Filter over the weighted mean
is between 24% and 44% with an overall mean of 37% for
distance measurement, while between 8% and 24% with an
overall mean of 16% for hop measurement. The position
estimation using one side only gives a very high accuracy
when the difference between the two directions is the max
(i.e. when the SN is near the edge of the simulation area).

B. Localization error per width change

In this scenario, we compare the overall localization error as
we increase the number of hops by increasing the simulation
area. We randomly deployed a 200 SNs in a simulation area
with width of 100m and the width of the simulation area is
changed from 200m to 400m with 40m step.

Fig. 5 shows that using the mean gives the worst localization
accuracy while using the Kalman Filter gives the best accuracy.
It is noted that weighted mean using hop measurements gives
better localization accuracy than weighted mean using distance
measurements. One the other hand Kalman filter using distance
measurements gives better results than using hop measure-
ments. Distance Kalman Filter gives a better localization accu-
racy than hop Kalman Filter by 12%, distance weighted mean
by 30%, hop weighted mean by 22%, DV-Distance by 51%,
and DV-hop by 44% . The reason that the Kalman Filter gives
a better results than the weighted mean is the Kalman Filter
estimates and assigns the weights automatically. Moreover,
Kalman Filter takes into consideration the propagation error
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per hop while the weights in the weighted mean are fixed and
the propagation errors per hop are not taken into consideration.

V. CONCLUSION

In this paper, we enhanced the side localization scheme
to localize SNs using fixed anchor nodes placed at the side
of the sensing area using multihop. The side localization
scheme using hop measurement is divided into three phases.
The second phase, the scheme estimates the location for each
node from two different directions using the estimated distance
between nodes and the flow direction of the message. The
third phase, we apply Kalman Filter to improve localization
accuracy. We study the different between using distance and
hop measurement in side localization. From simulation study,
we show that our side localization scheme outperform both
DV-Hop and DV-Distance. Simulations results show that using
hop measurement gives higher localization accuracy than
using using distance measurement in weighted mean. The
use of Kalman Filter tremendously increases the localization
accuracy for both distance and hop measurement, however
distance measurement gives better localization accuracy than
hop measurement.
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